WO2019035223A1 - プラズマ生成装置、基板処理装置および半導体装置の製造方法 - Google Patents

プラズマ生成装置、基板処理装置および半導体装置の製造方法 Download PDF

Info

Publication number
WO2019035223A1
WO2019035223A1 PCT/JP2018/006183 JP2018006183W WO2019035223A1 WO 2019035223 A1 WO2019035223 A1 WO 2019035223A1 JP 2018006183 W JP2018006183 W JP 2018006183W WO 2019035223 A1 WO2019035223 A1 WO 2019035223A1
Authority
WO
WIPO (PCT)
Prior art keywords
high frequency
frequency power
wave component
gas
plasma generation
Prior art date
Application number
PCT/JP2018/006183
Other languages
English (en)
French (fr)
Inventor
剛 竹田
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to JP2019536413A priority Critical patent/JP6845334B2/ja
Priority to CN201880049896.9A priority patent/CN110959312A/zh
Priority to KR1020197024462A priority patent/KR102217139B1/ko
Publication of WO2019035223A1 publication Critical patent/WO2019035223A1/ja
Priority to US16/783,913 priority patent/US11629408B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2242/00Auxiliary systems
    • H05H2242/20Power circuits
    • H05H2242/26Matching networks

Definitions

  • the present invention relates to a plasma generation apparatus, a substrate processing apparatus, and a method of manufacturing a semiconductor device.
  • a substrate is carried into a processing chamber of a substrate processing apparatus, a source gas supplied into the processing chamber and a processing gas such as a reaction gas are activated using plasma, and an insulating film or the like is formed on the substrate.
  • Substrate processing may be performed in which various films such as a semiconductor film and a conductor film are formed and various films are removed. Plasma is used to promote the reaction of a thin film to be deposited, remove impurities from the thin film, or assist the chemical reaction of a film forming material (see, for example, Patent Document 1).
  • An object of the present invention is to provide a technology capable of performing stable plasma generation even when performing plasma generation using a plurality of high frequency power supplies.
  • a technique for processing a substrate using a plurality of plasma generation units A plurality of high frequency power supplies for supplying power to each of the plurality of plasma generating units; A plurality of matching units provided between the plurality of high frequency power supplies and the plurality of plasma generation units, for respectively matching the load impedance of the plasma generation unit with the output impedance of the high frequency power supply; Equipped with At least one high frequency power supply of the plurality of high frequency power supplies is A high frequency oscillator that oscillates a high frequency, A directional coupler disposed downstream of the high frequency oscillator for extracting a traveling wave component from the high frequency oscillator and a part of a reflected wave component from the matching unit; A filter for removing a noise signal added to the reflected wave component extracted by the directional coupler; A power monitor that feedback-controls the matching unit so as to reduce the reflected wave component by measuring the reflected wave component after passing through the filter and the traveling wave component extracted by the directional coupler;
  • FIG. 2 is a schematic configuration view of a vertical processing furnace of the substrate processing apparatus suitably used in the embodiment of the present invention, and a diagram showing the processing furnace portion in a sectional view taken along the line AA of FIG.
  • the substrate processing apparatus has a processing furnace 202, as shown in FIG.
  • the processing furnace 202 is a so-called vertical furnace capable of accommodating substrates in multiple stages in the vertical direction, and has a heater 207 as a heating device (heating mechanism).
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate.
  • the heater 207 also functions as an activation mechanism (excitation unit) that thermally activates (excites) the gas as described later.
  • a reaction tube 203 is disposed concentrically with the heater 207.
  • the reaction tube 203 is made of, for example, a heat resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape whose upper end is closed and whose lower end is open.
  • a manifold (inlet flange) 209 is disposed concentrically with the reaction tube 203.
  • the manifold 209 is made of, for example, a metal such as stainless steel (SUS), and is formed in a cylindrical shape whose upper and lower ends are open.
  • the upper end portion of the manifold 209 is engaged with the lower end portion of the reaction tube 203, and is configured to support the reaction tube 203.
  • An O-ring 220 a as a seal member is provided between the manifold 209 and the reaction tube 203.
  • a processing vessel (reaction vessel) is mainly configured by the reaction tube 203 and the manifold 209.
  • a processing chamber 201 is formed in a cylindrical hollow portion inside the processing container.
  • the processing chamber 201 is configured to be able to accommodate a plurality of wafers 200 as substrates.
  • the processing container is not limited to the above configuration, and only the reaction tube 203 may be referred to as a processing container.
  • nozzles 249a, 249b, and 249c are provided to penetrate the side wall of the manifold 209.
  • a cross-sectional view of the surface where the nozzle 249a can be seen is shown in FIG. 1, and a cross-sectional view of the surface where the nozzles 249b and 249c can be seen are shown in FIG.
  • Gas supply pipes 232a, 232b and 232c are connected to the nozzles 249a, 249b and 249c, respectively.
  • the reaction tube 203 is provided with three nozzles 249 a, 249 b and 249 c and three gas supply tubes 232 a, 232 b and 232 c, and supplies a plurality of types of gas into the processing chamber 201. It has become possible.
  • the nozzles 249 a, 249 b and 249 c may be provided to penetrate the side wall of the reaction tube 203.
  • mass flow controllers (MFC) 241a, 241b and 241c which are flow controllers (flow control units) and valves 243a, 243b and 243c which are on-off valves are arranged in order from the upstream side of the gas flow.
  • MFC mass flow controllers
  • valves 243a, 243b and 243c which are on-off valves are arranged in order from the upstream side of the gas flow.
  • Gas supply pipes 232d, 232e, and 232f for supplying an inert gas are connected to the gas supply pipes 232a, 232b, and 232c downstream of the valves 243a, 243b, and 243c, respectively.
  • MFCs 241d, 241e and 241f and valves 243d, 243e and 243f are provided in this order from the upstream side of the gas flow.
  • the nozzle 249a rises in the space between the inner wall of the reaction tube 203 and the wafer 200 along the upper part from the lower part of the inner wall of the reaction tube 203 toward the upper side in the loading direction of the wafer 200.
  • the nozzle 249a is provided along the wafer array area in the area horizontally surrounding the wafer array area on the side of the wafer array area (mount area) on which the wafers 200 are arrayed (placed). . That is, the nozzles 249 a are provided in the direction perpendicular to the surface (flat surface) of the wafer 200 on the side of the end portion (peripheral portion) of each wafer 200 carried into the processing chamber 201.
  • a gas supply hole 250a for supplying gas is provided on the side surface of the nozzle 249a.
  • the gas supply holes 250 a are opened toward the center of the reaction tube 203, and can supply gas toward the wafer 200.
  • a plurality of gas supply holes 250a are provided from the lower portion to the upper portion of the reaction tube 203, each having the same opening area, and further provided at the same opening pitch.
  • the nozzles 249 b and 249 c are respectively provided in buffer chambers 237 b and 237 c which are gas dispersion spaces.
  • the buffer chambers 237b and 237c are, as shown in FIG. 3, in an annular space in plan view between the inner wall of the reaction tube 203 and the wafer 200, and in a portion extending from the lower portion to the upper portion of the inner wall of the reaction tube 203 , And along the loading direction of the wafers 200. That is, the buffer chambers 237b and 237c are formed by the buffer structures 300 and 400 along the wafer array area in the area horizontally surrounding the wafer array area on the side of the wafer array area.
  • the buffer structures 300 and 400 are made of an insulator such as quartz, and gas supply ports 302 and 304 for supplying gas are formed on the arc-shaped wall surfaces of the buffer structure 300. Gas supply ports 402 and 404 for supplying a gas are formed on the arc-shaped wall surface.
  • the gas supply ports 302 and 304 face the center of the reaction tube 203 at positions facing the plasma generation regions 224 a and 224 b between rod electrodes 269 and 270 and rod electrodes 270 and 271 described later, as shown in FIG. 3. It is possible to supply gas toward the wafer 200.
  • a plurality of gas supply ports 302 and 304 are provided from the lower portion to the upper portion of the reaction tube 203, each having the same opening area, and further provided at the same opening pitch.
  • the gas supply ports 402 and 404 are opened between the rod-like electrodes 369 and 370 and at positions facing the plasma generation regions 324 a and 324 b between the rod-like electrodes 370 and 371 so as to face the center of the reaction tube 203. It is possible to supply gas toward the wafer 200.
  • a plurality of gas supply ports 402 and 404 are provided from the lower portion to the upper portion of the reaction tube 203, each having the same opening area, and further provided at the same opening pitch.
  • the nozzles 249 b and 249 c are provided to rise upward in the stacking direction of the wafers 200 along the upper part and the lower part of the inner wall of the reaction tube 203. That is, the nozzles 249b and 249c are arranged inside the buffer structures 300 and 400, respectively, along the wafer array area in the area horizontally surrounding the wafer array area on the side of the wafer array area in which the wafers 200 are arrayed. Provided in That is, the nozzles 249 b and 249 c are provided on the side of the end of the wafer 200 carried into the processing chamber 201 in the direction perpendicular to the surface of the wafer 200.
  • a gas supply hole 250b for supplying a gas is provided on the side surface of the nozzle 249b.
  • the gas supply hole 250b is directed to a wall surface formed in a radial direction with respect to the arc-shaped wall surface of the buffer structure 300 (that is, in the circumferential direction different from the opening direction of the gas supply ports 302 and 304). It is open and can supply gas toward the wall surface.
  • the reaction gas is dispersed in the buffer chamber 237 b and is not directly sprayed to the rod-like electrodes 269 to 271, thereby suppressing the generation of particles.
  • a plurality of gas supply holes 250 b are provided from the lower part to the upper part of the reaction tube 203.
  • the nozzle 249 c has the same structure as the nozzle 249 b.
  • a silane source gas containing silicon (Si) as a predetermined element is supplied from the gas supply pipe 232a into the processing chamber 201 through the MFC 241a, the valve 243a, and the nozzle 249a.
  • a source gas containing Si and a halogen element that is, a halosilane source gas
  • the halosilane raw material is a silane raw material having a halogen group.
  • the halogen element includes at least one selected from the group consisting of chlorine (Cl), fluorine (F), bromine (Br) and iodine (I).
  • halosilane source gas for example, a source gas containing Si and Cl, that is, a chlorosilane source gas can be used.
  • a chlorosilane source gas for example, dichlorosilane (SiH 2 Cl 2 , abbreviation: DCS) gas can be used.
  • a nitrogen (N) -containing gas as a reaction gas is processed as a reactant (reactant) containing an element different from the above-described predetermined element via the MFC 241b, the valve 243b, and the nozzle 249b. It is configured to be supplied into 201.
  • a hydrogen nitride based gas can be used as the N-containing gas.
  • the hydrogen nitride-based gas is also a substance composed of only two elements of N and H, and acts as a nitriding gas, that is, an N source.
  • ammonia (NH 3 ) gas can be used as the hydrogen nitride-based gas.
  • hydrogen (H 2 ) gas is supplied as reformed gas into the processing chamber 201 through the MFC 241c, the valve 243c and the nozzle 249c.
  • nitrogen (N 2 ) gas from the gas supply pipes 232d, 232e and 232f is MFCs 241d, 241e and 241f, valves 243d, 243e and 243f, gas supply pipes 232a, 232b and 232c, and nozzles, respectively.
  • the gas is supplied into the processing chamber 201 through 249a, 249b, 249c.
  • a raw material supply system as a first gas supply system is mainly configured by the gas supply pipe 232a, the MFC 241a and the valve 243a.
  • a reactant supply system (reactant supply system) as a second gas supply system is mainly configured by the gas supply pipe 232b, the MFC 241b, and the valve 243b.
  • a reformed gas supply system as a third gas supply system is mainly configured by the gas supply pipe 232c, the MFC 241c and the valve 243c.
  • An inert gas supply system mainly includes the gas supply pipes 232d, 232e and 232f, the MFCs 241d, 241e and 241f, and the valves 243d, 243e and 243f.
  • the raw material supply system, the reactant supply system, the reformed gas supply system, and the inert gas supply system are collectively referred to simply as a gas supply system (gas supply unit).
  • gas supply system gas supply unit
  • the second gas supply system and the third gas supply system may supply the same gas.
  • three rod-like electrodes 269, 270, 271 made of a conductor and having an elongated structure extend in the arrangement direction of the wafer 200 from the lower portion to the upper portion of the reaction tube 203. It is arranged.
  • Each of the rod-shaped electrodes 269, 270, 271 is provided in parallel with the nozzle 249b.
  • Each of the rod-like electrodes 269, 270, 271 is protected by being covered by an electrode protection tube 275 from the upper part to the lower part.
  • the rod-like electrodes 269 and 271 disposed at both ends of the rod-like electrodes 269, 270 and 271 are connected to the high frequency power supply 273 via the matching unit 272.
  • the rod-like electrode 270 is connected to ground which is a reference potential, and is grounded. That is, the rod-like electrode 270 connected between the rod-like electrodes 269 and 271 in which rod-like electrodes connected to the high frequency power supply 273 and rod-like electrodes connected to ground are alternately arranged and connected to the high frequency power supply 273
  • the rod-shaped electrodes 269 and 271 are commonly used as the rod-shaped electrodes.
  • the rod-like electrode 270 grounded is disposed so as to be sandwiched between rod-like electrodes 269 and 271 connected to the adjacent high frequency power supplies 273, and the rod-like electrode 269 and the rod-like electrode 270, and similarly, the rod-like electrode 271 and the rod-like electrode 270 Are paired to generate plasma.
  • the rod-like electrode 270 grounded is commonly used for the rod-like electrodes 269 and 271 connected to the two high frequency power supplies 273 adjacent to the rod-like electrode 270. Then, by applying radio frequency (RF) power from the high frequency power source 273 to the rod-like electrodes 269 and 271, plasma is generated in the plasma generation region 224 a between the rod-like electrodes 269 and 270 and the plasma generation region 224 b between the rod-like electrodes 270 and 271. Be done.
  • RF radio frequency
  • three rod-like electrodes 369, 370, 371 made of a conductor and having an elongated structure are arranged in an array of the wafer 200 from the lower part of the reaction tube 203. It is arranged along the direction.
  • the three rod-shaped electrodes 369, 370, 371 have the same configuration as the three rod-shaped electrodes 269, 270, 271 described above.
  • the rod-shaped electrodes 269, 270, and 271 constitute a first plasma generation unit that generates plasma in the plasma generation regions 224a and 224b.
  • rod-shaped electrodes 369, 370, 371 constitute a second plasma generation unit for generating plasma in plasma generation regions 324a, 324b.
  • the electrode protection pipe 275 may be included in the plasma generation unit.
  • the high-frequency power supplies 273 and 373, the matching units 272 and 372, and the first and second plasma generation units described above constitute a plasma generation apparatus.
