WO2019041057A1 - Espinela de manganeso dopada con magnesio, material catódico que la comprende, método de preparación, y bateria de ion litio que la comprende - Google Patents

Espinela de manganeso dopada con magnesio, material catódico que la comprende, método de preparación, y bateria de ion litio que la comprende Download PDF

Info

Publication number
WO2019041057A1
WO2019041057A1 PCT/CL2018/050076 CL2018050076W WO2019041057A1 WO 2019041057 A1 WO2019041057 A1 WO 2019041057A1 CL 2018050076 W CL2018050076 W CL 2018050076W WO 2019041057 A1 WO2019041057 A1 WO 2019041057A1
Authority
WO
WIPO (PCT)
Prior art keywords
spinel
doped
lithium
manganese
magnesium
Prior art date
Application number
PCT/CL2018/050076
Other languages
English (en)
French (fr)
Inventor
Mario Sandro GRAGEDA ZEGARRA
Aleksei Windsor LLUSCO QUISPE
Svetlana Nikolaevna USHAK DE GRAGEDA
Original Assignee
Universidad De Antofagasta
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Antofagasta filed Critical Universidad De Antofagasta
Priority to EP18851120.8A priority Critical patent/EP3683870A4/en
Priority to US16/643,462 priority patent/US20200365889A1/en
Priority to CN201880064503.1A priority patent/CN111418094A/zh
Priority to JP2020512475A priority patent/JP2020536829A/ja
Priority to KR1020207009420A priority patent/KR102402147B1/ko
Publication of WO2019041057A1 publication Critical patent/WO2019041057A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention relates to the field of technologies for energizing portable electronics, power tools, hybrid and electric vehicles, and energy storage systems from renewable sources.
  • the invention relates to lithium ion batteries, and more specifically, to an active compound useful for the manufacture of cathodes in said lithium ion batteries.
  • the present invention relates to magnesium doped magnesium spinel, cathodic material comprising it, preparation method, in lithium ion batteries comprising it.
  • Lithium-ion batteries have an incomparable combination of high energy density and power; which is why they are the technology of choice to power portable electronics, power tools, hybrid and electric vehicles, and in energy storage systems from renewable sources.
  • LiCo0 2 cobalt lithium oxide
  • LiMn 2 0 4 lithium manganese spinel
  • LiMn 2 0 4 lithium manganese spinel
  • the present invention solves the problem of improving the structural and electrochemical performance: (1) Reducing particle size at nanometric scale and (2) Dopando structure with magnesium ions.
  • the sol-gel synthesis method was used, assisted by ultrasound and raw materials of Li and Mg were used, typical of the Salar de Atacama, Chile.
  • CN 106207153 which describes a method for rapidly preparing a positive electrode material LiMn 2 0 4 doped with boron, LiB 0 , 04 n l! 96 O 4 , comprising putting first the reagents, namely lithium nitrate, lithium acetate, manganous nitrate, manganese acetate and a boric acid in a crucible in the molar ratio of Li to Mn to B of 1: 1, 96: 0.04; heat, melt and mix the reactants uniformly in a preheating oven, put a mixture in a muffle furnace for a flameless combustion reaction in liquid phase, carry out the conservation of the heat for a certain period of time, cool and grind a powder product to obtain a spinel electrode material LiB 0 , 04 n l!
  • the positive electrode material for a lithium ion battery has the characteristics of being simple in operation, high in speed of synthesis and low cost, and mass production is easy to implement.
  • the technical problem of an attenuation arises of the capacity of a spinel lithium manganese material in charge or discharge cycles and dope said material with B to repair such deficiency.
  • US2016329563 discloses an active cathode material coated with manganese oxide of lithium metal with spinel structure doped with fluorine, which can be included in a secondary lithium battery and a method for preparing the same.
  • the cathode active material has improved chemical stability and provides improved charge / discharge characteristics at high temperature (55-60C) and high speed.
  • the cathode active material allows lithium ions to pass through the coating layer with ease and is chemically stable, and therefore can be used effectively as a cathode active material for a high power lithium secondary battery.
  • the cathode active material has a shell-core structure where the shell is a cover layer of lithium manganese metal oxide with spinel structure doped with fluorine which can be represented by the formula Li 1 M x Mn 2 -x0 4 -nFn, where x is 1 / (4-z), z is an oxidation number of M, and n is a real number that satisfies 0 ⁇ n ⁇ 0.3.
  • the nucleus is a lithium manganese oxide with spinel structure (LMO).
  • the lithium manganese oxide metal shell with spinel structure and core are used in a weight ratio of 1: 20-200 and have a thickness of 1 nm-1 ⁇ .
  • CN106058205 describes a cathode material composed of doped nickel-lithium cobalt oxide and a method of preparing it, which comprises: (1) dissolving the manganese ion raw materials in water to prepare a solution A and dissolving a precipitator in the water to prepare a solution B; (2), add a doped cobalt nickel lithium oxide precursor (LiNi x Co and M h and 0 2 , where M is Mn, Al, Cr, Fe, Mg, Zn or Ti) in solution A, and add Solution B to solution A while stirring; after completion of the reaction, filter the mixed solution, collect the solids, and clean and dry the solids, thereby obtaining solids A; and (3), placing the solids A and a lithium source in an oxygen atmosphere furnace to perform high temperature toasting, thereby obtaining products after roasting, namely the cathode material composed of cobalt oxide nickel lithium doped existing in a core structure, whose surface is coated with a spinel layer of lithium manganese.
  • a layer of lithium manganese spinel cathode material is coated on the surface of cobalt nickel lithium oxide to improve the performance and life cycle of a battery cell in use;
  • the spinel of the outermost layer isolates the metallic nickel and avoids contacting the electrolyte directly, so that the stability and safety of the battery can be effectively improved.
  • the method seeks the production of a material that improves the use of the single cell efficiency process and the life cycle since the separation of the spinel phase from the metallic nickel and the direct contact of the electrolyte can effectively improve the stability and safety of the drums.
  • CN105932250 describes a method of preparing and applying a structured spinel with metallic doping and a cathodic material containing nickel coated with a fast ionic conductor, comprising: dissolving and mixing organic titanium salt, a cathode material containing nickel and a salt metallic doped obtain a dispersion liquid; transferring the dispersion liquid to a hydrothermal reaction vessel to carry out a hydrothermal reaction, so that a precursor is obtained; and baking the precursor at high temperature to obtain the cathode material containing nickel from a spinel structured with metallic doping and a layer coated with an ionic conductor, which is dense, uniform and good in stability and ionic conductivity.
  • the nickel-containing cathode material can be used to prepare a lithium-ion battery with excellent performance of number of cycles and rate capability; and it is low cost, easy to operate, friendly to the environment and can be applied to industrial production.
  • the cathode material containing nickel is LiNixMn 2 -x0 4 (0.1 ⁇ x ⁇ 0.8) having a spinel structure and / or LiNi 1 -x- # On having a structure per layer and / or material of cathode enriched in manganese lithium.
  • CN105789568 describes a positive electrode material of a lithium ion battery and a method of preparation thereof, wherein the lithium-rich lithium manganese oxide material doped with a sulfur element has the formula
  • M is Li, Na, K, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, And, Zr, Nb, Mo, Ag, Ce, Sm, Eu, Al, Si, In, Ga, Ge, Sn, Pb, B, Sb, Bi, Se, Te, or combinations thereof.
  • Positive doped ions and sulfur atoms are uniformly doped in the crystal lattice of a lithium manganese oxide material according to a certain ratio using the sol-gel method and a chelator to inhibit the Jahn-Teller effect of the oxide material of manganese lithium.
  • the lithium-rich lithium manganese oxide material doped with A sulfur element can use capacities of both, that is, the 4V area and an area of 3V, and the specific discharge capacity of the lithium-rich lithium manganese oxide material doped with sulfur elements is greater than 180 mAh / g.
  • the lithium-rich lithium manganese oxide material doped with the sulfur element can be used as the positive electrode material of small or large lithium ion batteries.
  • CN104701522 describes a method of preparing a lithium manganese modified positive material from a lithium ion battery comprising: (1) synthesizing a precursor by adopting a liquid phase temperature difference method to obtain doped manganese carbonate precursor powder with aluminum, where the carbonate is preferably lithium carbonate, the manganese source compound, preferably manganese sulfate, and the aluminum salt, preferably aluminum nitrate, are in a molar ratio of 39: 1 to 9: 1 to 0, 2 mol / L, an aqueous solution 0.2 mol / L to 0.5 mol / L and the temperature of the two aqueous solutions are controlled within the range of 0 to 10 S C and mix rapidly with 10 s C / m na s 50-80 C, mature for 30 minutes, filtered and dried at 40 S C to obtain a precursor powder of manganese carbonate doped aluminum; (2) calcination of the precursor manganese carbonate powder obtained during 2-5 hours under the temperature of 600-800
  • the method uses low cost and easy to obtain raw materials, the microstructure is regular and uniform, the doping effect is good and the modified lithium manganate prepared is evident in the loading and unloading performances and good in circularity. Solve the technical problem of LiMn capacity loss 2 0 4 .
  • CN 104538625 discloses a method of preparing lithium ion positive lithium ion battery material of copper doped lithium manganese dioxide with high magnification and excellent cyclization performance comprising placing the reagents of lithium nitrate, manganese acetate and copper acetate in a crucible, add an appropriate amount of nitric acid, burn in a muffle furnace and preserve the heat, thus obtaining the spinel LiCuo.osMn ⁇ sC ⁇ .
  • the positive electrode material of lithium-ion battery It has characteristics of simplicity of operation, fast synthesis speed, low cost and scale production, being easy to achieve.
  • the main advantage is the rapid combustion synthesis reaction and in a short period of time to achieve complete crystals, products of particular small size, which leads to a spinel production process of conductive LiMn 2 0 4 .
  • US2015089797 describes a doped spinel of the following formula: Li 1 ⁇ w Mei v Me2x-vMn 2 -x-yTi and 0 4 - zF z where, 0 ⁇ w ⁇ 1, 0.3 ⁇ x ⁇ 0.7, 0.3 ⁇ v ⁇ 0.7, x> v, 0.0001 ⁇ y ⁇ 0.35 and 0.0001 ⁇ z ⁇ 0.3.
  • Me is a metal selected from a group of elements consisting of Cr, Fe, Co, Ni, Cu and Zn.
  • Me 2 is a metal selected from a group of elements consisting of Ni, Fe, Co, Mg, Cr, V, Ru, Mg, Al, Zn, Cu, Cd, Ag, Y, Se, Ga, In, As, Sb, Pt, Au and B. It also provides a lithium ion battery comprising said doped spinel and provides a doped spinel or a high voltage doped spinel that can be cycled stably with more than one lithium per unit.
  • CN1041 12856 describes a pre-combustion treatment comprising the synthesis of a lithium manganese spinel cathode material doped with metallic aluminum, comprising: mixing lithium carbonate, electrolytic manganese dioxide and hydrated aluminum nitrate, preferably nitrate aluminum hexahydrate in a ratio of Li 2 C0 3 : EMO: AI (N0 3 ) 3 ⁇ 9H 2 0 from 1.0 to 1, 05: 1, 7 to 2.0: 0 to 0.3 and where preferably the content of manganese dioxide is greater than 91%, and Li 2 C0 3 and AI (N0 3 ) 3 ⁇ 9H 2 0 are analytical grade; taking absolute ethanol as dispersant, subjecting the mixture to grinding and drying to obtain a reaction precursor; Preheat the precursor for 4 to 6 hours at a temperature of 400 to 500 at a rate of 5-10 s C / min, burn for 6 to 36 hours at a temperature of 750 at a rate of 5-10 s C / min , place the precursor in
  • cathode material raw materials for lithium ion batteries Provides lower cost of cathode material raw materials for lithium ion batteries to improve electrochemical stability of materials lithium manganese oxide spinel type, so that they increase the capacity, stability in cycling; it also improves the high temperature solid phase synthesis of lithium magnesium oxide cathode material doped with aluminum.
  • CN102569781 discloses a high-voltage lithium-ion battery cathode material and its method of preparation, wherein said high-voltage lithium-ion battery cathode material is a solid solution material with a stratiform and spinel composite structure and formula L ⁇ x N ⁇ o.25-z no.75-zM 2 zO y , where M is one or two of doped metals selected from Co, Al, Cr, Mn and Ga, 2>x> 0, 3> y ⁇ 2 and 0.25>z> 0.
  • the cathodic material has the stratiform composite structure and spinel, maintains the high specific capacity of a solid solution material based on manganese, improves the stability of cycling and the thermal stability of the material .
  • the impedance of the cathode material is reduced by doping, so that the thermal stability of the material is further improved and the heat release is reduced to improve the overall electrochemical performance of the material.
  • the material preparation process has high control capacity, the manufacturing cost is low and the manufacturing process has high reproducibility and high batch stability, it facilitates the production management of high voltage materials and high specific capacity.
  • It provides a high-voltage lithium-ion battery cathode material comprising a solid solution of high specific capacity that improves cycling performance and thermal stability of the material, reduces production costs, improves production stability in batches.
  • CN102306767 relates to a method for preparing spinel-type lithium manganese that serves as the cathode material of a lithium-ion battery comprising: 1) mixing manganese oxide selected from electrolyte or chemical MnO 2 , Mn 3 0 4 or MnOOH, a lithium source material selected from LiOH, Li 2 C0 3 or LiN0 3 and a metal oxide as dopant element, where the selected metal is Li, Al, Cr, Co, Mg, Ca, Ni, Zn, or a mixture thereof; and 2) uniformly mixing the mixture obtained in step 1), and subjecting it to a continuous sintering gradient inside a high temperature sintering furnace (sintering steps: sintering at a temperature of between 1,000 and 1,200 S C) for 3 to 5 hours in the first stage, sintering at a temperature between 800 and ⁇ d for 4 to 6 hours in the second stage and sintering at a temperature between 500 and 7000 for 5 to 8 hours in the third stage), introducing compressed
  • the sintered product is subjected to natural cooling, trituration and selection process to obtain the cathodic material.
  • the procedure is simple; the crystallinity and the surface of the cathodic material are controlled through ultra high temperature sintering to reduce the rate of manganese dissolution; while the process of sintering at low temperatures controls or eliminates oxygen deficiencies.
  • CN102122715 Describes a lithium manganese oxide doped with indium comprising a spinel of manganese lithium and a metal element of indium, which is 0.02 to 5% of the mass of the lithium manganese spinel doped with indium and its method of preparation comprising: uniformly mixing a lithium source substance and manganese dioxide powder according to the mole ratio of Li to Mn which is (0.50-0.65) to 1 and add source substance of powdered indium simultaneously; place the mixture in an air or oxidation environment whose temperature is between 600 and 1,000,000; then mix the mixture evenly and bake for 8 to 32 hours; Cool and sift to obtain the lithium manganese oxide doped with indium.
  • said metal element of indium is present in the lithium manganate doped with indium in the form of indium trioxide and indium oxide; which are formed on the spinel-type lithium manganese surface or on the micropores of the surface or penetrate the internal structure to form the compound of formula LiMn 2 - x ln x 0 4 , where 0 ⁇ x ⁇ 0.1.
  • the lithium source material is a mixture of one or more of lithium carbonate, lithium hydroxide and lithium nitrate.
  • the lithium manganese oxide doped with indium can be used as a positive electrode material of a small lithium-ion battery or a lithium-ion power battery and has the advantages of high cycling stability, strong charge holding capacity and low loss of storage capacity.
  • lithium manganese oxide doped with indium in lithium ion batteries provides a process of preparation of low energy consumption to obtain a product of good quality
  • CN10475271 1 Refers to a method of preparing a LiMn 2 0 4 cathode material doped with nickel, which has a high multiplicative power and efficiency in the cycling of a lithium ion battery, which comprises: putting for the first time in a preheated constant temperature muffle furnace, reagents including lithium acetate, manganese acetate and nickel acetate in a crucible, and then bake in the muffle furnace for the second time to obtain a LiNio spinel type electrode material.
  • the method of preparing the material for cathode ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ type spinel, lithium-ion battery, prepared by the invention has the characteristics of being simple to operate, fast in synthesis speed, low cost and easy to produce on a large scale; and in addition, the cycling time of the spinel-type LiNio.osMni.gsC cathode material is increased as the cathode material.
  • US5928622 Refers to a high capacity LiMn 2 0 4 compound used for a nonaqueous electrolyte lithium ion battery, more particularly, to a method for preparing LiMn 2 0 4 intercalation compound doped with Li and Co ions, which It comprises the following stages of: synthesizing spinel type LiMn 2 0 4 powder; dissolve and treat the LiMn powder 2 0 4 in the solution to adsorb the Li and Co ion; and heat treatment of said LiMn 2 0 4 to obtain LiMn 2 0 4 doped with Li and Co.
  • M and x are each as previously defined and 0.002 ⁇ and ⁇ 0.5; and an active cathode material for a rechargeable lithium ion battery comprising spinel-type manganese lithium oxide oxide having improved charge / discharge characteristics produced by the method described above.
  • the composite oxide thus produced is an improved novelty particularly in a charge / discharge cycle characterized at a high ambient temperature (50 S C or higher), and therefore is very useful from the point of view of the Industry.
