WO2022241663A1 - 一种金属有机骨架与纳米纤维衍生的碳基复合电极材料及其制备方法 - Google Patents

一种金属有机骨架与纳米纤维衍生的碳基复合电极材料及其制备方法 Download PDF

Info

Publication number
WO2022241663A1
WO2022241663A1 PCT/CN2021/094507 CN2021094507W WO2022241663A1 WO 2022241663 A1 WO2022241663 A1 WO 2022241663A1 CN 2021094507 W CN2021094507 W CN 2021094507W WO 2022241663 A1 WO2022241663 A1 WO 2022241663A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
electrode material
based composite
composite electrode
metal
Prior art date
Application number
PCT/CN2021/094507
Other languages
English (en)
French (fr)
Inventor
徐岚
叶成伟
刘福娟
魏凯
王萍
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2022241663A1 publication Critical patent/WO2022241663A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention relates to a carbon-based composite electrode material derived from a metal-organic framework and nanofibers and a preparation method thereof.
  • supercapacitors have much higher energy density and higher power density than traditional capacitors. At the same time, they have the advantages of short charging time, high charging and discharging rates, and long cycle life. They are widely used in military, Aerospace, national defense, communication equipment and electric vehicles and other fields. As the most important component of supercapacitors, electrode materials play a key role in improving the performance of supercapacitors.
  • the electrode material of the supercapacitor should have a large specific surface area, which can expand the storage of charges and increase the specific capacitance of the supercapacitor; small internal resistance, good conductivity is conducive to the rapid transmission of electrons; no chemical reaction with the electrolyte to maintain long-term stability sexual characteristics.
  • MOFs metal-organic frameworks
  • porous MOFs materials and their derivatives have been gradually applied to the field of electrochemical energy storage, such as ion batteries, fuel cells and supercapacitors.
  • MOFs have a rich interpenetrating pore structure, which is convenient for ion transport;
  • MOFs are crystalline materials with a highly ordered structure, and the active sites are evenly dispersed, and the exposed active sites can promote the energy storage process. The acceleration can effectively improve the electrochemical energy storage performance of supercapacitors.
  • the poor conductivity of MOFs itself is not conducive to the rapid conduction of electrons, which limits the further improvement of the electrochemical performance of supercapacitors.
  • the electrospun carbon nanofiber material has good electrical conductivity and stable structure, which can be used as an effective support carrier for MOFs. Therefore, the research on the preparation method of carbon-based composite supercapacitor electrode materials derived from MOFs and nanofibers has become particularly important.
  • the blending method was used to directly blend MOFs into carbon nanofibers. This method made the loading of MOFs on the fiber surface less and unevenly distributed, making it difficult to form a dense MOFs coating on the fiber surface.
  • directly immersing the carbon nanofiber membrane in the growth solution will lead to the deposition of MOFs, which is not conducive to its growth along the fiber surface.
  • the purpose of the present invention is to provide a method for preparing a carbon-based composite electrode material derived from a metal-organic framework and nanofibers.
  • the preparation method is time-saving and efficient, the structure of the material is stable and controllable, and the electrode material prepared at the same time has a unique morphology. and high specific surface area.
  • the present invention provides the following technical solution: a method for preparing a carbon-based composite electrode material derived from a metal-organic framework and nanofibers, comprising the following steps:
  • the mass ratio of polyacrylonitrile, polyvinylpyrrolidone and metal salt is 1:1:1.
  • the metal salt is one or more of zinc acetate, zinc nitrate, zinc chloride, zinc sulfate, cobalt acetate, cobalt nitrate or cobalt chloride.
  • the first solvent is N,N-dimethylformamide or N,N-dimethylacetamide.
  • the parameters of the electrospinning are: voltage 14-18KV, spinning solution flow rate 0.5-2mL/h, receiving distance 15-17cm, temperature 20-30°C, humidity 45-55%.
  • organic ligand is 2-methylimidazole.
  • the solvent of the metal salt solution is the second solvent.
  • the second solvent is one or more of methanol, ethanol and water.
  • the inert gas is argon or nitrogen
  • the carbonization process is as follows: at a rate of 1-3 °C/min to 240-280 °C for 2-8 hours, and then at a rate of 5-10 °C/min Rise to 800-1000°C for 2 hours.