  • the plasma generation apparatus functions as a plasma excitation unit (activation mechanism) for plasma excitation, that is, excitation (activation) of a gas to a plasma state, as described later.
  • the plasma generation apparatus has a plurality of plasma generation units as described above, and is used to perform a film formation process by performing substrate processing using plasma generated by the plurality of plasma generation units.
  • the high frequency power supplies 273 and 373 supply power to each of the plurality of plasma generation units.
  • the matching units 272 and 372 are provided between the two high frequency power supplies 273 and 373 and the two plasma generation units, and match the load impedance of the plasma generation unit with the output impedance of the high frequency power supplies 273 and 373. It is provided to take each.
  • the buffer structure 300 and the buffer structure 400 are provided in line symmetry with respect to a line passing through the centers of the exhaust pipe 231 and the reaction pipe 203 with the exhaust pipe 231 interposed therebetween. Further, the nozzle 249 a is provided at a position opposite to the wafer 200 across the exhaust pipe 231. Further, the nozzle 249 b and the nozzle 249 c are respectively provided at positions far from the exhaust pipe 231 in the buffer chamber 237.
  • the electrode protection tube 275 has a structure capable of inserting the rod-like electrodes 269, 270, 271, 369, 370, 371 into the buffer chambers 237b, 237c in a state of being separated from the atmosphere in the buffer chambers 237b, 237c.
  • the rod-shaped electrodes 269,270,271,369,370,371 inserted respectively into the electrode protection tube 275 The heat is oxidized by the heater 207.
  • the inside of the electrode protection tube 275 is purged with an inert gas such as N 2 gas using an inert gas purge mechanism
  • an inert gas such as N 2 gas
  • the O 2 concentration inside the electrode protection tube 275 can be reduced, and oxidation of the rod-like electrodes 269, 270, 271, 369, 370, 371 can be prevented.
  • the reaction pipe 203 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201.
  • the exhaust pipe 231 is provided with a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 244 as an exhaust valve (pressure adjustment unit).
  • a vacuum pump 246 as an evacuating device is connected.
  • the APC valve 244 can perform vacuum evacuation and vacuum evacuation stop inside the processing chamber 201 by opening and closing the valve while operating the vacuum pump 246, and further, with the vacuum pump 246 operating, By adjusting the valve opening based on the pressure information detected by the pressure sensor 245, the pressure in the processing chamber 201 can be adjusted.
  • An exhaust system is mainly configured by the exhaust pipe 231, the APC valve 244, and the pressure sensor 245.
  • the vacuum pump 246 may be included in the exhaust system.
  • the exhaust pipe 231 may be provided in the manifold 209 as well as the nozzles 249a, 249b, and 249c.
  • a seal cap 219 is provided as a furnace port that can close the lower end opening of the manifold 209 in an airtight manner.
  • the seal cap 219 is configured to abut on the lower end of the manifold 209 from the lower side in the vertical direction.
  • the seal cap 219 is made of metal such as SUS, for example, and formed in a disk shape.
  • an O-ring 220b is provided as a seal member that contacts the lower end of the manifold 209.
  • a rotation mechanism 267 for rotating a boat 217 described later is installed.
  • the rotation shaft 255 of the rotation mechanism 267 is connected to the boat 217 through the seal cap 219.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be vertically lifted and lowered by a boat elevator 115 as a lift mechanism vertically installed outside the reaction tube 203.
  • the boat elevator 115 is configured to be able to carry the boat 217 into and out of the processing chamber 201 by moving the seal cap 219 up and down.
  • the boat elevator 115 is configured as a transfer device (transfer mechanism) that transfers the boat 217, that is, the wafer 200 into and out of the processing chamber 201.
  • a shutter 219s as a furnace port cover capable of airtightly closing the lower end opening of the manifold 209 while the seal cap 219 is lowered by the boat elevator 115.
  • the shutter 219s is made of, for example, a metal such as SUS, and is formed in a disk shape.
  • An O-ring 220c is provided on the top surface of the shutter 219s as a seal member that abuts on the lower end of the manifold 209.
  • the opening / closing operation of the shutter 219s (lifting operation, rotation operation, etc.) is controlled by the shutter opening / closing mechanism 115s.
  • the boat 217 as a substrate support is vertically oriented with one or a plurality of, for example, 25 to 200 wafers 200 in a horizontal posture and with their centers aligned with each other. It is configured to be aligned and supported in multiple stages, that is, to be arranged at predetermined intervals.
  • the boat 217 is made of, for example, a heat resistant material such as quartz or SiC.
  • heat insulating plates 218 made of a heat resistant material such as quartz or SiC are supported in multiple stages.
  • a temperature sensor 263 as a temperature detector is installed inside the reaction tube 203.
  • the temperature in the processing chamber 201 is made to have a desired temperature distribution.
  • the temperature sensor 263 is provided along the inner wall of the reaction tube 203 in the same manner as the nozzles 249a, 249b and 249c.
  • the controller 121 which is a control unit (control device), is configured as a computer including a central processing unit (CPU) 121a, a random access memory (RAM) 121b, a storage device 121c, and an I / O port 121d. It is done.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured to be able to exchange data with the CPU 121a via the internal bus 121e.
  • An input / output device 122 configured as, for example, a touch panel or the like is connected to the controller 121.
  • the storage device 121 c is configured by, for example, a flash memory, a hard disk drive (HDD), or the like.
  • a control program for controlling the operation of the substrate processing apparatus, and a process recipe in which a procedure, conditions, and the like of a film forming process described later are described are readably stored.
  • the process recipe is a combination of processes so as to cause the controller 121 to execute each procedure in various processes (film forming process) described later so as to obtain a predetermined result, and functions as a program.
  • the process recipe, the control program and the like are collectively referred to simply as a program.
  • the process recipe is simply referred to as a recipe.
  • the RAM 121 b is configured as a memory area (work area) in which programs and data read by the CPU 121 a are temporarily stored.
  • the I / O port 121d includes the above-described MFCs 241a to 241f, valves 243a to 243f, pressure sensors 245, APC valves 244, vacuum pumps 246, heaters 207, temperature sensors 263, matching devices 272 and 372, high frequency power supplies 273 and 373, and rotations. It is connected to the mechanism 267, the boat elevator 115, the shutter open / close mechanism 115s and the like.
  • the CPU 121a is configured to read out and execute the control program from the storage device 121c, and to read out the recipe from the storage device 121c in response to the input of the operation command from the input / output device 122 or the like.
  • the CPU 121a is based on control of the rotation mechanism 267, flow adjustment operation of various gases by the MFCs 241a to 241f, opening and closing operations of the valves 243a to 243f, opening and closing operation of the APC valve 244, and the pressure sensor 245 so as to follow the contents of the read recipe.
  • Pressure adjustment operation by APC valve 244, start and stop of vacuum pump 246, temperature adjustment operation of heater 207 based on temperature sensor 263, forward and reverse rotation of boat 217 by rotation mechanism 267, rotation angle and rotation speed adjustment operation, boat elevator 115 Are configured to control lifting and lowering operations of the boat 217 by the
  • the controller 121 installs the above-described program stored in an external storage device (for example, a magnetic disk such as a hard disk, an optical disk such as a CD, a magneto-optical disk such as an MO, a semiconductor memory such as a USB memory) 123 in a computer Can be configured by
  • the storage device 121 c and the external storage device 123 are configured as computer readable recording media. Hereinafter, these are collectively referred to simply as recording media.
  • recording medium when only the storage device 121c is included, only the external storage device 123 may be included, or both of them may be included.
  • the program may be provided to the computer using communication means such as the Internet or a dedicated line without using the external storage device 123.
  • the step of supplying the DCS gas as the source gas, the step of supplying the plasma-excited NH 3 gas as the reaction gas, and the step of supplying the plasma-excited H 2 gas as the reforming gas are asynchronously That is, an example in which a silicon nitride film (SiN film) is formed on the wafer 200 as a film containing Si and N by performing a predetermined number of times (one or more times) without synchronization will be described. Also, for example, a predetermined film may be formed on the wafer 200 in advance. Further, a predetermined pattern may be formed in advance on the wafer 200 or a predetermined film.
  • SiN film silicon nitride film
  • wafer When the term “wafer” is used in the present specification, it may mean the wafer itself or a laminate of the wafer and a predetermined layer or film formed on the surface thereof.
  • surface of wafer When the term “surface of wafer” is used in the present specification, it may mean the surface of the wafer itself or the surface of a predetermined layer or the like formed on the wafer.
  • the phrase “forming a predetermined layer on the wafer” means that the predetermined layer is directly formed on the surface of the wafer itself, or a layer formed on the wafer, etc. It may mean forming a predetermined layer on top of.
  • substrate in this specification is also synonymous with the use of the word "wafer”.
  • Step S1 When a plurality of wafers 200 are loaded in the boat 217 (wafer charging), the shutter 219 s is moved by the shutter open / close mechanism 115 s to open the lower end opening of the manifold 209 (shutter open). Thereafter, as shown in FIG. 1, the boat 217 supporting the plurality of wafers 200 is lifted by the boat elevator 115 and carried into the processing chamber 201 (boat loading). In this state, the seal cap 219 seals the lower end of the manifold 209 via the O-ring 220b.
  • the vacuum pump 246 evacuates (depressurizes and evacuates) the interior of the processing chamber 201, that is, the space in which the wafer 200 exists has a desired pressure (vacuum degree).
  • the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 244 is feedback-controlled based on the measured pressure information.
  • the wafer 200 in the processing chamber 201 is heated by the heater 207 so as to have a desired temperature.
  • the degree of energization of the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution.
  • rotation of the boat 217 and the wafer 200 by the rotation mechanism 267 is started.
  • the evacuation in the process chamber 201 and the heating and rotation of the wafer 200 are both continued at least until the process on the wafer 200 is completed.
  • step S 3 DCS gas is supplied to the wafer 200 in the processing chamber 201.
  • the valve 243a is opened to flow the DCS gas into the gas supply pipe 232a.
  • the flow rate of the DCS gas is adjusted by the MFC 241 a, supplied from the gas supply hole 250 a into the processing chamber 201 through the nozzle 249 a, and exhausted from the exhaust pipe 231.
  • the valve 243 d may be opened to flow the N 2 gas into the gas supply pipe 232 d.
  • the flow rate of the N 2 gas is adjusted by the MFC 241 d, and the N 2 gas is supplied into the processing chamber 201 together with the DCS gas and exhausted from the exhaust pipe 231.
  • valves 243e and 243f may be opened to flow the N 2 gas into the gas supply pipes 232e and 232f.
  • the N 2 gas is supplied into the processing chamber 201 through the gas supply pipes 232 b and 232 c and the nozzles 249 b and 249 c, and is exhausted from the exhaust pipe 231.
  • the supply flow rate of the DCS gas controlled by the MFC 241 a is, for example, a flow rate within a range of 1 sccm or more and 6000 sccm or less, preferably 2000 sccm or more and 3000 sccm or less.
  • the supply flow rate of the N 2 gas controlled by the MFCs 241 d, 241 e, and 241 f is, for example, a flow rate in the range of 100 sccm or more and 10000 sccm or less.
  • the pressure in the processing chamber 201 is, for example, a pressure in the range of 1 Pa or more and 2666 Pa or less, preferably 665 Pa or more and 1333 Pa.
  • the supply time of the DCS gas is, for example, in the range of 1 second or more and 10 seconds or less, preferably 1 second or more and 3 seconds or less.
  • the temperature of the heater 207 is such that the temperature of the wafer 200 is in the range of, for example, 0 ° C. to 700 ° C., preferably room temperature (25 ° C.) to 550 ° C., more preferably 40 ° C. to 500 ° C. Set to temperature.
  • the amount of heat applied to the wafer 200 can be reduced, and the heat history received by the wafer 200 Control can be performed well.
  • a Si-containing layer containing Cl is formed on the wafer 200 (a base film on the surface).
  • the Si-containing layer containing Cl may be a Si layer containing Cl, may be an adsorption layer of DCS, or may include both of them.
  • the Si-containing layer containing Cl is simply referred to as a Si-containing layer.
  • the valve 243 a is closed to stop the supply of DCS gas into the processing chamber 201.
  • the APC valve 244 kept open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246 to contribute to the formation of the unreacted or Si-containing layer remaining in the processing chamber 201, and the DCS gas or reaction sub Products and the like are removed from the processing chamber 201 (S4).
  • the valves 243 d, 243 e and 243 f are kept open to maintain the supply of N 2 gas into the processing chamber 201.
  • the N 2 gas acts as a purge gas. Note that this step S4 may be omitted.
  • aminosilane source gases such as butylaminosilane gas and hexamethyldisilazane gas, Monochlorosilane gas, trichlorosilane gas, tetrachlorosilane gas, inorganic halosilane source gases such as hexachlorodisilane gas, octachlorotrisilane gas, monosilane gas, disilane gas,
  • a halogen group non-containing inorganic silane source gas such as trisilane gas can be suitably used.
  • rare gases such as Ar gas, He gas, Ne gas and Xe gas can be used in addition to N 2 gas.
  • reaction gas supply step S5, S6
  • plasma excited NH 3 gas as a reaction gas is supplied to the wafer 200 in the processing chamber 201 (S5).
  • the opening and closing control of the valves 243 b and 243 d to 243 f is performed in the same procedure as the opening and closing control of the valves 243 a and 243 d to 243 f in step S 3.
  • the flow rate of the NH 3 gas is adjusted by the MFC 241 b and supplied into the buffer chamber 237 b through the nozzle 249 b.
  • high frequency power is supplied between the rod-like electrodes 269, 270, and 271.
  • the NH 3 gas supplied into the buffer chamber 237 b is excited to be in a plasma state (is turned into a plasma to be activated), supplied as an activated species (NH 3 * ) into the processing chamber 201, and exhausted from the exhaust pipe 231.
  • the supply flow rate of the NH 3 gas controlled by the MFC 241 b is, for example, in the range of 100 sccm or more and 10000 sccm or less, preferably 1000 sccm or more and 2000 sccm or less.
  • the high frequency power applied to the rod-like electrodes 269, 270, 271 is, for example, a power in the range of 50 W or more and 600 W or less.
  • the pressure in the processing chamber 201 is, for example, a pressure in the range of 1 Pa or more and 500 Pa or less. By using a plasma, it is possible to activate the NH 3 gas even when the pressure in the processing chamber 201 is set to such a relatively low pressure zone.
  • the time for supplying activated species obtained by plasma excitation of NH 3 gas to the wafer 200 ie, the gas supply time (irradiation time) is, for example, 1 second or more and 180 seconds or less, preferably 1 second or more, The time shall be within the range of 60 seconds or less.
  • Other processing conditions are the same as the above-described S3.
