WO2019038922A1 - 機械式過給機付エンジン - Google Patents

機械式過給機付エンジン Download PDF

Info

Publication number
WO2019038922A1
WO2019038922A1 PCT/JP2017/030605 JP2017030605W WO2019038922A1 WO 2019038922 A1 WO2019038922 A1 WO 2019038922A1 JP 2017030605 W JP2017030605 W JP 2017030605W WO 2019038922 A1 WO2019038922 A1 WO 2019038922A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
drive mechanism
mechanical
fuel pump
fuel
Prior art date
Application number
PCT/JP2017/030605
Other languages
English (en)
French (fr)
Inventor
藤平 伸次
後藤 剛
良太郎 西田
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to EP17922852.3A priority Critical patent/EP3656996B1/en
Priority to PCT/JP2017/030605 priority patent/WO2019038922A1/ja
Priority to CN201780094133.1A priority patent/CN111051666A/zh
Priority to US16/640,891 priority patent/US20200355114A1/en
Priority to JP2019537537A priority patent/JP6835232B2/ja
Publication of WO2019038922A1 publication Critical patent/WO2019038922A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/04Mechanical drives; Variable-gear-ratio drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B67/00Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for
    • F02B67/04Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus
    • F02B67/06Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus driven by means of chains, belts, or like endless members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B67/00Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for
    • F02B67/10Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of charging or scavenging apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/06Endless member is a belt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/18DOHC [Double overhead camshaft]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • F02D23/005Controlling engines characterised by their being supercharged with the supercharger being mechanically driven by the engine