  • the present invention also provides a carbon-based composite electrode material derived from a metal-organic framework and nanofibers prepared by the method for preparing a carbon-based composite electrode material derived from a metal-organic framework and nanofibers.
  • Carbon-based composite electrode materials derived from metal-organic frameworks and nanofibers were obtained by combining electrospinning and in-situ growth.
  • the beneficial effects of the present invention are: firstly, the metal salt is blended in the nanofiber membrane of polyacrylonitrile (PAN) and polyvinylpyrrolidone (PVP), and then the nanofiber membrane is soaked in the organic ligand solution, and then the metal salt The solution is poured into it, this method is beneficial to the rapid nucleation of MOFs on the surface of the fiber, and then promotes the growth of nanosheets on the surface of the nanofiber membrane; at the same time, PVP as an effective surfactant can stabilize the nucleation of MOFs on the PAN-based fiber It promotes the formation of a uniform and dense coating.
  • the preparation method is time-saving and efficient, and the structure of the material is stable and controllable.
  • the electrode material prepared at the same time has a unique morphology, high specific surface area and specific capacitance, and has excellent electrochemical performance.
  • Fig. 1 is the surface topography diagram after in-situ generation of MOFs on the surface of the nanofiber membrane in Example 1 of the present invention
  • Fig. 2 is the surface morphology diagram of the carbon-based composite electrode material obtained after carbonization in Example 1 of the present invention
  • Fig. 3 is the surface topography diagram after in-situ generation of MOFs on the surface of the nanofiber membrane in Example 2 of the present invention
  • Fig. 4 is the surface morphology diagram of the carbon-based composite electrode material obtained after carbonization in Example 2 of the present invention.
  • Fig. 5 is a surface topography diagram after in-situ generation of MOFs on the surface of the nanofiber membrane in Example 3 of the present invention.
  • Fig. 6 is the surface morphology diagram of the carbon-based composite electrode material obtained after carbonization in Example 3 of the present invention.
  • Fig. 7 is a surface topography diagram after in-situ generation of MOFs on the surface of the nanofiber membrane in Example 4 of the present invention.
  • Fig. 8 is a surface topography diagram after in-situ generation of MOFs on the surface of the nanofiber membrane in Example 2 of the present invention for 1 h;
  • Fig. 9 is a surface topography diagram after in-situ generation of MOFs on the surface of the nanofiber membrane in Example 5 of the present invention for 2 hours;
  • Fig. 10 is the constant current charge and discharge curve of the carbon-based composite electrode material obtained in Examples 1 to 3 of the present invention.
  • Fig. 11 is the AC impedance spectrum of the carbon-based composite electrode material obtained in Examples 1 to 3 of the present invention.
  • a method for preparing a carbon-based composite electrode material derived from a metal-organic framework and nanofibers shown in an embodiment of the present invention comprising the following steps:
  • the metal salt is blended in the nanofiber membrane of polyacrylonitrile (PAN) and polyvinylpyrrolidone (PVP), and then the nanofiber membrane is impregnated in the organic compound.
  • PAN polyacrylonitrile
  • PVP polyvinylpyrrolidone
  • the solution in the body, and then pour the metal salt solution into it, this method is conducive to the rapid nucleation of MOFs on the surface of the fiber, and then promotes the growth of nanosheets on the surface of the nanofiber membrane.
  • the mass ratio of polyacrylonitrile, polyvinylpyrrolidone and metal salt is 1:1:1.
  • the metal salt is one or more of zinc acetate, zinc nitrate, zinc chloride, zinc sulfate, cobalt acetate, cobalt nitrate or cobalt chloride, which are not specifically limited here and can be selected according to actual needs.
  • the first solvent is N,N-dimethylformamide (DMF) or N,N-dimethylacetamide, but it can also be other solutions, which are not listed here.
  • DMF N,N-dimethylformamide
  • N,N-dimethylacetamide N,N-dimethylacetamide
  • the parameters of electrospinning are: voltage 14-18KV, spinning solution flow rate 0.5-2mL/h, receiving distance 15-17cm, temperature 20-30°C, humidity 45-55%.
  • the organic ligand is 2-methylimidazole.
  • the solvent of the metal salt solution is the second solvent.
  • the second solvent is one or more of methanol, ethanol and water. In this application, the second solvent is water, so that the MOFs grow into dense petal-shaped nanosheets and the morphology and structure are preserved after carbonization.