  • the Si-containing layer formed on the wafer 200 is plasma-nitrided.
  • the energy of the plasma-excited NH 3 gas breaks the Si—Cl bond and the Si—H bond of the Si-containing layer. Cl and H which have been debonded to Si will be detached from the Si-containing layer.
  • Si in the Si-containing layer which is to have dangling bonds (dangling bonds) due to desorption of Cl and the like, bonds with N contained in the NH 3 gas to form a Si-N bond.
  • the Rukoto As this reaction proceeds, the Si-containing layer is changed to a layer containing Si and N, ie, a silicon nitride layer (SiN layer).
  • the process accompanied by this change may be called a modification process.
  • step S 6 After the Si-containing layer is changed to a SiN layer, the valve 243 b is closed to stop the supply of NH 3 gas. Also, the supply of high frequency power between the rod-like electrodes 269, 270 and 271 is stopped. Then, the NH 3 gas and reaction byproducts remaining in the processing chamber 201 are removed from the inside of the processing chamber 201 by the same processing procedure and processing conditions as step S 4 (S 6). Note that this step S6 may be omitted.
  • nitriding agent that is, NH 3 -containing gas to be plasma-excited
  • NH 3 gas diazene (N 2 H 2 ) gas, hydrazine (N 2 H 4 ) gas, N 3 H 8 gas, etc.
  • diazene (N 2 H 2 ) gas, hydrazine (N 2 H 4 ) gas, N 3 H 8 gas, etc. may be used .
  • step S4 in addition to the N 2 gas, for example, various rare gases exemplified in step S4 can be used.
  • the opening and closing control of the valves 243c and 243d to 243f is performed in the same procedure as the opening and closing control of the valves 243a and 243d to 243f in step S3.
  • the flow rate of the H 2 gas is adjusted by the MFC 241 c and supplied into the buffer chamber 237 c through the nozzle 249 c.
  • high frequency power is supplied between the rod-like electrodes 369, 370, and 371.
  • the H 2 gas supplied into the buffer chamber 237 c is excited to be in a plasma state (is turned into a plasma to be activated), supplied as an activated species (H 2 * ) into the processing chamber 201, and exhausted from the exhaust pipe 231.
  • valve 243 c is closed to stop the supply of H 2 gas. Also, the supply of high frequency power between the rod-shaped electrodes 369, 370, 371 is stopped. Then, the H 2 gas and reaction byproducts remaining in the processing chamber 201 are removed from the processing chamber 201 according to the same processing procedure and processing conditions as steps S 4 and S 6 (S 8). Note that this step S8 may be omitted.
  • step S4 in addition to the N 2 gas, for example, various rare gases exemplified in step S4 can be used.
  • the above-described S3, S4, S5, S6, S7, and S8 may be performed non-simultaneously, ie, without synchronization, in this order as one cycle, and this cycle is a predetermined number of times (n times), ie, one or more times
  • n times a predetermined number of times
  • a SiN film of a predetermined composition and a predetermined film thickness can be formed on the wafer 200.
  • the above cycle is preferably repeated multiple times. That is, the thickness of the SiN layer formed per cycle is made smaller than the desired film thickness, and the film thickness of the SiN film formed by laminating the SiN layers becomes the desired film thickness as described above.
  • the cycle is repeated multiple times.
  • the substrate processing on the wafer 200 is performed by the substrate processing method as described above, and the semiconductor device is manufactured. That is, the step of loading the wafer 200 into the processing chamber 201 of the substrate processing apparatus of the present embodiment, and the processing gas which is plasma-excited by the plasma generation apparatus is supplied into the processing chamber 201 to process the loaded wafer 200.
  • the controller 12 functions as a plasma control device that controls the plasma generation process described above.
  • the second gas supply system and the third gas supply system may supply the same gas. That is, for example, the second gas supply system is a first reactant supply system, and the third gas supply system is a second reactant supply system to supply the same reactant as the second gas supply system. You may configure it.
  • a DCS gas may be supplied as a source gas, and an NH 3 gas may be supplied as the same reactant from the second gas supply system and the third gas supply system.
  • gas sources of NH 3 gas may be the same or may be individually arranged.
  • the step of supplying the DCS gas as the source gas and the step of supplying the plasma-excited NH 3 gas as the reaction gas are not performed simultaneously, that is, performed a predetermined number of times (one or more) without synchronization.
  • a silicon nitride film (SiN film) is formed as a film containing Si and N on 200, and the reaction process is as follows.
  • the high frequency power supply 273 includes an oscillator 511, an amplifier 512, a directional coupler (coupler) 513, a band pass filter (hereinafter abbreviated as BPF) 514, and a power monitor 515. It is configured.
  • the high frequency power supply 273 and the high frequency power supply 373 have the same configuration, and the oscillator (high frequency oscillator) 511, the amplifier 512, the directional coupler 513, the BPF 514, and the power monitor 515 are respectively
  • the configuration corresponds to that of the oscillator 521, the amplifier 522, the directional coupler 523, the BPF 524, and the power monitor 525. Therefore, in the following description, the configuration of the high frequency power supply 273 will be mainly described.
  • the oscillator 511 oscillates a high frequency of 28 MHz (frequency f1), and the oscillator 521 in the high frequency power source 373 is described as oscillating a high frequency of 30 MHz (frequency f2).
  • the oscillation frequency of each of the oscillators 511 and 521 is not limited to this, and a frequency band such as 13.56 MHz may be used, for example.
  • the amplifier 512 amplifies the high frequency oscillated by the oscillator 511 and outputs the amplified high frequency to the directional coupler 513.
  • the directional coupler 513 is disposed downstream of the oscillator 511, and extracts the traveling wave component from the oscillator 511 and part of the reflected wave component from the matching unit 272, respectively.
  • the BPF 514 is a filter for removing a noise signal added to the reflected wave component extracted by the directional coupler 513.
  • the BPF 514 is composed of two filters having the same characteristics, and the traveling wave component extracted by the directional coupler 513 also passes through the BPF 514 in order to cancel the phase shift between the reflected wave component and the traveling wave component.
  • the configuration is as follows.
  • the power monitor 515 measures the ratio (reflection coefficient) between the reflected wave component after passing through the BPF 514 and the traveling wave component after passing through the BPF 514 extracted by the directional coupler 513, and the value of this ratio
  • the matching device 272 is feedback-controlled so that the phase difference between the reflected wave component and the traveling wave component becomes smaller.
  • the BPFs 514 and 524 are band pass filters for removing noise caused by the difference in oscillation frequency between the oscillators 511 and 521 of the two high frequency power supplies 273 and 373, respectively.
  • the passbands of the BPFs 514 and 524 are set to be in a frequency range that allows the oscillation frequencies 28 MHz and 30 MHz of the oscillators 511 and 521 of the two high frequency power supplies 273 and 373 to pass.
  • the pass band of BPF 514 is set to 26 MHz to 30 MHz, which is ⁇ 2 MHz with 28 MHz as the center frequency
  • the pass band of BPF 524 is set as 28 MHz to 32 MHz, which is ⁇ 2 MHz with 30 MHz as the center frequency.
  • FIG. 9 a specific circuit configuration example of the BPF 514 is shown in FIG. 9, and its frequency characteristic is shown in FIG. Although only the filter configuration for removing the noise of the reflected wave component input to the BPF 514 is shown in FIG. 9, the traveling wave component extracted by the directional coupler 513 is also passed through the same filter configuration. It has become.
  • the circuit configuration of the BPF 514 is configured as a noninverting amplifier using a wide band operational amplifier (operational amplifier) 81, and the reflected wave from the directional coupler 513 is input to the noninverting input terminal as an input signal Vin.
  • circuit elements such as capacitors C 1 and C 2 and resistors R 1 and R 2 are connected to the wide band operational amplifier 81, and the circuit configuration is such that the output signal Vout is output to the power monitor 515.
  • C1 is 245 pF
  • C2 is 212 pF
  • R1 and R2 are each 25 ⁇ . Therefore, as shown in FIG. 10, the cutoff frequency (cutoff frequency) FL (1 / (2 ⁇ ⁇ C1 ⁇ R1)) of the low band side of the BPF 514 is approximately 26 MHz, and the cutoff frequency FH (1 / (high) side. 2 ⁇ ⁇ C2 ⁇ R2)) is about 30 MHz.
  • C1 is 227 pF
  • C2 is 200 pF
  • FL is approximately 28 MHz
  • FH is approximately 32 MHz.
  • the BPF 514 allows 28 MHz (30 MHz) frequency components, which are the oscillation frequency of the oscillator 511 (521), to pass, and removes the 2 MHz noise signal, which is the difference frequency between the two. It is set to be
  • the signals of the traveling wave component and the reflection component separated by the directional couplers 513 and 523 pass without a large loss, and only the noise component is removed.
  • the high frequency power supply 273 , 373 are preferable to be as same as possible.
  • the frequency of the generated noise component varies greatly, even if a filter is used to remove the noise component, it may not be able to be removed effectively. If the noise component can not be removed, the possibility that a malfunction may occur in the device can not be denied.
  • taking out from the directional couplers 513 and 523 affects the feedback control of the matching units 272 and 372 and deteriorates the plasma generation characteristics if the noise component of the reflected wave component can not be effectively removed. It's no good. Then, as the plasma generation characteristics deteriorate, the generation amount of the generated plasma is significantly reduced, and the film formation characteristics may be significantly deteriorated.
  • the oscillation frequencies of the two high frequency power supplies 273 and 373 are intentionally shifted by 2 MHz so that the frequency of the mutual interference noise can be specified, and the generated mutual interference noise can be effectively removed.
  • the BPFs 514 and 524 are configured as possible.
  • the directional couplers 513 and 523 are provided to extract a part of the high frequency power oscillated by the oscillators 511 and 521 and amplified by the amplifiers 512 and 522. A signal that is attenuated by several tens of dB than large high frequency power will be input to the BPFs 514 and 524.
  • the arrangement method in the present embodiment by making the shapes of the BPFs 514 and 524 small, it is possible to keep the installation space small and the cost low. Moreover, according to the arrangement method in the present embodiment, it is possible to accurately acquire only the reflected wave signal component.
  • FIG. 11 shows a configuration in which the high frequency power supply 373 a is replaced in place of the high frequency power supply 373.
  • the high frequency power source 373a is different from the high frequency power source 373 in that the oscillator 521 is removed from the high frequency power source 373 and the oscillation frequency of the oscillator 511 of the high frequency power source 273 is input as shown in FIG.
  • the distance of the signal lines to be distributed so that no phase difference occurs in the outputs of the high frequency power supplies 273 and 373. It is desirable to make the same.
  • FIG. 12 a structure in which electric circuits of two high frequency power supplies are housed in one case and configured as one high frequency power supply 473 is adopted, and the distance from the oscillator 511 to the amplifier 512 and the oscillator It is desirable that the distance from 511 to the amplifier 522 be substantially the same, and that the switch 90 be capable of switching between the oscillator 511 and the oscillator 521.
  • substrate processing is performed using each of the oscillators 511 and 512 during normal use, and only the oscillator 511 is used when mutual interference noise can not be removed due to problems such as aging.
  • the high frequency power supply 473 so as to process the substrate, it is possible to generate uniform plasma in each of the first and second plasma generation units. Contrary to the above, at first, only the oscillator 511 is used, and if there is a difference between the plasma generation of the first plasma generation unit and the second plasma generation unit, the second oscillator 521 is used. Good.
  • the present invention is not limited to such an embodiment, and the supply order of the raw material and the reaction gas may be reversed. That is, the raw material may be supplied after the reaction gas is supplied. By changing the supply order, it is possible to change the film quality and the composition ratio of the formed film.
  • the SiN film is formed on the wafer 200
  • the present invention is not limited to such an aspect, and a silicon oxide film (SiO film), a silicon oxycarbonized film (SiOC film), a silicon oxycarbonitride film (SiOCN film), a silicon oxynitride film (SiON) on a wafer 200 Film), silicon carbonitride film (SiCN film), silicon boronitride film (SiBN film), silicon borocarbonitride film (SiBCN film), ⁇ carbonitride film, etc.
  • Si system nitride films such as (BCN film
  • a C-containing gas such as C 3 H 6
  • an N-containing gas such as NH 3
  • a B-containing gas such as BCl 3
  • a metal-based thin film such as a TiN film, a TiO film, a TiOC film, a TiOCN film, or a TiON film is formed on the wafer 200.
  • tetrakis (dimethylamino) titanium gas for example, tetrakis (ethylmethylamino) hafnium gas, tetrakis (ethylmethylamino) zirconium gas, trimethylaluminum gas, titanium tetrachloride gas, hafnium tetrachloride gas, etc. as source gases.
  • titanium gas tetrakis (dimethylamino) titanium gas
  • tetrakis (ethylmethylamino) hafnium gas for example, tetrakis (ethylmethylamino) hafnium gas, tetrakis (ethylmethylamino) zirconium gas, trimethylaluminum gas, titanium tetrachloride gas, hafnium tetrachloride gas, etc. as source gases.
  • reaction gas the above-mentioned reaction gas can be used.
  • the present invention can be suitably applied in the case of forming a metalloid film containing a metalloid element or a metal film containing a metal element.
  • the processing procedure and processing conditions of the film formation processing can be the same as the processing procedure and processing conditions of the film formation processing described in the above-described embodiment and modification. Also in these cases, the same effect as the above-described embodiment and modification can be obtained.
  • the recipe used for the film forming process be individually prepared according to the process content, and stored in the storage device 121 c via the telecommunication line or the external storage device 123. Then, when starting various processes, it is preferable that the CPU 121a appropriately select an appropriate recipe from among the plurality of recipes stored in the storage device 121c according to the processing content. As a result, it is possible to form thin films of various film types, composition ratios, film qualities, and film thicknesses in a versatile manner and with high reproducibility by one substrate processing apparatus. In addition, the burden on the operator can be reduced, and various processing can be started quickly while avoiding an operation error.
  • the above-described recipe is not limited to the case of creating a new one, and may be prepared, for example, by changing an existing recipe already installed in the substrate processing apparatus.
  • the changed recipe may be installed in the substrate processing apparatus via the telecommunication line or the recording medium recording the recipe.
  • the existing recipe that has already been installed in the substrate processing apparatus may be directly changed by operating the input / output device 122 provided in the existing substrate processing apparatus.
  • the present invention can provide a technology that enables stable plasma generation even when plasma generation is performed using a plurality of high frequency power supplies.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