Definitions

  • the technology disclosed herein relates to a mechanical supercharged engine.
  • Patent Document 1 discloses an example of an engine.
  • the engine disclosed in Patent Document 1 includes a camshaft, and a fuel pump configured to be able to adjust the fuel pressure so as to inject high-pressure fuel.
  • the fuel pump is configured to be driven by receiving the power transmitted from the engine output shaft (crankshaft) of the engine, and at one end side (rear side) of the engine output shaft, the fuel pump serves as an endless transmission member. Power is transmitted by a drive mechanism having one chain.
  • the drive mechanism described in Patent Document 1 is wound between the fuel pump and the camshaft separately from the first drive chain wound between one end of the engine output shaft and the fuel pump. Have a second chain.
  • the engine when the engine is operated, its power is transmitted to the fuel pump via the first drive chain and to the camshaft via the second drive chain.
  • variable valve mechanism for changing the rotational phase of the camshaft
  • high-pressure fuel is injected from the viewpoint of shortening the penetration of the fuel spray (the reaching distance of the spray tip) and promoting gas cooling by atomization promotion. It may be required to
  • the load may be concentrated on a predetermined portion of the engine output shaft.
  • load deviation occurs, which is inconvenient for securing the reliability of the engine output shaft.
  • it is required to increase the size of the bearing or the like, but this is not desirable because it causes deterioration of the fuel efficiency due to the increase of the mechanical resistance.
  • the technology disclosed herein has been made in view of such a point, and the purpose thereof is to provide an engine output shaft of a mechanical supercharged engine while securing responsiveness of a variable valve mechanism. It is intended to prevent the driving performance of the fuel pump and the mechanical supercharger from interfering with each other without concentrating the load applied thereto.
  • the technology disclosed herein includes an engine provided with a camshaft and an injector, a variable valve mechanism attached to the camshaft and configured to change a rotational phase of the camshaft, and an injection from the injector
  • the present invention relates to a mechanical supercharged engine including a fuel pump configured to adjust the pressure of the fuel, and a mechanical supercharger driven by the engine.
  • the fuel pump and the mechanical supercharger are both driven by the power transmitted from the engine output shaft of the engine, and the fuel pump transmits power via the first drive mechanism,
  • the mechanical supercharger transmits power via a second drive mechanism that is separate from the first drive mechanism.
  • the drive mechanism for transmitting the power to the fuel pump and the drive mechanism for transmitting the power to the mechanical supercharger are separate systems without sharing in common, so that the engine output shaft It is possible to disperse the load applied to the engine and thereby ensure the reliability of the engine output shaft. At the same time, it also becomes possible to prevent the driving performance of the fuel pump and the mechanical supercharger from interfering with each other.
  • the drive performance of the fuel pump and the mechanical supercharger are mutually inhibited without concentrating the load applied to the engine output shaft while securing the responsiveness of the variable valve mechanism. You can try not to
  • the drive mechanism for the fuel pump and the drive mechanism for the mechanical supercharger are not shared in common, for example, compared with the configuration of the same system. This is advantageous in securing the layout of the drive mechanism.
  • the driving load required for the operation of the fuel pump becomes relatively large according to the fuel pressure. Therefore, by applying the above-described configuration, it becomes possible to increase the driving load of the fuel pump, and it becomes possible to inject a higher pressure fuel. This is particularly effective in compression ignition engines to promote shortening of fuel spray penetration, gas cooling by atomization promotion and the like, and in turn, to improve emission performance, fuel consumption performance and output performance.
  • the fuel pump may be configured to set the pressure of the fuel to 40 MPa or more.
  • the fuel pump sets the fuel pressure higher than before.
  • the above-described configuration separates the drive mechanism for the fuel pump and the drive mechanism for the mechanical supercharger into a separate system without sharing the drive load of the fuel pump. Since it becomes acceptable to increase the size, it becomes effective when injecting a higher pressure fuel.
  • the first drive mechanism and the fuel pump are drivingly connected, while at the other end of the engine output shaft, the second drive mechanism and the mechanical supercharging are
  • the machine may be in drive connection.
  • the load applied to the engine output shaft can be dispersed to one end side and the other end side, which is advantageous in securing the reliability of the engine output shaft.
  • the first drive mechanism may include an end-end endless transmission member wound around one end of the engine output shaft and the fuel pump.
  • the one end side endless transmission member may be an endless timing belt or a timing chain.
  • the first drive mechanism may have a second one-end endless transmission member configured to transmit power to the cam shaft separately from the one-end-end endless transmission member.
  • the second drive mechanism may have another end side endless transmission member wound around the other end of the engine output shaft and the mechanical supercharger.
  • the other end side endless transmission member may be an endless timing belt or a timing chain as the one end side endless transmission member.
  • the second drive mechanism has a second other end endless power transmission member configured to transmit power to the compressor of the air conditioner separately from the other end side endless power transmission member. It is also good.
  • the drive load required for the operation of the mechanical supercharger and the compressor can be dispersed to the other end side endless transmission member and the second other end side endless transmission member It will be possible. Thus, the reliability of each belt can be secured.
  • the air conditioner by configuring the air conditioner to be driven by the second drive mechanism, the drive load in the first drive mechanism can be reduced, and as a result, the reliability of the first drive mechanism can be ensured.
  • the geometric compression ratio of the engine may be 15 or more.
  • the injector may be configured to directly inject fuel including at least gasoline into a cylinder of the engine.
  • the engine can be a so-called gasoline engine.
  • the fuel pump and mechanical supercharging can be performed without concentrating the load applied to the engine output shaft while securing the responsiveness of the variable valve mechanism. It is possible to prevent the driving performances of the aircraft from mutually interfering.
  • FIG. 1 is a schematic view illustrating the configuration of an engine.
  • FIG. 2 is a front view of the engine.
  • FIG. 3 is a view of the engine as viewed from above.
  • FIG. 4 is a perspective view showing a part of the engine.
  • FIG. 5 schematically shows the first drive mechanism.
  • FIG. 6 schematically shows a second drive mechanism.
  • FIG. 1 is a schematic view illustrating the configuration of a mechanical supercharged engine (hereinafter simply referred to as “engine”) 1 disclosed herein.
  • engine 1 is a view showing the engine 1 as viewed from the front
  • FIG. 3 is a view showing the engine 1 as viewed from the upper side.
  • the engine 1 is a four-stroke type internal combustion engine mounted on a four-wheeled automobile, and as shown in FIG. 1, it is configured to have a mechanically driven supercharger (mechanical supercharger) 44 There is.
  • the fuel of the engine 1 is gasoline of high-octane specification (fuel octane number is about 96) in this configuration example.
  • the fuel may be gasoline including bioethanol and the like.
  • the fuel of the engine 1 may be any fuel as long as it is a liquid fuel containing at least gasoline.
  • the engine 1 can perform both SI (Spark Ignition) combustion and CI (Compression Ignition) combustion.
  • SI combustion is combustion started by igniting the mixture in the combustion chamber.
  • CI combustion is combustion initiated by compression self-ignition of the mixture in the combustion chamber.
  • the engine 1 includes four cylinders (cylinders) 11 arranged in a row, and is mounted in a posture in which the four cylinders 11 are aligned along the vehicle width direction, that is, a so-called in-line four-cylinder horizontal It is configured as a placement engine.
  • the engine longitudinal direction which is the arrangement direction (cylinder row direction) of four cylinders 11 substantially coincides with the vehicle width direction
  • the engine widthwise direction substantially coincides with the vehicle longitudinal direction There is.
  • a cylinder row direction In an in-line multi-cylinder engine, a cylinder row direction, a central axial direction (engine output shaft direction) of a crankshaft 15 as an engine output shaft, and an intake camshaft 22 and an exhaust camshaft connected to the crankshaft 15
  • the direction of the central axis of each of them 27 coincides. In the following description, these directions may be collectively referred to as the cylinder row direction (or the vehicle width direction).
  • the front side refers to the front side in the vehicle longitudinal direction
  • the rear side refers to the rear side in the vehicle longitudinal direction
  • the left side is one side in the vehicle width direction (one side in the cylinder row direction
  • the right side refers to the other side in the vehicle width direction (the other side in the cylinder row direction, that is, the engine front side).
  • the upper side refers to the upper side in the vehicle height direction in a state where the engine 1 is mounted on a vehicle (hereinafter, also referred to as “vehicle mounting state"), and the lower side is the vehicle height direction in the vehicle mounted state Point down.
  • the engine 1 is configured in a front intake / rear exhaust system. That is, the engine 1 includes an engine body 10 having four cylinders 11, an intake passage 40 disposed on the front side of the engine body 10 and communicating with each cylinder 11 via the intake port 18, and a rear side of the engine body 10 And an exhaust passage 50 communicating with each cylinder 11 through the exhaust port 19.
  • the intake passage 40 is configured to pass a gas (fresh air) introduced from the outside and to supply it into the cylinders 11 of the engine body 10.
  • a gas fresh air
  • the intake passage 40 is unitized by combining a plurality of passages for introducing gas and devices such as the turbocharger 44 and the intercooler 46.
  • the engine body 10 is configured to burn a mixture of gas and fuel supplied from the intake passage 40 in each of the cylinders 11.
  • the engine body 10 includes a cylinder block 12 and a cylinder head 13 mounted thereon.
  • the power obtained by the combustion of the mixture is output to the outside via a crankshaft 15 provided in the cylinder block 12.
  • the aforementioned four cylinders 11 are formed inside the cylinder block 12.
  • the four cylinders 11 are arranged in a row along the central axis direction of the crankshaft 15 (that is, the cylinder row direction). In FIG. 1, only one cylinder 11 is shown.
  • a piston 14 is slidably inserted into each cylinder 11.
  • the piston 14 is connected to the crankshaft 15 via a connecting rod 141.