  • the inert gas is argon or nitrogen, and the carbonization process is as follows: raise to 240-280°C at a rate of 1-3°C/min for 2-8 hours, then rise to 800-100°C at a rate of 5-10°C/min for heat preservation 2h.
  • Nanofiber membranes were prepared by electrospinning, and dried at 60°C for 12 hours for use. Electrospinning parameters are as follows: voltage 16KV, spinning solution flow rate 1mL/h, receiving distance 16cm, temperature 25°C, humidity 50%.
  • Nanofiber membranes were prepared by electrospinning, and dried at 60°C for 12 hours for use. Electrospinning parameters are as follows: voltage 16KV, spinning solution flow rate 1mL/h, receiving distance 16cm, temperature 25°C, humidity 50%.
  • Electrospinning parameters are as follows: voltage 16KV, spinning solution flow rate 1mL/h, receiving distance 16cm, temperature 25°C, humidity 50%.
  • Nanofiber membranes were prepared by electrospinning, and dried at 60°C for 12 hours for use. Electrospinning parameters are as follows: voltage 16KV, spinning solution flow rate 1mL/h, receiving distance 16cm, temperature 25°C, humidity 50%.
  • Nanofiber membranes were prepared by electrospinning, and dried at 60°C for 12 hours for use. Electrospinning parameters are as follows: voltage 16KV, spinning solution flow rate 1mL/h, receiving distance 16cm, temperature 25°C, humidity 50%.
  • FIG. 3 and Fig. 4 the surface topography diagram after in-situ generation of MOFs on the surface of the nanofiber membrane in Example 2 and the surface topography diagram of the carbon-based composite electrode material obtained after carbonization. It can be seen that before carbonization, the nanofiber The MOFs on the fiber surface grow into dense petal-shaped nanosheets. After carbonization, the morphology and structure remained basically unchanged.
  • Example 3 no PVP was added during the preparation process, and the surface morphology of the carbon-based composite electrode material obtained from the in-situ generation of MOFs on the surface of the nanofiber membrane and the carbon-based composite electrode material It can be seen from the figure that before carbonization, the petal-shaped nanosheets grown by MOFs on the surface of nanofibers are not dense and uniform. After carbonization, the morphology structure basically no longer exists. Thus, PVP can stabilize the nucleation of MOFs on nanofibers and promote the formation of uniform and dense coatings.
  • FIG. 7 the surface topography diagram of the in-situ generation of MOFs on the surface of the nanofiber membrane in Example 4. It can be seen that before carbonization, the petal-shaped nanosheets grown by MOFs on the surface of the nanofibers are not dense and uniform.
  • Figure 8 is the surface topography of MOFs generated in situ on the surface of the nanofiber membrane in Example 2 for 1 h
  • Figure 9 is the in situ generation on the surface of the nanofiber membrane in Example 5 Surface topography of MOFs after 2 h. It can be seen that when the MOFs were grown in situ on the surface of the nanofiber membrane for 1 h, the nanosheets were densely and evenly distributed on the surface of the nanofibers, and each fiber was dispersed without adhesion. However, when the MOFs were grown in situ on the surface of the nanofibrous membrane for 2 h, the fibers were excessively deposited and stuck together.
  • the present invention also provides a carbon-based composite electrode material derived from a metal-organic framework and nanofibers prepared by the method for preparing a carbon-based composite electrode material derived from a metal-organic framework and nanofibers.
  • the metal salt is first blended in the nanofiber membrane of polyacrylonitrile (PAN) and polyvinylpyrrolidone (PVP), and then the nanofiber membrane is soaked in the organic ligand solution, and then the metal salt solution is poured into it.
  • PAN polyacrylonitrile
  • PVP polyvinylpyrrolidone
  • this method is conducive to the rapid nucleation of MOFs on the surface of the fiber, and then promotes the growth of nanosheets on the surface of the nanofiber membrane; at the same time, PVP as an effective surfactant can stabilize the nucleation of MOFs on the PAN-based fiber and promote the formation of Uniform and dense coating, the preparation method is time-saving and efficient, the structure of the material is stable and controllable, and the electrode material prepared at the same time has a unique morphology, high specific surface area and specific capacitance, and has excellent electrochemical performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonwoven Fabrics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Artificial Filaments (AREA)