  • cathode material for lithium ion batteries or secondary battery of 4 V that derives from the LIMN 2 0 4 spinel, where part of the manganese is replaced by a metallic element that has the effect of maintaining the capacity of a sufficiently constant battery during a loading / unloading cycle without causing a significant loss in capacity.
  • US5316877 teaches an electrochemical cell comprising a cell container and a cathode located in said container, wherein the cathode comprises at least one electrochemically active compound of lithium, manganese and oxygen, having a spinel-like structure and formula LI 1 D x Mn 2 - x0 4+ s, where it is true that 0 ⁇ x ⁇ 0.33; 0 ⁇ ⁇ ⁇ 0.5, and the values of x and ⁇ are such that the oxidation state N of the manganese cation is 3.5 ⁇ N ⁇ 4.0;) D is a mono- or multi-valent metal cation. Particularly, D may be a metal catalyst other than L, such as a divalent metal cation such as Mg.
  • An electrolyte is also located in the container of the cell.
  • the cell, electrolyte and cathode container are arranged to allow the application of a charge potential on the cell which causes the cathode lithium to form at least part of the anode in the cell compartment while the electrolytes join the cathode electrochemically to the anode and isolates it.
  • US6017654 A Refers to crystalline lithiated transition metal oxide materials having a rhombohedral structure and including divalent cations selected and added in amounts so that all or a portion of the divalent cations occupy sites in the transition metal layers within the crystalline lattice.
  • Said transition metal oxides are useful as cathode materials in secondary cells of lithium ion and include but are not limited to Li xN. and M and N x 0 2 ( i + X) and LN.
  • M is a transition metal selected from titanium, vanadium, chromium, manganese, iron, cobalt and aluminum
  • N is a group II element selected from magnesium, calcium, strontium, barium and zinc.
  • CN104253267 relates to lithium titanate material Li 4 M x Ti and 0 12 spinel type coated with carbon used as cathode material of lithium ion battery, a production method and an application thereof.
  • the cathode material is a spinel type Li 4 M x Ti and Oi2 or a single or multiple metal compound Li 4 M x Ti and Oi2 doped with a metallic element. Its synthesis includes: mixing an organic solution of titanium and a liquid salt of lithium to prepare sol; ripen the sun to obtain a precursor of lithium titanate gel; Calcite the predecessor of the gel to obtain the nano-sized lithium titanate spinel material.
  • the lithium titanate spinel material has a better multiplicative power characteristic, when the lithium lithium titanate material is used as the battery cathode of lithium ion, the power output of the cell can obviously increase.
  • a spinel that allows the manufacture of lithium ion battery with better electrochemical and structural properties at high temperatures, which decrease the dissolution of Mn at high potentials and the Jahn-Teller distortion of the spinel. That is, a spinel that allows the manufacture of positive electrodes for lithium ion batteries with better structural and electrochemical performance.
  • the present invention relates to the field of technologies for energizing portable electronics, power tools, hybrid and electric vehicles, and energy storage systems from renewable sources.
  • the invention relates to lithium ion batteries, and more specifically, to a compound useful for the manufacture of cathodes in said lithium ion batteries.
  • the invention relates to a manganese spinel doped with magnesium, cathodic material comprising it, preparation method and lithium ion batteries comprising it.
  • the present invention solves the problem of improving the structural and electrochemical performance of the spinel, reducing the particle size on a nanometric scale and doping the structure with magnesium ions.
  • the spinel is prepared by the sol-gel synthesis method assisted by ultrasound and raw materials of Li and Mg were used, typical of the Salar de Atacama, Chile.
  • the electrochemical performance of the doped spinel of the present invention was evaluated as well as its structural, physical and chemical properties of the material of the invention (Mn spinel doped with Mg, (UMg x Mn 2 -x0 4 , 0.02 ⁇ x ⁇ 0.1 ) and was compared to a pure spinel and a commercial spinel. showed that the spinel doped with Mg, presents better electrochemical performance and better structural properties compared to pure and commercial spinel.
  • a prototype of a 10 Ah capacity lithium-ion battery module was also developed, consisting of individual pouch-type cells, composed of double coverage cathodes of LiMg 0 .05 n 1 .9 5 O4, anodes of single and double coverage. graphite, a polymeric separator and aprotic electrolyte of LiPF 6 .
  • the spinel doped with Mg was prepared from the following sol-gel synthesis method assisted by ultrasound, which allowed to obtain active materials with homogeneous morphology and particle size in nanometric scale.
  • the doping with Mg in the manganese spinel increased the average oxidation state of the manganese, increasing the electrical conductivity of the cathodic material without modifying the symmetry of the crystalline cell.
  • Figure 1 Shows the configuration of a cell coin type CR2032
  • Figures 2A-2C show an EDS analysis by color mapping for manganese spinels:
  • Figure 2A shows commercial spinel.
  • Figure 2B shows pure spinel.
  • Figure 2C shows spinel doped with Mg.
  • Figures 3A-3C Show SEM images of manganese spinels
  • Figure 3A shows commercial spinel.
  • Figure 3B shows pure spinel.
  • Figure 3C shows spinel doped with Mg.
  • Figures 4A-4C show X-ray diffraction patterns of manganese spinels.
  • Figure 4A shows spinel to commercial.
  • Figure 4B shows pure spinel.
  • Figure 4C shows spinel doped with Mg.
  • Figures 5A-5B Figure 5A shows curves of discharge capacity with the number of cycles.
  • Figure 5B shows impedance spectra of cycles 1 and 100, for a state of 100% loading, of the commercial, pure manganese spinels and commercial manganese spinel doped with Mg.
  • Figure 6 Shows sizing drawings of the electrodes and positive and negative terminals.
  • Figure 7 Shows sizing planes of the pouch type cell of 4Ah capacity.
  • Figure 8 Shows sizing drawings of the 10Ah capacity lithium-ion battery module.
  • the present invention relates to a manganese spinel doped with magnesium (LiMgo.o 5 Mn 1. 95 0 4 ), cathodic material comprising it, method of preparation and use in lithium ion batteries.
  • the structural and electrochemical properties of the material of the invention (Mn spinel doped with Mg, (LiMg 0 .05Mn 1 .95O 4 ) were compared with a pure spinel and a commercial spinel. The results showed that the spinel doped with Mg, presents better electrochemical performance and better structural properties compared to pure spinel and commercial spinel.
  • the ultrasound-assisted sol-gel synthesis method that was used to prepare the spinel doped with Mg, proved to be efficient for the preparation of active materials, applied to lithium ion batteries, with homogeneous morphology and particle size in nanometric scale.
  • Manganese spinel doped with magnesium proved to possess physical, chemical and electrochemical properties superior to commercial spinel and pure spinel.
  • the first solution corresponds to the dissolution in stoichiometric quantities of the precursors of metal ions, Li 2 C0 3 and Mn (CH 3 COO) 2 for the pure spinel and Li 2 C0 3 , Mn (CH 3 COO) 2 and Mg (OH ) 2 for the spinel doped with Mg, in distilled water at room temperature and the second solution corresponds to the dissolution of the organic precursors ethylene glycol and citric acid in distilled water. Both aqueous solutions were mixed under continuous agitation. The pH of the resulting solution was adjusted between a range of 6 to 6.5 by adding ammonium hydroxide, thereby obtaining a "sol".
  • the "sol” was subjected to sonication for 2.5 hours using an ultrasound bath and then heated to ⁇ to evaporate the water content and obtain the “gel”. Subsequently, the "gel” was dried in a muffle at MO'C for 12h.
  • the "dry gel” or synthesis precursor obtained was ground in an agate mortar and sieved for subsequent Thermogravimetric (TG) analysis. Using this technique, the optimal time / temperature programming for the heat treatment of the synthesis method was determined. Finally, the powders of the synthesis precursor were calcined in air atmosphere at ⁇ for 4h and at 750C for 12h to finally obtain the pure manganese spinel (LiMn 2 0 4 ) and the spinel doped with magnesium,
  • a suspension was prepared consisting of a mixture of 90% by weight of cathodic active material [pure manganese spinel (LiMn 2 0 4 ) or spinel doped with Mg (LiMgo.o5Mn 1. 95 0 4 ) or commercial spinel 5% by weight of carbon black as a conductive additive and 5% by weight of PVdF (polyvinylidene difluoro) as a binder in NMP solution (n-methyl pyrrolidone).
  • the different constituents of the positive electrode, cathodic active material, conductive additive and binder were added one by one to minimize agglomeration and achieve homogeneity of the suspension.
  • the suspension obtained was deposited on Al paper, as a current collector, to perform the cathodic coverage and then subjected to a pre-drying process in the presence of air for 12 hours, to fix the cathode cover on the current collector.
  • V h is the volume of the wet cathodic coverage and V s is the volume of the dry cathodic coverage.
  • coin-type lithium ion CR2032 cells were manufactured.
  • the coin cells ( Figure 1) consist of a cathode, a metallic lithium anode, a polymeric separator and 1 M LiPF 6 electrolyte in EC: DMC: EMC (1: 1: 1 by weight).
  • the cells were assembled in a glovebox in Argon controlled atmosphere (H 2 0, 0 2 ⁇ 2 ppm), to minimize the effect of moisture and oxygen.
  • - Cycling tests Battery Analyzer, BST8-WA
  • coin cell load / unload tests were performed according to the CC-VC protocol (constant current - constant voltage).
  • the activation procedure of the cells was carried out between 3.0 V and 4.8 V (versus L ⁇ + / L ⁇ ) at a constant current of C / 10 for 3 cycles.
  • the extended cycling tests were performed between 3.0 V and 4.4 V (versus U + / U) at a constant current of C / 3 per 100 cycles.
  • the cycling protocol is detailed in Table 2.
  • the measurement of the electrochemical impedance of the coin 2032 cells was carried out in a range of 20 cycles of charge / discharge, using a frequency range of 100kHz to 10mHz with a signal amplitude of 5mV for a state of charge of 100%, 50% and 0%.
  • the elemental quantification of the commercial spinel showed the presence of sulfur in small amounts and an excess in the concentration of lithium.
  • the commercial spinel has a co-doped crystalline structure; on the one hand, cationic doping with lithium ions that partially replace the manganese content, allowing to obtain as a result - without consent with any theory, an increase in the average oxidation state, high electrical conductivity and greater load capacity of the active material.
  • anodic doping with sulfur ions that partially replace the oxygen concentration.
  • the addition of sulfur ions would improve the structural stability of the spinel and reduce / eliminate the dissolution of Mn at high potentials, because sulfur would form stronger Mn-S bonds in comparison to those formed by oxygen O - S.
  • An exact stoichiometric ratio of 1: 2: 4 for Li: Mn: 0 was evidenced for the pure spinel (Table 3) synthesized by the sol-gel method assisted by ultrasound.
  • Figures 3A-3C show the SEM images of the commercial manganese spinel, pure spinel and spinel doped with magnesium, respectively.
  • Figure 3A shows that powders of active material of the commercial spinel are composed of agglomerated particles with an average diameter of 18.5 ⁇ , which in turn are composed of fine particles with an average diameter of 500 nm.
  • the agglomerated particles have an irregular morphology and a wide dispersion in the particle size distribution (particles of inhomogeneous size); on the other hand, it can be observed that each fine particle presents a homogeneous morphology of the cubic type, typical of the crystalline structure of the Mn spinels.
  • Figures 3B and 3C show the powders of the cathode materials synthesized via sol gel assisted by ultrasound: pure spinel and spinel with Mg doping, respectively.
  • the powders are composed of fine particles of morphology and homogeneous size, properties that are attributed to the synthesis method.
  • a morphology of the spherical type is demonstrated and with an average particle size of 125 nm, this last measurement was made by Atomic Force Microscopy (AFM).
  • AFM Atomic Force Microscopy
  • Figures 4A-4C show the X-ray diffraction patterns of the spinels analyzed.
  • the difractog branches present eight characteristic peaks at 2 ⁇ angles and their corresponding crystal planes as shown in Table 4.
  • the small increase in length of the commercial spinel cell parameter, co-doped with sulfur and lithium, compared to pure spinel, is attributed to the incorporation of the sulfur ion (S 2 ⁇ ) in the crystalline structure of the manganese spinel ; this is due to the fact that the sulfide ion has a greater ion radius with respect to the oxygen ion (O 2 ), besides forming stronger bonds with manganese that improve the structural stability of the manganese spinel.
  • the increase in the length of the spinel cell parameter doped with Mg is attributed to the substitution of the Mn 3+ ion by the Mg 2+ ion, and that it has a greater ion radius than the Mn 4+ ion.
  • the monovalent oxidation state of the Mg 2+ ion remains unchanged during the process of intercalation and de-interleaving of the lithium ion in a way that reduces the corresponding effects of expansion and contraction of the crystalline cell, improving the structural stability of the manganese spinel during cycling at temperatures in environmental and high conditions.
  • Table 5 shows the data obtained from the characterization of the physical and chemical properties of manganese spinels: commercial spinel (L and spinel doped with Mg (LiMg 0 , 05Mni, 95O 4 ). Table 5 Data on the physical and chemical properties of commercial manganese spinels, pure spinel and spinel doped with magnesium
  • the processing of the cycling data showed that the cathode manufactured with the manganese spinel doped with Mg of the invention, has a higher initial load capacity compared to pure spinel (5.6% more) and commercial spinel (13% more).
  • the cathode manufactured with the commercial spinel has a better load retention in the cycle, the load capacity of the spinel doped with magnesium is always above the load capacity of the commercial spinel and with the increase of the number of cycles the loss of capacity, stabilizes and shows a linear behavior.
  • the pure spinel showed a lower performance in cycling compared to the commercial spinel and the spinel doped with Mg. However, it has a higher load capacity compared to the commercial cathode, however, after 100 cycles its capacity decreases compared to the spinel doped with Mg and the commercial spinel. Regarding the tests of measure measured during cycles 1 and 100 for a state of charge of 100% ( Figure 5B). It was evidenced that the cathode manufactured with the commercial manganese spinel presents high values of impedance in comparison to the cathode synthesized by the sol-gel method assisted by ultrasound and doped with Mg according to the invention.
  • This effect is mainly attributed to the particle size of the active material, because a smaller particle size increases the chemical reactivity of the material during the electrochemical loading and unloading reactions.
  • the synthesis method used to obtain the pure spinel and the spinel doped with Mg guarantees the formation of fine and homogeneous particles in nanometric scale, this property is an advantage compared to the commercial spinel which is composed of particles in scale micrometer and therefore with less chemical reactivity.
  • the impedance value of the cathode of the invention, after 100 cycles was 49% lower compared to the commercial cathode of manganese spinel. This difference should be due to no theory, low particle size, high chemical reactivity and high average oxidation state of manganese, which increases the electrical conductivity of the material and is attributed to the incorporation of magnesium ions in the structure of the manganese spinel.
  • Table 6 shows the results obtained from the stereochemical measurements for the commercial spinel and the synthesized spinel.
  • Example 4 Design of the prototype of a 10Ah capacity lithium-ion battery module.
  • Table 7 shows the design criteria of the lithium ion battery module used in the BatPac v2.2 tool.
  • the type of battery selected for the simulation corresponds to a lithium ion battery applied to electric vehicles, composed of unit cells type pouch (prismatic cell of malleable polymer / aluminum housing) of 4Ah capacity and 12 mm thick, with a positive electrode length / width ratio equal to 2.2 and a usable energy range of 85%.
  • the selected system corresponds to a battery composed of the positive electrode (cathode developed based on the material of the present invention) of lithium manganese oxide doped with magnesium, (LMO-Mg), with spinel structure and by a negative electrode (anode) of graphite, (G), with layered structure.
  • the positive electrode cathode developed based on the material of the present invention
  • LMO-Mg lithium manganese oxide doped with magnesium
  • G graphite
  • the initial input parameters correspond to experimental measurements recorded in coin type cells (rigid metal shell button cell in the form of a disk) CR2032, corresponding to the selected system LMO-Mg / G.
  • the data obtained from the simulation show that to manufacture a lithium ion pouch cell, with an LMO-Mg / G capacity of 4Ah, 23 double-coated electrodes (12 positive electrodes and 1 negative electrodes) and 2 electrodes are required. Simple negative coverage. The arrangement of the electrodes is alternately, starting and ending with a negative electrode of simple coverage.
  • Figure 9 shows the sizing planes of the positive electrode, constituted by a manganese spinel cover doped with magnesium deposited on an Al current collector, and negative electrode, constituted by a graphite cover deposited on a current collector of Cu; as well as the planes of the positive terminals of Al and negative of Ni.
  • the parallel connection of three individual cells is necessary to reach a capacity of 10Ah.
  • the three cells are soldered by their positive terminals of Al and negative of Ni, respectively.
  • the end of each terminal of the module is soldered to a copper buss (buss); such connectors will be used for the final installation of the positive and negative terminals of the module.
  • buss copper buss
  • Figure 11 shows the sizing drawings of the 10 Ah lithium-ion battery module.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