  • the piston 14 defines the combustion chamber 17 together with the cylinder 11 and the cylinder head 13.
  • the “combustion chamber” referred to here is not limited to the meaning of the space formed when the piston 14 reaches the compression top dead center.
  • the term “combustion chamber” is used in a broad sense.
  • the geometric compression ratio of the engine body 10 is determined according to the shape of the combustion chamber 17. In this configuration example, the geometric compression ratio is set to 15 to 18 in order to obtain a high-octane engine. In the case of an engine of regular specification (fuel octane number is about 91), it may be 14 to 17.
  • two intake ports 18 are formed for one cylinder 11. Only one intake port 18 is shown in FIG. The two intake ports 18 are adjacent in the cylinder row direction, and communicate with the corresponding cylinders 11 respectively.
  • An intake valve 21 is disposed in each of the two intake ports 18.
  • the intake valve 21 opens and closes between the combustion chamber 17 and each intake port 18.
  • the intake valve 21 is opened and closed at a predetermined timing by an intake valve mechanism.
  • the intake valve mechanism is attached to an intake camshaft (see also FIG. 4) 22 for operating the intake valve 21 and the intake camshaft 22 and changes the rotational phase of the intake camshaft 22.
  • an intake electric motor S-VT (Sequential-Valve Timing) 23 configured as described above.
  • the intake electric motor S-VT 23 is an example of the “variable valve mechanism”.
  • the intake camshaft 22 is provided inside the cylinder head 13 and is supported so that the central axial direction of the intake camshaft 22 and the engine output shaft direction substantially coincide with each other.
  • the intake camshaft 22 is connected to the crankshaft 15 via a first chain drive mechanism 70.
  • the first drive mechanism 70 rotates the intake camshaft 22 once while the crankshaft 15 rotates twice.
  • the intake electric motor S-VT 23 is configured to continuously change the rotational phase of the intake camshaft 22 within a predetermined angular range so as to make at least one of the valve timing and the valve lift of the intake valve 21 variable. ing. Thus, the valve opening timing and the valve closing timing of the intake valve 21 change continuously.
  • the intake valve operating mechanism may have a hydraulic S-VT instead of the intake electric motor S-VT 23.
  • the cylinder head 13 is also provided with two exhaust ports 19 per cylinder 11. Only one exhaust port 19 is illustrated in FIG. The two exhaust ports 19 are adjacent in the cylinder row direction and communicate with the corresponding cylinders 11 respectively.
  • Exhaust valves 26 are disposed at the two exhaust ports 19 respectively.
  • the exhaust valve 26 opens and closes between the combustion chamber 17 and each exhaust port 19.
  • the exhaust valve 26 is opened and closed at a predetermined timing by an exhaust valve mechanism.
  • the exhaust valve mechanism is attached to an exhaust camshaft (see also FIG. 4) 27 for operating the exhaust valve 26 and the exhaust camshaft 27 and changes the rotational phase of the exhaust camshaft 27.
  • the exhaust motor S-VT 28 configured as described above.
  • Exhaust motor S-VT 28 is also an example of the "variable valve mechanism".
  • the exhaust camshaft 27 is provided inside the cylinder head 13 and is supported so as to be parallel to the intake camshaft 22.
  • the exhaust camshaft 27 is connected to the crankshaft 15 via the first drive mechanism 70 described above. During two rotations of the crankshaft 15, the exhaust camshaft 27 makes one rotation.
  • the exhaust electric motor S-VT 28 is configured in the same manner as the intake electric motor S-VT 23 and continuously adjusts the valve opening timing and the valve closing timing of the exhaust valve 26 by changing the rotational phase of the exhaust camshaft 27.
  • the exhaust valve mechanism may have a hydraulic S-VT instead of the exhaust motor S-VT.
  • An injector 6 is attached to the cylinder head 13 for each cylinder 11.
  • the injector 6 is configured to inject fuel containing at least gasoline directly into the cylinder 11 (specifically, into the combustion chamber 17).
  • the injector 6 is a multiple injection port fuel injection valve.
  • a fuel supply system 61 is connected to the injector 6.
  • the fuel supply system 61 is configured to supply the fuel pressurized by the fuel pump 65 to the injector 6.
  • the fuel supply system 61 includes a fuel tank 63 configured to store fuel, and a fuel supply passage 62 connecting the fuel tank 63 and the injector 6 to each other.
  • a fuel pump 65 and a common rail 64 are interposed in the fuel supply passage 62.
  • the fuel pump 65 is configured to adjust the pressure of the fuel injected from the injector 6.
  • the fuel pump 65 is a plunger type pump driven by the power transmitted from the crankshaft 15, and is configured to pump fuel to the common rail 64.
  • the fuel pump 65 is configured such that the pressure of the fuel can be set to at least 40 MPa or more, preferably 60 MPa or more, and more preferably 80 MPa or more.
  • the maximum fuel pressure in the fuel supply system 61 may be, for example, about 120 MPa.
  • the pressure of the fuel supplied to the injector 6 may be changed according to the operating state of the engine 1.
  • the common rail 64 is configured to store the fuel pumped by the fuel pump 65 at a high fuel pressure. When the injector 6 is opened, the fuel stored in the common rail 64 is injected from the injection port of the injector 6 into the combustion chamber 17.
  • the maximum fuel pressure of the fuel supply system 61 may be, for example, about 120 MPa.
  • the pressure of the fuel supplied to the injector 6 may be changed according to the operating state of the engine 1.
  • the configuration of the fuel supply system 61 is not limited to the above configuration.
  • a spark plug 29 is attached to the cylinder head 13 for each cylinder 11.
  • the spark plug 29 is attached in such a posture that its tip end faces the combustion chamber 17 and forcibly ignites the mixture in the combustion chamber 17.
  • the intake passage 40 in this configuration example is connected to one side surface (specifically, the front side surface) of the engine body 10, and communicates with the intake port 18 of each cylinder 11. ing.
  • an air cleaner 41 for filtering fresh air is disposed at the upstream end of the intake passage 40.
  • a surge tank 42 is disposed in the vicinity of the downstream end of the intake passage 40.
  • the intake passage 40 downstream of the surge tank 42 constitutes an independent passage branched for each cylinder 11.
  • the downstream end of the independent passage is connected to the intake port 18 of each cylinder 11.
  • a throttle valve 43 is disposed between the air cleaner 41 and the surge tank 42 in the intake passage 40.
  • the throttle valve 43 is configured to adjust the amount of fresh air introduced into the combustion chamber 17 by adjusting the valve opening degree.
  • a supercharger 44 is disposed downstream of the throttle valve 43 in the intake passage 40.
  • the turbocharger 44 is configured to supercharge the gas introduced into the combustion chamber 17.
  • the supercharger 44 is a mechanical supercharger driven by the engine 1 (specifically, power transmitted from the crankshaft 15), and is a roots supercharger.
  • the configuration of the turbocharger 44 may be anything.
  • the supercharger 44 may be, for example, a Richolem type, a vane type or a centrifugal type.
  • An electromagnetic clutch 45 is interposed between the turbocharger 44 and the crankshaft 15.
  • the electromagnetic clutch 45 transmits the driving force between the supercharger 44 and the crankshaft 15 and cuts off the transmission of the driving force.
  • the control means such as an ECU (Engine Control Unit) switches the electromagnetic clutch 45 between disconnection and connection, the supercharger 44 is switched on and off. That is, the engine 1 switches between the operation of supercharging the gas introduced into the combustion chamber 17 and the operation of not supercharging the gas introduced into the combustion chamber 17 by switching the supercharger 44 on and off. It is configured to be able to
  • the supercharger 44 is connected to the crankshaft 15 via a belt-type second drive mechanism 80.
  • the second drive mechanism 80 is a system different from the first drive mechanism 70 described above.
  • the supercharger 44 includes a pair of rotors (not shown) having a rotation axis extending along the cylinder row direction, and a supercharger drive pulley 44 d for rotationally driving the rotor, and the supercharger drive pulley 44 d , And is connected to the crankshaft 15 via a timing belt 81 wound around.
  • the aforementioned electromagnetic clutch 45 is interposed between the turbocharger drive pulley 44d and the rotor.
  • An intercooler 46 is disposed downstream of the turbocharger 44 in the intake passage 40.
  • the intercooler 46 is configured to cool the gas compressed by the turbocharger 44.
  • the intercooler 46 may be, for example, water-cooled.
  • bypass passage 47 is connected to the intake passage 40.
  • the bypass passage 47 connects the upstream portion of the turbocharger 44 and the downstream portion of the intercooler 46 with each other in the intake passage 40 so as to bypass the turbocharger 44 and the intercooler 46.
  • An air bypass valve 48 is disposed in the bypass passage 47. The air bypass valve 48 regulates the flow rate of gas flowing through the bypass passage 47.
  • the air bypass valve 48 When the supercharger 44 is turned off (that is, when the electromagnetic clutch 45 is disconnected), the air bypass valve 48 is fully opened. Thus, the gas flowing through the intake passage 40 bypasses the turbocharger 44 and is introduced into the combustion chamber 17 of the engine 1.
  • the engine 1 operates with non-supercharging, that is, natural intake.
  • a supercharging system 49 is configured by the supercharger 44, the bypass passage 47, and the air bypass valve 48.
  • the exhaust passage 50 is connected to the other side surface (specifically, the rear side surface) of the engine body 10 and communicates with the exhaust port 19 of each cylinder 11.
  • the exhaust passage 50 is a passage through which the exhaust gas discharged from the combustion chamber 7 flows.
  • the upstream portion of the exhaust passage 50 constitutes an independent passage which branches off for each cylinder 11. The upstream ends of the independent passages are connected to the exhaust port 19 of each cylinder 11.
  • An exhaust gas purification system having a plurality of catalytic converters 51 is disposed in the exhaust passage 50.
  • the catalytic converter 51 is configured to include a three-way catalyst.
  • the exhaust gas purification system is not limited to one including a three-way catalyst.
  • An EGR passage 52 constituting an external EGR system is connected between the intake passage 40 and the exhaust passage 50.
  • the EGR passage 52 is a passage for recirculating a part of the burned gas to the intake passage 40.
  • the upstream end of the EGR passage 52 is connected to a portion near the catalytic converter 51 in the exhaust passage 50.
  • the downstream end of the EGR passage 52 is connected to the upstream of the turbocharger 44 in the intake passage 40.
  • a water-cooled EGR cooler 53 is disposed in the EGR passage 52.
  • the EGR cooler 53 is configured to cool the burned gas.
  • An EGR valve 54 is also disposed in the EGR passage 52.
  • the EGR valve 54 is configured to adjust the flow rate of the burnt gas flowing through the EGR passage 52. By adjusting the opening degree of the EGR valve 54, it is possible to adjust the reflux amount of the cooled burned gas, that is, the external EGR gas.
  • the EGR system 55 includes an external EGR system configured to include the EGR passage 52 and the EGR valve 54, and an interior configured to include the intake electric motor S-VT 23 and the exhaust motor S-VT 28 described above. And an EGR system.