Abstract

涉及一种金属有机骨架(MOFs)与纳米纤维衍生的碳基复合电极材料的制备方法,先将金属盐混纺在聚丙烯腈(PAN)与聚乙烯吡咯烷酮(PVP)的纳米纤维膜中,然后先将纳米纤维膜浸渍在有机配体中溶液,再将金属盐溶液倒入其中;该方法有利于MOFs先在纤维表面快速成核,进而促进纳米纤维膜表面纳米片的生长;同时PVP作为一种有效的表面活性剂可以稳定MOFs在PAN基纤维上的成核作用,促进形成均匀且致密涂层。该制备方法省时高效、材料的结构稳定可控、同时制备的电极材料具有独特的形貌和高的比表面积和比电容且具有优异的电化学性能。

Description

一种金属有机骨架与纳米纤维衍生的碳基复合电极材料及其制备方法
本申请要求了申请日为2021年05月17日,申请号为202110533625.4的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种金属有机骨架与纳米纤维衍生的碳基复合电极材料及其制备方法。
背景技术
随着污染加剧和传统能源枯竭以及世界人口不断增长,自上世纪末以来,世界对能源的需求量越来越大,面对着能源危机和环境问题,新型可再生能源的发展刻不容缓。超级电容器作为一种新型绿色储能器件具有远高于传统电容器的能量密度和较高的功率密度,同时具有充电时间短、充放电速率高和循环使用寿命长等优点,被广泛应用在军事、航空航天、国防、通讯设备以及电动汽车等领域。电极材料作为超级电容器中最重要的组成部分,对改善超级电容器的性能起到关键作用。超级电容器的电极材料应具有大的比表面积,能够扩大电荷的存储提高超级电容器的比电容;小的内阻,导电性好有利于电子的快速传输;不与电解液发生化学反应以保持长期稳定性的特点。
金属有机骨架(MOFs)作为一种具有特殊孔道结构的新型纳米多孔材料,具有高孔隙率、大的比表面积、孔道规则且孔径可调、孔表面易功能化、结构多样行等优点。近些年来,多孔MOFs材料及其衍生物逐渐被应用到电化学储能领域,如理离子电池、燃料电池及超级电容器等。一方面MOFs具有丰富的相互贯穿型孔道结构,便于离子的传输;另一方面,MOFs属于晶态材料,具有高度有序的结构,活性位点分散均匀,裸露的活性位点能够促进能量储存过程的加快,可有效实现超级电容器电化学储能性能的提升。然而MOFs自身的导电性比较差,不利于电子的快速传导,限制了超级电容器电化学性能的进一步提高。庆幸的是静电纺碳纳米纤维材料具有良好的导电性能且结构稳定,可作为MOFs 的有效支撑载体。因此MOFs与纳米纤维衍生的碳基复合超级电容器电极材料制备方法的研究变得尤为重要。先前采用混纺的方法将MOFs直接混纺到碳纳米纤维中,这种方法使纤维表面MOFs的负载较少且分布不均匀,难以在纤维表面形成致密的MOFs涂层。而直接将碳纳米纤维膜浸渍在生长液中会导致MOFs沉积,不利于其沿纤维表面生长。
发明内容
本发明的目的在于提供一种金属有机骨架与纳米纤维衍生的碳基复合电极材料的制备方法,该制备方法省时高效、材料的结构稳定可控、且同时制备的电极材料具有独特的形貌和高的比表面积。
为达到上述目的,本发明提供如下技术方案:一种金属有机骨架与纳米纤维衍生的碳基复合电极材料的制备方法,包括以下步骤:
S1、将聚丙烯腈、聚乙烯吡咯烷酮和金属盐加入到第一溶剂中,搅拌溶解得到纺丝溶液;
S2、将所述纺丝溶液通过静电纺丝得到纳米纤维膜,并将所述纳米纤维膜干燥10-15h;
S3、将有机配体溶于第二溶剂中,得到0.05-0.2mol/L的有机配体溶液,将150-300mg所述纳米纤维膜浸泡在50-100mL所述有机配体溶液中1-3min;
S4、向所述有机配体溶液中加入等体积含有0.5-1.0mol/L金属盐溶液,摇晃2-10min,而后静置40-80min,在纳米纤维膜表面原位生成MOFs;
S5、将表面沉积MOFs的纳米纤维膜进行干燥,然后在惰性气体氛围下进行碳化,得到金属有机骨架与纳米纤维衍生的碳基复合电极材料。
进一步地,所述聚丙烯腈、聚乙烯吡咯烷酮和金属盐的质量比为1∶1∶1。
进一步地,所述金属盐为乙酸锌、硝酸锌、氯化锌、硫酸锌、乙酸钴、硝酸钴或氯化钴中的一种或两种以上。
进一步地,所述第一溶剂为N,N-二甲基甲酰胺或N,N-二甲基乙酰胺。
进一步地,所述静电纺丝的参数为:电压14-18KV,纺丝液流速0.5-2mL/h,接收距离15-17cm,温度20-30℃,湿度45-55%。
进一步地,所述有机配体为2-甲基咪唑。
进一步地,所述金属盐溶液的溶剂为第二溶剂。
进一步地,所述第二溶剂为甲醇,乙醇和水中的一种或多种。
进一步地,所述惰性气体为氩气或氮气,所述碳化的过程为:以1-3℃/min的速率升至240-280℃保温2-8h,再以5-10℃/min的速率升至800-1000℃保温2h。