プラズマ発生部に電源を供給するための高周波電源と、前記高周波電源と前記プラズマ発生部との間に設けられ、前記プラズマ発生部の負荷インピーダンスと前記高周波電源の出力インピーダンスとの整合をとるための整合器とを備え、前記高周波電源は、高周波を発振する高周波発振器と、前記高周波発振器の後段に配置され、前記高周波発振器からの進行波成分と前記整合器からの反射波成分の一部をそれぞれ取り出す方向性結合器と、前記方向性結合器によって取り出された前記反射波成分に加わったノイズ信号を除去するフィルタと、前記フィルタを通過後の前記反射波成分と、前記方向性結合器によって取り出された前記進行波成分とを測定して、前記整合器からの反射波成分が少なくなるように前記整合器をフィードバック制御する電力モニタとを有する技術を提供する。

Description

プラズマ生成装置、基板処理装置および半導体装置の製造方法
 本発明は、プラズマ生成装置、基板処理装置および半導体装置の製造方法に関する。
 半導体装置製造工程の1つに、基板処理装置の処理室内に基板を搬入し、処理室内に供給した原料ガスと反応ガスなどの処理ガスにプラズマを用いて活性化させ、基板上に絶縁膜や半導体膜、導体膜等の各種膜を形成したり、各種膜を除去したりする基板処理が行われることがある。プラズマは、堆積する薄膜の反応を促進したり、薄膜から不純物を除去したり、あるいは成膜原料の化学反応を補助したりする為などに用いられる(例えば、特許文献1参照)。
特開2015-92637号公報
 しかしながら、複数の高周波電源を用いてプラズマ生成を行う処理装置では、それぞれの高周波電源の周波数の差が相互に干渉してノイズとなってしまうため、安定したプラズマ生成を行うことができない場合があった。
 本発明の目的は、複数の高周波電源を用いてプラズマ生成を行う場合でも、安定したプラズマ生成を行うことが可能な技術を提供することにある。
 本発明の一態様によれば、複数のプラズマ発生部を用いて基板処理する技術であって、
 複数のプラズマ発生部のそれぞれに電源を供給するための複数の高周波電源と、
 前記複数の高周波電源と前記複数のプラズマ発生部との間に設けられ、前記プラズマ発生部の負荷インピーダンスと前記高周波電源の出力インピーダンスとの整合をそれぞれとるための複数の整合器と、
 を備え、
 前記複数の高周波電源のうちの少なくとも1つの高周波電源は、
 高周波を発振する高周波発振器と、
 前記高周波発振器の後段に配置され、前記高周波発振器からの進行波成分と前記整合器からの反射波成分の一部をそれぞれ取り出す方向性結合器と、
 前記方向性結合器によって取り出された前記反射波成分に加わったノイズ信号を除去するフィルタと、
 前記フィルタを通過後の前記反射波成分と、前記方向性結合器によって取り出された前記進行波成分とを測定して、反射波成分が少なくなるように前記整合器をフィードバック制御する電力モニタとを有する技術が提供される。
 本発明によれば、複数の高周波電源を用いてプラズマ生成を行う場合でも、安定したプラズマ生成を行うことが可能な技術を提供することが可能となる。
本発明の実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。 本発明の実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。 本発明の実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を図1のA-A線断面図で示す図である。 本発明の実施形態で好適に用いられる基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。 本発明の実施形態に係る基板処理工程のフローチャートである。 本発明の実施形態に係る基板処理工程におけるガス供給のタイミングを示す図である。 本発明の実施形態に係る他の基板処理工程におけるガス供給のタイミングを示す図である。 高周波電源273,373の構成を説明するための図である。 BPF514の具体的な回路構成例を示す図である。 図9に示したBPF514の周波数特性を示す図である。 高周波電源のその他の構成例を示す図である。 高周波電源のその他の構成例を示す図である。
 <本発明の実施形態>
 以下、本発明の一実施形態の基板処理装置について図1から図10を参照しながら説明する。
(1)基板処理装置の構成 (加熱装置)
 本発明の一実施形態の基板処理装置は、図1に示すように、処理炉202を有する。この処理炉202は基板を垂直方向多段に収容することが可能な、いわゆる縦型炉であり、加熱装置(加熱機構)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。ヒータ207は、後述するようにガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
(処理室)
 ヒータ207の内側には、ヒータ207と同心円状に反応管203が配設されている。反応管203は、例えば石英(SiO2)または炭化シリコン(SiC)等の耐熱性材料からなり、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の下方には、反応管203と同心円状に、マニホールド(インレットフランジ)209が配設されている。マニホールド209は、例えばステンレス(SUS)等の金属からなり、上端および下端が開口した円筒形状に形成されている。マニホールド209の上端部は、反応管203の下端部に係合しており、反応管203を支持するように構成されている。マニホールド209と反応管203との間には、シール部材としてのOリング220aが設けられている。マニホールド209がヒータベースに支持されることにより、反応管203は垂直に据え付けられた状態となる。主に、反応管203とマニホールド209とにより処理容器(反応容器)が構成されている。処理容器の内側である筒中空部には処理室201が形成されている。処理室201は、複数枚の基板としてのウエハ200を収容可能に構成されている。なお、処理容器は上記の構成に限らず、反応管203のみを処理容器と称する場合もある。
 処理室201内には、ノズル249a,249b,249cが、マニホールド209の側壁を貫通するように設けられている。なお、ノズル249aが見える面の断面図を図1に示し、ノズル249b,249cが見える面の断面図を図2に示す。
 ノズル249a,249b,249cには、ガス供給管232a,232b,232cが、それぞれ接続されている。このように、反応管203には3本のノズル249a,249b,249cと、3本のガス供給管232a,232b,232cとが設けられており、処理室201内へ複数種類のガスを供給することが可能となっている。なお、マニホールド209を設置せず、反応管203のみを処理容器とした場合、ノズル249a,249b,249cは反応管203の側壁を貫通するように設けられていてもよい。
 ガス供給管232a,232b,232cには、ガス流の上流側から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a,241b,241cおよび開閉弁であるバルブ243a,243b,243cがそれぞれ設けられている。ガス供給管232a,232b,232cのバルブ243a,243b,243cよりも下流側には、不活性ガスを供給するガス供給管232d,232e,232fがそれぞれ接続されている。ガス供給管232d,232e,232fには、ガス流の上流側から順に、MFC241d,241e,241fおよびバルブ243d,243e,243fがそれぞれ設けられている。
 ノズル249aは、図3に示すように、反応管203の内壁とウエハ200との間における空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がるように設けられている。すなわち、ノズル249aは、ウエハ200が配列(載置)されるウエハ配列領域(載置領域)の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うように設けられている。すなわち、ノズル249aは、処理室201内へ搬入された各ウエハ200の端部(周縁部)の側方にウエハ200の表面(平坦面)と垂直となる方向に設けられている。ノズル249aの側面には、ガスを供給するガス供給孔250aが設けられている。ガス供給孔250aは、反応管203の中心を向くように開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔250aは、反応管203の下部から上部にわたって複数設けられ、それぞれが同一の開口面積を有し、更に同じ開口ピッチで設けられている。
 ノズル249b,249cは、ガス分散空間であるバッファ室237b,237c内にそれぞれ設けられている。バッファ室237b,237cは、図3に示すように、それぞれ反応管203の内壁とウエハ200との間における平面視において円環状の空間に、また、反応管203の内壁の下部より上部にわたる部分に、ウエハ200の積載方向に沿って設けられている。すなわち、バッファ室237b,237cは、ウエハ配列領域の側方のウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うようにバッファ構造300,400によって形成されている。バッファ構造300,400は、石英などの絶縁物によって構成されており、バッファ構造300の円弧状に形成された壁面には、ガスを供給するガス供給口302,304が形成され、バッファ構造400の円弧状に形成された壁面には、ガスを供給するガス供給口402,404が形成されている。
 ガス供給口302,304は、図3に示すように、後述する棒状電極269,270間、棒状電極270,271間のプラズマ生成領域224a,224bに対向する位置にそれぞれ反応管203の中心を向くように開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給口302,304は、反応管203の下部から上部にわたって複数設けられ、それぞれが同一の開口面積を有し、更に同じ開口ピッチで設けられている。また、同様に、ガス供給口402,404は、棒状電極369,370間、棒状電極370,371間のプラズマ生成領域324a、324bに対向する位置にそれぞれ反応管203の中心を向くように開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給口402,404は、反応管203の下部から上部にわたって複数設けられ、それぞれが同一の開口面積を有し、更に同じ開口ピッチで設けられている。
 ノズル249b,249cは、それぞれ反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がるように設けられている。すなわち、ノズル249b,249cは、それぞれバッファ構造300,400の内側であって、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うように設けられている。すなわち、ノズル249b,249cは、処理室201内へ搬入されたウエハ200の端部の側方にウエハ200の表面と垂直となる方向に設けられている。
 ノズル249bの側面には、ガスを供給するガス供給孔250bが設けられている。ガス供給孔250bは、バッファ構造300の円弧状に形成された壁面に対して径方向に形成された壁面に向くように(すなわち、ガス供給口302,304の開口向きとは異なる周方向に)開口しており、壁面に向けてガスを供給することが可能となっている。これにより、反応ガスがバッファ室237b内で分散され、棒状電極269~271に直接吹き付けることがなくなり、パーティクルの発生が抑制される。ガス供給孔250bは、ガス供給孔250aと同様に、反応管203の下部から上部にわたって複数設けられている。なお、ノズル249cにおいてもノズル249bと同様の構造を有する。
 ガス供給管232aからは、所定元素を含む原料として、例えば、所定元素としてのシリコン(Si)を含むシラン原料ガスが、MFC241a、バルブ243a、ノズル249aを介して処理室201内へ供給される。
 シラン原料ガスとしては、例えば、Siおよびハロゲン元素を含む原料ガス、すなわち、ハロシラン原料ガスを用いることができる。ハロシラン原料とは、ハロゲン基を有するシラン原料のことである。ハロゲン元素は、塩素(Cl)、フッ素(F)、臭素(Br)、ヨウ素(I)からなる群より選択される少なくとも1つを含む。
 ハロシラン原料ガスとしては、例えば、SiおよびClを含む原料ガス、すなわち、クロロシラン原料ガスを用いることができる。クロロシラン原料ガスとしては、例えば、ジクロロシラン(SiH2Cl2、略称:DCS)ガスを用いることができる。
 ガス供給管232bからは、上述の所定元素とは異なる元素を含むリアクタント(反応体)として、例えば、反応ガスとしての窒素(N)含有ガスが、MFC241b、バルブ243b、ノズル249bを介して処理室201内へ供給されるように構成されている。N含有ガスとしては、例えば、窒化水素系ガスを用いることができる。窒化水素系ガスは、NおよびHの2元素のみで構成される物質ともいえ、窒化ガス、すなわち、Nソースとして作用する。窒化水素系ガスとしては、例えば、アンモニア(NH3)ガスを用いることができる。
 ガス供給管232cからは、改質ガスとして例えば水素(H2)ガスが、MFC241c、バルブ243c、ノズル249cを介して処理室201内へ供給されるように構成されている。