  • the engine 1 is provided with an alternator 91 for generating an alternating current used in an electric system, an air conditioner 92 for air conditioning, and a water pump 93 for circulating cooling water as such auxiliary equipment.
  • the fuel pump 65 is attached to the front end on the left end side of the engine body 10 (see also FIG. 4).
  • the alternator 91 and the air conditioner 92 are attached to the front end on the right end side of the engine body 10, while the water pump 93 is attached to the rear end on the right end side (FIGS. 3 to 4). reference).
  • the alternator 91 and the air conditioner 92 are arranged in this order from above.
  • FIG. 4 is a perspective view showing a part of the engine 1.
  • members constituting the engine 1 such as the cylinder block 12 are partially omitted.
  • 5 is a schematic view of the first drive mechanism 70
  • FIG. 6 is a schematic view of the second drive mechanism 80. As shown in FIG.
  • the fuel pump 65 and the turbocharger 44 are both driven by the power transmitted from the crankshaft 15 of the engine 1.
  • power is transmitted to the fuel pump 65 through the first drive mechanism 70, while power is transmitted to the supercharger 44 through the second drive mechanism 80 of a system different from the first drive mechanism 70. It is supposed to be
  • the first drive mechanism 70 is laid out on one end side (left end side) in the cylinder row direction, while the second drive mechanism 80 is on the other end side (right end side) in the same direction. Is laid out. With such a layout, the first drive mechanism 70 and the second drive mechanism 80 become mechanisms of different systems.
  • the first drive mechanism 70 and the fuel pump 65 are drivingly connected on the left end side of the crankshaft 15, while the second drive mechanism 80 and the turbocharger 44 are drive connected on the right end side of the crankshaft 15. It is done.
  • the first drive mechanism 70 is a gear drive mechanism using a timing chain 71, and is provided on the left side surface of the engine 1.
  • the first drive mechanism 70 is configured to operate the intake valve 21 via the intake camshaft 22, operate the exhaust valve 26 via the exhaust camshaft 27, and drive the fuel pump 65 described above. There is.
  • the first drive mechanism 70 includes a first chain mechanism 70a for driving the fuel pump 65, and a second chain mechanism 70b for driving the intake camshaft 22 and the exhaust camshaft 27. .
  • the first drive mechanism 70 also includes a first chain 71a for transmitting power in the first chain mechanism 70a as a timing chain 71, and a second chain 71b for transmitting power in the second chain mechanism 70b.
  • a first chain 71a for transmitting power in the first chain mechanism 70a as a timing chain 71
  • a second chain 71b for transmitting power in the second chain mechanism 70b.
  • the first chain 71 a is an example of the “one end side endless transmission member”
  • the second chain 71 b is an example of the “second one end side endless transmission member”.
  • the first chain mechanism 70a includes a first sprocket 15a provided at the left end (one end) of the crankshaft 15, a second sprocket 65a provided at the left end of the fuel pump 65, a first sprocket 15a,
  • the first chain 71a is wound around the second sprocket 65a, and the first auto-tensioner 72a applies tension to the first chain 71a.
  • the first sprocket 15a is located at the lower part of the cylinder block 12 in the vehicle height direction and at the central part of the cylinder block 12 in the vehicle longitudinal direction. .
  • the second sprocket 65a is positioned at the center of the cylinder block 12 in the vehicle height direction and at the front end of the cylinder block 12 in the vehicle longitudinal direction.
  • the second chain mechanism 70b includes the third sprocket 65b provided on the left and the inner peripheral side of the second sprocket 65a in the fuel pump 65, the sprocket gear 23a provided for the intake motor S-VT 23, and the exhaust motor S-.
  • a second chain 71b wound around a sprocket gear 28a provided in the VT 28, a third sprocket 65b, and sprocket gears 23a and 28a, and a second autotensioner 72b applying tension to the second chain 71b have.
  • the third sprocket 65b is positioned at the center of the cylinder block 12 in the vehicle height direction and at the front end of the cylinder block 12 in the vehicle longitudinal direction. ing.
  • the intake motor S-VT 23 is attached to the left side of the intake camshaft 22, and the left side of the cylinder head 13 It protrudes to the left. Further, as shown in FIG. 5, while the intake electric motor S-VT 23 is located near the upper end of the cylinder head 13 in the vehicle height direction, it is located at the rear side of the cylinder head 13 in the vehicle longitudinal direction.
  • a second chain 71b is wound, and a sprocket gear 23a that rotates in conjunction with the crankshaft 15 and a camshaft that rotates in conjunction with the intake camshaft 22 A gear, a planetary gear for adjusting the rotational phase of the camshaft gear with respect to the sprocket gear 23a, and an S-VT motor 23b for driving the planetary gear.
  • the S-VT motor 23 b is provided at the left end of the intake electric motor S-VT 23.
  • the exhaust electric motor S-VT 28 is attached to the left side of the exhaust camshaft 27, and is forwardly adjacent to the intake electric motor S-VT 23, as can be seen from FIG.
  • the exhaust motor S-VT 28 is also configured to include a sprocket gear 28a and an S-VT motor 28b.
  • the sprocket gears 23a and 28a are both located near the upper end of the cylinder head 13 in the vehicle height direction, as in the intake electric S-VT 23 and the exhaust electric S-VT 28, while adjacent in the vehicle longitudinal direction It is arranged to be.
  • the second drive mechanism 80 is a belt drive mechanism using a timing belt 81, and is provided on the right side surface of the engine 1.
  • the second drive mechanism 80 is configured to operate the supercharger 44 via the supercharger drive pulley 44 d, and drive the alternator 91, the air conditioner 92, and the water pump 93 described above.
  • the second drive mechanism 80 includes a first belt mechanism 80a for driving the turbocharger 44 and the water pump 93, and a second belt mechanism 80b for driving the alternator 91 and the air conditioner 92. Have.
  • the second drive mechanism 80 also includes a first belt 81a for transmitting power in the first belt mechanism 80a as a timing belt 81, and a second belt 81b for transmitting power in the second belt mechanism 80b.
  • a first belt 81a for transmitting power in the first belt mechanism 80a as a timing belt 81
  • a second belt 81b for transmitting power in the second belt mechanism 80b.
  • the first belt 81a is an example of the "other end endless transmission member”
  • the second belt 81b is an example of the "second other end endless transmission member”.
  • the first belt mechanism 80 a includes a first crankshaft pulley 15 b provided at the right end (the other end) of the crankshaft 15 and a right end of the water pump 93.
  • a plurality of driven pulleys such as a water pump drive pulley 93a and an idle pulley 82, a turbocharger drive pulley 44d, a first crankshaft pulley 15b, a water pump drive pulley 93a, and a plurality of driven pulleys
  • the first belt 81a is wound around the turbocharger drive pulley 44d, and the hydraulic auto-tensioner 83 applies tension to the first belt 81a.
  • the second belt mechanism 80b is provided with a second crankshaft pulley 15c (see FIG. 4) provided adjacent to the left side of the first crankshaft pulley 15b in the crankshaft 15 and an alternator 91.
  • the alternator drive pulley 91a provided at the right end of the air conditioner
  • the air conditioner drive pulley 92a provided for the compressor of the air conditioner 92
  • the second crankshaft pulley 15c provided for the compressor of the air conditioner 92
  • the alternator drive pulley 91a the alternator drive pulley 91a
  • the air conditioner drive pulley 92a And a double arm tensioner 84 for applying tension to the second belt 81b.
  • crankshaft 15 rotates
  • the motive power thereof is output from the first crankshaft pulley 15b to rotate the water pump drive pulley 93a and the turbocharger drive pulley 44d via the first belt 81a. Then, power is transmitted to the water pump 93 and the supercharger 44, and each power is driven by the power.
  • crankshaft 15 when the crankshaft 15 rotates, the power is also output from the second crankshaft pulley 15c, and rotates the alternator drive pulley 91a and the air conditioner drive pulley 92a via the second belt 81b. Then, power is transmitted to the alternator 91 and the compressor of the air conditioner 92, and each of them is driven by the power.
  • first drive mechanism 70 for transmitting the power to the fuel pump 65 and the second drive mechanism 80 for transmitting the power to the turbocharger 44 are separate systems without sharing.
  • the load applied to the crankshaft 15 can be dispersed, and in turn, the reliability of the crankshaft 15 can be secured.
  • the drive performances of the fuel pump 65 and the supercharger 44 are not mutually obstructed without concentrating the load applied to the crankshaft 15 while securing the responsiveness of the intake and exhaust motor S-VTs 23 and 28. You can do so.
  • the first drive mechanism 70 for the fuel pump 65 and the second drive mechanism 80 for the turbocharger 44 are separate systems without sharing them, for example, This is advantageous in ensuring the layout of the entire first and second drive mechanisms 70 and 80 as compared with the systematic configuration.
  • the driving load required for the operation of the fuel pump 65 becomes relatively large according to the fuel pressure. Therefore, by applying the configuration shown in FIG. 4, it becomes possible to increase the driving load of the fuel pump 65, and it becomes possible to inject a higher pressure fuel. This is particularly effective in compression ignition engines to promote shortening of fuel spray penetration, gas cooling by atomization promotion and the like, and in turn, to improve emission performance, fuel consumption performance and output performance.
  • the first drive mechanism 70 and the fuel pump 65 are drivably connected, while on the right end side of the crankshaft 15, the second drive mechanism 80 is excessive.
  • a feeder 44 is drivingly connected.
  • the driving load required for the operation of the fuel pump 65 and the intake and exhaust camshafts 22 and 27 can be distributed to the first chain 71a and the second chain 71b. It will be possible. Thus, the reliability of the timing chain 71 can be secured.
  • the driving load required for the operation of the compressor of the supercharger 44 and the air conditioner 92 can be dispersed to the first belt 81a and the second belt. become. Thus, the reliability of the timing belt 81 can be secured.
  • the air conditioner 92 is driven by the second drive mechanism 80, the drive load in the first drive mechanism 70 can be reduced, and thus the reliability of the first drive mechanism 70 can be ensured. become.
  • the first drive mechanism 70 is a gear drive mechanism using a timing chain 71
  • the second drive mechanism 80 is a belt drive mechanism using a timing belt 81. It is not limited to the configuration.
  • both the first drive mechanism 70 and the second drive mechanism 80 may be belt drive mechanisms.
  • the intake and exhaust transmissions S-VTs 23 and 28 as the variable valve mechanism are configured to be one element of the first drive mechanism 70, but the invention is not limited to this configuration. For example, it may be an element of the second drive mechanism 80.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Valve Device For Special Equipments (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