本发明还提供一种如上所述的金属有机骨架与纳米纤维衍生的碳基复合电极材料的制备方法制备得到的金属有机骨架与纳米纤维衍生的碳基复合电极材料。利用静电纺丝与原位生长相结合的方法获得金属有机骨架与纳米纤维衍生的碳基复合电极材料。
本发明的有益效果在于:先将金属盐混纺在聚丙烯腈(PAN)与聚乙烯吡咯烷酮(PVP)的纳米纤维膜中,然后先将纳米纤维膜浸渍在有机配体中溶液,再将金属盐溶液倒入其中,该方法有利于MOFs先在纤维表面快速成核,进而促进纳米纤维膜表面纳米片的生长;同时PVP作为一种有效的表面活性剂可以稳定MOFs在PAN基纤维上的成核作用,促进形成均匀且致密涂层,该制备方法省时高效、材料的结构稳定可控、同时制备的电极材料具有独特的形貌和高的比表面积和比电容且具有优异的电化学性能。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1为本发明实施例一中在纳米纤维膜表面原位生成MOFs后的表面形貌图;
图2为本发明实施例一中碳化后得到的碳基复合电极材料的表面形貌图;
图3为本发明实施例二中在纳米纤维膜表面原位生成MOFs后的表面形貌图;
图4为本发明实施例二中碳化后得到的碳基复合电极材料的表面形貌图;
图5为本发明实施例三中在纳米纤维膜表面原位生成MOFs后的表面形貌图;
图6为本发明实施例三中碳化后得到的碳基复合电极材料的表面形貌图;
图7为本发明实施例四中在纳米纤维膜表面原位生成MOFs后的表面形貌图;
图8为本发明实施例二中在纳米纤维膜表面原位生成MOFs且时长为1h后的表面形貌图;
图9为本发明实施例五中在纳米纤维膜表面原位生成MOFs且时长为2h后的表面形貌图;
图10为本发明实施例一至三得到的碳基复合电极材料的恒流充放电曲线;
图11为本发明实施例一至三得到的碳基复合电极材料交流阻抗谱。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
请参见图1,本发明一实施例所示的一种金属有机骨架与纳米纤维衍生的碳基复合电极材料的制备方法,包括以下步骤:
S1、将聚丙烯腈、聚乙烯吡咯烷酮和金属盐加入到第一溶剂中,搅拌溶解得到纺丝溶液;
S2、将纺丝溶液通过静电纺丝得到纳米纤维膜,并将纳米纤维膜干燥10-15h;
S3、将有机配体溶于第二溶剂中,得到0.05-0.2mol/L的有机配体溶液,将150-300mg纳米纤维膜浸泡在50-100mL有机配体溶液中1-3min;
S4、向有机配体溶液中加入等体积含有0.5-1.0mol/L金属盐溶液,摇晃2-10min,而后静置40-80min,在纳米纤维膜表面原位生成MOFs;
S5、将表面沉积MOFs的纳米纤维膜进行干燥,然后在惰性气体氛围下进行碳化,得到金属有机骨架与纳米纤维衍生的碳基复合电极材料。
利用静电纺丝技术与原位生长相结合的方法制备,先将金属盐混纺在聚丙烯腈(PAN)与聚乙烯吡咯烷酮(PVP)的纳米纤维膜中,然后先将纳米纤维膜 浸渍在有机配体中溶液,再将金属盐溶液倒入其中,该方法有利于MOFs先在纤维表面快速成核,进而促进纳米纤维膜表面纳米片的生长。
其中,聚丙烯腈、聚乙烯吡咯烷酮和金属盐的质量比为1∶1∶1。
金属盐为乙酸锌、硝酸锌、氯化锌、硫酸锌、乙酸钴、硝酸钴或氯化钴中的一种或两种以上,在此不做具体限定,可根据实际需要进行选择。
第一溶剂为N,N-二甲基甲酰胺(DMF)或N,N-二甲基乙酰胺,但还可以为其他溶液,在此不做不一一列举。
静电纺丝的参数为:电压14-18KV,纺丝液流速0.5-2mL/h,接收距离15-17cm,温度20-30℃,湿度45-55%。
有机配体为2-甲基咪唑。金属盐溶液的溶剂为第二溶剂。第二溶剂为甲醇,乙醇和水中的一种或多种,本申请中,第二溶剂为水,使得MOFs生长成致密的花瓣形纳米片在碳化后形貌结构得以保留。
惰性气体为氩气或氮气,碳化的过程为:以1-3℃/min的速率升至240-280℃保温2-8h,再以5-10℃/min的速率升至800-100℃保温2h。
下面结合具体实施例对本发明进行进一步阐述。
实施例一
将2.1g的聚丙烯腈(PAN)、聚乙烯吡咯烷酮(PVP)和乙酸锌按质量比1∶1∶1比例溶解在10mL的N,N二甲基甲酰胺(DMF)中混合搅拌24h,通过静电纺丝制备纳米纤维膜,并在60℃的环境下干燥12h备用。静电纺丝参数如下:电压16KV,纺丝液流速1mL/h,接收距离16cm,温度25℃,湿度50%。
将150mg的纳米纤维膜先浸渍在50mL含有0.1mol/L 2-甲基咪唑的水溶液中2min,再加入50mL含有0.8mol/L硝酸锌的水溶液,摇晃5min后静置1h,在纳米纤维膜表面原位生成MOFs,将其取出后用去离子水洗涤3次,并在60℃的环境下干燥12h。然后放入管式炉在N 2氛围中以2℃/min的速率升至280℃保温2h,再以5℃/min的速率升至800℃保温2h,得到CNF@Zn-NC复合电极材料。
实施例二