La presente invención se refiere al campo de las tecnologías para energizar electrónicos portátiles, herramientas eléctricas, vehículos híbridos y eléctricos, y sistemas de almacenamiento de energía de fuentes renovables. En particular, la invención se refiere a baterías de ion litio, y más específicamente, a un compuesto activo útil para la fabricación de cátodos en dichas baterías de ion litio. Aún más en particular, la presente invención se refiere a una espinela de manganeso dopada con magnesio, material catódico que la comprende, método de preparación, en baterías de ion litio que la comprende.

Description

ESPINELA DE MANGANESO DOPADA CON MAGNESIO, MATERIAL CATÓDICO QUE LA COMPRENDE. MÉTODO DE PREPARACIÓN. Y BATERIA DE ION LITIO QUE LA COMPRENDE Campo de la Invención
La presente invención se refiere al campo de las tecnologías para energizar electrónicos portátiles, herramientas eléctricas, vehículos híbridos y eléctricos, y sistemas de almacenamiento de energía de fuentes renovables. En particular, la invención se refiere a baterías de ion litio, y más específicamente, a un compuesto activo útil para la fabricación de cátodos en dichas baterías de ion litio. Aún más en particular, la presente invención se refiere a una espinela de manganeso dopada con magnesio, material catódico que la comprende, método de preparación, en baterías de ion litio que la comprende.
Antecedentes
Las baterías de ion litio poseen una combinación incomparable de elevada densidad de energía y potencia; razón por la cual son la tecnología de elección para energizar electrónicos portátiles, herramientas eléctricas, vehículos híbridos y eléctricos, y en sistemas de almacenamiento de energía de fuentes renovables.
En la actualidad, el óxido de litio cobalto, LiCo02, es el compuesto más ampliamente utilizado en la fabricación de cátodos para baterías de ion litio; sin embargo debido a su elevado costo, elevada toxicidad, inestabilidad térmica y problemas de seguridad, su aplicación se limita a baterías de formato reducido. En cambio, la espinela de manganeso litio, LiMn204, es el material catódico más promisorio para baterías de ion litio de gran formato. Esto debido a su difusión de iones litio en tres dimensiones, bajo costo, baja toxicidad y abundancia de sus materias primas. Sin embargo, el LiMn204 presenta problemas tales como ciclado deficiente a elevadas temperaturas (50 ), disoluci ón del Mn, descomposición del electrolito a elevados potenciales, distorsión Jahn-Teller e inestabilidad estructural ; los cuales deben ser resueltos para su aplicación comercial.
Con el fin de superar las diferentes limitaciones del LiMn204, la presente invención resuelve el problema de mejorar el rendimiento estructural y electroquímico: (1 ) Reduciendo el tamaño de partícula a escala nanométrica y (2) Dopando la estructura con iones magnesio. Para ello se utilizó el método de síntesis sol-gel asistido por ultrasonido y se usaron materias primas de Li y Mg , propias del Salar de Atacama, Chile.
Entre los documentos de patente relacionados con la invención, es posible mencionar: CN 106207153 que describe un método para preparar rápidamente un material de electrodo positivo LiMn204 dopado con boro, LiB0,04 nl !96O4, que comprende poner en primer lugar los reactivos, a saber nitrato de litio, acetato de litio, nitrato manganoso, acetato de manganeso y un ácido bórico en un crisol en la relación molar de Li a Mn a B de 1 : 1 ,96: 0,04; calentar, fundir y mezclar los reaccionantes uniformemente en un horno de precalentamiento, poner una mezcla en un horno de mufla para una reacción de combustión sin llama en fase líquida, llevar a cabo la conservación del calor durante un cierto período de tiempo, enfriar y triturar un producto en polvo para obtener un material de electrodo de espinela LiB0,04 nl !96O4, donde el material de electrodo positivo para una batería de iones de litio tiene las características de ser simple en funcionamiento, alto en velocidad de síntesis y bajo costo, y la producción masiva es fácil de implementar. Se plantea el problema técnico de una atenuación significativa de la capacidad de un material manganeso litio tipo espinela en ciclos de carga o descarga y dopa dicho material con B para reparar tal deficiencia.
US2016329563 describe un material activo de cátodo recubierto con óxido de manganeso de metal de litio con estructura de espinela dopado con flúor, que se puede incluir en una batería secundaria de litio y un método para preparar el mismo. El material activo del cátodo tiene una estabilidad química mejorada y proporciona características de carga/descarga mejoradas a temperatura elevada (55-60C) y velocidad elevada. El material activo del cátodo permite que los iones de litio pasen a través de la capa de recubrimiento con facilidad y es químicamente estable, y por lo tanto puede ser utilizado eficazmente como material activo de cátodo para una batería secundaria de litio de alta potencia. El material activo de cátodo tiene una estructura de carcasa-núcleo donde la carcasa es una capa de cubierta de óxido de manganeso metálico de litio con estructura de espinela dopado con flúor que puede ser representado por la formula Li1 MxMn2-x04-nFn, donde x es 1/(4-z), z es un número de oxidación de M, y n es un número real que satisface 0 < n < 0,3. El núcleo es un óxido de manganeso de litio con estructura de espinela (LMO). La capa de cubierta de óxido de manganeso metálico de litio con estructura de espinela y el núcleo son usados en una proporción en peso de 1 :20-200 y tiene un espesor de 1 nm-1 μιη.
Se enfoca a resolver el problema de preparar oxido de manganeso litio con una estructura tipo espinela a bajo costo, el efecto Jahn-Teller, el desvanecimiento gradual de la capacidad de una batería secundaria de litio, la destrucción del cátodo por la corrosión de manganeso durante los ciclos de carga y descarga, el aumento de la impedancia y el descenso de la eficiencia coulómbica por la formación de una capa en la interfase sólido-electrolito en la superficie del electrodo negativo. Y por ello, propone el material dopado antes descrito. CN106058205 describe un material de cátodo compuesto de óxido de cobalto níquel litio dopado y un método de preparación del mismo, el que comprende: (1 ) disolver las materias primas de iones de manganeso en agua para preparar una solución A y disolver un precipitador en el agua para preparar una solución B; (2), añadir un precursor de óxido de cobalto níquel litio dopado (LiNixCoyMh.y02, donde M es Mn, Al, Cr, Fe, Mg, Zn o Ti) en la solución A, y añadir la solución B a la solución A mientras se agita; después de completarse la reacción, filtrar la solución mezclada, recoger las materias sólidas, y limpiar y secar las materias sólidas, obteniéndose así sólidos A; y (3), poniendo los sólidos A y una fuente de litio en un horno de atmósfera de oxígeno para realizar tostado a alta temperatura, obteniendo de este modo productos después del tostado, concretamente el material de cátodo compuesto de óxido de cobalto níquel litio dopado existente en una estructura núcleo, cuya superficie está revestida con una capa de espinela de manganato de litio. De acuerdo con el método de preparación, se recubre una capa de material de cátodo de espinela de manganato de litio sobre la superficie del óxido de cobalto níquel litio para mejorar el rendimiento y el ciclo de vida de una celda de batería en uso; La espinela de la capa más externa aisla el níquel metálico y evita contactar directamente con el electrolito, de modo que la estabilidad y la seguridad de la batería se pueden mejorar efectivamente. El método busca la producción de un material que mejora el uso del proceso de eficiencia de celda única y el ciclo de vida ya que la separación de la fase espinela del níquel metálico y el contacto directo del electrolito puede efectivamente mejorar la estabilidad y seguridad de la batería. CN105932250 describe un método de preparación y aplicación de una espinela estructurada con dopaje metálico y un material catódico que contiene níquel recubierto con un conductor iónico rápido, que comprende: disolver y mezclar sal orgánica de titanio, un material de cátodo que contiene níquel y una sal metálica dopada para obtener un líquido de dispersión; transferir el líquido de dispersión a una caldera de reacción hidrotérmica para llevar a cabo una reacción hidrotérmica, de manera que se obtiene un precursor; y hornear el precursor a alta temperatura para obtener el material de cátodo que contiene níquel de una espinela estructurada con dopaje metálico y una capa recubierta con un conductor iónico, que es densa, uniforme y buena en cuanto a estabilidad y conductividad iónica. El material de cátodo que contiene níquel puede utilizarse para preparar una batería de iones de litio con un excelente rendimiento de número de ciclos y capacidad de velocidad (rate capability); y es de bajo costo, fácil de operar, amigable con el medio ambiente y puede aplicarse a la producción industrial. El material de cátodo que contiene níquel es LiNixMn2-x04 (0,1 < x < 0,8) que tiene estructura de espinela y/o LiNi1 -x-#On que tiene una estructura por capa y/o material de cátodo enriquecido en manganeso litio.
Busca desarrollar un material catódico con larga vida útil y alto rendimiento a partir de un método simple, de bajo costo y amigable con el medioambiente.
CN105789568 describe un material de electrodo positivo de una batería de ión de litio y un método de preparación del mismo, donde el material de óxido de manganeso de litio rico en litio dopado con un elemento de azufre tiene la formula
Figure imgf000006_0001
donde 0 > x > 0,2, 0 > y > 0,2, y M es Li, Na, K, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ag, Ce, Sm, Eu, Al, Si, In, Ga, Ge, Sn, Pb, B, Sb, Bi, Se, Te, o sus combinaciones. Los iones positivos dopados y los átomos de azufre se dopan uniformemente en la red cristalina de un material de óxido de manganeso litio de acuerdo con una cierta proporción usando el método sol-gel y un quelante para inhibir el efecto Jahn-Teller del material de óxido de manganeso litio. Un defecto de baja capacidad específica del óxido de manganeso litio causado por el hecho de que la espinela de óxido de manganeso litio existente puede utilizar sólo una capacidad de un área de 4 V, el material de óxido de manganeso de litio rico en litio dopado con un elemento de azufre puede usar capacidades de ambos, o sea el área de 4V y un área de 3V, y la capacidad específica de descarga del material de óxido de manganeso litio rico en litio dopado con elementos de azufre es mayor que 180 mAh/g. El material de óxido de manganeso litio rico en litio dopado con el elemento de azufre puede usarse como el material de electrodo positivo de baterías de Iones de litio pequeñas o grandes.
Enfrenta dos problemas asociados a materiales de óxido de manganeso litio: su baja capacidad (1 10 mAh/g o lo similar) y serlos problemas de caída de la capacidad. Abordando principalmente la atenuación de capacidad por disolución y efecto Jahn- Teller causado por el manganeso, y por ello, propone dopaje catlónlco con Iones litio y dopaje anlónlco con azufre, que amplían el área de capacidad utlllzable en 3V y 4 V.
CN104701522 describe un método de preparación para un material positivo modificado de manganato de litio de una batería de Ion litio que comprende: (1 ) sintetizar un precursor adoptando un método de diferencia de temperatura en fase líquida para obtener polvo precursor de carbonato de manganeso dopado con aluminio, donde el carbonato preferentemente es carbonato de litio, el compuesto fuente de manganeso, preferentemente sulfato de manganeso, y la sal de aluminio, preferentemente nitrato de aluminio, se encuentran en una proporción molar de 39: 1 a 9:1 a 0,2 mol/L, una solución acuosa 0,2 mol/L a 0,5 mol/L y la temperatura de las dos soluciones acuosas se controlan dentro del rango de 0 a 10SC y se mezclan rápidamente con 10sC/m¡n a 50-80sC, se madura por 30 minutos, se filtra y seca a 40SC para obtener un polvo de precursor de carbonato de manganeso dopado con aluminio; (2) calcinación del polvo de carbonato de manganeso precursor obtenido durante 2-5 horas bajo la temperatura de 600-800sC, con el fin de obtener un polvo de óxido de manganeso dopado con aluminio con una estructura esférica de orificios Iónicos y siendo el diámetro de partícula 1 -3 mieras donde la calcinación ocurre a una temperatura entre 600-800sC por 2 a 5 horas; (3) mezclar uniformemente el polvo precursor de carbonato-manganeso dopado con aluminio y carbonato de litio de acuerdo con la relación de (1 a 1 ) - (1 ,05 a 1 ), mantener la temperatura durante 20 horas bajo la temperatura de 900SC por 20 horas, enfriar, moliendo, repitiendo el proceso desde hornear hasta moler durante 3 veces, para obtener una muestra de material positivo con estructura de espinela modificada de manganato de litio con un diámetro de partícula de 1 -2 mieras. El método usa materias primas de bajo costo y fáciles de obtener, la microestructura es regular y uniforme, el efecto dopante es bueno y el manganato de litio modificado preparado es evidente en los rendimientos de carga y descarga y bueno en circularidad. Resuelve el problema técnico de la caída de capacidad de LiMn204.
CN 104538625 describe un método de preparación de material de electrodo positivo de batería de iones de litio de dióxido de manganeso de litio dopada con cobre con alto aumento y excelente rendimiento en el ciclado que comprende poner los reactivos de nitrato de litio, acetato de manganeso y acetato de cobre en un crisol, añadir una cantidad apropiada de ácido nítrico, quemar en un horno de mufla y preservar el calor, obteniendo de este modo la espinela LiCuo.osMn^sC^. El material de electrodo positivo de batería de iones de litio
Figure imgf000008_0001