エンジン(1)は、吸気カムシャフト(22)の回転位相を変更するよう構成された吸気電動S-VT(23)と、排気カムシャフト(27)の回転位相を変更するよう構成された排気電動S-VT(28)と、燃料ポンプ(65)と、エンジンによって駆動される過給機(44)と、を備える。燃料ポンプ及び過給機は、双方とも、クランクシャフト(15)から伝達された動力によって駆動されるとともに、燃料ポンプは、第1駆動機構(70)を介して動力が伝達される一方、過給機は、第1駆動機構とは別系統の第2駆動機構(80)を介して動力が伝達される。

Description

機械式過給機付エンジン
 ここに開示する技術は、機械式過給機付エンジンに関する。
 特許文献1には、エンジンの一例が開示されている。具体的に、この特許文献1に開示されたエンジンは、カムシャフトと、高圧の燃料を噴射するべく、燃圧を調整可能に構成された燃料ポンプとを備えている。この燃料ポンプは、エンジンの機関出力軸(クランク軸)から伝達された動力を受けて駆動されるように構成されており、機関出力軸の一端側(リヤ側)において、無端伝動部材としての第1チェーンを有する駆動機構によって動力が伝達されるようになっている。
 また、特許文献1に記載された駆動機構は、機関出力軸の一端部と燃料ポンプとの間に巻きかけられた第1駆動チェーンとは別に、燃料ポンプとカムシャフトとの間に巻きかけられた第2チェーンを有している。よって、このエンジンが運転すると、その動力は、第1駆動チェーンを介して燃料ポンプに伝達されるとともに、第2駆動チェーンを介してカムシャフトに伝達されることとなる。
特開2016-205241号公報
 これまでは、カムシャフトの一端部(例えば後端部)に対して燃料ポンプを直に取り付けて連結するのが通例であった。また、燃料ポンプに加えて、カムシャフトの回転位相を変更するための可変動弁機構も備えた構成とする場合、そうした可変動弁機構もまた、前述の一端部に取り付けるのが通例であった。
 一方、例えば圧縮着火燃焼を実行可能なエンジンにおいては、燃料噴霧のペネトレーション(噴霧先端の到達距離)の短縮や、霧化促進によるガスの冷却等の促進を図るという観点から、高圧の燃料を噴射することが求められる場合がある。
 しかし、高圧の燃料を噴射する場合、燃料ポンプの作動に要する駆動負荷は、その燃圧に応じて相対的に大きくなる。この場合、駆動負荷が大きくなる分、カムシャフトの回転位相を変更する際の抵抗が増加することを考慮すると、可変動弁機構の応答性を確保するためには、前述の一端部に対して燃料ポンプを直に取り付けるのではなく、例えば、前記特許文献1に記載されているように、第1駆動チェーンを介して機関出力軸と燃料ポンプとを連結する一方、第2駆動チェーンを介して燃料ポンプとカムシャフトとを連結することにより、駆動負荷を分散させることが考えられる。
 そうしたエンジンにおいて、さらに機械式過給機を併用する場合、その作動に要する駆動負荷も考慮することが求められる。そのため、例えば燃料ポンプと機械式過給機とで駆動機構を共通にしてしまうと、その駆動機構全体の駆動負荷が大きくなることから、可変動弁機構の応答性を確保する上で不都合となる。
 またそもそも、前述のように、燃料ポンプ及び機械式過給機のための駆動機構を共通にしてしまうと、機関出力軸における所定の部位に対して荷重が集中する虞がある。そうすると、荷重の偏りが生じてしまい、機関出力軸の信頼性を確保するには不都合となる。この場合、機関出力軸の信頼性を確保するべく、その軸受を大型化すること等が求められるものの、機械抵抗の増大に伴う燃費の悪化を招くため望ましくない。
 ここに開示する技術は、かかる点に鑑みてなされたものであり、その目的とするところは、機械式過給機付エンジンにおいて、可変動弁機構の応答性を確保しながらも、機関出力軸に加わる荷重を集中させることなく、燃料ポンプ及び機械式過給機の駆動性能を相互に阻害させないようにすることにある。
 ここに開示する技術は、カムシャフト及びインジェクタが設けられたエンジンと、前記カムシャフトに取り付けられ、かつ該カムシャフトの回転位相を変更するよう構成された可変動弁機構と、前記インジェクタから噴射される燃料の圧力を調整するよう構成された燃料ポンプと、前記エンジンによって駆動される機械式過給機と、を備えた機械式過給機付エンジンに係る。
 前記燃料ポンプ及び機械式過給機は、双方とも、前記エンジンの機関出力軸から伝達された動力によって駆動されるとともに、前記燃料ポンプは、第1駆動機構を介して動力が伝達される一方、前記機械式過給機は、前記第1駆動機構とは別系統の第2駆動機構を介して動力が伝達される。
 この構成によれば、燃料ポンプと機械式過給機とは、それぞれ、別系統の駆動機構によって動力が伝達される。これにより、各々の作動に要する駆動負荷を分散させることができるため、可変動弁機構の応答性を確保することが可能になる。
 また、燃料ポンプに対して動力を伝達するための駆動機構と、機械式過給機に対して動力を伝達するための駆動機構とを共通にすることなく別系統としたことで、機関出力軸に加わる荷重を分散させて、ひいては、機関出力軸の信頼性を確保することが可能になる。それと同時に、燃料ポンプと機械式過給機の駆動性能を相互に阻害させないようにすることも可能になる。
 このように、前記の構成によると、可変動弁機構の応答性を確保しながらも、機関出力軸に加わる荷重を集中させることなく、燃料ポンプ及び機械式過給機の駆動性能を相互に阻害させないようにすることができる。
 また、前記のように、燃料ポンプのための駆動機構と、機械式過給機のための駆動機構とを共通にすることなく別系統としたことで、例えば同系統とした構成と比較して、駆動機構のレイアウト性を確保する上で有利になる。
 また、前述のように、高圧の燃料を噴射する場合、燃料ポンプの作動に要する駆動負荷は、その燃圧に応じて相対的に大きくなる。よって、前記の構成を適用することで、燃料ポンプの駆動負荷を大きくすることが許容されるようになるから、より高圧の燃料を噴射することが可能になる。このことは、特に圧縮着火式のエンジンにおいて、燃料噴霧のペネトレーションの短縮や、霧化促進によるガスの冷却等を促進し、ひいては、エミッション性能、燃費性能および出力性能を高める上で有効である。
 また、前記燃料ポンプは、前記燃料の圧力を40MPa以上に設定するよう構成されている、としてもよい。
 この構成によると、燃料ポンプは、従来よりも燃圧を高めに設定することになる。既に説明したように、前記の構成は、燃料ポンプのための駆動機構と、機械式過給機のための駆動機構とを共通にすることなく別系統としたことで、燃料ポンプの駆動負荷を大きくすることが許容されるようになるため、より高圧の燃料を噴射するときに有効となる。
 また、前記機関出力軸の一端側では、前記第1駆動機構と前記燃料ポンプとが駆動連結されている一方、前記機関出力軸の他端側では、前記第2駆動機構と前記機械式過給機とが駆動連結されている、としてもよい。
 この構成によると、機関出力軸に加わる荷重を一端側と他端側とに分散させることができ、そのことで、機関出力軸の信頼性を確保する上で有利になる。
 また、前記第1駆動機構は、前記機関出力軸の一端部と前記燃料ポンプとに巻きかけられた一端側無端伝動部材を有する、としてもよい。
 ここで、一端側無端伝動部材は、エンドレスのタイミングベルトとしてもよいし、タイミングチェーンとしてもよい。
 また、前記第1駆動機構は、前記一端側無端伝動部材とは別に、前記カムシャフトに対して動力を伝達するように構成された第2の一端側無端伝動部材を有する、としてもよい。
 この構成によれば、第1駆動機構において、燃料ポンプ及びカムシャフトの作動に要する駆動負荷を、一端側無端伝動部材と、第2の一端側無端伝動部材とに分散させることが可能になる。そのことで、各部材の信頼性を確保することができる。
 また、前記第2駆動機構は、前記機関出力軸の他端部と前記機械式過給機とに巻きかけられた他端側無端伝動部材を有する、としてもよい。
 ここで、他端側無端伝動部材は、一端側無端伝動部材と同様に、エンドレスのタイミングベルトとしてもよいし、タイミングチェーンとしてもよい。
 また、前記第2駆動機構は、前記他端側無端伝動部材とは別に、エアコンディショナのコンプレッサに対して動力を伝達するように構成された第2の他端側無端伝動部材を有する、としてもよい。
 この構成によれば、第2駆動機構において、機械式過給機及びコンプレッサの作動に要する駆動負荷を、他端側無端伝動部材と、第2の他端側無端伝動部材とに分散させることが可能になる。そのことで、各ベルトの信頼性を確保することができる。
 また、第2駆動機構によってエアコンディショナを駆動させるように構成したことで、第1駆動機構における駆動負荷を低減し、ひいては第1駆動機構の信頼性を確保することができるようになる。
 また、前記エンジンの幾何学的圧縮比は、15以上である、としてもよい。
 また、前記インジェクタは、少なくともガソリンを含む燃料を、前記エンジンの気筒内に直接噴射するよう構成されている、としてもよい。
 この構成によれば、エンジンを、所謂ガソリンエンジンとすることができる。
 以上説明したように、前記の機械式過給機付エンジンによると、可変動弁機構の応答性を確保しながらも、機関出力軸に加わる荷重を集中させることなく、燃料ポンプ及び機械式過給機の駆動性能を相互に阻害させないようにすることができる。
図1は、エンジンの構成を例示する概略図である。 図2は、エンジンを正面から見て示す図である。 図3は、エンジンを上側から見て示す図である。 図4は、エンジンの一部構成を示す斜視図である。 図5は、第1駆動機構を概略的に示す図である。 図6は、第2駆動機構を概略的に示す図である。
 以下、機械式過給機付エンジンの実施形態を図面に基づいて詳細に説明する。なお、以下の説明は例示である。図1は、ここに開示する機械式過給機付エンジン(以下、単に「エンジン」と呼称する)1の構成を例示する概略図である。また、図2は、エンジン1を正面から見て示す図であり、図3は、エンジン1を上側から見て示す図である。
 エンジン1は、四輪の自動車に搭載される4ストローク式の内燃機関であり、図1に示すように、機械駆動式の過給機(機械式過給機)44を備えた構成とされている。エンジン1の燃料は、この構成例においてはハイオク仕様(燃料のオクタン価が96程度)のガソリンである。この燃料は、バイオエタノール等を含むガソリンであってもよい。エンジン1の燃料は、少なくともガソリンを含む液体燃料であれば、どのような燃料であってもよい。
 特に、この構成例においては、エンジン1は、SI(Spark Ignition)燃焼と、CI(Compression Ignition)燃焼とを両方とも行うことができる。ここで、SI燃焼は、燃焼室の中の混合気に対して点火することにより開始する燃焼である。対して、CI燃焼は、燃焼室の中の混合気が圧縮自己着火することにより開始する燃焼である。
 また、エンジン1は、列状に配置された4つのシリンダ(気筒)11を備えており、4つのシリンダ11が車幅方向に沿って並ぶような姿勢で搭載される、いわゆる直列4気筒の横置きエンジンとして構成されている。これにより、この構成例においては、4つのシリンダ11の配列方向(気筒列方向)であるエンジン前後方向が車幅方向と略一致していると共に、エンジン幅方向が車両前後方向と略一致している。
 なお、直列多気筒エンジンにおいては、気筒列方向と、機関出力軸としてのクランクシャフト15の中心軸方向(機関出力軸方向)と、そのクランクシャフト15に連結される吸気カムシャフト22及び排気カムシャフト27各々の中心軸方向とが一致する。以下の記載では、これらの方向を気筒列方向(又は車幅方向)と総称する場合がある。
 以下、特に断らない限り、前側とは車両前後方向の前側を指し、後側とは車両前後方向の後側を指し、左側とは車幅方向の一方側(気筒列方向の一方側であり、エンジンリヤ側)を指し、右側とは車幅方向の他方側(気筒列方向の他方側であり、エンジンフロント側)を指す。
 また、以下の記載において、上側とはエンジン1を車両に搭載した状態(以下、「車両搭載状態」ともいう)における車高方向の上側を指し、下側とは車両搭載状態における車高方向の下側を指す。
 (エンジンの概略構成)
 この構成例において、エンジン1は、前方吸気・後方排気式に構成されている。つまり、エンジン1は、4つのシリンダ11を有するエンジン本体10と、エンジン本体10の前側に配置され、吸気ポート18を介して各シリンダ11に連通する吸気通路40と、エンジン本体10の後側に配置され、排気ポート19を介して各シリンダ11に連通する排気通路50と、を備えている。
 吸気通路40は、外部から導入されたガス(新気)を通過させて、エンジン本体10の各シリンダ11内に供給するように構成されている。この構成例では、吸気通路40は、エンジン本体10の前側において、ガスを導く複数の通路と、過給機44やインタークーラ46などの装置とが組み合わされてユニット化されている。
 エンジン本体10は、吸気通路40から供給されたガスと燃料との混合気を、各シリンダ11内で燃焼させるように構成されている。具体的に、エンジン本体10は、シリンダブロック12と、その上に載置されるシリンダヘッド13とを備えている。混合気が燃焼することによって得られた動力は、シリンダブロック12に設けられたクランクシャフト15を介して外部へ出力される。