将2.1g的聚丙烯腈(PAN)、聚乙烯吡咯烷酮(PVP)和乙酸钴按质量比1∶1∶1比例溶解在10mL的N,N二甲基甲酰胺(DMF)中混合搅拌24h,通过静电纺丝制备纳米纤维膜,并在60℃的环境下干燥12h备用。静电纺丝参数如下:电压16KV,纺丝液流速1mL/h,接收距离16cm,温度25℃,湿度50%。
将150mg的纳米纤维膜先浸渍在50mL含有0.1mol/L 2-甲基咪唑的水溶液中2min,再加入50mL含有0.8mol/L硝酸钴的水溶液,摇晃5min后静置1h,在纳米纤维膜表面原位生成MOFs,将其取出后用去离子水洗涤3次,并在60℃的环境下干燥12h。然后放入管式炉在N 2氛围中以2℃/min的速率升至280℃保温2h,再以5℃/min的速率升至800℃保温2h,得到CNF@Co-NC复合电极材料。
实施例三
将2.1g的聚丙烯腈(PAN)和乙酸钴按质量比1∶1比例溶解在10mL的N,N二甲基甲酰胺(DMF)中混合搅拌24h,通过静电纺丝制备纳米纤维膜,并在60℃的环境下干燥12h备用。静电纺丝参数如下:电压16KV,纺丝液流速1mL/h,接收距离16cm,温度25℃,湿度50%。
将150mg的纳米纤维膜先浸渍在50mL含有0.1mol/L 2-甲基咪唑的水溶液中2min,再加入50mL含有0.8mol/L硝酸钴的水溶液,摇晃5min后静置1h,在纳米纤维膜表面原位生成MOFs,将其取出后用去离子水洗涤3次,并在60℃的环境下干燥12h。然后放入管式炉在N 2氛围中以2℃/min的速率升至280℃保温2h,再以5℃/min的速率升至800℃保温2h,得到Co/CNF复合电极材料。
实施例四
将2.1g的聚丙烯腈(PAN)、聚乙烯吡咯烷酮(PVP)和乙酸钴按质量比1∶1∶1比例溶解在10mL的N,N二甲基甲酰胺(DMF)中混合搅拌24h,通过静电纺丝制备纳米纤维膜,并在60℃的环境下干燥12h备用。静电纺丝参数如下:电压16KV,纺丝液流速1mL/h,接收距离16cm,温度25℃,湿度50%。
将150mg的纳米纤维膜先浸渍在50mL含有0.8mol/L硝酸钴的水溶液中2min,再加入50mL含有0.1mol/L 2-甲基咪唑的水溶液,摇晃5min后静置1h, 在纳米纤维膜表面原位生成MOFs,将其取出后用去离子水洗涤3次,并在60℃的环境下干燥12h。然后放入管式炉在N 2氛围中以2℃/min的速率升至280℃保温2h,再以5℃/min的速率升至800℃保温2h,得到碳基复合电极材料。
实施例五
将2.1g的聚丙烯腈(PAN)、聚乙烯吡咯烷酮(PVP)和乙酸钴按质量比1∶1∶1比例溶解在10mL的N,N二甲基甲酰胺(DMF)中混合搅拌24h,通过静电纺丝制备纳米纤维膜,并在60℃的环境下干燥12h备用。静电纺丝参数如下:电压16KV,纺丝液流速1mL/h,接收距离16cm,温度25℃,湿度50%。
将150mg的纳米纤维膜先浸渍在50mL含有0.1mol/L 2-甲基咪唑的水溶液中2min,再加入50mL含有0.8mol/L硝酸钴的水溶液,摇晃5min后静置2h,在纳米纤维膜表面原位生成MOFs,将其取出后用去离子水洗涤3次,并在60℃的环境下干燥12h。然后放入管式炉在N 2氛围中以2℃/min的速率升至280℃保温2h,再以5℃/min的速率升至800℃保温2h,得到碳基复合电极材料。
请参见图1和图2,实施例一中在纳米纤维膜表面原位生成MOFs后的表面形貌图和碳化后得到的碳基复合电极材料的表面形貌图,可以看出碳化前,纳米纤维表面的MOFs生长成致密的花瓣形纳米片。而碳化后,形貌结构基本保持不变。
请参见图3和图4,实施例二中在纳米纤维膜表面原位生成MOFs后的表面形貌图和碳化后得到的碳基复合电极材料的表面形貌图,可以看出碳化前,纳米纤维表面的MOFs生长成致密的花瓣形纳米片。碳化后,形貌结构基本保持不变。
请参见图5和图6,实施例三中在制备过程中未添加PVP,从在纳米纤维膜表面原位生成MOFs后的表面形貌图和碳化后得到的碳基复合电极材料的表面形貌图,可以看出碳化前,纳米纤维表面的MOFs生长的花瓣形纳米片不够致密均匀。碳化后,形貌结构基本不再存在。由此得到,PVP可以稳定MOFs在纳米纤维上的成核作用,促进形成均匀且致密涂层。
请参见图7,实施例四中在纳米纤维膜表面原位生成MOFs后的表面形貌图,可以看出碳化前,纳米纤维表面的MOFs生长的花瓣形纳米片不够致密均匀。
请参见图8和图9,图8为实施例二中在纳米纤维膜表面原位生成MOFs且时长为1h后的表面形貌图,图9为实施例五中在纳米纤维膜表面原位生成MOFs且时长为2h后的表面形貌图。可以看出,在纳米纤维膜表面原位生长1h的MOFs,纳米片致密均匀地分布纳米纤维表面,且每根纤维分散,未发生黏连。而在纳米纤维膜表面原位生长2h的MOFs,纤维发生过多沉积而黏连成块。