tiene características de simplicidad de operación, rápida velocidad de síntesis, bajo costo y producción a escala, siendo fácil de lograr.
La principal ventaja es la reacción de síntesis de combustión rápida y en un periodo breve de tiempo para lograr cristales completes, productos de tamaño de particular pequeño, lo que conduce a un proceso de producción de espinela de LiMn204 conductora.
US2015089797 describe una espinela dopada de fórmula: Li1 ±wMeivMe2x-vMn2-x-yTiy04- zFz donde, 0≤ w <1 , 0,3 <x≤ 0,7, 0,3≤ v <0,7, x> v, 0,0001 ≤ y≤ 0,35 y 0,0001 ≤ z ≤ 0,3. Me es un metal seleccionado de un grupo de elementos que consiste en Cr, Fe, Co, Ni, Cu y Zn. Me2 es un metal seleccionado de un grupo de elementos que consisten en Ni, Fe, Co, Mg, Cr, V, Ru, Mg, Al, Zn, Cu, Cd, Ag, Y, Se, Ga, In, As, Sb, Pt, Au y B. Proporciona también una batería de iones de litio que comprende dicha espinela dopada y proporciona una espinela dopada o una espinela dopada de alto voltaje que puede ser ciclada establemente con más de un litio por unidad.
CN1041 12856 describe un tratamiento de pre-combustión que comprende la síntesis de un material de cátodo de espinela de manganato de litio dopada con aluminio metálico, que comprende: mezclar carbonato de litio, dióxido de manganeso electrolítico y nitrato de aluminio hidratado, preferentemente nitrato de aluminio hexahidrato en una proporción de Li2C03: EMO: AI(N03)3 9H20 de 1 ,0 a 1 ,05: 1 ,7 a 2,0: 0 a 0,3 y donde preferentemente el contenido de dióxido de manganeso es mayor a 91 %, y Li2C03 y AI(N03)3 9H20 son de grado analítico; tomando etanol absoluto como dispersante, sometiendo la mezcla a molienda y secado para obtener un precursor de reacción ; Precalentar el precursor durante 4 a 6 horas a una temperatura de 400 a 500 a una tasa de 5-10sC/min, quemar dur ante 6 a 36 horas a una temperatura de 750 a una velocidad de 5-10sC/min, colocar el precursor en un horno tubular para llevar a cabo un tratamiento de recocido en una atmósfera de gas oxígeno a 600SC donde se mantiene por 6 horas, enfriándose naturalmente a la temperatura ambiente, triturando y tamizando para obtener el material catódico de una batería de iones de litio de un tamaño de malla de 200-325. El material de cátodo preparado tiene las ventajas de una gran capacidad y buena estabilidad en el ciclado. En comparación con la técnica anterior, la tecnología es sencilla y factible, el coste es bajo y el método se aplica ventajosamente a la producción industrial.
Proporciona un menor costo de las materias primas de materiales catódicos para baterías de ion litio para mejorar la estabilidad electroquímica de los materiales de óxido de manganeso litio tipo espinela, de modo que incrementan la capacidad, estabilidad en el ciclado; también mejora la síntesis de fase solida de alta temperatura del material de cátodo de óxido de magnesio litio dopado con aluminio. CN102569781 describe un material de cátodo de batería de ion litio de alto voltaje y su método de preparación, donde dicho material de cátodo de batería de ion de litio de alto voltaje es un material de solución sólida con una estructura compuesta estratiforme y de espinela y de fórmula L¡xN¡o.25-z no.75-zM2zOy, en donde M es uno o dos de metales dopados seleccionado de Co, Al, Cr, Mn y Ga, 2 > x > 0, 3 > y≥ 2 y 0,25 > z > 0. El material catódico tiene la estructura compuesta estratiforme y espinela, mantiene la alta capacidad específica de un material en solución sólida a base de manganeso, mejora la estabilidad del ciclado y la estabilidad térmica del material. La impedancia del material catódico se reduce por dopaje, de manera que se mejora adicionalmente la estabilidad térmica del material y se reduce la liberación de calor para mejorar el rendimiento electroquímico global del material. El proceso de preparación del material tiene alta capacidad de control, el costo de fabricación es bajo y el proceso de fabricación tiene alta reproducibilidad y alta estabilidad de lotes, se facilita la gestión de producción de materiales de alto voltaje y alta capacidad específica.
Proporciona un material de cátodo de batería de ion litio de alto voltaje que comprende una solución solida de alta capacidad específica que mejora el rendimiento del ciclado y la estabilidad térmica del material, reduce costos de producción, mejora la estabilidad de producción en lotes.
CN102306767 se refiere a un método para preparar manganato de litio tipo espinela que sirve como material de cátodo de una batería de ion de litio que comprende: 1 ) mezclar óxido de manganeso seleccionado de Mn02 electrolítico o químico, Mn304 o MnOOH, un material fuente de litio seleccionado de LiOH, Li2C03 o LiN03 y un óxido metálico como elemento dopante, donde el metal seleccionado es Li, Al, Cr, Co, Mg, Ca, Ni, Zn, o una mezcla de los mismos; y 2) mezclar uniformemente la mezcla obtenida en la etapa 1 ), y someter a un gradiente continuo de sinterización dentro un horno de sinterización de alta temperatura (Etapas de sinterizado: sinterizado a una temperatura de entre 1 .000 y 1 .200SC durante 3 a 5 horas en la primera etapa; sinterizado a la temperatura de entre 800 y ΘΟΟΌ d urante 4 a 6 horas en la segunda etapa y sinterizado a la temperatura de entre 500 y 7000 durante 5 a 8 horas en la tercera etapa), introduciendo aire comprimido simultáneamente. A continuación, el producto sinterizado se somete a enfriamiento natural, trituración y proceso de selección para obtener el material catódico. El procedimiento es simple; la cristalinidad y la superficie del material catódico se controlan a través de la sinterización a ultra alta temperatura para reducir la velocidad de disolución del manganeso; mientras que el proceso de sinterizado a bajas temperaturas controlan o eliminan las deficiencias de oxígeno.
Se enfoca a mejorar la estructura cristalina del óxido de manganeso litio y con ello su pobre estabilidad de ciclado debido a factores de disolución de manganeso y deficiencias de oxígeno, y por ello, se reduce y elimina o controla las deficiencias de oxígeno en la estructura cristalina de la espinela de manganeso. Se efectúa el dopaje de la estructura cristalina del óxido de manganeso litio con elementos metálicos de Mg, Al o Cr para mejorar la estabilidad durante el ciclado.
CN102122715 Describe un óxido de manganeso litio dopado con indio que comprende una espinela de manganeso litio y un elemento metálico de indio, el cual es 0,02 a 5% de la masa de la espinela de manganeso litio dopado con indio y su método de preparación que comprende: mezclar uniformemente una sustancia fuente de litio y polvo de dióxido de manganeso de acuerdo con la relación molar de Li a Mn que es (0,50-0,65) a 1 y añadir sustancia fuente de indio en polvo simultáneamente; colocar la mezcla en un entorno de aire u oxidación cuya temperatura está entre 600 y 1 .000Ό; después mezclar uniformemente la mezcla y hornear de 8 a 32 horas; enfriar y tamizar para obtener el óxido de manganeso litio dopado con indio. Donde dicho elemento metálico de indio está presente en el manganato de litio dopado con indio en la forma de trióxido de indio y el óxido de indio; los cuales se forman en la superficie del manganato de litio tipo espinela o en los microporos de la superficie o penetran en la estructura interna para formar el compuesto de formula LiMn2-xlnx04, siendo 0 < x < 0,1 . Donde el material fuente de litio es una mezcla de uno o más de carbonato de litio, hidróxido de litio y nitrato de litio. El óxido de manganeso litio dopado con indio puede usarse como un material de electrodo positivo de una pequeña batería de ion de litio o una batería de ión de litio de potencia y tiene las ventajas de alta estabilidad de ciclado, fuerte capacidad de retención de carga y baja pérdida de la capacidad de almacenamiento.
Proporciona una buena estabilidad de ciclado, fuerte capacidad de retención de carga, y baja pérdida de capacidad de almacenamiento de litio; además, de la aplicación del óxido de manganeso litio dopado con indio en baterías de ion litio, brinda un proceso de preparación de bajo consumo de energía para la obtención de un producto de buena calidad
CN10475271 1 Se refiere a un método de preparación de un material de cátodo LiMn204 dopado con níquel, que tiene una elevada potencia multiplicativa y rendimiento en el ciclado de una batería de ion de litio, que comprende: poner por primera vez en un horno de mufla de temperatura constante precalentado, reactivos que incluyen acetato de litio, acetato de manganeso y acetato de níquel en un crisol, y luego hornear en el horno de mufla para el segunda vez para obtener un material de electrodo de tipo espinela LiNio.os n^sO^ El método de preparación del material de cátodo ϋΝίο^Μη^Ο^ tipo espinela, de batería de ion de litio, preparada por la invención tiene las características de ser simple de operar, rápido en velocidad de síntesis, de bajo coste y de fácil producción a gran escala; y además, se incrementa el tiempo de ciclado del material de cátodo LiNio.osMni.gsC de tipo espinela como material de cátodo.
Proporciona un método de preparación de amplia eficiencia, reduce costos de manufactura, permite una preparación rápida y eficiente y que mejora el rendimiento de la batería de ion litio, así como también la velocidad retención de capacidad durante el ciclado de la espinela de LiMn204 dopado con níquel.
US5928622 Se refiere a un compuesto de LiMn204 de alta capacidad utilizado para una batería de ion de litio de electrolito no acuoso, más particularmente, a un método para preparar compuesto de intercalación LiMn204 dopado con iones Li y Co, que comprende las siguientes etapas de: sintetizar la espinela tipo LiMn204 polvo; disolver y tratar el polvo de LiMn204 en la solución para adsorber el ion Li y Co; y tratamiento térmico de dicho LiMn204 para obtener LiMn204 dopado con Li y Co.
Aborda la reducción de la capacidad de descarga que resulta de repetidas cargas y descargas en una batería de ion litio LiMn204 debido a la disolución del ión Mn+3 en LiMn204 y la inestabilidad estructural de la transición Jahn-Teller.
US6274278 Se refiere a un proceso para preparar un óxido de compuesto de litio y manganeso de tipo espinela representado por la fórmula LixMn(2.y)My1 By204 en la que M representa al menos un elemento seleccionado entre Al, Cr, Fe, Ni, Co, Ga y Mg ; 0,9 < x < 1 ,1 ; e y = y1 + y2, donde 0,002 < y < 0,5, 0 < y1 < 0,5 y 0,002 < y2 < 0,1 o la fórmula LixMn(2.y)My04, que es el mismo que la fórmula anterior excepto que y2 es 0. En la primera fórmula M y x son cada uno como se ha definido anteriormente y 0,002 < y < 0,5; y un material activo de cátodo para una batería recargable de Iones de litio que comprende el óxido de compuesto de litio manganeso de tipo espinela que tiene características mejoradas de carga/descarga producidas por el método de arriba descrito. El óxido compuesto así producido es una novedad mejorada particularmente en un ciclo de carga/descarga caracterizado a una elevada temperatura ambiental (50SC o superior), y por lo tanto es muy útil desde el punto de vista de la Industria.
Proporciona un material de cátodo para baterías de Ion litio o batería secundarla de 4 V que deriva de la espinela LIMn204, donde se reemplaza parte del manganeso por un elemento metálico que tiene el efecto de mantener la capacidad de una batería lo suficientemente constante durante un ciclo de carga/descarga sin causar una perdida ¡nidal significativa en su capacidad.
US5316877 Enseña una celda electroquímica que comprende un contenedor de celda y un cátodo ubicado en dicho contenedor, donde el cátodo comprende al menos un compuesto electroquímicamente active de litio, manganeso y oxígeno, que tiene estructura tipo espinela y formula LI1 Dx Mn2-x04+s, donde se cumple que 0≤ x < 0,33; 0≤ δ < 0,5, y los valores de x y δ son tal que el estado de oxidación N del catión de manganeso es 3,5 < N < 4,0;) D es un catión mono- o multl-valente metálico. Particularmente, D puede ser un metal catlónlco distinto a L¡ como por ejemplo un catión metálico dlvalente tal como Mg. También puede ser un catión metálico monovalente distinto a L¡ tal como Ag o un catión metálico trivalente tal como Co3+; y b es el estado de oxidación de D. Un electrolito también se ubica en el contenedor de la celda. El contenedor de celda, electrolito y cátodo están dispuestos para permitir la aplicación de un potencial de carga sobre la celda que cause que el litio del cátodo forme en el compartimiento de la celda al menos parte del ánodo mientras los electrolitos unen el cátodo electroquímicamente al ánodo y lo aisla. US6017654 A Refiere a materiales de óxidos de metales de transición litiados cristalinos que tiene estructura romboédrica e incluyen cationes divalentes seleccionados y adicionados en cantidades de modo que todo o una parte de los cationes divalentes ocupan sitios en las capas del metal de transición dentro del entramado cristalino. Dichos óxidos de metal de transición son útiles como materiales de cátodo en celdas secundarias de ion litio e incluyen pero no se limitan a Li xN . yMyNx02(i+X) y L N .yMyNxOp, donde M es un metal de transición seleccionado de titanio, vanadio, cromo, manganeso, hierro, cobalto y aluminio, y N es un elemento del grupo II seleccionado de magnesio, calcio, estroncio, bario y zinc. Los materiales tienen ciclabilidad mejorada y capacidad de voltaje alto como cátodos en celdas secundarias de ion litio. También se divulga el proceso de producción del material.
CN104253267 se refiere a un material de titanato de litio Li4MxTiy012 tipo espinela revestido con carbono utilizado como material de cátodo de batería de ión de litio, un método de producción y una aplicación del mismo. El material de cátodo es de tipo espinela Li4MxTiyOi2 o un compuesto mono o múltiple metálico Li4MxTiyOi2 dopado con un elemento metálico. Su síntesis comprende: mezclar una solución orgánica de titanio y una sal líquida de litio para preparar sol; madurar el sol para obtener un precursor de gel de titanato de litio; Calcinar el predecesor del gel hasta obtener el material de espinela de titanato de litio de tamaño nanométrico. Alternativamente, comprende: dispersar el titanato de litio preparado en una solución orgánica de fuente de carbono, eliminar la solución y calcinar para obtener el material compuesto de espinela de titanato de litio/ carbono de espinela de tamaño nanométrico. En comparación con el titanato de litio Li4Ti50i2 preparado por un método convencional, el material de espinela de titanato de litio tiene una mejor característica de potencia multiplicativa, cuando el material de titanato de litio de litio es usado como cátodo de batería de ión de litio, el rendimiento de potencia de la celda puede obviamente incrementarse. No obstante los esfuerzos, persiste la necesidad de una espinela que permita la fabricación de batería de ion litio con mejores propiedades electroquímicas y estructurales a elevadas temperaturas, que disminuyan la disolución del Mn a elevados potenciales y la distorsión Jahn-Teller de la espinela. Es decir, una espinela que permita fabricar electrodos positivos para baterías de ion litio con un mejor rendimiento estructural y electroquímico.
Breve Descripción de la Invención
La presente invención se refiere al campo de las tecnologías para energizar electrónicos portátiles, herramientas eléctricas, vehículos híbridos y eléctricos, y sistemas de almacenamiento de energía de fuentes renovables. En particular, la invención se refiere a baterías de ion litio, y más específicamente, a un compuesto útil para la fabricación de cátodos en dichas baterías de ion litio. Aún más en particular, la invención se refiere a una espinela de manganeso dopada con magnesio, material catódico que la comprende, método de preparación y baterías de ion litio que la comprende.
La presente invención resuelve el problema de mejorar el rendimiento estructural y electroquímico de la espinela, reduciendo el tamaño de partícula a escala nanométrica y dopando la estructura con iones magnesio. La espinela se prepara por el método de síntesis sol-gel asistido por ultrasonido y se usaron materias primas de Li y Mg, propias del Salar de Atacama, Chile.
Se evaluó el rendimiento electroquímico de la espinela dopada de la presente invención así como también sus propiedades estructurales, físicas y químicas del material de la invención (espinela de Mn dopada con Mg, (UMgxMn2-x04, 0.02<x<0.1 ) y se le comparó con una espinela pura y una espinela comercial. Los resultados mostraron que la espinela dopada con Mg, presenta mejor rendimiento electroquímico y mejores propiedades estructurales en comparación a la espinela pura y comercial.
También se desarrolló un prototipo de módulo de batería de ion litio de 10 Ah de capacidad, conformado por celdas individuales tipo pouch, compuestas por cátodos de doble cobertura de LiMg0.05 n1.95O4, ánodos de simple y doble cobertura de grafito, un separador polimérico y electrolito aprótico de LiPF6.
La espinela dopada con Mg se preparó a partir del siguiente método de síntesis sol-gel asistido por ultrasonido, lo que permitió obtener materiales activos con morfología homogénea y tamaño de partícula en escala nanométrica. El dopaje con Mg en la espinela de manganeso incrementó el estado de oxidación promedio del manganeso, aumentando la conductividad eléctrica del material catódico sin modificar la simetría de la celda cristalina.
Breve Descripción de las Figuras
Figura 1 Muestra la configuración de una celda coin tipo CR2032
Figuras 2A-2C Muestran un análisis EDS por mapeo de colores para las espinelas de manganeso: Figura 2A muestra espinela comercial. Figura 2B muestra espinela pura. Figura 2C muestra espinela dopada con Mg. Descripción de colores: O=color amarillo, Mn=color rojo y Mg= color verde.
Figuras 3A-3C Muestran imágenes SEM de las espinelas de manganeso Figura 3A muestra espinela comercial. Figura 3B muestra espinela puro. Figura 3C muestra espinela dopada con Mg. Figuras 4A-4C Muestran patrones de difracción de rayos X de las espinelas de manganeso. Figura 4A muestra espinel a comercial. Figura 4B muestra espinela pura. Figura 4C muestra espinela dopada con Mg. Figuras 5A-5B: Figura 5A muestra curvas de capacidad de descarga con el número de ciclos. Figura 5B muestra espectros de impedancia de los ciclos 1 y 100, para un estado de carga del 100%, de las espineles de manganeso comercial, pura y espinela de manganeso comercial dopada con Mg. Figura 6 Muestra planos de dimensionamiento de los electrodos y terminales positivo y negativo.
Figura 7 Muestra planos de dimensionamiento de la celda tipo pouch de 4Ah de capacidad.
Figura 8 Muestra planos de dimensionamiento del módulo de batería de ion litio de 10Ah de capacidad.
Descripción Detallada de la Invención
La presente invención se refiere a una espinela de manganeso dopada con magnesio (LiMgo.o5Mn1.9504), material catódico que la comprende, método de preparación y uso en baterías de ion litio.
La evaluación del rendimiento electroquímico de la espinela de Mn dopada con Mg, LiMg0.05Mn1.95O4, fue realizada a escala laboratorio en celdas tipo coin 2032, compuestas por un electrodo positivo de LiMg0.05Mni .95O , un electrodo negativo de litio metálico, un separador polimérico y electrolito aprótico de LiPF6. Las propiedades estructurales y electroquímicas del material de la invención (espinela de Mn dopada con Mg, (LiMg0.05Mn1.95O4) se compararon con una espinela pura y una espinela comercial. Los resultados mostraron que la espinela dopada con Mg, presenta mejor rendimiento electroquímico y mejores propiedades estructurales en comparación a la espinela pura y espinela comercial.
En base a los promisorios resultados electroquímicos obtenidos en las celdas tipo coin , se desarrolló un prototipo de módulo de batería de ion litio de 10 Ah de capacidad, conformado por celdas individuales tipo pouch, compuestas por cátodos de simple y doble cobertura de LiMg0.05Mn1.95O4, ánodos de doble cobertura de grafito, un separador polimérico y electrolito aprótico de LiPF6. Al presente, se desconoce de soluciones comerciales para el LiMn204 con características similares a las planteadas en la presente invención.
El método de síntesis sol-gel asistido por ultrasonido que se utilizó para preparar la espinela dopada con Mg, demostró ser eficiente para la preparación de materiales activos, aplicados a baterías de ion litio, con morfología homogénea y tamaño de partícula en escala nanométrica. El dopaje con Mg en la espinela de manganeso - sin consentir con ninguna teoría, habría incrementado el estado de oxidación promedio del manganeso, lo cual aumentó la conductividad eléctrica del material catódico, y por otro lado, no modifica la simetría de la celda cristalina. La espinela de manganeso dopada con magnesio, demostró poseer propiedades físicas, químicas y electroquímicas superiores a la espinela comercial y la espinela pura. El rendimiento electroquím ico de la espinela de manganeso dopada con Mg, en especial durante las pruebas de ciclado, puede ser notablemente mejorado con la optimización del método de síntesis y el tratamiento térmico.
Ejemplo 1 : Preparación de la Espinela de manganeso dopada con magnesio
Se sintetizó espinela pura (LiMn04) y espinela dopada con Mg (LiMg0.05Mn1.95O4) por medio del método sol-gel asistido por ultrasonido. Para la síntesis de las espinelas de manganeso, se utilizaron como materias primas de litio y manganeso: Li2C03 (grado batería > 99,5%, Rockwood - Chile) y Mn(CH3COO)2 (> 99%, Sigma Aldrich), respectivamente; además de la adición de Mg(OH)2 (≥ 99%, Fluka Analytical) para la espinela dopada con magnesio.
Para la síntesis se prepararon dos soluciones acuosas. La primera solución corresponde a la disolución en cantidades estequiométricas de los precursores de iones metálicos, Li2C03 y Mn(CH3COO)2 para la espinela pura y Li2C03, Mn(CH3COO)2 y Mg(OH)2 para la espinela dopada con Mg, en agua destilada a temperatura ambiente y la segunda solución corresponde a la disolución de los precursores orgánicos etilenglicol y ácido cítrico en agua destilada. Ambas soluciones acuosas se mezclaron bajo agitación continua. El pH de la solución resultante se ajustó entre un rango de 6 a 6,5 adicionando hidróxido de amonio, obteniéndose de este modo un "sol". El "sol" se sometió a sonicación por 2.5 hora utilizando un baño de ultrasonido y entonces se calentó a δΟΌ para evapo rar el contenido de agua y obtener el "gel". Posteriormente, el "gel" se secó en una mufla a MO'C por 12h. El "gel seco" o precursor de síntesis obtenido, se molió en un mortero de ágata y tamizó para su posterior análisis Termogravimétrico (TG). Usando esta técnica, se determinó la programación óptima de tiempo/temperatura para el tratamiento térmico del método de síntesis. Finalmente, los polvos del precursor de síntesis fueron calcinados en atmósfera de aire a δΟΟΌ por 4h y a 750C por 12h para obtener finalmente la espinela de manganeso pura (LiMn204) y la espinela dopada con magnesio,
Figure imgf000021_0001
Ejemplo 2 Preparación de coberturas catódicas
Para la fabricación de las coberturas catódicas se preparó una suspensión consistente en una mezcla de 90% en peso de material activo catódico [espinela de manganeso pura (LiMn204) o espinela dopada con Mg (LiMgo.o5Mn1.9504) o espinela comercial
Figure imgf000021_0002
5% en peso de negro de carbono como aditivo conductor y 5% en peso de PVdF (difloruro de polivinilideno) como aglutinante en solución de NMP (n- metil pirrolidona). El proceso de mezclado de la suspensión de cobertura se realizó en un mezclador de paleta bajo condiciones estáticas de vacío (=0,1 atm) para minimizar la contaminación de agua en la suspensión. Los diferentes constituyentes del electrodo positivo, material activo catódico, aditivo conductor y aglutinante, fueron adicionados uno a uno para minimizar la aglomeración y alcanzar la homogeneidad de la suspensión.
La suspensión obtenida se depositó sobre papel de Al, como colector de corriente, para realizar la cobertura catódica y sometida posteriormente a un proceso de pre- secado en presencia de aire por 12 horas, para fijar la cobertura de cátodo sobre el colector de corriente.
A continuación, se realizó el calandrado de la cobertura catódica para mejorar la adhesión de la suspensión catódica sobre el papel aluminio y establecer la porosidad del recubrimiento de acuerdo a la siguiente expresión:
0 = 1 - -
Donde Vh es el volumen de la cobertura catódica húmeda y Vs es el volumen de la cobertura catódica seca. Finalmente, la cobertura catódica se sometió a un proceso de secado final al vacío por 12 h, con el fin de eliminar todo el contenido de agua. Los cátodos completamente secos se cortaron en círculos con un diámetro de 9/16" (1 ,43 cm). La Tabla 1 detalla las características de los cátodos preparados.
Tabla 1 Formulación y parámetros de carga de los cátodos utilizados en celdas coln CR2032
Figure imgf000022_0001
Ejemplo 3: Caracterización de propiedades físicas y químicas
Las propiedades físicas y químicas de los materiales catódicos sintetizados y el material comercial, se determinaron aplicando las siguientes técnicas de caracterización :
- Plcnometría de Sólidos, para determinar la densidad aparente de los compuestos activos catódicos sintetizados y el producto comercial.
- Microscopía Electrónica de Barrido con detector de Espectroscopia de Dispersión de Rayos X (SEM-EDS, TESCAN, Vega 3 LMU), para estudiar la morfología, homogeneidad, tamaño de partícula en escala mlcrométrlca y composición elemental de la espinela pura, espinela dopada con Mg y espinela comercial.
- Microscopía de Fuerza Atómica - Raman (AFM RAMAN, WITec, alpha300), para determinar el tamaño de partícula de los materiales catódicos sintetizados en escala nanométrica.
- Difracción de rayos X para polvo cristalino (DRX, Bruker, D8 Advance-A25) utilizando radiación Cu Ka, para determinar y comparar los parámetros estructurales e identificar las fases, estructuras y defectos cristalinos de la espinela sintetizada y espinela comercial.
Mediciones electroquímicas
Para evaluar el rendimiento electroquímico de los materiales catódicos, se fabricaron celdas de ion litio tipo coin CR2032. Las celdas tipo coin (Figura 1 ) constan de un cátodo, un ánodo de litio metálico, un separador polimérico y electrolito 1 M LiPF6 en EC:DMC:EMC (1 :1 :1 en peso). Las celdas fueron ensambladas en una caja de guantes en atmósfera controlada de Argón (H20, 02 < 2 ppm), para minimizar el efecto de la humedad y el oxígeno. - Pruebas de ciclado (Battery Analyzer, BST8-WA), las pruebas de carga/descarga de las celdas tipo coin se realizaron de acuerdo al protocolo CC-VC (corriente constante - voltaje constante). El procedimiento de activación de las celdas se realizó entre 3,0 V y 4,8 V (versus LÍ+/LÍ) a una corriente constante de C/10 por 3 ciclos. Las pruebas de ciclado extendido se realizaron entre 3,0 V y 4,4 V (versus U+/U) a una corriente constante de C/3 por 100 ciclos. El protocolo de ciclado se detalla en la Tabla 2.
- Mediciones de impedancia (Autolab, PGSTAT302N), la medición de la impedancia electroquímica de las celdas coin 2032 se realizó en un intervalo de 20 ciclos de carga/descarga, utilizando un rango de frecuencia de 100kHz a 10 mHz con una amplitud de señal de 5mV para un estado de carga de 100%, 50% y 0%.
Tabla 2 Protocolo de las pruebas de ciclado
Figure imgf000024_0001
Análisis comparativo entre el espinela comercial y espinela dopada con Mg de la invención, análisis químico elemental y densidad aparente
Las estequiometrias de las espinelas de manganeso, comercial, pura y dopada con magnesio de la invención, fueron elucidadas a partir de las composiciones elementales proporcionadas por las mediciones EDS, como se muestra en la Tabla 3.