 ガス供給管232d,232e,232fからは、不活性ガスとして、例えば、窒素(N2)ガスが、それぞれMFC241d,241e,241f、バルブ243d,243e,243f、ガス供給管232a,232b,232c、ノズル249a,249b,249cを介して処理室201内へ供給される。
 主に、ガス供給管232a、MFC241a、バルブ243aにより、第1のガス供給系としての原料供給系が構成される。主に、ガス供給管232b、MFC241b、バルブ243bにより、第2のガス供給系としての反応体供給系(リアクタント供給系)が構成される。主に、ガス供給管232c、MFC241c、バルブ243cにより、第3のガス供給系としての改質ガス供給系が構成される。主に、ガス供給管232d,232e,232f、MFC241d,241e,241f、バルブ243d,243e,243fにより、不活性ガス供給系が構成される。原料供給系、反応体供給系、改質ガス供給系および不活性ガス供給系を総称して単にガス供給系(ガス供給部)とも称する。なお、後述するように、第2のガス供給系と第3のガス供給系は同一ガスを供給するようにしても良い。
(プラズマ生成装置)
 バッファ室237b内には、図3に示すように、導電体からなり、細長い構造を有する3本の棒状電極269,270,271が、反応管203の下部より上部にわたりウエハ200の配列方向に沿って配設されている。棒状電極269,270,271のそれぞれは、ノズル249bと平行に設けられている。棒状電極269,270,271のそれぞれは、上部より下部にわたって電極保護管275により覆われることで保護されている。棒状電極269,270,271のうち両端に配置される棒状電極269,271は、整合器272を介して高周波電源273に接続されている。棒状電極270は、基準電位であるアースに接続され、接地されている。すなわち、高周波電源273に接続される棒状電極と、接地される棒状電極と、が交互に配置され、高周波電源273に接続された棒状電極269,271の間に配置された棒状電極270は、接地された棒状電極として、棒状電極269,271に対して共通して用いられている。換言すると、接地された棒状電極270は、隣り合う高周波電源273に接続された棒状電極269,271に挟まれるように配置され、棒状電極269と棒状電極270、同じく、棒状電極271と棒状電極270がそれぞれ対となるように構成されてプラズマを生成する。つまり、接地された棒状電極270は、棒状電極270に隣り合う2本の高周波電源273に接続された棒状電極269,271に対して共通して用いられている。そして、高周波電源273から棒状電極269,271に高周波(RF)電力を印加することで、棒状電極269,270間のプラズマ生成領域224a、棒状電極270,271間のプラズマ生成領域224bにプラズマが生成される。
 同様に、バッファ室237c内には、図3に示すように、導電体からなり、細長い構造を有する3本の棒状電極369,370,371が、反応管203の下部より上部にわたりウエハ200の配列方向に沿って配設されている。この3本の棒状電極369,370,371は、上記で説明した3本の棒状電極269,270,271と同様な構成となっている。
 そして、棒状電極269,270,271によりプラズマ生成領域224a,224bにプラズマを生成する第1のプラズマ発生部が構成される。同様に、棒状電極369,370,371によりプラズマ生成領域324a,324bにプラズマを生成する第2のプラズマ発生部が構成される。なお、電極保護管275をプラズマ発生部に含めて考えてもよい。そして、高周波電源273,373と、整合器272,372および上記で説明した第1および第2のプラズマ発生部によりプラズマ生成装置が構成される。
 プラズマ生成装置は、後述するように、ガスをプラズマ励起、すなわち、プラズマ状態に励起(活性化)させるプラズマ励起部(活性化機構)として機能する。そして、プラズマ生成装置は、上述したように複数のプラズマ発生部を有して、この複数のプラズマ発生部により発生したプラズマを用いて基板処理を行うことにより成膜処理を行うために用いられる。
 そして、高周波電源273,373は、複数のプラズマ発生部のそれぞれに電源を供給する。また、整合器272,372は、2台の高周波電源273,373と、2つのプラズマ発生部との間に設けられ、プラズマ発生部の負荷インピーダンスと高周波電源273,373の出力インピーダンスとの整合をそれぞれとるために設けられている。
 なお、バッファ構造300とバッファ構造400は、排気管231を挟んで、排気管231と反応管203の中心を通る線に対して線対称に設けられている。また、ノズル249aは、排気管231のウエハ200を挟んで対向する位置に設けられている。また、ノズル249bとノズル249cは、それぞれバッファ室237内の排気管231から遠い位置に設けられている。
 電極保護管275は、棒状電極269,270,271,369,370,371のそれぞれをバッファ室237b,237c内の雰囲気と隔離した状態でバッファ室237b,237c内へ挿入できる構造となっている。電極保護管275の内部のO2濃度が外気(大気)のO2濃度と同程度であると、電極保護管275内へそれぞれ挿入された棒状電極269,270,271,369,370,371は、ヒータ207による熱で酸化されてしまう。このため、電極保護管275の内部にN2ガス等の不活性ガスを充填しておくか、不活性ガスパージ機構を用いて電極保護管275の内部をN2ガス等の不活性ガスでパージすることで、電極保護管275の内部のO2濃度を低減させ、棒状電極269,270,271,369,370,371の酸化を防止することができる。
(排気部)
 反応管203には、処理室201内の雰囲気を排気する排気管231が設けられている。排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および排気バルブ(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されているバルブである。主に、排気管231、APCバルブ244、圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。排気管231は、反応管203に設ける場合に限らず、ノズル249a,249b,249cと同様にマニホールド209に設けてもよい。
 マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、マニホールド209の下端に垂直方向下側から当接されるように構成されている。シールキャップ219は、例えばSUS等の金属からなり、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219の処理室201と反対側には、後述するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入および搬出することが可能なように構成されている。ボートエレベータ115は、ボート217すなわちウエハ200を、処理室201内外に搬送する搬送装置(搬送機構)として構成されている。また、マニホールド209の下方には、ボートエレベータ115によりシールキャップ219を降下させている間、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシャッタ219sが設けられている。シャッタ219sは、例えばSUS等の金属により構成され、円盤状に形成されている。シャッタ219sの上面には、マニホールド209の下端と当接するシール部材としてのOリング220cが設けられている。シャッタ219sの開閉動作(昇降動作や回動動作等)は、シャッタ開閉機構115sにより制御される。
(基板支持具)
 図1、図2に示すように基板支持具としてのボート217は、1枚または複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、所定の間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料からなる。ボート217の下部には、例えば石英やSiC等の耐熱性材料からなる断熱板218が多段に支持されている。
 図3に示すように反応管203の内部には、温度検出器としての温度センサ263が設置されている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度を所望の温度分布とする。温度センサ263は、ノズル249a,249b,249cと同様に反応管203の内壁に沿って設けられている。
(制御装置)
 次に制御装置について図4を用いて説明する。図4に示すように、制御部(制御装置)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する成膜処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する各種処理(成膜処理)における各手順をコントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、プロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート121dは、上述のMFC241a~241f、バルブ243a~243f、圧力センサ245、APCバルブ244、真空ポンプ246、ヒータ207、温度センサ263、整合器272,372、高周波電源273,373、回転機構267、ボートエレベータ115、シャッタ開閉機構115s等に接続されている。
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、回転機構267の制御、MFC241a~241fによる各種ガスの流量調整動作、バルブ243a~243fの開閉動作、APCバルブ244の開閉動作および圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の正逆回転、回転角度および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作等を制御するように構成されている。
 コントローラ121は、外部記憶装置(例えば、ハードディスク等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリ等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)基板処理工程
 次に、本実施形態の基板処理装置を使用して、半導体装置の製造工程の一工程として、ウエハ200上に薄膜を形成する工程について、図5及び図6を参照しながら説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
 ここでは、原料ガスとしてDCSガスを供給するステップと、反応ガスとしてプラズマ励起させたNH3ガスを供給するステップと、改質ガスとしてプラズマ励起させたH2ガスを供給するステップとを非同期に、すなわち同期させることなく所定回数(1回以上)行うことで、ウエハ200上に、SiおよびNを含む膜として、シリコン窒化膜(SiN膜)を形成する例について説明する。また、例えば、ウエハ200上には、予め所定の膜が形成されていてもよい。また、ウエハ200または所定の膜には予め所定のパターンが形成されていてもよい。
 本明細書では、図5に示す成膜処理のプロセスフローを、便宜上、以下のように示すこともある。以下の他の実施形態の説明においても、同様の表記を用いることとする。
  (DCS→NH3 *→H2 *)×n ⇒ SiN
 本明細書において「ウエハ」という言葉を用いた場合は、ウエハそのものを意味する場合や、ウエハとその表面に形成された所定の層や膜との積層体を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、ウエハそのものの表面を意味する場合や、ウエハ上に形成された所定の層等の表面を意味する場合がある。本明細書において「ウエハ上に所定の層を形成する」と記載した場合は、ウエハそのものの表面上に所定の層を直接形成することを意味する場合や、ウエハ上に形成されている層等の上に所定の層を形成することを意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
(搬入ステップ:S1)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、シャッタ開閉機構115sによりシャッタ219sが移動させられて、マニホールド209の下端開口が開放される(シャッタオープン)。その後、図1に示すように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内へ搬入(ボートロード)される。この状態で、シールキャップ219は、Oリング220bを介してマニホールド209の下端をシールした状態となる。
(圧力・温度調整ステップ:S2)
 処理室201の内部、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように、真空ポンプ246によって真空排気(減圧排気)される。この際、処理室201内の圧力は圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244がフィードバック制御される。また、処理室201内のウエハ200が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される。続いて、回転機構267によるボート217およびウエハ200の回転を開始する。処理室201内の排気、ウエハ200の加熱および回転は、いずれも、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。