 シリンダブロック12の内部には、前述の4つのシリンダ11が形成されている。4つのシリンダ11は、クランクシャフト15の中心軸方向(つまり、気筒列方向)に沿って列を成すように並んでいる。なお、図1では、1つのシリンダ11のみを示す。
 各シリンダ11の内部には、ピストン14が摺動自在に内挿されている。ピストン14は、コネクティングロッド141を介してクランクシャフト15に連結されている。ピストン14は、シリンダ11及びシリンダヘッド13と共に燃焼室17を区画する。なお、ここでいう「燃焼室」は、ピストン14が圧縮上死点に至ったときに形成される空間の意味に限定されない。「燃焼室」の語は広義で用いる。
 エンジン本体10の幾何学的圧縮比は、燃焼室17の形状に応じて定まっている。この構成例においては、ハイオク仕様のエンジンとするべく、幾何学的圧縮比は、15~18とされている。なお、レギュラー仕様(燃料のオクタン価が91程度)のエンジンにおいては、14~17としてもよい。
 シリンダヘッド13には、1つのシリンダ11につき、2つの吸気ポート18が形成されている。図1には、1つの吸気ポート18のみを示す。2つの吸気ポート18は、気筒列方向に隣接しており、それぞれ対応するシリンダ11に連通している。
 2つの吸気ポート18には、それぞれ吸気バルブ21が配設されている。吸気バルブ21は、燃焼室17と各吸気ポート18との間を開閉する。吸気バルブ21は、吸気動弁機構によって所定のタイミングで開閉する。
 吸気動弁機構は、この構成例においては、吸気バルブ21を作動させる吸気カムシャフト(図4も参照)22と、その吸気カムシャフト22に取り付けられ、かつ吸気カムシャフト22の回転位相を変更するように構成された吸気電動S-VT(Sequential-Valve Timing)23と、を有している。吸気電動S-VT23は、「可変動弁機構」の例示である。
 吸気カムシャフト22は、シリンダヘッド13の内部に設けられていて、当該吸気カムシャフト22の中心軸方向と機関出力軸方向とが略一致するような姿勢で軸支されている。吸気カムシャフト22は、チェーン式の第1駆動機構70を介してクランクシャフト15に連結されている。第1駆動機構70は、周知のように、クランクシャフト15が2回転する間に、吸気カムシャフト22を一回転させる。
 吸気電動S-VT23は、吸気バルブ21のバルブタイミング及びバルブリフトのうちの少なくとも一方を可変にするべく、吸気カムシャフト22の回転位相を所定の角度範囲内で連続的に変更するように構成されている。これによって、吸気バルブ21の開弁時期及び閉弁時期は、連続的に変化する。なお、吸気動弁機構は、吸気電動S-VT23に代えて、液圧式のS-VTを有していてもよい。
 シリンダヘッド13にはまた、1つのシリンダ11につき、2つの排気ポート19が形成されている。図1には、1つの排気ポート19のみを図示する。2つの排気ポート19は、気筒列方向に隣接しており、それぞれ対応するシリンダ11に連通している。
 2つの排気ポート19には、それぞれ排気バルブ26が配設されている。排気バルブ26は、燃焼室17と各排気ポート19との間を開閉する。排気バルブ26は、排気動弁機構によって所定のタイミングで開閉する。
 排気動弁機構は、この構成例においては、排気バルブ26を作動させる排気カムシャフト(図4も参照)27と、その排気カムシャフト27に取り付けられ、かつ排気カムシャフト27の回転位相を変更するように構成された排気電動S-VT28と、を有している。排気電動S-VT28もまた、「可変動弁機構」の例示である。
 排気カムシャフト27は、シリンダヘッド13の内部に設けられていて、吸気カムシャフト22と平行になるような姿勢で軸支されている。排気カムシャフト27は、前述の第1駆動機構70を介してクランクシャフト15に連結されている。クランクシャフト15が2回転する間に、排気カムシャフト27が一回転するようになっている。
 排気電動S-VT28は、吸気電動S-VT23と同様に構成されており、排気カムシャフト27の回転位相を変更することにより、排気バルブ26の開弁時期及び閉弁時期を連続的に調整する。なお、排気動弁機構は、排気電動S-VT28に代えて、液圧式のS-VTを有していてもよい。
 シリンダヘッド13には、シリンダ11毎にインジェクタ6が取り付けられている。インジェクタ6は、少なくともガソリンを含む燃料を、シリンダ11内(具体的には、燃焼室17の中)に直接噴射するよう構成されている。この構成例においては、インジェクタ6は、多噴口型の燃料噴射弁である。
 インジェクタ6には、燃料供給システム61が接続されている。燃料供給システム61は、燃料ポンプ65によって加圧された燃料を、インジェクタ6に供給することができるよう構成されている。
 具体的に、燃料供給システム61は、燃料を貯留するよう構成された燃料タンク63と、燃料タンク63とインジェクタ6とを互いに連結する燃料供給路62とを備えている。燃料供給路62には、燃料ポンプ65とコモンレール64とが介設している。
 燃料ポンプ65は、インジェクタ6から噴射される燃料の圧力を調整するよう構成されている。この構成例においては、燃料ポンプ65は、クランクシャフト15から伝達された動力によって駆動されるプランジャー式のポンプであり、コモンレール64に対して燃料を圧送するよう構成されている。
 なお、燃料ポンプ65は、燃料の圧力を、少なくとも40MPa以上、好ましくは60MPa以上、さらに好ましくは80MPa以上に設定することができるように構成されている。この燃料供給システム61における最高燃料圧力は、例えば120MPa程度にしてもよい。インジェクタ6に供給する燃料の圧力は、エンジン1の運転状態に応じて変更してもよい。
 コモンレール64は、燃料ポンプ65から圧送された燃料を、高い燃料圧力で蓄えるよう構成されている。インジェクタ6が開弁すると、コモンレール64に蓄えられていた燃料が、インジェクタ6の噴口から燃焼室17の中に噴射される。
 なお、燃料供給システム61の最高燃料圧力は、例えば120MPa程度にしてもよい。インジェクタ6に供給する燃料の圧力は、エンジン1の運転状態に応じて変更してもよい。なお、燃料供給システム61の構成は、前記の構成は限定されない。
 シリンダヘッド13には、シリンダ11毎に点火プラグ29が取り付けられている。点火プラグ29は、その先端が燃焼室17の中に臨むような姿勢で取り付けられており、燃焼室17の中の混合気に強制的に点火をする。
 吸気通路40の説明に戻ると、この構成例における吸気通路40は、エンジン本体10の一側面(具体的には、前側の側面)に接続されており、各シリンダ11の吸気ポート18に連通している。
 ここで、吸気通路40の上流端部には、新気を濾過するエアクリーナ41が配設されている。対して、吸気通路40の下流端近傍には、サージタンク42が配設されている。サージタンク42よりも下流の吸気通路40は、シリンダ11毎に分岐する独立通路を構成している。独立通路の下流端が、各シリンダ11の吸気ポート18に接続されている。
 吸気通路40におけるエアクリーナ41とサージタンク42との間には、スロットルバルブ43が配設されている。スロットルバルブ43は、そのバルブ開度を調整することによって、燃焼室17へ導入する新気の量を調整するよう構成されている。
 吸気通路40において、スロットルバルブ43の下流には過給機44が配設されている。過給機44は、燃焼室17へ導入するガスを過給するよう構成されている。この構成例において、過給機44は、エンジン1(具体的には、クランクシャフト15から伝達される動力)によって駆動される機械式過給機であり、ルーツ式のスーパーチャージャとされている。過給機44の構成は、どのようなものであってもよい。過給機44は、例えば、リショルム式、ベーン式、又は遠心式であってもよい。
 過給機44とクランクシャフト15との間には電磁クラッチ45が介設している。電磁クラッチ45は、過給機44とクランクシャフト15との間で駆動力を伝達させたり、駆動力の伝達を遮断したりする。ECU(Engine Control Unit)など、不図示の制御手段が電磁クラッチ45の遮断及び接続を切り替えることによって、過給機44のオンとオフとが切り替わる。つまり、このエンジン1は、過給機44のオンとオフとを切り替えることにより、燃焼室17に導入するガスを過給する運転と、燃焼室17に導入するガスを過給しない運転とを切り替えることができるよう構成されている。
 なお、過給機44は、ベルト式の第2駆動機構80を介してクランクシャフト15に連結されている。後述の如く、第2駆動機構80は、前述の第1駆動機構70とは別系統とされている。
 詳しくは、過給機44は、気筒列方向に沿って延びる回転軸を有する一対のロータ(不図示)と、ロータを回転駆動する過給機駆動プーリ44dとを備え、過給機駆動プーリ44dに巻きかけられたタイミングベルト81を介してクランクシャフト15に連結されている。過給機駆動プーリ44dとロータとの間には、前述の電磁クラッチ45が介設している。
 吸気通路40における過給機44の下流には、インタークーラ46が配設されている。インタークーラ46は、過給機44において圧縮されたガスを冷却するよう構成されている。インタークーラ46は、例えば水冷式とすればよい。
 また、吸気通路40には、バイパス通路47が接続されている。バイパス通路47は、過給機44及びインタークーラ46をバイパスするよう、吸気通路40における過給機44の上流部とインタークーラ46の下流部とを互いに接続する。バイパス通路47には、エアバイパスバルブ48が配設されている。エアバイパスバルブ48は、バイパス通路47を流れるガスの流量を調整する。
 過給機44をオフにしたとき(つまり、電磁クラッチ45を遮断したとき)には、エアバイパスバルブ48を全開にする。これにより、吸気通路40を流れるガスは、過給機44をバイパスして、エンジン1の燃焼室17に導入される。エンジン1は、非過給、つまり自然吸気によって運転する。
 過給機44をオンにしたとき(つまり、電磁クラッチ45を接続したとき)には、エアバイパスバルブ48の開度を適宜調整する。このとき、過給機44を通過したガスの一部は、バイパス通路47を通って過給機44の上流に逆流する。エアバイパスバルブ48の開度を調整することによって逆流量を調整することができるから、その逆流量を介して、燃焼室17に導入するガスの過給圧を調整することができる。この構成例においては、過給機44とバイパス通路47とエアバイパスバルブ48とによって、過給システム49が構成されている。
 一方、排気通路50は、エンジン本体10の他側面(具体的には、後側の側面)に接続されており、各シリンダ11の排気ポート19に連通している。排気通路50は、燃焼室7から排出された排気ガスが流れる通路である。詳細な図示は省略するが、排気通路50の上流部分は、シリンダ11毎に分岐する独立通路を構成している。それら独立通路の上流端が、各シリンダ11の排気ポート19に接続されている。
 排気通路50には、複数の触媒コンバータ51を有する排気ガス浄化システムが配設されている。触媒コンバータ51は、三元触媒を含んで構成されている。なお、排気ガス浄化システムは、三元触媒を含むものに限られない。
 吸気通路40と排気通路50との間には、外部EGRシステムを構成するEGR通路52が接続されている。EGR通路52は、既燃ガスの一部を吸気通路40に還流させるための通路である。詳しくは、EGR通路52の上流端は、排気通路50において触媒コンバータ51付近の部位に接続されている。一方、EGR通路52の下流端は、吸気通路40における過給機44の上流に接続されている。
 EGR通路52には、水冷式のEGRクーラ53が配設されている。EGRクーラ53は、既燃ガスを冷却するよう構成されている。EGR通路52にはまた、EGRバルブ54が配設されている。EGRバルブ54は、EGR通路52を流れる既燃ガスの流量を調整するよう構成されている。EGRバルブ54の開度を調整することによって、冷却された既燃ガス、つまり外部EGRガスの還流量を調整することができる。
 この構成例において、EGRシステム55は、EGR通路52及びEGRバルブ54を含んで構成されている外部EGRシステムと、前述した吸気電動S-VT23及び排気電動S-VT28を含んで構成されている内部EGRシステムとによって構成されている。
 また、エンジン1には、前述の燃料ポンプ65以外にも、各種の補機が付設されている。このエンジン1は、そうした補機として、電気系統で使用する交流電流を発生するオルタネータ91と、空調用のエアコンディショナ92と、冷却水を循環させるウォータポンプ93と、を備えている。
 ここで、燃料ポンプ65は、図2に示すように、エンジン本体10における左端側の前部に取り付けられている(図4も参照)。対して、オルタネータ91及びエアコンディショナ92は、エンジン本体10における右端側の前部に取り付けられている一方、ウォータポンプ93は、同右端側の後部に取り付けられている(図3~図4を参照)。オルタネータ91とエアコンディナ92は、上方からこの順で並んでいる。
 (第1及び第2駆動機構の構成)
 以下、第1及び第2駆動機構70,80の構成について詳細に説明する。
 図4は、エンジン1の一部構成を示す斜視図である。この図4においては、第1駆動機構70及び第2駆動機構80の構成を示すべく、シリンダブロック12など、エンジン1を構成する部材が一部省略されている。また、図5は、第1駆動機構70を概略的に示す図であり、図6は、第2駆動機構80を概略的に示す図である。