El estado de oxidación promedio del manganeso en cada óxido con estructura de espinela, ya sea comercial o pura o dopada con magnesio (Tabla 3), se determinó por el balance de carga de sus diferentes elementos constituyentes en base a la electroneutralidad de cada molécula de óxido de espinela.
Tabla 3 Estequiometrias de las espinelas de manganeso, comercial, pura y dopada con Mg, calculadas a partir de las mediciones EDS
Description Commercial LMO Puré LMO Mg doped LMO
EDS atomic Molar EDS atomic Molar EDS atomic Molar
Element
percent (%) ratio percent (%) ratio percent (%) ratio
Mn 31.51 1.840 33.62 2.0 32.25 1.95
O 68.42 3.996 66.38 4.0 66.93 4.05 s 0.07 0.004
Mg 0.83 0.05
Total 100 100 100
Stoichiometry L i i -i QM n i ,8403,99680,004 L¡Mn204 LiMg0,05Mn1 ,95O4
Estado de
oxidación 3,7+ 3,5+ 3,6+ promedio Mn
La cuantificación elemental de la espinela comercial (Tabla 3) evidenció la presencia de azufre en reducidas cantidades y un exceso en la concentración de litio. La espinela comercial posee una estructura cristalina co-dopada; por una parte, dopaje catiónico con iones litio que reemplazan parcialmente el contenido de manganeso, permitiendo obtener como resultado - sin consentir con ninguna teoría, un incremento del estado de oxidación promedio, elevada conductividad eléctrica y mayor capacidad de carga del material activo. Por otra parte, un dopaje anódico con iones azufre que remplazan parcialmente la concentración de oxígeno. Sin consentir con ninguna teoría, la adición de iones azufre mejoraría la estabilidad estructural de la espinela y reduce/elimina la disolución del Mn a elevados potenciales, debido a que azufre formaría enlaces Mn-S más fuertes en comparación a los formados por el oxígeno O- S. Una relación estequiométrica exacta de 1 :2:4 para Li :Mn :0, fue evidenciada para el espinela pura (Tabla 3) sintetizada mediante el método sol-gel asistido por ultrasonido.
Respecto a la espinela de manganeso dopada con Mg, el análisis elemental (Tabla 3) demostró la presencia de una espinela con dopaje catiónico de Mg. Sin consentir con ninguna teoría, las reducidas cantidades de iones magnesio reemplazarían parcialmente el contenido de manganeso en la estructura de la espinela; lo cual daría como resultado un mayor estado de oxidación promedio en comparación a la espinela pura, elevada conductividad eléctrica y mayor estabilidad estructural. El análisis composicional EDS, por mapeo elemental utilizando imágenes de color falso (Figuras 2A-2C), muestra una distribución homogénea de los principales componentes de las tres espinelas de manganeso: espinela comercial, espinela pura y espinela dopada con Mg, respectivamente. La medición de la densidad aparente de la espinela comercial y espinelas sintetizadas (puro y dopado con Mg) se llevó a cabo mediante Picnometría, empleando agua destilada a temperatura ambiente, como se muestra en la Tabla 5.
Tamaño de partícula y morfología
Las Figuras 3A-3C, muestran las imágenes SEM de la espinela de manganeso comercial, espinela pura y espinela dopada con magnesio, respectivamente. La Figura 3A muestra que los polvos de material activo de la espinela comercial están compuestos por partículas aglomeradas con un diámetro promedio de 18,5 μιη, las cuales a su vez se componen de partículas finas con un diámetro promedio de 500 nm. Las partículas aglomeradas presentan una morfología irregular y con una amplia dispersión en la distribución de tamaño de partícula (partículas de tamaño no homogéneo) ; en cambio, se puede observar que cada partícula fina presenta una morfología homogénea del tipo cúbico, propia de la estructura cristalina de los espineles de Mn.
Las Figuras 3B y 3C, muestran los polvos de los materiales catódicos sintetizados vía sol gel asistido por ultrasonido: espinela pura y espinela con dopaje de Mg, respectivamente. En ambas imágenes, se puede observar que los polvos están compuestos por partículas finas de morfología y tamaño homogéneo, propiedades que se atribuyen al método de síntesis. En ambos polvos activos se evidencia una morfología del tipo esférica y con un tamaño de partícula promedio de 125 nm, esta última medición se realizó mediante Microscopía de Fuerza Atómica (AFM).
Estructura cristalina
Las Figuras 4A-4C, muestran los patrones de difracción de rayos X de las espinelas analizadas. Los difractog ramas presentan ocho picos característicos en ángulos 2Θ y sus correspondientes planos cristalinos como se muestra en la Tabla 4.
Tabla 4 Picos característicos de los patrones de difracción de rayos-X registrados para las espinelas de manganeso, comercial, pura y dopada con magnesio.
Description Commercial LMO Puré LMO Mg doped LMO
No. of
Crystal Crystal Crystal characteristic 2Θ angles 2Θ angles 2Θ angles
plañe plañe plañe peaks
1 18.44 (1 1 1) 18.52 (1 1 1) 18.45 (1 1 1)
2 35.67 (3 1 1) 35.69 (3 1 1) 35.66 (3 1 1)
3 37.31 (2 2 2) 37.36 (2 2 2) 37.28 (2 2 2)
4 43.35 (4 0 0) 43.37 (4 0 0) 43.33 (4 0 0)
5 47.47 (3 3 1) 47.50 (3 3 1) 47.42 (3 3 1)
6 57.36 (5 1 1) 57.37 (5 1 1) 57.27 (5 1 1)
7 63.00 (4 4 0) 62.99 (4 4 0) 62.92 (4 4 0)
8 66.27 (5 3 1) 66.21 (5 3 1) 66.19 (5 3 1) Como resultado del refinamiento de los patrones de rayos X, mediante el método Rietveld, se determinó que las tres espinelas presentan una estructura cristalina con simetría cúbica y grupo espacial Fd3m. Además, se verificó que el co-dopaje con azufre-litio, para la espinela comercial, y el dopaje de magnesio, para la espinela dopada, no modifican la estructura cristalina. Respecto a los parámetros de celda, se evidenció que la espinela pura presenta una dimensión de celda más reducida en comparación a la espinela comercial y la espinela dopada con Mg , que tienen una dimensión de celda similar. El reducido incremento de longitud del parámetro de celda de la espinela comercial, co-dopada con azufre y litio, en comparación a la espinela pura, se atribuye a la incorporación del ion sulfúro (S2~) en la estructura cristalina de la espinela manganeso ; esto debido a que el ion sulfuro posee un radio iónico mayor respecto al ion oxígeno (O2 ) , además de formar enlaces más fuertes con el manganeso que mejoran la estabilidad estructural de la espinela de manganeso. En cambio, el incremento de longitud del parámetro de celda de espinela dopada con Mg, se atribuye a la sustitución del ion Mn3+ por el ion Mg2+, y que posee un radio iónico mayor al ion Mn4+. El estado de oxidación monovalente del ion Mg2+ permanece invariable durante el proceso de intercalación y desintercalación del ion litio de modo que reduce los correspondientes efectos de expansión y contracción de celda cristalina, mejorando la estabilidad estructural del espinel de manganeso durante el ciclado a temperaturas en condiciones ambientales y elevadas.
La Tabla 5, muestra los datos obtenidos de la caracterización de las propiedades físicas y químicas de las espinelas de manganeso: espinela comercial (L
Figure imgf000028_0001
y espinela dopada con Mg (LiMg0,05Mni ,95O4). Tabla 5 Datos de las propiedades físicas y químicas de las espinelas de manganeso comercial, espinela pura y espinela dopada con magnesio
Description Commercial LMO Puré LMO Mg doped LMO
Particle size (nm) 500 ~ 125 ~ 125
Density (gcm _1) 4,23 4,23 4,2
Crystal system Cubic Cubic Cubic
Spatial group Fd3m Fd3m Fd3m
Cell parameter, a (Á) 8,345 8,341 8,355 Pruebas de ciclado e impedancia
Posterior a los 100 ciclos de carga/descarga de las celdas coin ensambladas con los cátodos de la espinela manganeso comercial y las espinela sintetizada de la invención, el tratamiento de los datos de ciclado, como se muestra en la Figura 5A, demostró que el cátodo fabricado con la espinela de manganeso dopada con Mg de la invención, tiene una mayor capacidad de carga inicial en comparación a la espinela pura (5,6 % más) y a la espinela comercial (13% más). Si bien, el cátodo fabricado con la espinela comercial tiene una mejor retención de carga en el ciclado, la capacidad de carga de la espinela dopada con magnesio está siempre por encima de la capacidad de carga de la espinela comercial y con el incremento del número de ciclos la pérdida de capacidad, se estabiliza y muestra un comportamiento lineal. En cambio la espinela pura, demostró un menor rendimiento en el ciclado en comparación a la espinela comercial y la espinela dopada con Mg. Sin embargo, presenta una mayor capacidad de carga en comparación al cátodo comercial, no obstante, después de los 100 ciclos su capacidad disminuye en comparación a la espinela dopada con Mg y la espinela comercial. Respecto a las pruebas de ¡mpedancla medidas durante los ciclos 1 y 100 para un estado de carga del 100% (Figura 5B). Se evidenció que el cátodo fabricado con la espinela de manganeso comercial presenta altos valores de impedancia en comparación al cátodo sintetizado por el método sol-gel asistido por ultrasonido y dopado con Mg según la invención. Este efecto se atribuye principalmente al tamaño de partícula del material activo, debido a que un menor tamaño de partícula incrementa la reactividad química del material durante las reacciones electroquímicas de carga y descarga. El método de síntesis empleado para la obtención de la espinela puro y la espinela dopada con Mg, garantiza la formación de partículas finas y homogéneas en escala nanométrica, esta propiedad es una ventaja en comparación a la espinela comercial la cual está compuesta por partículas en escala micrométrica y por lo tanto con menor reactividad química.
El valor de impedancia del cátodo de la invención, al cabo de 100 ciclos fue menor en 49% en comparación al cátodo comercial de espinela de manganeso. Esta diferencia se debería sin consentir con ninguna teoría, al reducido tamaño de partícula, elevada reactividad química y elevado estado de oxidación promedio del manganeso, el cual incrementa la conductividad eléctrica propia del material y es atribuido a la incorporación de iones magnesio en la estructura de la espinela de manganeso.
Tabla 6 muestra los resultados obtenidos de las mediciones estereoquímicas para la espinela comercial y la espinela sintetizada.
Tabla 6 Datos de las mediciones electroquímicas de la espinela de manganeso comercial (LMO com), espinela pura (LMO puro) y espinela dopada con magnesio de la invención (LMO-Mg) Description Commercial LMO Puré LMO Mg doped LMO
Initial capacity (mAh g-1) 106,36 113,33 120,00
Final capacity (mAh g-1) 101,82 94,44 105,60
Average coulombic efficiency (%) 98,56 97,75 98,44
Capacity retention (%) 95,73 83,33 87,96
Ejemplo 4: Diseño del prototipo de un módulo de batería de ion litio de 10Ah de capacidad.
Para el diseño del módulo de batería de Ion litio con el material catódico desarrollado en base al material de la presente invención, se empleó un programa desarrollado en el software Excel, denominado BatPac v2.2. Esta herramienta suministra datos necesarios para el diseño y dimensionamiento de los electrodos, celdas, módulos y packs que componen una batería de ion litio completa, esto de acuerdo a los criterios de energía y potencia requeridos por el diseñador.
La Tabla 7, muestra los criterios de diseño, del módulo de batería de ion litio, empleados en la herramienta BatPac v2.2.
Tabla 7 Criterios de diseño de baterías de ion litio
Figure imgf000031_0001
2 SOC: "State of charge" (Estado de carga) De este modo, en referencia a los criterios de diseño (Tabla 7) y a los parámetros experimentales iniciales requeridos, se ejecutó la herramienta de Excel con las siguientes especificaciones:
· El tipo de batería seleccionado para la simulación, corresponde a una batería de ion litio aplicada a vehículos eléctricos, compuesta por celdas unitarias tipo pouch (celda prismática de carcasa maleable de polímero/aluminio) de 4Ah de capacidad y 12 mm de espesor, con una relación longitud/anchura de electrodo positivo igual a 2,2 y rango de energía utilizable del 85%.
· El sistema seleccionado corresponde a una batería compuesta por el electrodo positivo (cátodo desarrollado en base al material de la presente invención) de óxido de manganeso litio dopado con magnesio,
Figure imgf000032_0001
(LMO-Mg), con estructura de espinela y por un electrodo negativo (ánodo) de grafito, (G), con estructura en capas.
· Los parámetros iniciales de entrada corresponden a mediciones experimentales registradas en celdas tipo coin (celda de botón de carcasa metálica rígida en forma de disco) CR2032, correspondientes al sistema seleccionado LMO-Mg/G.
Los datos obtenidos de la simulación, muestran que para fabricar una celda pouch de ion litio, de LMO-Mg/G de 4Ah de capacidad, es necesario 23 electrodos de doble cobertura (12 electrodos positivos y 1 1 electrodos negativos) y 2 electrodos de cobertura simple negativos. La disposición de los electrodos es de forma alterna, empezando y terminando por un electrodo negativo de simple cobertura.
La Figura 9, muestra los planos de dimensionamiento del electrodo positivo, constituido por una cobertura de espinela de manganeso dopado con magnesio depositado sobre un colector de corriente de Al, y electrodo negativo, constituido por una cobertura de grafito depositada sobre un colector de corriente de Cu ; así como también, los planos de los terminales positivo de Al y negativo de Ni. Para la fabricación del módulo de batería de ion litio, es necesaria la conexión en paralelo de tres celdas individuales para alcanzar una capacidad de 10Ah. Las tres celdas se sueldan por sus terminales positivos de Al y negativos de Ni, respectivamente. El extremo de cada terminal del módulo se suelda a un conector ("buss bar") de cobre; tales conectores serán utilizados para la instalación final de los terminales positivo y negativo del módulo.
Un mejor detalle de la conexión en paralelo de las celdas se puede observar en la Figura 1 1 , que muestra los planos de dimensionamiento del módulo de batería de ion litio de 10 Ah.

Claims

REIVINDICACIONES
1 . Método de preparación de espinela de manganeso dopada con magnesio de formula
Figure imgf000034_0001
caracterizada porque comprende:
sintetizar espinela pura por medio del método sol-gel asistido por ultrasonido, usando como materias primas de litio y manganeso: Li2C03, Mn(CH3COO)2 y Mg(OH)2, siguiendo los siguientes pasos:
a) preparar una primera solución que corresponde a la disolución en cantidades estequiométricas de los precursores de iones metálicos , Li2C03, Mn(CH3COO)2 y Mg(OH)2, en agua destilada a temperatura ambiente;
b) preparar una segunda solución corresponde a la disolución de los precursores orgánicos etilenglicol y ácido cítrico en agua destilada;
c) mezclas las soluciones obtenidas en las etapas a) y b) bajo agitación continua; d) ajustar el pH de la solución resultante de la etapa c) entre un rango de 7 a 7,5; e) someter el sol obtenido en la etapa d) a sonicación y luego calentar para evaporar el agua y obtener un gel, y posteriormente, secarlo;
f) moler y calcina el precursor de síntesis obtenido en la etapa e) y así obtener la espinela dopada con magnesio, (LiMgxMn2.x04).
2. El método de la reivindicación 1 caracterizado porque comprende Li2C03 con grado batería > 99,5% como una de las materias primas.
3. El método de la reivindicación 1 caracterizado porque en la etapa d), el pH se ajusta adicionando hidróxido de amonio.
4. El método de la reivindicación 1 caracterizado porque en la etapa e), la sonicación se realiza utilizando un baño de ultrasonido.
5. El método de la reivindicación 1 caracterizado porque en la etapa e) se calienta hasta δΟ .
El método de la reivindicación 1 caracterizado porque en la etapa e) el secado se realiza a Μδ'ϋ.
7. El método de la reivindicación 1 caracterizado porque la calcinación de la etapa f) se realiza en atmósfera de aire a δΟΟΌ por 4h y a 7500 por 12h.
Método de preparar cobertura catódica de celdas para batería de ion litio usando una espinela de manganeso dopada con magnesio de formula LiMgo.osMn^sC^ caracterizada porque comprende:
a) preparar una suspensión consistente en una mezcla de 90% en peso de la espinela dopada con Mg preparada conforme a cualquiera de las reivindicaciones 1 a 7, 5% en peso de negro de carbono como aditivo conductor y 5% en peso de PVdF (difloruro de polivinilideno) como aglutinante en solución de NMP (n-metil pirrolidona);
b) mezclar la suspensión preparada en la etapa a) minimizando aglomeración y asegurando homogeneidad al adicionar uno a uno, los diferentes constituyentes del electrodo, material activo catódico
Figure imgf000035_0001
aditivo conductor y aglutinante;
c) depositar la suspensión obtenida en b) sobre papel de Al y secar para fijarla y obtener la cobertura catódica;
d) opcionalmente, se realiza el calandrado de la cobertura catódica para mejorar la adhesión de la suspensión catódica sobre el papel Al y establecer la porosidad del recubrimiento;
e) secar al vacío para eliminar todo el contenido de agua.
9. Espinela de manganeso dopada con magnesio de formula
Figure imgf000036_0001
caracterizada porque presenta un difractograma con ocho picos característicos en ángulos 2Θ de 18.45, 35.66, 37.28, 43.33, 47.42, 57.27, 62.92, 66.19 para radiación CuKa, correspondientes a los planos cristalinos (1 1 1 ), (3 1 1 ), (2 2 2), (4 0 0), (3 3 1 ), (5 1 1 ), (4 4 0) y (5 3 1 ), respectivamente.
10. La espinela de la reivindicación 9 caracterizada porque los polvos activos de dicha espinela tienen una morfología del tipo esférica y un tamaño de partícula promedio de 125 nm.
1 1 . La espinela de la reivindicación 9 caracterizada porque el estado de oxidación de manganeso es 3,6+.
12. La espinela de la reivindicación 9 caracterizada porque tiene celda cúbica Fd3m con un parámetros de celda de a = 8,355 Á.
13. La espinela de la reivindicación 9 caracterizada porque tiene un tamaño de partícula de aprox. 125 nm.
14. La espinela de la reivindicación 9 caracterizada porque tiene una densidad de 4,2 gcnr1.
15. Uso de la espinela dopada con magnesio de formula LiMgxMn204 preparada conforme cualquiera de las reivindicaciones 1 a 7 o definida según cualquiera de las reivindicaciones 9 a 14 caracterizado porque sirve para fabricar una batería de ion litio.
16. Batería de ion litio caracterizada porque comprende espinela dopada con magnesio de formula LiMg0,05Mn 1 ,95O4 preparada conforme cualquiera de las reivindicaciones 1 a 7 o definida según cualquiera de las reivindicaciones 9 a 14.
17. La batería de la reivindicación 16 caracterizada porque está compuesta por celdas unitarias tipo pouch (celda prismática de carcasa maleable de polímero/aluminio) de 4Ah de capacidad y 12 mm de espesor.
18. La batería de la reivindicación 16 caracterizada porque está compuesta por un electrodo positivo (positivo) de óxido de manganeso litio dopado con magnesio
(LiMg0,05Mn 1 ,95O4) con estructura de espinela y por un electrodo negativo (ánodo) de grafito, (G), con estructura en capas.
19. La batería de la reivindicación 17 caracterizada porque dicha celda pouch de ion litio de 4Ah de capacidad comprende 23 electrodos de doble cobertura, incluyendo
12 electrodos positivos y 1 1 electrodos negativos; y además 2 electrodos de cobertura simple negativos, donde los electrodos están dispuestos alternadamente, empezando y terminando por un electrodo negativo de simple cobertura.
PCT/CL2018/050076 2017-09-01 2018-08-29 Espinela de manganeso dopada con magnesio, material catódico que la comprende, método de preparación, y bateria de ion litio que la comprende WO2019041057A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18851120.8A EP3683870A4 (en) 2017-09-01 2018-08-29 MANGAN SPINEL DOPED WITH MAGNESIUM, CATHODE MATERIAL WITH IT, PROCESS FOR ITS MANUFACTURING AND LITHIUM-ION BATTERY WITH IT
US16/643,462 US20200365889A1 (en) 2017-09-01 2018-08-29 Manganese spinel doped with magnesium, cathode material comprising the same, method for preparing thereof and lithium ion battery comprising such spinel
CN201880064503.1A CN111418094A (zh) 2017-09-01 2018-08-29 掺杂有镁的锰尖晶石、包含其的阴极材料、其制备方法和包含这样的尖晶石的锂离子电池
JP2020512475A JP2020536829A (ja) 2017-09-01 2018-08-29 マグネシウムをドープしたマンガンスピネル、それを含むカソード材料、その調製方法及びそのスピネルを含むリチウムイオン電池
KR1020207009420A KR102402147B1 (ko) 2017-09-01 2018-08-29 마그네슘으로 도핑된 망간 스피넬, 상기 망간 스피넬을 포함하는 캐소드 재료, 이들의 조제 방법 및 상기 스피넬을 포함하는 리튬 이온 배터리

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2221-2017 2017-09-01
CL2017002221A CL2017002221A1 (es) 2017-09-01 2017-09-01 Espinela de manganeso dopada con magnesio, material catódico que la comprende, método de preparación, y batería de ion litio que la comprende

Publications (1)

Publication Number Publication Date
WO2019041057A1 true WO2019041057A1 (es) 2019-03-07

Family

ID=61147189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2018/050076 WO2019041057A1 (es) 2017-09-01 2018-08-29 Espinela de manganeso dopada con magnesio, material catódico que la comprende, método de preparación, y bateria de ion litio que la comprende

Country Status (7)

Country Link
US (1) US20200365889A1 (es)
EP (1) EP3683870A4 (es)
JP (1) JP2020536829A (es)
KR (1) KR102402147B1 (es)
CN (1) CN111418094A (es)
CL (1) CL2017002221A1 (es)
WO (1) WO2019041057A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116102079A (zh) * 2022-12-08 2023-05-12 中南大学 一种Li(Ni1/2Mn3/2)1-xMxO4-yNy及其制备和应用

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015153485A1 (en) 2014-04-01 2015-10-08 The Research Foundation For The State University Of New York Electrode materials for group ii cation-based batteries
CN113149610A (zh) * 2021-04-07 2021-07-23 北京高压科学研究中心 一种基于界面调控的尖晶石型锂电正极陶瓷材料制备方法
CN113437300B (zh) * 2021-06-28 2022-04-26 山东大学 一种聚偏二氟乙烯改性的锰酸锂正极材料及其制备方法
CN113735174B (zh) * 2021-08-12 2023-05-19 郑州大学 一种基于一价阳离子掺杂锰基化合物的水系锌离子电池正极材料及其制备方法和应用
CN113869551A (zh) * 2021-08-25 2021-12-31 国网上海市电力公司 一种考虑数据相关性的电动汽车充电负荷预测方法
EP4403520A1 (en) * 2021-09-13 2024-07-24 Mitsui Mining & Smelting Co., Ltd Manganese oxide, manganese oxide particles, near-infrared transmission material, and near-infrared transmission film
CN114094108B (zh) * 2022-01-18 2022-04-19 浙江帕瓦新能源股份有限公司 钇铜双重改性的高镍正极材料及其制备方法
CN114606418B (zh) * 2022-01-26 2022-09-09 广东工业大学 一种镁空气电池Mg-Bi-In-Y阳极材料及其制备方法和应用
CN114864894B (zh) * 2022-05-05 2023-08-08 重庆理英新能源科技有限公司 一种耐高压包覆层修饰的富锂锰基正极材料及其制备方法和应用
CN115286046B (zh) * 2022-06-27 2023-07-07 广东邦普循环科技有限公司 掺杂铜的钴酸锂前驱体、正极材料及其制备方法和应用
CN116371387A (zh) * 2023-02-28 2023-07-04 华东理工大学 一种阳离子掺杂改性的锂离子筛的制备方法
CN117133919B (zh) * 2023-10-23 2024-01-19 宜宾锂宝新材料有限公司 一种改性锂离子电池正极材料及其制备方法和锂电池

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316877A (en) 1992-08-28 1994-05-31 Technology Finance Corporation (Proprietary) Limited Electrochemical cell
US5928622A (en) 1997-03-21 1999-07-27 Korea Kumho Petrochemical Co., Ltd. Method for preparing high capacity LiMn2 O4 secondary battery cathode compounds
US6017654A (en) 1997-08-04 2000-01-25 Carnegie Mellon University Cathode materials for lithium-ion secondary cells
US6274278B1 (en) 1996-03-29 2001-08-14 Consiglio Nazionale Delle Ricerche Gallium doped lithium manganese oxide spinels (LiGaxMn2−xO4) as cathode material for lithium or lithium-ion rechargeable batteries with improved cycling performance
CA2455819A1 (en) * 2001-07-27 2003-02-13 Massachusetts Institute Of Technology Battery structures, self-organizing structures and related methods
CN102122715A (zh) 2011-01-25 2011-07-13 湖南汇通科技有限责任公司 掺铟锰酸锂及其制备方法和应用
CN102306767A (zh) 2011-08-29 2012-01-04 武汉理工大学 锂离子动力电池正极材料尖晶石锰酸锂的制备方法
CN102569781A (zh) 2012-03-27 2012-07-11 天津理工大学 一种高电压锂离子电池正极材料及其制备方法
CN104112856A (zh) 2013-04-16 2014-10-22 湖南省正源储能材料与器件研究所 一种预烧处理合成金属铝掺杂尖晶石锰酸锂正极材料的方法
CN104253267A (zh) 2013-06-27 2014-12-31 上海电气集团股份有限公司 碳包覆尖晶石钛酸锂材料及其生产方法和应用
US20150089797A1 (en) 2012-04-02 2015-04-02 Karlsruher Institut Fuer Technologie Doped spinel, method for the production thereof, the use thereof and lithium-ion battery
CN104538625A (zh) 2014-12-23 2015-04-22 云南民族大学 一步法制备高倍率铜掺杂锰酸锂锂离子电池正极材料
CN104701522A (zh) 2013-12-10 2015-06-10 上海空间电源研究所 一种锂离子电池改性锰酸锂正极材料的制备方法
CN104752711A (zh) 2015-03-11 2015-07-01 云南民族大学 一种高性能镍掺杂LiMn2O4正极材料的制备方法
CN105789568A (zh) 2014-12-16 2016-07-20 绍兴文理学院 一种掺杂硫元素富锂锰酸锂材料及其制备方法
CN105932250A (zh) 2016-06-03 2016-09-07 中南大学 一种金属掺杂尖晶石结构快离子导体包覆含镍正极材料的制备方法及应用
CN106058205A (zh) 2016-07-28 2016-10-26 天津巴莫科技股份有限公司 掺杂型镍钴酸锂复合正极材料及其制备方法
US20160329563A1 (en) 2015-05-04 2016-11-10 Korea Institute Of Science And Technology Cathode active material coated with fluorine-doped lithium metal manganese oxide and lithium-ion secondary battery comprising the same
CN106207153A (zh) 2015-05-08 2016-12-07 云南民族大学 一种快速制备硼掺杂LiMn2O4正极材料的方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994021560A1 (en) * 1993-03-17 1994-09-29 Ultralife Batteries (Uk) Limited Lithiated manganese oxide
JP3487941B2 (ja) * 1995-02-20 2004-01-19 セイミケミカル株式会社 非水電解液電池用正極活物質の製造方法
JP3033899B1 (ja) * 1999-01-12 2000-04-17 宇部興産株式会社 リチウム二次電池用正極活物質とその製造方法及びその用途
JP2003007337A (ja) * 2001-06-21 2003-01-10 Daiso Co Ltd ポリマー二次電池
JP2003346798A (ja) * 2002-05-24 2003-12-05 Nec Corp 二次電池およびそれを用いた組電池、および二次電池の使用方法
JP2006012433A (ja) * 2004-06-22 2006-01-12 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質および非水電解質二次電池
CN102136574B (zh) * 2005-08-16 2015-08-05 株式会社Lg化学 阴极活性材料及包含该阴极活性材料的锂二次电池
KR101473322B1 (ko) * 2008-02-28 2014-12-24 삼성에스디아이 주식회사 양극 활물질 및 이를 채용한 양극과 리튬 전지
DE102008029804A1 (de) * 2008-06-24 2010-07-08 Süd-Chemie AG Mischoxid enthaltend einen Lithium-Mangan-Spinell und Verfahren zu dessen Herstellung
WO2010131650A1 (ja) * 2009-05-13 2010-11-18 シャープ株式会社 非水電解液二次電池
PT104751A (pt) * 2009-09-18 2011-03-18 Univ Aveiro Método para a preparação a baixas temperaturas de filmes finos ferroeléctricos, os filmes finos ferroeléctricos assim obtidos e suas aplicações
EP2473648A2 (en) * 2009-10-07 2012-07-11 Molecular Nanosystems Inc. Methods and systems for making battery electrodes and devices arising therefrom
US9537173B2 (en) * 2010-02-10 2017-01-03 Lg Chem, Ltd. Pouch type lithium secondary battery
JP5891655B2 (ja) * 2010-08-30 2016-03-23 ソニー株式会社 非水電解質電池および非水電解質電池の製造方法、並びに絶縁材および絶縁材の製造方法、並びに電池パック、電子機器、電動車両、蓄電装置および電力システム
KR101113976B1 (ko) * 2010-10-27 2012-03-13 한국과학기술연구원 자기조립된 전극 활물질-탄소 나노튜브 복합체와 그 제조 방법 및 이를 포함하는 이차전지
AU2011350062B2 (en) * 2010-12-30 2015-09-03 Yava Technologies Inc. Transition metal compound particles and methods of production
CN102205989A (zh) * 2011-03-25 2011-10-05 江苏国泰锂宝新材料有限公司 电池正极材料LiMn2O4的制备方法
US20150255775A1 (en) * 2012-11-13 2015-09-10 Lg Chem, Ltd. Stepwise electrode assembly including one-sided negative electrode
US20180277844A1 (en) * 2014-10-31 2018-09-27 Csir Production of a Spinel Material

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316877A (en) 1992-08-28 1994-05-31 Technology Finance Corporation (Proprietary) Limited Electrochemical cell
US6274278B1 (en) 1996-03-29 2001-08-14 Consiglio Nazionale Delle Ricerche Gallium doped lithium manganese oxide spinels (LiGaxMn2−xO4) as cathode material for lithium or lithium-ion rechargeable batteries with improved cycling performance
US5928622A (en) 1997-03-21 1999-07-27 Korea Kumho Petrochemical Co., Ltd. Method for preparing high capacity LiMn2 O4 secondary battery cathode compounds
US6017654A (en) 1997-08-04 2000-01-25 Carnegie Mellon University Cathode materials for lithium-ion secondary cells
CA2455819A1 (en) * 2001-07-27 2003-02-13 Massachusetts Institute Of Technology Battery structures, self-organizing structures and related methods
CN102122715A (zh) 2011-01-25 2011-07-13 湖南汇通科技有限责任公司 掺铟锰酸锂及其制备方法和应用
CN102306767A (zh) 2011-08-29 2012-01-04 武汉理工大学 锂离子动力电池正极材料尖晶石锰酸锂的制备方法
CN102569781A (zh) 2012-03-27 2012-07-11 天津理工大学 一种高电压锂离子电池正极材料及其制备方法
US20150089797A1 (en) 2012-04-02 2015-04-02 Karlsruher Institut Fuer Technologie Doped spinel, method for the production thereof, the use thereof and lithium-ion battery
CN104112856A (zh) 2013-04-16 2014-10-22 湖南省正源储能材料与器件研究所 一种预烧处理合成金属铝掺杂尖晶石锰酸锂正极材料的方法
CN104253267A (zh) 2013-06-27 2014-12-31 上海电气集团股份有限公司 碳包覆尖晶石钛酸锂材料及其生产方法和应用
CN104701522A (zh) 2013-12-10 2015-06-10 上海空间电源研究所 一种锂离子电池改性锰酸锂正极材料的制备方法
CN105789568A (zh) 2014-12-16 2016-07-20 绍兴文理学院 一种掺杂硫元素富锂锰酸锂材料及其制备方法
CN104538625A (zh) 2014-12-23 2015-04-22 云南民族大学 一步法制备高倍率铜掺杂锰酸锂锂离子电池正极材料
CN104752711A (zh) 2015-03-11 2015-07-01 云南民族大学 一种高性能镍掺杂LiMn2O4正极材料的制备方法
US20160329563A1 (en) 2015-05-04 2016-11-10 Korea Institute Of Science And Technology Cathode active material coated with fluorine-doped lithium metal manganese oxide and lithium-ion secondary battery comprising the same
CN106207153A (zh) 2015-05-08 2016-12-07 云南民族大学 一种快速制备硼掺杂LiMn2O4正极材料的方法
CN105932250A (zh) 2016-06-03 2016-09-07 中南大学 一种金属掺杂尖晶石结构快离子导体包覆含镍正极材料的制备方法及应用
CN106058205A (zh) 2016-07-28 2016-10-26 天津巴莫科技股份有限公司 掺杂型镍钴酸锂复合正极材料及其制备方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
AMARAL, F. ET AL.: "Pechini Synthesis of Nanostructured Li1.05M0.02Mn1.98O4 (M = AI3+ or Ga3+", MATERIALS RESEARCH, vol. 18, no. suppl. 2, 2015 - 30 August 2015 (2015-08-30), pages 250 - 259, XP055581032, ISSN: 1516-1439, DOI: 10.1590/1516-1439.361514 *
BANOV, B.I. ET AL.: "Environmentally friendly cathode materials for Li-ion batteries", BULGARIAN CHEMICAL COMMUNICATIONS, vol. 43, no. 1, 2011, pages 7 - 16, XP055581028 *
CABRERA, S. ET AL.: "Perspectivas en el procesamiento de materiales. Electrodos para baterias de ion litio en Bolivia", REVISTA BOLIVIANA DE QUIMICA, vol. 29, no. 1, 2012, pages 15 - 38, XP055581042, Retrieved from the Internet <URL:http://www.bolivianchemistryjournal.org> *
CHENGGONG, HAN: "Development of High Performance Manganese-based Cathode Materials for Li-ion Batteries theses (doctoral)", HOKKAIDO UNIVERSITY, 23 March 2017 (2017-03-23), XP055581037 *
IN -SEONG JEONG ET AL.: "Electrochemical properties of Electrochemical properties of LiMgyMn2-y04 spinel phases for rechargeable lithium batteries", JOURNAL OF POWER SOURCES, vol. 102, no. 1-2, 2001, pages 55 - 59, XP004331017, ISSN: 0378-7753, DOI: 10.1016/S0378-7753(01)00775-3 *
See also references of EP3683870A4
SHAO, M. ET AL.: "The Effect of Calcination Time on the Electrochemical Performance of Spinel LiMg0.08Mn1.92O4 Prepared by a Solid-State Combustion Method Int", INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, vol. 12, December 2017 (2017-12-01), pages 11997 - 12008, XP055581024, ISSN: 1452-3981, DOI: 10.20964/2017.12.69 *
SURYAKALA K ET AL.: "Synthesis and characterization of LiMgyMn2-yO4 cathode materials bya modified Pechini process for lithium batteries", SUBRAMANIA. BULL. MATER. SCI., vol. 28, no. 7, 2005, pages 663 - 667, XP055129296, Retrieved from the Internet <URL:http://www.electrochemsci.org/papers/vol3/3020136.pdf> *
ZHANG, H. ET AL.: "Microwave synthesis of LiMg0.05Mn1.9504 and electrochemical performance at elevated temperature for lithium-ion batteries", JOURNAL OF SOLID STATE ELECTROCHEMISTRY, vol. 18, no. 2, 1 February 2014 (2014-02-01), pages 569 - 575, XP055681693, ISSN: 1432-8488, DOI: 10.1007/s10008-013-2293-y *
ZHAO, H. ET AL.: "Synthesis and electrochemical characterizations of spinel LiMn1.94MO4 (M % Mn0.06, Mg0.06, Si0.06, (Mg0.03Si0.03)) compounds as cathode materials for lithium-ion batteries", JOURNAL OF POWER SOURCES, vol. 282, 15 May 2015 (2015-05-15), pages 118 - 128, XP055681700, ISSN: 0378-7753, DOI: 10.1016/j.jpowsour.2015.02.049 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116102079A (zh) * 2022-12-08 2023-05-12 中南大学 一种Li(Ni1/2Mn3/2)1-xMxO4-yNy及其制备和应用

Also Published As

Publication number Publication date
US20200365889A1 (en) 2020-11-19
JP2020536829A (ja) 2020-12-17
CN111418094A (zh) 2020-07-14
CL2017002221A1 (es) 2018-01-19
EP3683870A1 (en) 2020-07-22
KR102402147B1 (ko) 2022-05-25
EP3683870A4 (en) 2021-11-03
KR20200083445A (ko) 2020-07-08

Similar Documents

Publication Publication Date Title
KR102402147B1 (ko) 마그네슘으로 도핑된 망간 스피넬, 상기 망간 스피넬을 포함하는 캐소드 재료, 이들의 조제 방법 및 상기 스피넬을 포함하는 리튬 이온 배터리
CN107210419B (zh) 富锂镍锰钴氧化物(lr-nmc)
KR101765406B1 (ko) 나트륨 이온 배터리용 도핑된 나트륨 망간 산화물 캐소드 물질
KR102278009B1 (ko) 비수 전해질 2차 전지용 정극 활물질과 그의 제조 방법, 및 비수 전해질 2차 전지
KR100723575B1 (ko) 2차 전지용 양극 활물질 및 그 제조 방법
Shu et al. Magnesium and silicon co-doped LiNi0. 5Mn1. 5O4 cathode material with outstanding cycling stability for lithium-ion batteries
KR20100060362A (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR101550956B1 (ko) 금속 도핑된 양극 활물질
JP7412264B2 (ja) リチウムイオン二次電池用正極活物質およびその製造方法
CN114521300A (zh) 锂离子二次电池用正极活性物质以及锂离子二次电池
JP7468590B2 (ja) リチウム化合物粉末
JP2018500722A (ja) スピネル材料の製造
Karuppiah et al. Cobalt‐doped layered lithium nickel oxide as a three‐in‐one electrode for lithium‐ion and sodium‐ion batteries and supercapacitor applications
Liu et al. A new, high energy rechargeable lithium ion battery with a surface-treated Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode and a nano-structured Li4Ti5O12 anode
KR101795977B1 (ko) 용액 함침시킨 다공성 티탄 화합물을 사용한 티탄 산화물의 제조 방법
Deng et al. Preparation and electrochemical properties of double-shell LiNi 0.5 Mn 1.5 O 4 hollow microspheres as cathode materials for Li-ion batteries
Arof et al. Electrochemical properties of LiMn 2 O 4 prepared with tartaric acid chelating agent
Yuwono et al. Evaluation of LiNiO2 with minimal cation mixing as a cathode for Li-ion batteries
JPWO2020171126A1 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
JPWO2020171125A1 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
Hwang et al. Rapid microwave-enhanced ion exchange process for the synthesis of LiNi 0.5 Mn 0.5 O 2 and its characterization as the cathode material for lithium batteries
Kunduraci et al. Energy storage performance of LiV3O8/water-in-salt electrolyte/LiNi1/3Co1/3Mn1/3O2 cell for aqueous lithium-ion batteries
CN114424369A (zh) 锂离子二次电池用正极活性物质以及锂离子二次电池
US20230249983A1 (en) Li-rich transition metal oxides material
Sarode Development of LMR-NMC Based Cathodes and Si-Based Anodes for High Energy Density Lithium-Ion Batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851120

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020512475

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018851120

Country of ref document: EP

Effective date: 20200401