(成膜ステップ:S3,S4,S5,S6,S7,S8)
 その後、ステップS3,S4,S5,S6,S7,S8を順次実行することで成膜ステップを行う。
(原料ガス供給ステップ:S3,S4)
 ステップS3では、処理室201内のウエハ200に対してDCSガスを供給する。
 バルブ243aを開き、ガス供給管232a内へDCSガスを流す。DCSガスは、MFC241aにより流量調整され、ノズル249aを介してガス供給孔250aから処理室201内へ供給され、排気管231から排気される。このとき同時にバルブ243dを開き、ガス供給管232d内へN2ガスを流してもよい。N2ガスは、MFC241dにより流量調整され、DCSガスと一緒に処理室201内へ供給され、排気管231から排気される。
 また、ノズル249b,249c内へのDCSガスの侵入を抑制するため、バルブ243e,243fを開き、ガス供給管232e,232f内へN2ガスを流してもよい。N2ガスは、ガス供給管232b,232c、ノズル249b,249cを介して処理室201内へ供給され、排気管231から排気される。
 MFC241aで制御するDCSガスの供給流量は、例えば1sccm以上、6000sccm以下、好ましくは2000sccm以上、3000sccm以下の範囲内の流量とする。MFC241d,241e,241fで制御するN2ガスの供給流量は、それぞれ例えば100sccm以上、10000sccm以下の範囲内の流量とする。処理室201内の圧力は、例えば1Pa以上、2666Pa以下、好ましくは665Pa以上、1333Paの範囲内の圧力とする。DCSガスの供給時間は、例えば1秒以上、10秒以下、好ましくは1秒以上、3秒以下の範囲内の時間とする。
 ヒータ207の温度は、ウエハ200の温度が、例えば0℃以上700℃以下、好ましくは室温(25℃)以上550℃以下、より好ましくは40℃以上500℃以下の範囲内の温度となるような温度に設定する。本実施形態のように、ウエハ200の温度を700℃以下、さらには550℃以下、さらには500℃以下とすることで、ウエハ200に加わる熱量を低減させることができ、ウエハ200が受ける熱履歴の制御を良好に行うことができる。
 上述の条件下でウエハ200に対してDCSガスを供給することにより、ウエハ200(表面の下地膜)上に、Clを含むSi含有層が形成される。Clを含むSi含有層はClを含むSi層であってもよいし、DCSの吸着層であってもよいし、それらの両方を含んでいてもよい。以下、Clを含むSi含有層を、単にSi含有層とも称する。
 Si含有層が形成された後、バルブ243aを閉じ、処理室201内へのDCSガスの供給を停止する。このとき、APCバルブ244を開いたままとし、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくはSi含有層の形成に寄与した後のDCSガスや反応副生成物等を処理室201内から排除する(S4)。また、バルブ243d,243e,243fは開いたままとして、処理室201内へのN2ガスの供給を維持する。N2ガスはパージガスとして作用する。なお、このステップS4を省略してもよい。
 原料ガスとしては、DCSガスのほか、テトラキスジメチルアミノシランガス、トリスジメチルアミノシランガス、ビスジメチルアミノシランガス、ビスジエチルアミノシランガス、ビスターシャリーブチルアミノシランガス、ジメチルアミノシランガス、ジエチルアミノシランガス、ジプロピルアミノシランガス、ジイソプロピルアミノシランガス、ブチルアミノシランガス、ヘキサメチルジシラザンガス等の各種アミノシラン原料ガスや、モノクロロシランガス、トリクロロシランガス、テトラクロロシランガス、ヘキサクロロジシランガス、オクタクロロトリシランガス等の無機系ハロシラン原料ガスや、モノシランガス、ジシランガス、トリシランガス等のハロゲン基非含有の無機系シラン原料ガスを好適に用いることができる。
 不活性ガスとしては、N2ガスの他、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いることができる。
(反応ガス供給ステップ:S5,S6)
 成膜処理が終了した後、処理室201内のウエハ200に対して反応ガスとしてのプラズマ励起させたNH3ガスを供給する(S5)。
 このステップでは、バルブ243b,243d~243fの開閉制御を、ステップS3におけるバルブ243a,243d~243fの開閉制御と同様の手順で行う。NH3ガスは、MFC241bにより流量調整され、ノズル249bを介してバッファ室237b内へ供給される。このとき、棒状電極269,270,271間に高周波電力を供給する。バッファ室237b内へ供給されたNH3ガスはプラズマ状態に励起され(プラズマ化して活性化され)、活性種(NH3 *)として処理室201内へ供給され、排気管231から排気される。
 MFC241bで制御するNH3ガスの供給流量は、例えば100sccm以上、10000sccm以下、好ましくは1000sccm以上、2000sccm以下の範囲内の流量とする。棒状電極269,270,271に印加する高周波電力は、例えば50W以上、600W以下の範囲内の電力とする。処理室201内の圧力は、例えば1Pa以上、500Pa以下の範囲内の圧力とする。プラズマを用いることで、処理室201内の圧力をこのような比較的低い圧力帯としても、NH3ガスを活性化させることが可能となる。NH3ガスをプラズマ励起することにより得られた活性種をウエハ200に対して供給する時間、すなわち、ガス供給時間(照射時間)は、例えば1秒以上、180秒以下、好ましくは1秒以上、60秒以下の範囲内の時間とする。その他の処理条件は、上述のS3と同様な処理条件とする。
 上述の条件下でウエハ200に対してNH3ガスを供給することにより、ウエハ200上に形成されたSi含有層がプラズマ窒化される。この際、プラズマ励起されたNH3ガスのエネルギーにより、Si含有層が有するSi-Cl結合、Si-H結合が切断される。Siとの結合を切り離されたCl、Hは、Si含有層から脱離することとなる。そして、Cl等が脱離することで未結合手(ダングリングボンド)を有することとなったSi含有層中のSiが、NH3ガスに含まれるNと結合し、Si-N結合が形成されることとなる。この反応が進行することにより、Si含有層は、SiおよびNを含む層、すなわち、シリコン窒化層(SiN層)へと変化させられる。なお、この変化を伴う処理を改質処理と呼ぶ場合もある。
 なお、Si含有層をSiN層へと改質させるには、NH3ガスをプラズマ励起させて供給する必要がある。NH3ガスをノンプラズマの雰囲気下で供給しても、上述の温度帯では、Si含有層を窒化させるのに必要なエネルギーが不足しており、Si含有層からClやHを充分に脱離させたり、Si含有層を充分に窒化させてSi-N結合を増加させたりすることは、困難なためである。
 Si含有層をSiN層へ変化させた後、バルブ243bを閉じ、NH3ガスの供給を停止する。また、棒状電極269,270,271間への高周波電力の供給を停止する。そして、ステップS4と同様の処理手順、処理条件により、処理室201内に残留するNH3ガスや反応副生成物を処理室201内から排除する(S6)。なお、このステップS6を省略してもよい。
 窒化剤、すなわち、プラズマ励起させるNH3含有ガスとしては、NH3ガスの他、ジアゼン(N22)ガス、ヒドラジン(N24)ガス、N38ガス等を用いてもよい。
 不活性ガスとしては、N2ガスの他、例えば、ステップS4で例示した各種希ガスを用いることができる。
(改質ガス供給ステップ:S7,S8)
 Si含有層をSiN層へ変化させる改質処理が終了した後、処理室201内のウエハ200に対して改質ガスとしてのプラズマ励起させたH2ガスを供給する(S7)。
 このステップでは、バルブ243c,243d~243fの開閉制御を、ステップS3におけるバルブ243a,243d~243fの開閉制御と同様の手順で行う。H2ガスは、MFC241cにより流量調整され、ノズル249cを介してバッファ室237c内へ供給される。このとき、棒状電極369,370,371間に高周波電力を供給する。バッファ室237c内へ供給されたH2ガスはプラズマ状態に励起され(プラズマ化して活性化され)、活性種(H2 *)として処理室201内へ供給され、排気管231から排気される。
 上述したステップにより形成されているSiN層に対してプラズマ励起されたH2ガス、すなわち水素の活性種(H2 *)を供給することで、ウエハ200上に形成されているSiN層に存在する塩素原子を除去することができ、高品質なSiN層を得ることができる(改質することができる)。
 その後、バルブ243cを閉じ、H2ガスの供給を停止する。また、棒状電極369,370,371間への高周波電力の供給を停止する。そして、ステップS4,S6と同様の処理手順、処理条件により、処理室201内に残留するH2ガスや反応副生成物を処理室201内から排除する(S8)。なお、このステップS8を省略してもよい。
 不活性ガスとしては、N2ガスの他、例えば、ステップS4で例示した各種希ガスを用いることができる。
(所定回数実施:S9)
 上述したS3,S4,S5,S6,S7,S8をこの順番に沿って非同時に、すなわち、同期させることなく行うことを1サイクルとし、このサイクルを所定回数(n回)、すなわち、1回以上行う(S9)ことにより、ウエハ200上に、所定組成および所定膜厚のSiN膜を形成することができる。上述のサイクルは、複数回繰り返すことが好ましい。すなわち、1サイクルあたりに形成されるSiN層の厚さを所望の膜厚よりも小さくし、SiN層を積層することで形成されるSiN膜の膜厚が所望の膜厚になるまで、上述のサイクルを複数回繰り返すことが好ましい。
(大気圧復帰ステップ:S10)
 上述の成膜処理が完了したら、ガス供給管232d,232e,232fのそれぞれから不活性ガスとしてのN2ガスを処理室201内へ供給し、排気管231から排気する。これにより、処理室201内が不活性ガスでパージされ、処理室201内に残留するガス等が処理室201内から除去される(不活性ガスパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(S10)。
(搬出ステップ:S11)
 その後、ボートエレベータ115によりシールキャップ219が下降されて、マニホールド209の下端が開口されるとともに、処理済のウエハ200が、ボート217に支持された状態でマニホールド209の下端から反応管203の外部に搬出(ボートアンロード)される(S11)。ボートアンロードの後は、シャッタ219sが移動させられ、マニホールド209の下端開口がOリング220cを介してシャッタ219sによりシールされる(シャッタクローズ)。処理済のウエハ200は、反応管203の外部に搬出された後、ボート217より取り出されることとなる(ウエハディスチャージ)。なお、ウエハディスチャージの後は、処理室201内へ空のボート217を搬入するようにしてもよい。
 このように本実施形態では、上記で説明したような基板処理方法によりウエハ200に対する基板処理が実行されて半導体装置が製造される。つまり、本実施形態の基板処理装置の処理室201内にウエハ200を搬入する工程と、処理室201内へプラズマ生成装置によりプラズマ励起させた処理ガスを供給して、搬入したウエハ200を処理する工程と、処理室201内から処理後のウエハ200を搬出する工程とを行うことにより半導体装置を製造する製造方法が実現される。そして、コントローラ12は、上記で説明したプラズマ生成処理を制御するプラズマ制御装置として機能する。
 なお、第2のガス供給系と第3のガス供給系は同一ガスを供給するようにしても良い。すなわち、例えば、第2のガス供給系を第1の反応体供給系とし、第3のガス供給系を第2の反応体供給系として第2のガス供給系と同一の反応体を供給するように構成しても良い。
 例えば、図7に示すように、原料ガスとしてDCSガスを供給し、第2のガス供給系と第3のガス供給系からは同一の反応体としてNH3ガスを供給するようにしてもよい。その際、NH3ガスのガス源は同一のものとしても良いし、個別に配置するようにしても良い。
 この場合、原料ガスとしてDCSガスを供給するステップと、反応ガスとしてプラズマ励起させたNH3ガスを供給するステップとを非同時に、すなわち同期させることなく所定回数(1回以上)行うことで、ウエハ200上に、SiおよびNを含む膜として、シリコン窒化膜(SiN膜)が形成され、反応プロセスは以下のようになる。
 (DCS→NH3 *)×n ⇒ SiN
(3)整合器272,372の調整
 次に、整合器272,372の調整を行ってプラズマ発生部の負荷インピーダンスと高周波電源273,373の出力インピーダンスとを一致させるインピーダンスマッチングを行う際の処理について説明する。
 先ず、高周波電源273,373の構成について図8を参照して説明する。
 高周波電源273は、図8に示されるように、発振器511と、増幅器512と、方向性結合器(カプラ)513と、バンドパスフィルタ(以降、BPFと略す。)514と、電力モニタ515とから構成されている。
 図8に示されるように、高周波電源273と高周波電源373とは同様な構成となっており、発振器(高周波発振器)511、増幅器512、方向性結合器513、BPF514、電力モニタ515は、それぞれ、発振器521、増幅器522、方向性結合器523、BPF524、電力モニタ525と対応する構成となっている。そのため、以降の説明においては、主として高周波電源273の構成について説明する。
 本実施形態において、発振器511は、28MHz(周波数f1)の高周波を発振し、高周波電源373における発振器521は、30MHz(周波数f2)の高周波を発振するものとして説明する。なお、発振器511,521のそれぞれの発振周波数はこれに限られず、例えば13.56MHzなどの周波数帯を利用しても良い。