请参见图10,实施例一至三得到的碳基复合电极材料的恒流充放电曲线,其中CNF@Zn-NC表示实施例一得到的碳基复合电极材料;CNF@Co-NC表示实施例二得到的碳基复合电极材料;Co/CNF表示实施例三得到的碳基复合电极材料。由图可以看出,与CNF@Co-NC和Co/CNF电极材料相比,在1A/g电流密度下CNF@Zn-NC电极材料的放电时间最长,表明其比电容最大约为492F/g。
请参见图11,实施例一至三得到的碳基复合电极材料的交流阻抗谱,其中CNF@Zn-NC表示实施例一得到的碳基复合电极材料;CNF@Co-NC表示实施例二得到的碳基复合电极材料;Co/CNF表示实施例三得到的碳基复合电极材料。由图可知,三种电极材料的阻抗谱中高频区对应的半圆直径较小,表明它们具有较小的电荷转移电阻,有利于电荷的快速储存,同时低频区对应的直线部分的斜率大于45°,说明它们具有良好的电容行为特性。
本发明还提供一种如上所示的金属有机骨架与纳米纤维衍生的碳基复合电极材料的制备方法制备得到的金属有机骨架与纳米纤维衍生的碳基复合电极材料。
综上,先将金属盐混纺在聚丙烯腈(PAN)与聚乙烯吡咯烷酮(PVP)的纳米纤维膜中,然后先将纳米纤维膜浸渍在有机配体中溶液,再将金属盐溶液倒入其中,该方法有利于MOFs先在纤维表面快速成核,进而促进纳米纤维膜表面纳米片的生长;同时PVP作为一种有效的表面活性剂可以稳定MOFs在PAN基纤维上的成核作用,促进形成均匀且致密涂层,该制备方法省时高效、材料的结构稳定可控、同时制备的电极材料具有独特的形貌和高的比表面积和比电容 且具有优异的电化学性能。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种金属有机骨架与纳米纤维衍生的碳基复合电极材料的制备方法,其特征在于,包括以下步骤:
    S1、将聚丙烯腈、聚乙烯吡咯烷酮和金属盐加入到第一溶剂中,搅拌溶解得到纺丝溶液;
    S2、将所述纺丝溶液通过静电纺丝得到纳米纤维膜,并将所述纳米纤维膜干燥10-15h;
    S3、将有机配体溶于第二溶剂中,得到0.05-0.2mol/L的有机配体溶液,将150-300mg所述纳米纤维膜浸泡在50-100mL所述有机配体溶液中1-3min;
    S4、向所述有机配体溶液中加入等体积含有0.5-1.0mol/L金属盐溶液,摇晃2-10min,而后静置40-80min,在纳米纤维膜表面原位生成MOFs;
    S5、将表面沉积MOFs的纳米纤维膜进行干燥,然后在惰性气体氛围下进行碳化,得到金属有机骨架与纳米纤维衍生的碳基复合电极材料。
  2. 如权利要求1所述的金属有机骨架与纳米纤维衍生的碳基复合电极材料的制备方法,其特征在于,所述聚丙烯腈、聚乙烯吡咯烷酮和金属盐的质量比为1:1:1。
  3. 如权利要求1所述的金属有机骨架与纳米纤维衍生的碳基复合电极材料的制备方法,其特征在于,所述金属盐为乙酸锌、硝酸锌、氯化锌、硫酸锌、乙酸钴、硝酸钴或氯化钴中的一种或两种以上。
  4. 如权利要求1所述的金属有机骨架与纳米纤维衍生的碳基复合电极材料的制备方法,其特征在于,所述第一溶剂为N,N-二甲基甲酰胺或N,N-二甲基乙酰胺。
  5. 如权利要求1所述的金属有机骨架与纳米纤维衍生的碳基复合电极材料的制备方法,其特征在于,所述静电纺丝的参数为:电压14-18KV,纺丝液流速0.5-2mL/h,接收距离15-17cm,温度20-30℃,湿度45-55%。
  6. 如权利要求1所述的金属有机骨架与纳米纤维衍生的碳基复合电极材料的制备方法,其特征在于,所述有机配体为2-甲基咪唑。
  7. 如权利要求1所述的金属有机骨架与纳米纤维衍生的碳基复合电极材料的制备方法,其特征在于,所述金属盐溶液的溶剂为第二溶剂。
  8. 如权利要求1所述的金属有机骨架与纳米纤维衍生的碳基复合电极材料的制备方法,其特征在于,所述第二溶剂为甲醇,乙醇和水中的一种或多种。
  9. 如权利要求1所述的金属有机骨架与纳米纤维衍生的碳基复合电极材料的制备方法,其特征在于,所述惰性气体为氩气或氮气,所述碳化的过程为:以1-3℃/min的速率升至240-280℃保温2-8h,再以5-10℃/min的速率升至800-1000℃保温2h。
  10. 一种如权利要求1至9中任一项所述的金属有机骨架与纳米纤维衍生的碳基复合电极材料的制备方法制备得到的金属有机骨架与纳米纤维衍生的碳基复合电极材料。
PCT/CN2021/094507 2021-05-17 2021-05-19 一种金属有机骨架与纳米纤维衍生的碳基复合电极材料及其制备方法 WO2022241663A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110533625.4A CN113270275B (zh) 2021-05-17 2021-05-17 金属有机骨架与纳米纤维衍生的复合电极及其制备方法
CN202110533625.4 2021-05-17