 前述のように、燃料ポンプ65及び過給機44は、双方とも、エンジン1のクランクシャフト15から伝達された動力によって駆動される。ここで、燃料ポンプ65は、第1駆動機構70を介して動力が伝達される一方、過給機44は、第1駆動機構70とは別系統の第2駆動機構80を介して動力が伝達されるようになっている。
 詳しくは、図4に示すように、第1駆動機構70は、気筒列方向の一端側(左端側)にレイアウトされている一方、第2駆動機構80は、同方向の他端側(右端側)にレイアウトされている。このようなレイアウトとすることで、第1駆動機構70及び第2駆動機構80は、互いに別系統の機構となる。
 そして、第1駆動機構70と燃料ポンプ65とは、クランクシャフト15の左端側において駆動連結されている一方、第2駆動機構80と過給機44とは、クランクシャフト15の右端側において駆動連結されている。
 以下、第1駆動機構70の構成と、第2駆動機構80の構成を順番に説明する。
 -第1駆動機構-
 図5に示すように、第1駆動機構70は、タイミングチェーン71を用いたギヤ駆動機構とされており、エンジン1の左側面に設けられている。この第1駆動機構70は、吸気カムシャフト22を介して吸気バルブ21を作動させる一方、排気カムシャフト27を介して排気バルブ26を作動させるとともに、前述の燃料ポンプ65を駆動するよう構成されている。
 詳しくは、第1駆動機構70は、燃料ポンプ65を駆動するための第1チェーン機構70aと、吸気カムシャフト22及び排気カムシャフト27を駆動するための第2チェーン機構70bと、を備えている。
 第1駆動機構70はまた、タイミングチェーン71として、第1チェーン機構70aにおいて動力を伝達するための第1チェーン71aと、第2チェーン機構70bにおいて動力を伝達するための第2チェーン71bとの2つのチェーンを有している。なお、第1チェーン71aは「一端側無端伝動部材」の例示であり、第2チェーン71bは「第2の一端側無端伝動部材」の例示である。
 具体的に、第1チェーン機構70aは、クランクシャフト15の左端部(一端部)に設けられる第1スプロケット15aと、燃料ポンプ65の左端部に設けられる第2スプロケット65aと、第1スプロケット15a及び第2スプロケット65aの間に巻き掛けられる前述の第1チェーン71aと、第1チェーン71aに対して張力を付与する第1オートテンショナ72aと、を有している。
 詳しくは、図5から見て取れるように、第1スプロケット15aは、車高方向においてはシリンダブロック12の下部に位置すると共に、車両前後方向においてはシリンダブロック12の中央部に位置するようになっている。
 対して、第2スプロケット65aは、車高方向においてはシリンダブロック12の中央部に位置すると共に、車両前後方向においてはシリンダブロック12の前端部に位置するようになっている。
 一方、第2チェーン機構70bは、燃料ポンプ65において第2スプロケット65aの左方かつ内周側に設けられる第3スプロケット65bと、吸気電動S-VT23に設けられるスプロケットギヤ23aと、排気電動S-VT28に設けられるスプロケットギヤ28aと、第3スプロケット65b、及び、スプロケットギヤ23a,28aの間に巻き掛けられる第2チェーン71bと、第2チェーン71bに対して張力を付与する第2オートテンショナ72bと、を有している。
 詳しくは、第3スプロケット65bは、第2スプロケット65aと同様に、車高方向においてはシリンダブロック12の中央部に位置すると共に、車両前後方向においてはシリンダブロック12の前端部に位置するようになっている。
 ここで、吸気電動S-VT23の説明に戻ると、図4に示すように、吸気電動S-VT23は、吸気カムシャフト22の左側部に取り付けられており、シリンダヘッド13の左側面に対して左方に突出している。また、図5に示すように、吸気電動S-VT23は、車高方向においてはシリンダヘッド13の上端付近に位置する一方、車両前後方向においてはシリンダヘッド13の後側部分に位置している。
 詳細な図示は省略するが、吸気電動S-VT23は、第2チェーン71bが巻きかけられ、クランクシャフト15と連動して回転するスプロケットギヤ23aと、吸気カムシャフト22と連動して回転するカムシャフトギヤと、スプロケットギヤ23aに対するカムシャフトギヤの回転位相を調整するためのプラネタリギヤと、プラネタリギヤを駆動するS-VTモータ23bと、を備えている。S-VTモータ23bは、吸気電動S-VT23において左側の先端に設けられている。
 一方、排気電動S-VT28は、排気カムシャフト27の左側部に取り付けられており、図5から見て取れるように、吸気電動S-VT23に対して前方に隣接している。排気電動S-VT28もまた、スプロケットギヤ28a及びS-VTモータ28bを備えた構成とされている。
 よって、スプロケットギヤ23a,28aは、吸気電動S-VT23、排気電動S-VT28と同様に、車高方向においては両方ともシリンダヘッド13の上端付近に位置する一方、車両前後方向においては前後に隣接するように配置されている。
 クランクシャフト15が回動すると、その動力は、第1スプロケット15aから出力されて、第1チェーン71aを介して第2スプロケット65aを回動させる。そうして、燃料ポンプ65に動力が伝達されて、その動力によって燃料ポンプ65が駆動される。
 一方、クランクシャフト15から伝達された動力が第2スプロケット65aを回動させると、燃料ポンプ65の第3スプロケット65bもまた回動する。そうすると、その動力は、第2チェーン71bを介してスプロケットギヤ23a,28aに伝達される。伝達された動力は、吸気カムシャフト22及び排気カムシャフト27を回動させる。これにより、吸気バルブ21及び排気バルブ26がそれぞれ動作することになる。
 -第2駆動機構-
 図6に示すように、第2駆動機構80は、タイミングベルト81を用いたベルト駆動機構とされており、エンジン1の右側面に設けられている。この第2駆動機構80は、過給機駆動プーリ44dを介して過給機44を作動させる一方、前述のオルタネータ91、エアコンディショナ92及びウォータポンプ93を駆動するように構成されている。
 詳しくは、第2駆動機構80は、過給機44及びウォータポンプ93を駆動するための第1ベルト機構80aと、オルタネータ91及びエアコンディショナ92を駆動するための第2ベルト機構80bと、を備えている。
 第2駆動機構80はまた、タイミングベルト81として、第1ベルト機構80aにおいて動力を伝達するための第1ベルト81aと、第2ベルト機構80bにおいて動力を伝達するための第2ベルト81bとの2つのベルトを有している。なお、第1ベルト81aは「他端側無端伝動部材」の例示であり、第2ベルト81bは「第2の他端側無端伝動部材」の例示である。
 具体的に、第1ベルト機構80aは、図4及び図6に示すように、クランクシャフト15の右端部(他端部)に設けられる第1クランクシャフトプーリ15bと、ウォータポンプ93の右端部に設けられるウォータポンプ駆動プーリ93aと、アイドルプーリ82など、複数の従動プーリ(詳細は省略)と、過給機駆動プーリ44dと、第1クランクシャフトプーリ15b、ウォータポンプ駆動プーリ93a、複数の従動プーリ及び過給機駆動プーリ44dに巻きかけられる前述の第1ベルト81aと、第1ベルト81aに対して張力を付与する油圧式のオートテンショナ83と、を有している。
 一方、第2ベルト機構80bは、図6に示すように、クランクシャフト15において第1クランクシャフトプーリ15bの左側に隣接して設けられる第2クランクシャフトプーリ(図4を参照)15cと、オルタネータ91の右端部に設けられるオルタネータ駆動プーリ91aと、エアコンディショナ92のコンプレッサに設けられるエアコンディショナ駆動プーリ92aと、第2クランクシャフトプーリ15c、オルタネータ駆動プーリ91a、エアコンディショナ駆動プーリ92aに巻きかけられる前述の第2ベルト81bと、第2ベルト81bに対して張力を付与するダブルアームテンショナ84と、を有している。
 よって、クランクシャフト15が回動すると、その動力は、第1クランクシャフトプーリ15bから出力されて、第1ベルト81aを介してウォータポンプ駆動プーリ93a及び過給機駆動プーリ44dを回動させる。そうして、ウォータポンプ93と過給機44とに動力が伝達されて、その動力によって各々が駆動される。
 一方、クランクシャフト15が回動すると、その動力は、第2クランクシャフトプーリ15cからも出力されて、第2ベルト81bを介してオルタネータ駆動プーリ91a及びエアコンディショナ駆動プーリ92aを回動させる。そうしてオルタネータ91とエアコンディショナ92のコンプレッサとに動力が伝達されて、その動力によって各々が駆動される。
 (まとめ)
 以上説明したように、燃料ポンプ65と過給機44とは、図4に示すように、それぞれ、別系統の駆動機構によって動力が伝達される。これにより、各々の作動に要する駆動負荷を分散させることができるため、例えば燃料ポンプ65及び過給機44を両方とも第1駆動機構70によって駆動させるような構成と比較して、S-VTモータ23b,28bの動作を阻害することなく、吸気及び排気電動S-VT23,28の応答性を確保することが可能になる。
 また、燃料ポンプ65に対して動力を伝達するための第1駆動機構70と、過給機44に対して動力を伝達するための第2駆動機構80とを共通にすることなく別系統としたことで、クランクシャフト15に加わる荷重を分散させて、ひいては、クランクシャフト15の信頼性を確保することが可能になる。それと同時に、燃料ポンプ65及び過給機44の駆動性能を相互に阻害させないようにすることも可能になる。
 このように、吸気及び排気電動S-VT23,28の応答性を確保しながらも、クランクシャフト15に加わる荷重を集中させることなく、燃料ポンプ65及び過給機44の駆動性能を相互に阻害させないようにすることができる。
 また、図4に示すように、燃料ポンプ65のための第1駆動機構70と、過給機44のための第2駆動機構80とを共通にすることなく別系統としたことで、例えば同系統とした構成と比較して、第1及び第2駆動機構70,80全体のレイアウト性を確保する上で有利になる。
 また、前述のように、高圧の燃料を噴射する場合、燃料ポンプ65の作動に要する駆動負荷は、その燃圧に応じて相対的に大きくなる。よって、図4に示す構成を適用することで、燃料ポンプ65の駆動負荷を大きくすることが許容されるようになるから、より高圧の燃料を噴射することが可能になる。このことは、特に圧縮着火式のエンジンにおいて、燃料噴霧のペネトレーションの短縮や、霧化促進によるガスの冷却等を促進し、ひいては、エミッション性能、燃費性能および出力性能を高める上で有効である。
 また、図4に示すように、クランクシャフト15の左端側では、第1駆動機構70と燃料ポンプ65とが駆動連結されている一方、クランクシャフト15の右端側では、第2駆動機構80と過給機44とが駆動連結されている。このような構成とすると、クランクシャフト15に加わる荷重を左端側と右端側とに分散させることができ、そのことで、クランクシャフト15の信頼性を確保する上で有利になる。
 また、図5に示すように、第1駆動機構70において、燃料ポンプ65並びに吸気及び排気カムシャフト22,27の作動に要する駆動負荷を、第1チェーン71aと第2チェーン71bに分散させることが可能になる。そのことで、タイミングチェーン71の信頼性を確保することができる。
 また、図6に示すように、第2駆動機構80において、過給機44、及びエアコンディショナ92のコンプレッサの作動に要する駆動負荷を、第1ベルト81aと第2ベルトに分散させることが可能になる。そのことで、タイミングベルト81の信頼性を確保することができる。
 また、第2駆動機構80によってエアコンディショナ92を駆動させるように構成したことで、第1駆動機構70における駆動負荷を低減し、ひいては第1駆動機構70の信頼性を確保することができるようになる。
 《他の実施形態》
 前記実施形態では、第1駆動機構70は、タイミングチェーン71を用いたギヤ駆動機構とされているとともに、第2駆動機構80は、タイミングベルト81を用いたベルト駆動機構とされていたが、この構成には限られない。例えば、第1駆動機構70と第2駆動機構80を両方ともベルト駆動機構としてもよい。
 また、前記実施形態では、可変動弁機構としての吸気及び排気伝動S-VT23,28は、第1駆動機構70の一要素となるように構成されていたが、その構成には限定されない。例えば、第2駆動機構80の一要素としてもよい。
1   エンジン
6   インジェクタ
11  シリンダ(気筒)
15  クランクシャフト(機関出力軸)
22  吸気カムシャフト(カムシャフト)
23  吸気電動S-VT(可変動弁機構)
27  排気カムシャフト(カムシャフト)
28  排気電動S-VT(可変動弁機構)
44  過給機(機械式過給機)
65  燃料ポンプ
70  第1駆動機構
71  タイミングチェーン
71a 第1チェーン(一端側無端伝動部材)
71b 第2チェーン(第2の一端側無端伝動部材)
80  第2駆動機構
81  タイミングベルト
81a 第1ベルト(他端側無端伝動部材)
81b 第2ベルト(第2の他端側無端伝動部材)

Claims (9)

  1.  カムシャフト及びインジェクタが設けられたエンジンと、前記カムシャフトに取り付けられ、かつ該カムシャフトの回転位相を変更するよう構成された可変動弁機構と、前記インジェクタから噴射される燃料の圧力を調整するよう構成された燃料ポンプと、前記エンジンによって駆動される機械式過給機と、を備えた機械式過給機付エンジンであって、
     前記燃料ポンプ及び機械式過給機は、双方とも、前記エンジンの機関出力軸から伝達された動力によって駆動されるとともに、
     前記燃料ポンプは、第1駆動機構を介して動力が伝達される一方、前記機械式過給機は、前記第1駆動機構とは別系統の第2駆動機構を介して動力が伝達される
    ことを特徴とする機械式過給機付エンジン。
  2.  請求項1に記載された機械式過給機付エンジンにおいて、
     前記燃料ポンプは、前記燃料の圧力を40MPa以上に設定するよう構成されている
    ことを特徴とする機械式過給機付エンジン。
  3.  請求項1又は2に記載された機械式過給機付エンジンにおいて、
     前記機関出力軸の一端側では、前記第1駆動機構と前記燃料ポンプとが駆動連結されている一方、前記機関出力軸の他端側では、前記第2駆動機構と前記機械式過給機とが駆動連結されている
    ことを特徴とする機械式過給機付エンジン。
  4.  請求項3に記載された機械式過給機付エンジンにおいて、
     前記第1駆動機構は、前記機関出力軸の一端部と前記燃料ポンプとに巻きかけられた一端側無端伝動部材を有する
    ことを特徴とする機械式過給機付エンジン。
  5.  請求項4に記載された機械式過給機付エンジンにおいて、
     前記第1駆動機構は、前記一端側無端伝動部材とは別に、前記カムシャフトに対して動力を伝達するように構成された第2の一端側無端伝動部材を有する
    ことを特徴とする機械式過給機付エンジン。
  6.  請求項3~5のいずれか1項に記載された機械式過給機付エンジンにおいて、
     前記第2駆動機構は、前記機関出力軸の他端部と前記機械式過給機とに巻きかけられた他端側無端伝動部材を有する
    ことを特徴とする機械式過給機付エンジン。
  7.  請求項6に記載された機械式過給機付エンジンにおいて、
     前記第2駆動機構は、前記他端側無端伝動部材とは別に、エアコンディショナのコンプレッサに対して動力を伝達するように構成された第2の他端側無端伝動部材を有する
    ことを特徴とする機械式過給機付エンジン。
  8.  請求項1~7のいずれか1項に記載された機械式過給機付エンジンにおいて、
     前記エンジンの幾何学的圧縮比は、15以上である
    ことを特徴とする機械式過給機付エンジン。
  9.  請求項1~8のいずれか1項に記載された機械式過給機付エンジンにおいて、
     前記インジェクタは、少なくともガソリンを含む燃料を、前記エンジンの気筒内に直接噴射するよう構成されている
    ことを特徴とする機械式過給機付エンジン。
PCT/JP2017/030605 2017-08-25 2017-08-25 機械式過給機付エンジン WO2019038922A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17922852.3A EP3656996B1 (en) 2017-08-25 2017-08-25 Engine with mechanical supercharger
PCT/JP2017/030605 WO2019038922A1 (ja) 2017-08-25 2017-08-25 機械式過給機付エンジン
CN201780094133.1A CN111051666A (zh) 2017-08-25 2017-08-25 带机械式增压器的发动机
US16/640,891 US20200355114A1 (en) 2017-08-25 2017-08-25 Engine with mechanical supercharger
JP2019537537A JP6835232B2 (ja) 2017-08-25 2017-08-25 機械式過給機付エンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/030605 WO2019038922A1 (ja) 2017-08-25 2017-08-25 機械式過給機付エンジン

Publications (1)

Publication Number Publication Date
WO2019038922A1 true WO2019038922A1 (ja) 2019-02-28

Family

ID=65438621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030605 WO2019038922A1 (ja) 2017-08-25 2017-08-25 機械式過給機付エンジン

Country Status (5)

Country Link
US (1) US20200355114A1 (ja)
EP (1) EP3656996B1 (ja)
JP (1) JP6835232B2 (ja)
CN (1) CN111051666A (ja)
WO (1) WO2019038922A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08270456A (ja) * 1995-03-31 1996-10-15 Mazda Motor Corp エンジンの補機駆動装置
JPH08326550A (ja) * 1995-03-30 1996-12-10 Mazda Motor Corp Ohcディーゼルエンジン
JPH09228846A (ja) * 1996-02-26 1997-09-02 Mazda Motor Corp エンジンの補機配置構造
JPH11336557A (ja) * 1998-05-25 1999-12-07 Fuji Heavy Ind Ltd 内燃機関
US20030116117A1 (en) * 2001-12-21 2003-06-26 Ford Global Technologies, Inc. Internal combustion engine
JP2006299852A (ja) * 2005-04-18 2006-11-02 Mazda Motor Corp 過給機付エンジン
JP2011163252A (ja) * 2010-02-12 2011-08-25 Honda Motor Co Ltd エンジン
JP2013194712A (ja) * 2012-03-22 2013-09-30 Mazda Motor Corp 内燃機関の制御方法及び内燃機関
JP2015086752A (ja) * 2013-10-29 2015-05-07 マツダ株式会社 圧縮着火式エンジンの制御装置
JP2016031067A (ja) * 2014-07-30 2016-03-07 マツダ株式会社 圧縮着火式エンジンの制御装置
JP2016205241A (ja) 2015-04-23 2016-12-08 マツダ株式会社 エンジンの燃料ポンプ締結構造

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2660989A (en) * 1948-10-14 1953-12-01 Schnurle Two-stroke engine with scavenging air blower
GB2230817B (en) * 1989-04-27 1993-12-22 Fuji Heavy Ind Ltd A supercharger air pump control system.
CA2401747A1 (en) * 2000-02-29 2001-09-07 Norbert Korenjak Control tensioner device for an engine
CN1584305A (zh) * 2004-06-08 2005-02-23 杨锡尧 联合循环内燃机组

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08326550A (ja) * 1995-03-30 1996-12-10 Mazda Motor Corp Ohcディーゼルエンジン
JPH08270456A (ja) * 1995-03-31 1996-10-15 Mazda Motor Corp エンジンの補機駆動装置
JPH09228846A (ja) * 1996-02-26 1997-09-02 Mazda Motor Corp エンジンの補機配置構造
JPH11336557A (ja) * 1998-05-25 1999-12-07 Fuji Heavy Ind Ltd 内燃機関
US20030116117A1 (en) * 2001-12-21 2003-06-26 Ford Global Technologies, Inc. Internal combustion engine
JP2006299852A (ja) * 2005-04-18 2006-11-02 Mazda Motor Corp 過給機付エンジン
JP2011163252A (ja) * 2010-02-12 2011-08-25 Honda Motor Co Ltd エンジン
JP2013194712A (ja) * 2012-03-22 2013-09-30 Mazda Motor Corp 内燃機関の制御方法及び内燃機関
JP2015086752A (ja) * 2013-10-29 2015-05-07 マツダ株式会社 圧縮着火式エンジンの制御装置
JP2016031067A (ja) * 2014-07-30 2016-03-07 マツダ株式会社 圧縮着火式エンジンの制御装置
JP2016205241A (ja) 2015-04-23 2016-12-08 マツダ株式会社 エンジンの燃料ポンプ締結構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3656996A4

Also Published As

Publication number Publication date
EP3656996B1 (en) 2022-06-08
EP3656996A1 (en) 2020-05-27
US20200355114A1 (en) 2020-11-12
JPWO2019038922A1 (ja) 2020-09-03
CN111051666A (zh) 2020-04-21
JP6835232B2 (ja) 2021-02-24
EP3656996A4 (en) 2020-08-12

Similar Documents

Publication Publication Date Title
JP5919304B2 (ja) ターボチャージャー付き車両用エンジン及びこれを含む車両
CN104061073B (zh) 用于可变排量内燃发动机的曲轴
CN103061899A (zh) 内燃发动机及用于这种内燃发动机的进气交换方法
JP5803326B2 (ja) 過給機付リーンバーンエンジン
JP5842406B2 (ja) 過給機付リーンバーンエンジン
JP6225883B2 (ja) ターボ過給機付きエンジンの排気装置
JP5608175B2 (ja) 圧縮行程のない独立したガス供給系を有する内燃機関
US9243555B2 (en) Engine front end accessory drive bracket
JP6835232B2 (ja) 機械式過給機付エンジン
JP2014058914A (ja) 内燃機関の排気ガス再循環装置
EP1291507B1 (en) Two-cycle self-ignition gasoline engine
US20100180857A1 (en) Partially deactivatable internal combustion engine
CN114941592A (zh) 内燃机
CN111033028B (zh) 发动机进气系统
CN110612386B (zh) 内燃机的控制装置
JP2009221867A (ja) 副燃焼室および排気還流通路が設けられた内燃機関
WO2019069434A1 (ja) 機械式過給機付エンジン
JP2019027421A (ja) エンジンの側部構造
US10738729B2 (en) Direct-injection internal combustion engine with two valves per cylinder
JP6544379B2 (ja) 多気筒エンジンの吸気装置
JP2015124680A (ja) 内燃機関の制御装置
JP2018188967A (ja) 鞍乗型乗物用の内燃機関
KR19980042196U (ko) 자동차의 연료 펌프

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922852

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537537

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017922852

Country of ref document: EP

Effective date: 20200221