 増幅器512は、発振器511により発振された高周波を増幅して方向性結合器513に出力する。
 方向性結合器513は、発振器511の後段に配置され、発振器511からの進行波成分と整合器272からの反射波成分の一部をそれぞれ取り出す。
 BPF514は、方向性結合器513によって取り出された反射波成分に加わったノイズ信号を除去するためのフィルタである。なお、BPF514は同一特性の2つのフィルタにより構成され、反射波成分と進行波成分の間の位相ずれを相殺するために、方向性結合器513によって取り出された進行波成分もBPF514を通過するような構成となっている。
 そして、電力モニタ515は、BPF514を通過後の反射波成分と、方向性結合器513によって取り出されたBPF514を通過後の進行波成分との比(反射係数)を測定して、この比の値が小さくなるように整合器272をフィードバック制御し、反射波成分と進行波成分の位相差が小さくなるように制御する。
 なお、BPF514,524は、2台の高周波電源273,373のそれぞれの発振器511,521間の発振周波数の差に起因するノイズを除去するための帯域通過フィルタである。具体的には、BPF514は、2つの発振器511,521間の発振周波数の差である2MHz(=|f1-f2|)の成分と、その高調波成分のノイズを除去するような通過帯域となるように設定されている。そして、BPF514,524の通過帯域は、2台の高周波電源273,373のそれぞれの発振器511,521の発振周波数28MHz、30MHzを通過させるような周波数範囲となるように設定されている。すなわち、BPF514の通過帯域は中心周波数を28MHzとして±2MHzとなる26MHz~30MHzを通過帯域とし、BPF524の通過帯域は中心周波数を30MHzとして±2MHzとなる28MHz~32MHzを通過帯域として設定される。
 ここで、BPF514の具体的な回路構成例を図9に示し、その周波数特性を図10に示す。なお、図9では、BPF514に入力された反射波成分のノイズを除去するためのフィルタ構成のみを示すが、方向性結合器513により取り出された進行波成分についても同様のフィルタ構成を通過するようになっている。
 BPF514の回路構成は、広帯域オペアンプ(演算増幅器)81を用いた非反転型増幅器として構成されており、方向性結合器513からの反射波が入力信号Vinとして、非反転入力端子に入力されている。そして、広帯域オペアンプ81には、コンデンサC1、C2、抵抗R1、R2等の回路素子が接続されており、出力信号Voutを電力モニタ515に出力するような回路構成となっている。
 なお、図9に示した回路構成では、C1は245pF、C2は212pFとなっており、R1,R2は、それぞれ25Ωとなっている。そのため、図10に示すように、BPF514の低域側の遮断周波数(カットオフ周波数)FL(1/(2π・C1・R1))は、約26MHz、高域側の遮断周波数FH(1/(2π・C2・R2))は、約30MHzとなっている。また、BPF524の場合には、C1を227pF、C2を200pFとして、FLは約28MHzとなり、FHは約32MHzとなる。
 つまり、BPF514(524)は、発振器511(521)の発振周波数である28MHz(30MHz)の周波数成分は通過させ、この2つの差分周波数である2MHzのノイズ信号を除去することができるような周波数特性となるように設定されている。
 そのため、BPF514,524では、方向性結合器513,523により分離された進行波成分、反射成分の信号は大きなロスなく通過し、ノイズ成分のみが除去されることになる。
 その結果、電力モニタ515,525において行われる整合器272,372のフィードバック制御もノイズ成分による影響を大きく受けることなく正確に行われ、第1のプラズマ発生部および第2のプラズマ発生部における成膜特性およびエッチング特性の安定化が図られ、ウエハ処理に対する生産性や安定性が向上することになる。
 つまり、本実施形態によれば、複数の高周波電源273,373を用いてプラズマ生成を行う場合でも、安定したプラズマ生成を行うことが可能になるという効果を得ることができる。
 なお、第1のプラズマ発生部におけるプラズマ特性と、第2のプラズマ発生部におけるプラズマ特性との差異をできるだけ発生させずに均一な基板処理特性や成膜特性を実現しようとした場合、高周波電源273,373の発振周波数はできるだけ同じ方が好ましい。
 しかし、発振器511,521の発振周波数を同一にしようとしても、発振器の個体差や、温度、湿度等の環境条件の違いにより発振周波数が完全に同一な複数の発振器を構成することは困難である。そのため、複数の高周波電源の発振周波数を同一にしようとした場合、かえって数Hz~数100Hzといった周波数が不定な相互干渉ノイズが発生してしまう可能性がある。
 そして、発生するノイズ成分の周波数が大きくばらついてしまうと、ノイズ成分を除去するためにフィルタを用いたとしても効果的に除去ができない場合が発生し得る。そして、ノイズ成分が除去できないと装置内部で誤動作が発生してしまう可能性も否定できない。特に、上記で説明したように方向性結合器513,523から取り出しは反射波成分のノイズ成分が効果的に除去できない場合、整合器272,372のフィードバック制御に影響がおよびプラズマ生成特性を悪化しかねない。そして、プラズマ生成特性が悪化することにより、生成されるプラズマの生成量が著しく低下してしまい、成膜特性が大幅に悪化してしまう可能性がある。
 そのため、本実施形態では、2つの高周波電源273,373の発振周波数を意図的に2MHzずらして、相互干渉ノイズの周波数を特定できるようにして、発生した相互干渉ノイズを効果的に除去することが可能なようにBPF514,524を構成している。
 なお、BPFを、高周波電源273と整合器272との間や、高周波電源373と整合器372との間に設けるようにして、ノイズ成分を除去することも可能である。しかし、このような場所にBPFを設けた場合、BPFには非常に大きな高周波電力が通過することにより、耐電圧特性や耐電流特性が大きなコンデンサやコイル等の回路素子を用いてBPFを構成する必要があり、BPFの形状が大型化する。そのため、このようなBPFの配置方法では、設置空間の確保が困難となったり、コストが向上する等の問題が発生する可能性がある。
 これに対して、本実施形態の基板処理装置では、方向性結合器513,523を設けることにより、発振器511,521で発振され増幅器512,522で増幅された高周波電力の一部を取り出すことにより、大きな高周波電力よりも数十dB減衰した信号がBPF514,524に入力されることになる。
 そのため、本実施形態における配置方法によれば、BPF514,524の形状を小型とすることにより、設置空間も少なくコストも低く抑えることが可能となる。また、本実施形態における配置方法によれば、反射波信号成分だけを正確に取得することが可能となる。
 なお、本実施形態では、2つの高周波電源273,373を同様な構成とする場合について説明したが、2つの高周波電源273,373のうちのどちらか一方のみを図8に示したような構成とするようにしても良い。また、本実施形態では、2つの周波電源273,373を用いて2つのプラズマ発生部に高周波電源を供給する場合の構成について説明したが、3つ以上の複数のプラズマ発生部に高周波電源を供給するような構成を用いた場合でも本発明は同様に適用可能である。
 (4)高周波電源のその他の構成
 図8に示した高周波電源273,373とは異なるその他の構成を図11、図12を参照して説明する。
 図11は、高周波電源373の替りに高周波電源373aを置き換えた構成である。高周波電源373aは、図11に示すように、高周波電源373から発振器521を削除して、高周波電源273の発振器511の発振周波数を入力するように構成された点が異なっている。
 この図11に示したような構成では、高周波電源273,373aの発振周波数が28MHzで同一になるため相互干渉ノイズがほぼゼロとなるため、BPF514,524のフィルタ設計が容易になる。しかし、周波数を変化させて整合を取りたい場合には、複数のプラズマ発生部間のインピーダンスに差が生じないように注意を払う必要がある。
 また、高周波電源273の発振器511からの信号を、増幅器512と増幅器522に信号線で分配する際に、高周波電源273,373それぞれの出力に位相差が発生しないように、分配する信号線の距離を同じにすることが望ましい。
 そのため、図12に示すように、1つの筐体内に2つの高周波電源の電気回路を収納して1つの高周波電源473として構成する構造を採用し、発振器511からの増幅器512までの距離と、発振器511から増幅器522までの距離がほぼ同じとなるようにし、スイッチ90により発振器511と発振器521とを切替え可能とする構成とすることが望ましい。このように構成することによって、通常使用時は、発振器511、512のそれぞれを用いて基板処理を行い、経年劣化等の問題によって相互干渉ノイズを除去しきれなくなった場合には発振器511のみを用いて基板処理するように高周波電源473を制御することで、第1および第2のプラズマ発生部のそれぞれに均一なプラズマを生成することが可能となる。なお、上述とは逆に初めは発振器511のみを使用し、第1のプラズマ発生部と第2のプラズマ発生部のプラズマ生成に差が生じた場合に第2の発振器521を用いるようにしてもよい。
 以上、本発明の実施形態について具体的に説明した。しかしながら、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 例えば、上述の実施形態では、2つのバッファ構造を設けた場合に、バッファ構造ごとに異なる反応ガスをプラズマ励起してウエハに供給する構成について説明した。本発明はこのような態様に限定されず、同一の反応ガスをプラズマ励起してウエハに供給するようにしてもよい。
 また、上述の実施形態では、原料を供給した後に反応ガスを供給する例について説明した。本発明はこのような態様に限定されず、原料、反応ガスの供給順序は逆でもよい。すなわち、反応ガスを供給した後に原料を供給するようにしてもよい。供給順序を変えることにより、形成される膜の膜質や組成比を変化させることが可能となる。
 また、上述の実施形態では、ウエハ200上にSiN膜を形成する例について説明した。本発明はこのような態様に限定されず、ウエハ200上に、シリコン酸化膜(SiO膜)、シリコン酸炭化膜(SiOC膜)、シリコン酸炭窒化膜(SiOCN膜)、シリコン酸窒化膜(SiON膜)等のSi系酸化膜を形成する場合や、ウエハ200上にシリコン炭窒化膜(SiCN膜)、シリコン硼窒化膜(SiBN膜)、シリコン硼炭窒化膜(SiBCN膜)、硼炭窒化膜(BCN膜)等のSi系窒化膜を形成する場合にも、好適に適用可能である。これらの場合、反応ガスとしては、O含有ガスの他、C36等のC含有ガスや、NH3等のN含有ガスや、BCl3等のB含有ガスを用いることができる。
 また、本発明は、ウエハ200上に、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、タンタル(Ta)、ニオブ(Nb)、アルミニウム(Al)、モリブデン(Mo)、タングステン(W)等の金属元素を含む酸化膜や窒化膜、すなわち、金属系酸化膜や金属系窒化膜を形成する場合においても、好適に適用可能である。すなわち、本発明は、ウエハ200上に、TiN膜、TiO膜、TiOC膜、TiOCN膜、TiON膜等の金属系薄膜を形成する場合にも、好適に適用することが可能となる。
 これらの場合、例えば、原料ガスとして、テトラキス(ジメチルアミノ)チタンガス、テトラキス(エチルメチルアミノ)ハフニウムガス、テトラキス(エチルメチルアミノ)ジルコニウムガス、トリメチルアルミニウムガス、チタニウムテトラクロライドガス、ハフニウムテトラクロライドガス等を用いることができる。反応ガスとしては、上述の反応ガスを用いることができる。
 すなわち、本発明は、半金属元素を含む半金属系膜や金属元素を含む金属系膜を形成する場合に、好適に適用することができる。これらの成膜処理の処理手順、処理条件は、上述の実施形態や変形例に示す成膜処理と同様な処理手順、処理条件とすることができる。これらの場合においても、上述の実施形態や変形例と同様の効果が得られる。
 成膜処理に用いられるレシピは、処理内容に応じて個別に用意し、電気通信回線や外部記憶装置123を介して記憶装置121c内に格納しておくことが好ましい。そして、各種処理を開始する際、CPU121aが、記憶装置121c内に格納された複数のレシピの中から、処理内容に応じて適正なレシピを適宜選択することが好ましい。これにより、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の薄膜を汎用的に、かつ、再現性よく形成することができるようになる。また、オペレータの負担を低減でき、操作ミスを回避しつつ、各種処理を迅速に開始できるようになる。
 上述のレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意してもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更するようにしてもよい。
 272,372   整合器
 273,373,373a,473   高周波電源
 511,521   発振器
 513,523   方向性結合器
 514,524   BPF(バンドパスフィルタ)
 515,525   電力モニタ
 以上述べたように、本発明は、複数の高周波電源を用いてプラズマ生成を行う場合でも、安定したプラズマ生成を行うことが可能となる技術を提供することができる。

Claims (15)

  1.  複数のプラズマ発生部のそれぞれに電源を供給するための複数の高周波電源と、
     前記複数の高周波電源と前記複数のプラズマ発生部との間に設けられ、前記プラズマ発生部の負荷インピーダンスと前記高周波電源の出力インピーダンスとの整合をそれぞれとるための複数の整合器と、
     を備え、
     前記複数の高周波電源のうちの少なくとも1つの高周波電源は、
     高周波を発振する高周波発振器と、
     前記高周波発振器の後段に配置され、前記高周波発振器からの進行波成分と前記整合器からの反射波成分の一部をそれぞれ取り出す方向性結合器と、
     前記方向性結合器によって取り出された前記反射波成分に加わったノイズ信号を除去するフィルタと、
     前記フィルタを通過後の前記反射波成分と、前記方向性結合器によって取り出された前記進行波成分とを測定して、前記整合器からの反射波成分が少なくなるように前記整合器をフィードバック制御する電力モニタとを有する、
     プラズマ生成装置。
  2.  前記フィルタは、前記少なくとも1つの高周波電源に設けられた高周波発振器の発振周波数と、前記少なくとも1つの高周波電源以外の高周波電源に設けられた高周波発振器の発振周波数と、の差に起因するノイズを除去する帯域通過フィルタである請求項1に記載のプラズマ生成装置。
  3.  前記帯域通過フィルタの通過帯域は、前記少なくとも1つの高周波電源に設けられた前記高周波発振器の発振周波数を通過させる周波数範囲である請求項2に記載のプラズマ生成装置。
  4.  前記複数の高周波電源の発信周波数が異なる請求項1に記載のプラズマ生成装置。
  5.  前記フィルタは、同一特性の2つのフィルタにより構成され、前記方向性結合器によって取り出された前記反射波成分と前記進行波成分とを通過させる請求項1記載のプラズマ生成装置。
  6.  前記高周波発振器が発振する高周波を、前記少なくとも1つの高周波電源と前記少なくとも1つの高周波電源以外の高周波電源に共通して使用する請求項1記載のプラズマ装置。
  7.  前記複数の高周波電源のうち少なくとも2つ以上に前記高周波発振器が設けられ、前記高周波発振器が発振する高周波を切り替えるスイッチが前記高周波発振器と前記方向性結合器との間に設けられた請求項1に記載のプラズマ生成装置。
  8.  基板を処理する処理室と、
     前記処理室内に所定の処理ガスを供給するガス供給部と、
     複数のプラズマ発生部のそれぞれに電源を供給するための複数の高周波電源と、前記複数の高周波電源と前記複数のプラズマ発生部との間に設けられ、前記プラズマ発生部の負荷インピーダンスと前記高周波電源の出力インピーダンスとの整合をそれぞれとるための複数の整合器とを備え、前記複数の高周波電源のうちの少なくとも1つの高周波電源は、高周波を発振する高周波発振器と、前記高周波発振器の後段に配置され、前記高周波発振器からの進行波成分と前記整合器からの反射波成分の一部をそれぞれ取り出す方向性結合器と、前記方向性結合器によって取り出された前記反射波成分に加わったノイズ信号を除去するフィルタと、前記フィルタを通過後の前記反射波成分と、前記方向性結合器によって取り出された前記進行波成分とを測定して、前記整合器からの反射波成分が少なくなるように前記整合器をフィードバック制御する電力モニタと、を有するプラズマ生成装置と、
     を備えた基板処理装置。
  9.  前記フィルタは、前記少なくとも1つの高周波電源に設けられた高周波発振器の発信周波数と、前記少なくとも1つの高周波電源以外の高周波電源に設けられた高周波発振器の発信周波数と、の差に起因するノイズを除去する帯域通過フィルタである請求項8に記載の基板処置装置。
  10.  前記帯域通過フィルタの通過帯域は、前記少なくとも1つの高周波電源に設けられた前記高周波発振器の発信周波数を通過させる周波数範囲である請求項9に記載の基板処理装置。
  11.  前記複数の高周波電源の発信周波数が異なる請求項8記載の基板処理装置。
  12.  前記フィルタは、同一特性の2つのフィルタにより構成され、前記方向性結合器によって取り出された前記反射波成分と前記進行波成分とを通過させる請求項8記載の基板処理装置
  13.  前記高周波発振器が発振する高周波を、前記少なくとも1つの高周波電源と前記少なくとも1つの高周波電源以外の高周波電源に共通して使用する請求項8記載の基板処理装置。
  14.  前記複数の高周波電源のうち少なくとも2つ以上に前記高周波発振器が設けられ、前記高周波発振器が発振する高周波を切り替えるスイッチが前記高周波発振器と前記方向性結合器との間に設けられた請求項8に記載の基板処理装置。
  15.  基板を処理する処理室と、前記処理室内に所定の処理ガスを供給するガス供給部と、複数のプラズマ発生部のそれぞれに電源を供給するための複数の高周波電源と前記複数の高周波電源と前記複数のプラズマ発生部との間に設けられ前記プラズマ発生部の負荷インピーダンスと前記高周波電源の出力インピーダンスとの整合をそれぞれとるための複数の整合器とを備え、前記複数の高周波電源のうちの少なくとも1つの高周波電源は、高周波を発振する高周波発振器と前記高周波発振器の後段に配置され前記高周波発振器からの進行波成分と前記整合器からの反射波成分の一部をそれぞれ取り出す方向性結合器と前記方向性結合器によって取り出された前記反射波成分に加わったノイズ信号を除去するフィルタと前記フィルタを通過後の前記反射波成分と前記方向性結合器によって取り出された前記進行波成分とを測定して前記整合器からの反射波成分が少なくなるように前記整合器をフィードバック制御する電力モニタとを有するプラズマ生成装置と、を備えた基板処理装置の前記処理室内に基板を搬入する工程と、
     前記処理室内へ、前記プラズマ生成装置によりプラズマ励起させた前記処理ガスを供給し、前記基板を処理する工程と、
     前記処理室内から処理後の前記基板を搬出する工程と、
     を有する半導体装置の製造方法。
PCT/JP2018/006183 2017-08-14 2018-02-21 プラズマ生成装置、基板処理装置および半導体装置の製造方法 WO2019035223A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019536413A JP6845334B2 (ja) 2017-08-14 2018-02-21 プラズマ生成装置、基板処理装置、半導体装置の製造方法およびプログラム
CN201880049896.9A CN110959312A (zh) 2017-08-14 2018-02-21 等离子体生成装置、基板处理装置、以及半导体器件的制造方法
KR1020197024462A KR102217139B1 (ko) 2017-08-14 2018-02-21 플라스마 생성 장치, 기판 처리 장치 및 반도체 장치의 제조 방법
US16/783,913 US11629408B2 (en) 2017-08-14 2020-02-06 Plasma generation device, substrate processing apparatus, and method of manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-156343 2017-08-14
JP2017156343 2017-08-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/783,913 Continuation US11629408B2 (en) 2017-08-14 2020-02-06 Plasma generation device, substrate processing apparatus, and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2019035223A1 true WO2019035223A1 (ja) 2019-02-21

Family

ID=65362418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006183 WO2019035223A1 (ja) 2017-08-14 2018-02-21 プラズマ生成装置、基板処理装置および半導体装置の製造方法

Country Status (5)

Country Link
US (2) US11629408B2 (ja)
JP (2) JP6845334B2 (ja)
KR (1) KR102217139B1 (ja)
CN (1) CN110959312A (ja)
WO (1) WO2019035223A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200173027A1 (en) * 2017-08-14 2020-06-04 Kokusai Electric Corporation Plasma generation device, substrate processing apparatus, and method of manufacturing semiconductor device
KR20200115138A (ko) * 2019-03-25 2020-10-07 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
JP2020184526A (ja) * 2019-05-02 2020-11-12 ユ−ジーン テクノロジー カンパニー.リミテッド バッチ式基板処理装置
KR20230034370A (ko) 2020-09-24 2023-03-09 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 기판 처리 방법, 반도체 장치의 제조 방법 및 프로그램
TWI804058B (zh) * 2021-02-26 2023-06-01 日商國際電氣股份有限公司 基板處理裝置,電漿生成裝置,半導體裝置的製造方法,基板處理方法,及程式
WO2023176020A1 (ja) * 2022-03-16 2023-09-21 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、プログラム、および基板処理装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5823958B2 (ja) 2009-06-02 2015-11-25 スリーエム イノベイティブ プロパティズ カンパニー 光再偏向フィルム及び該フィルムを使用したディスプレイ
WO2011028373A1 (en) 2009-08-25 2011-03-10 3M Innovative Properties Company Light redirecting film and display system incorporating same
EP3258167A3 (en) 2009-12-08 2018-04-18 3M Innovative Properties Co. Optical constructions incorporating a light guide and low refractive index films
US9403300B2 (en) 2010-04-14 2016-08-02 3M Innovative Properties Company Patterned gradient polymer film and method
WO2012161824A1 (en) 2011-03-03 2012-11-29 3M Innovative Properties Company Projection system
KR20140144217A (ko) 2012-03-20 2014-12-18 쓰리엠 이노베이티브 프로퍼티즈 컴파니 구조화된 광학 필름

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080971A (ja) * 2000-09-08 2002-03-22 Canon Inc 真空処理装置、真空処理方法及び基体ホルダー
JP2002252207A (ja) * 2001-02-22 2002-09-06 Matsushita Electric Ind Co Ltd 高周波電源、プラズマ処理装置、プラズマ処理装置の検査方法及びプラズマ処理方法
JP2003139804A (ja) * 2001-10-30 2003-05-14 Pearl Kogyo Kk 高周波検出方法および高周波検出回路
JP2006128075A (ja) * 2004-10-01 2006-05-18 Seiko Epson Corp 高周波加熱装置、半導体製造装置および光源装置
JP2010219026A (ja) * 2009-02-05 2010-09-30 Mks Instruments Inc 無線周波数電力制御システム
JP2013225672A (ja) * 2012-03-28 2013-10-31 Lam Research Corporation プラズマ均一性調整のためのマルチ高周波インピーダンス制御

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4067876B2 (ja) 2002-05-31 2008-03-26 長野日本無線株式会社 位相差検出方法、インピーダンス検出方法、測定装置および同軸型インピーダンス整合装置
JP2006287153A (ja) * 2005-04-05 2006-10-19 Hitachi Kokusai Electric Inc 基板処理装置
JP5426811B2 (ja) * 2006-11-22 2014-02-26 パール工業株式会社 高周波電源装置
JP2007231424A (ja) * 2007-06-12 2007-09-13 Masayoshi Murata プラズマ発生用電源装置、該電源装置により構成されたプラズマcvd装置及びプラズマcvd法
JP4558067B2 (ja) * 2008-05-21 2010-10-06 シャープ株式会社 プラズマ処理装置
KR101693673B1 (ko) 2010-06-23 2017-01-09 주성엔지니어링(주) 가스분배수단 및 이를 포함한 기판처리장치
JP6042656B2 (ja) * 2011-09-30 2016-12-14 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP2014049362A (ja) * 2012-09-03 2014-03-17 Tokyo Electron Ltd プラズマ発生装置および基板処理装置
JP6091940B2 (ja) 2013-03-11 2017-03-08 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP5882509B2 (ja) 2015-02-12 2016-03-09 株式会社日立国際電気 基板処理装置および半導体装置の製造方法
JP6186022B2 (ja) 2016-01-28 2017-08-23 株式会社日立国際電気 基板処理装置および半導体装置の製造方法
JP6721695B2 (ja) * 2016-09-23 2020-07-15 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法およびプログラム
CN110959312A (zh) * 2017-08-14 2020-04-03 株式会社国际电气 等离子体生成装置、基板处理装置、以及半导体器件的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080971A (ja) * 2000-09-08 2002-03-22 Canon Inc 真空処理装置、真空処理方法及び基体ホルダー
JP2002252207A (ja) * 2001-02-22 2002-09-06 Matsushita Electric Ind Co Ltd 高周波電源、プラズマ処理装置、プラズマ処理装置の検査方法及びプラズマ処理方法
JP2003139804A (ja) * 2001-10-30 2003-05-14 Pearl Kogyo Kk 高周波検出方法および高周波検出回路
JP2006128075A (ja) * 2004-10-01 2006-05-18 Seiko Epson Corp 高周波加熱装置、半導体製造装置および光源装置
JP2010219026A (ja) * 2009-02-05 2010-09-30 Mks Instruments Inc 無線周波数電力制御システム
JP2013225672A (ja) * 2012-03-28 2013-10-31 Lam Research Corporation プラズマ均一性調整のためのマルチ高周波インピーダンス制御

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200173027A1 (en) * 2017-08-14 2020-06-04 Kokusai Electric Corporation Plasma generation device, substrate processing apparatus, and method of manufacturing semiconductor device
US11629408B2 (en) * 2017-08-14 2023-04-18 Kokusai Electric Corporation Plasma generation device, substrate processing apparatus, and method of manufacturing semiconductor device
KR20200115138A (ko) * 2019-03-25 2020-10-07 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
KR102387812B1 (ko) 2019-03-25 2022-04-18 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
JP2020184526A (ja) * 2019-05-02 2020-11-12 ユ−ジーン テクノロジー カンパニー.リミテッド バッチ式基板処理装置
US11495442B2 (en) 2019-05-02 2022-11-08 Eugene Technology Co., Ltd. Batch type substrate processing apparatus
KR20230034370A (ko) 2020-09-24 2023-03-09 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 기판 처리 방법, 반도체 장치의 제조 방법 및 프로그램
TWI804058B (zh) * 2021-02-26 2023-06-01 日商國際電氣股份有限公司 基板處理裝置,電漿生成裝置,半導體裝置的製造方法,基板處理方法,及程式
WO2023176020A1 (ja) * 2022-03-16 2023-09-21 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、プログラム、および基板処理装置

Also Published As

Publication number Publication date
US20230220552A1 (en) 2023-07-13
JP7030157B2 (ja) 2022-03-04
CN110959312A (zh) 2020-04-03
KR20190105089A (ko) 2019-09-11
US20200173027A1 (en) 2020-06-04
US11629408B2 (en) 2023-04-18
KR102217139B1 (ko) 2021-02-18
JP2020167166A (ja) 2020-10-08
JPWO2019035223A1 (ja) 2020-04-16
JP6845334B2 (ja) 2021-03-17

Similar Documents

Publication Publication Date Title
JP7030157B2 (ja) 基板処理装置、プラズマ生成装置、半導体装置の製造方法およびプログラム
JP7464638B2 (ja) 基板処理装置、プラズマ生成装置、反応管、プラズマ生成方法、基板処理方法、半導体装置の製造方法およびプログラム
JP6567489B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP6478330B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
KR102387812B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
JP2018195744A (ja) 半導体装置の製造方法、基板処理装置およびプログラム
KR20170108831A (ko) 반도체 장치의 제조 방법, 기판 처리 장치, 기록 매체 및 프로그램
KR20190109484A (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
JP6987021B2 (ja) プラズマ処理装置及びプラズマ処理方法
WO2020053960A1 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
JP6453727B2 (ja) 基板処理装置およびそれを用いた半導体装置の製造方法
KR102413076B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
JP7342138B2 (ja) 基板処理装置、プラズマ生成装置、半導体装置の製造方法、プラズマ生成方法およびプログラム
TWI785510B (zh) 基板處理裝置、半導體裝置之製造方法及記錄媒體
JP2024072887A (ja) 基板処理方法
TW202219312A (zh) 基板處理裝置、半導體裝置的製造方法及程式
WO2020053996A1 (ja) 基板処理装置、半導体装置の製造方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845655

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197024462

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019536413

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18845655

Country of ref document: EP

Kind code of ref document: A1