Publications (1)

Publication Number Publication Date
WO2022241663A1 true WO2022241663A1 (zh) 2022-11-24

Family

ID=77231142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094507 WO2022241663A1 (zh) 2021-05-17 2021-05-19 一种金属有机骨架与纳米纤维衍生的碳基复合电极材料及其制备方法

Country Status (2)

Country Link
CN (1) CN113270275B (zh)
WO (1) WO2022241663A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114524465A (zh) * 2022-01-12 2022-05-24 河北大学 一种mof衍生的铜钴双金属硫化物的制备方法与应用
CN114873627A (zh) * 2022-06-09 2022-08-09 内蒙古工业大学 一种独立支撑的氧化铈纳米管原位制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104577110A (zh) * 2013-10-14 2015-04-29 江南大学 一种锂离子电池用锰酸锌纳米纤维负极材料的制备方法
CN104805535A (zh) * 2015-04-14 2015-07-29 华南理工大学 一种多孔碳纳米纤维的制备方法
CN110335759A (zh) * 2019-06-15 2019-10-15 武汉理工大学 负载氢氧化镍纳米片和钴酸镍纳米晶的碳纳米纤维复合材料及其制备方法和应用
CN110380023A (zh) * 2019-06-26 2019-10-25 广东工业大学 一种cnf-tmo锂离子电池负极材料及其制备方法和应用
US20200043674A1 (en) * 2017-02-17 2020-02-06 Aict High performance nano/micro composite fiber capable of storing electrical energy and method for fabricating thereof
CN111785978A (zh) * 2020-07-10 2020-10-16 广州市香港科大霍英东研究院 一种液流电池用多孔电极及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107201645A (zh) * 2017-04-28 2017-09-26 东华大学 一种金属有机框架/碳纳米纤维复合膜材料及其制备方法
CN108767247B (zh) * 2018-07-02 2021-10-26 南京工业大学 一种碳基金属有机框架mof化合物衍生材料制备方法与应用
SG10202007819XA (en) * 2019-08-15 2021-03-30 Agency Science Tech & Res Free-standing porous carbon fibrous mats and applications thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104577110A (zh) * 2013-10-14 2015-04-29 江南大学 一种锂离子电池用锰酸锌纳米纤维负极材料的制备方法
CN104805535A (zh) * 2015-04-14 2015-07-29 华南理工大学 一种多孔碳纳米纤维的制备方法
US20200043674A1 (en) * 2017-02-17 2020-02-06 Aict High performance nano/micro composite fiber capable of storing electrical energy and method for fabricating thereof
CN110335759A (zh) * 2019-06-15 2019-10-15 武汉理工大学 负载氢氧化镍纳米片和钴酸镍纳米晶的碳纳米纤维复合材料及其制备方法和应用
CN110380023A (zh) * 2019-06-26 2019-10-25 广东工业大学 一种cnf-tmo锂离子电池负极材料及其制备方法和应用
CN111785978A (zh) * 2020-07-10 2020-10-16 广州市香港科大霍英东研究院 一种液流电池用多孔电极及其制备方法

Also Published As

Publication number Publication date
CN113270275B (zh) 2022-06-07
CN113270275A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
CN110571418B (zh) 一种锂硫电池正极材料及其制备方法
CN111900388B (zh) 一种锌离子电池负极材料、其制备及应用
CN104733700B (zh) 一种锂硒电池柔性正极的制备方法
CN107400903B (zh) 一种三维纳米多孔铜修饰的泡沫镍及其制备方法和应用
CN108538630B (zh) 一种生物质炭/石墨烯柔性复合膜的制备方法
WO2022241663A1 (zh) 一种金属有机骨架与纳米纤维衍生的碳基复合电极材料及其制备方法
CN105226254B (zh) 一种纳米硅颗粒‑石墨纳米片‑碳纤维复合材料及其制备方法与应用
CN105118974A (zh) 一种硅基负极材料及其制备方法
CN113517144B (zh) 一种碳纤维毡基柔性全固态非对称超级电容器及制备方法
CN113201807B (zh) 一种Ti3C2Tx MXene一维空心纳米管及其制备方法和应用
CN108598423A (zh) 一种用于锂离子电池负极的硅碳材料及其制备方法
CN111974430A (zh) 一种单原子铜催化剂的制备方法及其在锂硫电池正极中的应用
CN111952577B (zh) 一种C/Si/CNTs复合碳纳米纤维膜、制备方法及其应用
CN111129394B (zh) 功能复合型纳米碳纤维/石墨烯膜及其制备方法与应用
CN110474023B (zh) 一种纤维状镍铋电池及其制备方法
CN109192977B (zh) 一种锂离子电池用Sn-Cu合金负极材料的制备方法
CN109449008B (zh) 一种自支撑中空核壳结构电极材料的制备方法及其应用
CN110718692A (zh) 锂硫电池氟化物稳定层和制备方法及锂硫电池
CN115020707A (zh) 一种柔性锂金属电池亲锂碳纳米纤维骨架材料及其制备方法与应用
CN112811537B (zh) 一种铁-氮掺杂碳纳米管电极的制备方法及应用
CN110676462B (zh) 一种锂电池用涂碳铝箔及其制备方法
CN117163946B (zh) 一种氮氧掺杂多孔碳及其制备方法和应用
CN112670094B (zh) 三氧化二铁纳米花修饰碳纤维复合材料及其制备方法、应用
CN115726059B (zh) 一种硼酸铵改性碳基纳米纤维复合材料及其制备方法和应用
CN116230911B (zh) 一种高功率硅碳负极复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE