WO2019031647A1 - Rf 스퍼터링 장치를 이용한 oled용 유기 박막층 형성 방법 및 상기 rf 스퍼터링 장치, 그리고 상기 rf 스퍼터링 장치에서 사용되는 타겟을 성형하는 장치 - Google Patents

Rf 스퍼터링 장치를 이용한 oled용 유기 박막층 형성 방법 및 상기 rf 스퍼터링 장치, 그리고 상기 rf 스퍼터링 장치에서 사용되는 타겟을 성형하는 장치 Download PDF

Info

Publication number
WO2019031647A1
WO2019031647A1 PCT/KR2017/011601 KR2017011601W WO2019031647A1 WO 2019031647 A1 WO2019031647 A1 WO 2019031647A1 KR 2017011601 W KR2017011601 W KR 2017011601W WO 2019031647 A1 WO2019031647 A1 WO 2019031647A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
chamber
oled
film layer
thin film
Prior art date
Application number
PCT/KR2017/011601
Other languages
English (en)
French (fr)
Inventor
소문숙
Original Assignee
소문숙
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 소문숙 filed Critical 소문숙
Priority to JP2020530294A priority Critical patent/JP2020530531A/ja
Priority to US16/637,534 priority patent/US20200259084A1/en
Priority to CN201780093821.6A priority patent/CN111051565A/zh
Priority to KR1020207023728A priority patent/KR20200105942A/ko
Priority to KR1020207003460A priority patent/KR20200030078A/ko
Publication of WO2019031647A1 publication Critical patent/WO2019031647A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Definitions

  • the present invention relates to a method of forming an organic thin film layer for an OLED using an organic material sputtering apparatus, a sputtering apparatus used for executing the method, To an apparatus for molding a target used in a sputtering apparatus.
  • OLED is an abbreviation of active matrix organic light emitting diode. It is a kind of EL (electro luminescence) display using self-luminescent material when current is applied. Since a self-emitting material is used, it does not require a backlight like an LCD. Therefore, it is characterized by being able to realize low power consumption, light weight, and thin structure.
  • the structure of the OLED generally includes a plurality of organic thin film layers as shown in Fig.
  • the OLED organic thin film layer includes a hole injecting layer 102, a hole transporting layer 103, an emitting layer 104, and a light emitting layer 104, as well as a light-transmissive ITO that is an anode 101.
  • the electron transport layer 105 may be formed of an electron injection layer,
  • a thermal evaporation method and an E-beam evaporation method are used for depositing an organic material and a metal material to manufacture an OLED.
  • Fig. 2 shows the concept of a thermal evaporation method.
  • a crucible 202 containing a raw material 114 as a material to be deposited in the chamber 110 and a substrate 112 on which the raw material 114 is to be deposited are disposed.
  • the crucible 202 is heated to melt the raw material 114, the melted raw material 114 is blown onto the upper substrate 112 and deposited.
  • Figure 3 illustrates the concept of an E-beam deposition method.
  • the chamber 120 is evacuated to a vacuum state by a vacuum pump 129 and an argon (Ar) gas is injected into the chamber 120 through the reaction gas supply unit 128, and an E-beam And the E-beam is rotated by the magnetic field to cause the target 114 to be irradiated with the E-beam.
  • the rotated E-beam is melted by heating the raw material 114 and the melted raw material 114 is deposited on the substrate 112 disposed on the upper substrate holder 121.
  • a sputtering deposition method as a method of depositing an arbitrary material on an arbitrary substrate.
  • the sputter deposition method collides the activated particles with the target to release the target particles and allow the released target particles to deposit on the substrate.
  • Sputtering can be used for all targets and substrates because it is a physical method without a chemical thermal reaction process.
  • the RF sputtering deposition method can deposit an oxide or an insulator at a pressure lower than that of DC sputtering, and the dispersion of the target material during deposition is relatively smaller than that of DC sputtering, and thus is widely used in the deposition of nonmetal materials.
  • a conventional OLED manufacturing method is as follows. First, ITO is deposited on the substrate in a sputtering chamber by a sputtering method to form the anode 101. Subsequently, a thin film of a metal such as the hole injection layer 102 and the hole transport layer 103 is formed on the anode 101 using a thermal deposition method or an E-beam deposition method in a thermal or E-beam deposition chamber . Next, an organic material is deposited on the substrate using a thermal deposition method or an E-beam deposition method in a separate organic material deposition chamber to which a lower temperature is applied in forming the metal thin film, thereby forming the light emitting layer 104.
  • metals are deposited by a thermal deposition method or an E-beam deposition method to form an electron transporting layer 105 and an electron injecting layer 106. Finally, a metal such as aluminum or copper which serves as a cathode is deposited thereon.
  • the thermal deposition method and the E-beam deposition method are methods for heating and evaporating the target material, it is difficult to uniformly control the deposited film thickness at the center and the upper and lower right and left portions as the substrate deposition target area is wider.
  • the sputtering method can not be used.
  • the impact energy applied to the target in the sputtering method is four times higher than the thermal energy applied to the target material in the thermal evaporation method or the E-beam evaporation method. By applying such high energy to the target, the organic target can be damaged.
  • the energy of collision of the target material off the target with the substrate may be large and may be damaged during deposition.
  • the organic material may be damaged by heat when the target of the OLED organic material used in the sputtering method is molded.
  • OLED organic materials are impaired in properties at temperatures above 200 ° C. Therefore, if the sputtering target is manufactured by sintering at a conventional high temperature, the organic material is damaged and its characteristics are deteriorated. When the organic material is exposed to the atmosphere in the target manufacturing process, the characteristic of the organic material is damaged by binding with oxygen and moisture .
  • the present invention seeks to solve the problems of various deposition methods and conventional manufacturing methods using various chambers. That is, an OLED is to be manufactured using only a sputtering deposition method by using a sputtering deposition method for depositing not only metals but also organic materials in OLED manufacturing.
  • a method of forming a thin film layer of a luminescent organic material for an OLED using an RF sputtering apparatus comprising: forming a cathode in a chamber of an RF sputtering apparatus, Disposing a target including a target material for forming a thin film layer of a material and disposing a substrate on which the target material is to be deposited inside the chamber; Injecting a reaction gas after maintaining the inside of the chamber under vacuum; And applying a minimum RF power and a maximum magnetic field to the target such that plasma can be generated without damaging the target material.
  • the magnetic field applied to the target is 1000 to 5000 gauss
  • the RF power applied to the target may be 0.5 to 10 W / cm < 2 >.
  • the target may include: preparing a chamber for producing a target; inserting the target material into a mold for producing a target in the chamber; maintaining the chamber at a predetermined degree of vacuum; heating the mold to a predetermined temperature Pressing the target material inserted into the mold at a predetermined pressure, and maintaining the vacuum degree, the temperature, and the pressure for a predetermined period of time.
  • the degree of vacuum is 10 -3 Torr or less
  • the temperature is 50 to 300 ° C
  • the pressure is 10 to 500 kg / cm 2
  • the time may be 10 minutes or more.
  • the manufacturing step may further include attaching a backing plate to one side of the molded target.
  • the distance between the target and the substrate may be 100 to 200 mm.
  • the reaction gas may be injected into the chamber after being cooled by a cooler, and injected through a nozzle provided in the vicinity of the target to cool the target.
  • an RF sputtering apparatus for forming a thin film layer of a luminous organic material for an OLED, comprising: a chamber; A substrate holder on which a substrate on which a target material is to be deposited is disposed; A target holder on which a target including the target material for forming a thin film layer of a luminescent organic material for an OLED can be disposed and a magnet for applying a predetermined magnetic field is disposed between the target and the substrate; A vacuum pump for maintaining the inside of the chamber in vacuum; A reaction gas supply unit for injecting a predetermined reaction gas into the chamber; And a RF power supply for applying a predetermined RF power to the target through the target holder to generate plasma between the target and the substrate, wherein the RF power supply is configured to apply a plasma to the target without damaging the target material. And the magnet can be controlled to apply a maximum magnetic field that does not damage the target material.
  • the magnetic field applied to the target by the magnet is 1000 to 5000 gauss
  • the RF power applied to the target by the RF power supply may be 0.5 to 10 W / cm < 2 >.
  • an apparatus for forming a target for use in an RF sputtering apparatus for forming a thin film layer of a luminous organic material for an OLED comprising: a chamber; A vacuum pump for maintaining the inside of the chamber at a predetermined degree of vacuum; A mold having a space in the form of a target used in the RF sputtering apparatus; A heater for heating the raw material inserted in the space of the mold; A power supply for operating the heater; A press for pressing a raw material for forming a thin film layer of the luminous organic material for OLED for use in OLED, which is inserted into the space of the metal mold, at a predetermined pressure; . ≪ / RTI >
  • the degree of vacuum is 10 -3 Torr or less
  • the temperature for heating the raw material by the heater is 50 to 300 ° C
  • the pressure to be pressed by the press may be 10 to 500 kg / cm 2.
  • the present invention including the above-described configuration, since a plurality of metal layers and organic layers of the OLED can be formed using only the sputtering deposition chamber, the number of chambers can be minimized, the manufacturing process can be simplified, This reduces equipment construction costs and reduces manufacturing time. Further, by using the sputtering deposition method, the film thickness of the target to be deposited can be uniformly controlled, and the present invention can be applied to a wide area. Further, by optimizing the sputtering conditions, the properties of the organic material are not impaired.
  • the organic thin film layer of the OLED can be manufactured only by the sputtering deposition method, the sputtering chamber can be arranged inline to enable continuous operation. This enables large-volume continuous production, and continuous production of film-type products becomes possible.
  • FIG. 1 is a view showing an organic thin film layer structure of a general OLED.
  • FIG. 2 is a view for explaining the thermal evaporation method.
  • 3 is a view for explaining an E-beam deposition method.
  • FIG. 4 is a view for explaining a configuration of a sputtering apparatus for performing a sputtering deposition method of forming an organic thin film layer according to an embodiment of the present invention.
  • FIG. 5 is a flowchart showing a method of forming an organic thin film layer using the sputtering apparatus according to the present invention.
  • Fig. 6 is a view for explaining a configuration of an apparatus for molding a target to be used in the sputtering apparatus according to the present invention.
  • Figure 7 is a flow chart showing a method of forming the target.
  • Fig. 8 is a view showing a provision form of a target.
  • FIG 9 is a view for explaining the configuration of the cathode of the sputtering apparatus according to the present invention.
  • FIG. 10 is a view showing an inline manufacturing facility using the sputtering deposition method according to the present invention.
  • FIG. 11 is a TEM photograph showing a state in which an organic material is deposited by the sputtering deposition method according to the present invention.
  • the present invention applies a sputtering method, in particular, an RF sputtering method, which has not been conventionally applied in forming an organic thin film layer by depositing a light emitting organic material for an OLED.
  • the light emitting organic material for an OLED according to the present invention may be selected from the group consisting of Cupc, PTPC, Tiopc, NPB, DTAF, Dpfi-NPB, TAPC, TTP, TFB, DTAA, PEDOT: pis, HMTPD, BCP, TPBC, BALq, Naq, PFNBR, PFN-DoF, TAZ, BTPymB, LiF, ReO3, Moo3, C545T, Alq3, Rubrene.
  • FIG. 1 The configuration of the sputtering apparatus used therefor can be understood with reference to Fig.
  • a method of forming an organic thin film layer which can be performed by the sputtering apparatus can be understood with reference to FIG.
  • the sputtering apparatus may include a chamber 210, a substrate holder 226, a target holder 236, an RF power supply 253, a reactive gas feeder 214, a cooler 215, a vacuum pump 219 .
  • At least the substrate 220 and the target 230 may be disposed in the chamber 210, where a sputtering reaction occurs in which the target material is deposited on the substrate 220.
  • the substrate holder 226 places the substrate 220 in the chamber 210 where the target material is to be deposited.
  • the substrate holder 226 can secure the substrate 220 using any method including vacuum or electrostatic attraction, adhesive or adhesive tape, fastening means.
  • the target holder 236 sits within the chamber 210 a target 230 that has been sintered to form the target material in any form.
  • the target holder 236 may further include a metal plate 234, a magnet 235, and a shield 239, as shown in detail in FIG. At this time, the magnet 235 forms a magnetic field between the target 230 and the substrate 220.
  • the entire structure including the target holder 236 itself or the target holder 236 may be referred to as a 'cathode'.
  • the RF power supply 253 applies RF power to the target 230 via the target holder 236.
  • a reactive gas supplier 214 provides the reaction gas necessary for sputter deposition within the chamber 210.
  • the reaction gas may include, for example, argon, hydrogen, nitrogen, fluorine, and the like. Further, the reaction gas may contain oxygen, if necessary.
  • the cooler 215 cools the reaction gas injected into the chamber 210.
  • a method of forming an organic thin film layer by depositing an organic material for an OLED on a substrate 220 by the sputtering method using such a sputtering apparatus includes preparing a sputtering chamber 210 and forming an organic thin film layer for manufacturing an OLED on a substrate holder 226 (S10) placing a substrate 220 and a target 230 made of an organic material for manufacturing an OLED in a target holder 236 and injecting a reactive gas while maintaining the inside of the chamber 210 in vacuum S20), and applying a magnetic field and RF power to the target 230 (S30).
  • a plasma is formed between the target 230 and the substrate 220, and a target material, which is separated from the target 230 by sputtering the target 230, is sputter deposited on the substrate 220.
  • a thin film layer can not be formed by sputtering an organic material for an OLED in the past, in the present invention, by changing various control conditions of the sputtering apparatus, a thin film layer of an organic material for an OLED can be manufactured by a sputtering deposition method. These control conditions are described below.
  • the deposition power (RF power) is reduced to a minimum in an embodiment of the present invention in order to prevent the organic material molecules constituting the target 230 from being damaged by the physical force during the deposition process. That is, the RF power applied by the RF power supply 253 is controlled to a minimum level (or at least to the extent that the sputtering reaction can occur) so as to form a plasma.
  • the RF sputtering apparatus has a lower deposition rate than DC sputtering or MF sputtering, but has excellent dispersion of target, and is mainly used for deposition of non-metals such as SiO 2 .
  • a method of raising the RF power for example, 3 to 10 W / cm 2 was used.
  • the power loss may be relatively generated due to the characteristics of the RF power sputtering, and the plasma may become unstable. Therefore, even if the RF power is increased, a low magnetic field level is applied to stabilize the plasma state.
  • the best deposition rate appears when the magnetic field is about 50 to 700 Gauss for high RF power.
  • high RF power and low magnetic field when a large amount of electrons and Ar (+) ions increased by high RF power collide against the luminescent organic material target, they transmit strong heat and shock to the target surface The organic material is damaged.
  • the RF power is lowered to the lowest possible value (the lowest possible level between the substrate and the target) so that the minimum amount of electrons is emitted from the cathode, To minimize the number. This minimizes the number of argon ions impinging on the target 230 so that the heat generated by the target 230 can be minimized.
  • the target 230 may be formed to have a thickness of, for example, 1000 to 5000 gauss so that a plasma can be stably formed even when the lowest RF power, for example, 0.1 to 10 W / So that a magnetic field can be formed.
  • This magnetic field is stronger than the magnetic field applied in conventional sputter deposition methods.
  • a permanent magnet or an electromagnet can be used as the magnet 235 which forms a stronger magnetic field than the conventional sputtering.
  • a sputtering apparatus can be used for depositing an organic material for an OLED. Unlike the conventional sputtering deposition process, the RF power is minimized and the magnetic field is maximally applied will be.
  • the temperature of the target 230 can be lowered by cooling the reaction gas injected into the chamber 210.
  • the reactive gas is injected from the bottom of the cathode or the rear surface of the substrate holder 226.
  • the position of the nozzle into which the reactive gas is injected into the chamber 210 is modified, So that it can flow directly to the surface of the target 230. Since the cooled reaction gas directly cools the surface of the target 230, the temperature rise of the target 230 can be effectively prevented.
  • at least one of nitrogen, hydrogen, and fluorine may be mixed with argon in place of oxygen in order to prevent oxidation of a target material that is an organic material.
  • the distance D between the target 230 and the substrate 220 may be set to 100 to 200 mm.
  • FIG. 6 a configuration of a molding apparatus for manufacturing a target used for depositing an organic material for an OLED by a sputtering method will be described, and a method for manufacturing the target with the apparatus will be described with reference to FIG.
  • An apparatus for forming a target 230 used in an RF sputtering apparatus for forming a thin film layer of a luminescent organic material for an OLED is formed by heating / pressing and sintering a raw material 231 for target production, which may be in powder form, The target 230 can be formed.
  • the target forming apparatus includes a chamber 250, a vacuum pump 259 for maintaining the inside of the chamber 250 at a predetermined degree of vacuum, and a space having a shape in the form of a target 230 used in an RF sputtering apparatus
  • Organic materials used for the production of organic light emitting devices can not be used for general target production methods in which heat is applied to dissolve and sinter because organic materials change their characteristics when exposed to heat of 200 ° C or more.
  • the OLED organic material as the raw material 231 for manufacturing the target is inserted into the mold 252 disposed in the chamber 250 of the target molding apparatus (S51), and the vacuum pump 259 is operated.
  • the mold 252 is heated to a certain degree without damaging the organic material while the chamber 250 is decompressed to a vacuum state and the heated state is maintained for a predetermined time period S52,
  • the raw material 231 in the mold 252 is sintered and molded so that the target 230 is manufactured by pressing and holding the raw material 231 in the mold 252 for another arbitrary time (S53).
  • the inside of the chamber 250 is maintained in a vacuum state of 10 -3 torr or less. Further, the vacuum state is maintained for 10 minutes or longer so that water or foreign matter (for example, molecules other than the reaction gas) remaining between the raw materials inserted into the mold 252 as well as inside the chamber 210, It can be made to come out of both.
  • the heater 254 is operated by the power supply 253 to heat the mold 252 (as a result, the raw material in the mold is heated), so that moisture and foreign matter between the raw materials can be quickly evaporated.
  • the heater 254 may be applied to the mold 252, but also the mold itself may generate heat.
  • the press 251 is operated to press the raw material 231 in the mold 252.
  • the applied pressure may be from 10 to 500 kg / cm < 2 >.
  • the pressure applied state is maintained for at least 10 minutes, preferably at least 60 minutes. This completes the fabrication of the target 230 shaped in the form of a mold 252.
  • the molded organic target 230 can be attached to the backing plate 232 as shown in FIG.
  • the target 230 of organic material attached to the backing plate 232 may be secured to the target holder (or metal electrode plate of Fig. 9).
  • the fixing method may include a bolt fastening through the backing plate 232, an adhesive or an adhesive tape, and a vacuum / electrostatic adsorption method.
  • the cathode includes a target holder 236 to which the RF power is applied and the target 230 is disposed.
  • a magnet 235 may be disposed in the target holder 236 to form a magnetic field between the target 230 and the substrate 220 disposed thereon.
  • the electrode plate 234 made of a conductive metal such as copper may be disposed at a portion contacting the target (or the backing plate of the target).
  • a shield 239 may be formed in the periphery of the target holder 236 to prevent exposure of other parts except the target 230 to the outside or to minimize exposure.
  • the sputtering apparatus of the above-described structure and system can be arranged in-line to form a plurality of thin film layers in a continuous process. That is, since the sputtering deposition method can be used in forming the respective layers of the plurality of thin film layers as shown in FIG. 1, the sputtering apparatuses can be connected together and integrated into a continuous process.
  • FIG. 10 is a cross-sectional view of a chamber 201 for depositing the hole injection layer 102 by a sputtering method, a chamber 202 for depositing the hole transporting layer 103 by a sputtering method, a chamber for depositing the light emitting layer 104 by a sputtering method
  • a chamber 206 for depositing the electron transporting layer 105 in a sputtering manner and a chamber 207 for depositing the electron injecting layer 106 by sputtering are connected in series.
  • Each of the chambers can be connected to the product conveyance passage 209.
  • buffer chambers 203 and 205 are provided for suppressing the movement of the substances between the chambers. Respectively.
  • the buffering chambers 203 and 205 can be configured as empty spaces, thereby minimizing the transfer of reactive gases and target materials leaked from adjacent chambers to other adjacent chambers on the opposite side.
  • FIG. 11 is a TEM photograph showing a sputtering apparatus having the above-described structure and a deposition condition of an organic material under control conditions.
  • the organic material is deposited using the conventional sputtering apparatus and the sputtering method, the organic material is damaged.
  • the organic material layer 901 deposited by the sputtering method according to the present invention having a uniform thickness and the ITO layer 902 deposited thereon with a uniform thickness can be seen.
  • FIG. 12 is a PL spectrum showing the emission state of the OLED manufactured by the sputtering deposition method according to the present invention.
  • the organic material deposited without damage by the sputtering method according to the present invention shows a preferable luminescence characteristic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명은, OLED용 유기 박막층을 형성하는 데에 RF 스퍼터링 장치를 사용한다. 따라서, 본 발명에 따른 RF 스퍼터링 장치를 이용한 OLED용 유기 박막층의 제조 방법은: RF 스퍼터링 장치의 챔버 내부의 캐소드에 OLED 유기 박막층 제조용 타겟을 배치하는 단계; 상기 챔버 내부를 진공으로 유지한 후 반응 가스를 주입하는 단계; 상기 타겟에 자기장 및 RF 전력을 인가하는 단계를 포함한다.

Description

RF 스퍼터링 장치를 이용한 OLED용 유기 박막층 형성 방법 및 상기 RF 스퍼터링 장치, 그리고 상기 RF 스퍼터링 장치에서 사용되는 타겟을 성형하는 장치
본 발명은 OLED를 제조하는 방법에 관한 것으로서, 더욱 상세하게는 유기물 소재 증착용 스퍼터링 장치를 이용하여 OLED용 유기 박막층을 형성하는 방법, 및 상기 방법을 실행하는 데에 사용되는 스퍼터링 장치, 그리고 상기 RF 스퍼터링 장치에서 사용되는 타겟을 성형하는 장치에 관한 것이다.
OLED란 능동형 유기 발광 다이오드(active matrix organic light emitting diode)의 약칭이다. 전류를 가하면 자체 발광하는 물질을 이용한 EL(electro luminescence) 디스플레이의 한 종류이다. 자체 발광 물질이 사용되기 때문에 LCD와 같이 백라이트를 필요로 하지 않는다. 따라서 소비 전력이 적고, 가벼우며, 얇은 구조를 구현할 수 있는 특징을 가지고 있다.
OLED의 구조는 도 1에 도시된 바와 같이 일반적으로 복수의 유기 박막층들을 포함한다. OLED 유기 박막층은, 애노드(101)인 광 투과성의 ITO를 비롯하여, 정공 주입층(Hole injection Layer)(102), 정공 운송층(Hole Transfer Layer)(103), 발광층(Emitting layer)(104), 전자 운송층(Electron transfer Layer)(105), 전자 주입층(Electron injection Layer)(106), 캐소드(107)인 전도체로 구성될 수 있다.
이러한 유기 박막층 구조의 애노드(101)와 캐소드(107)에 직류 전압을 걸게 되면, 정공이 정공 주입층(102)으로부터 정공 운송층(103)을 향하여 이동하고, 전자는 전자 운송층(105)을 거쳐 발광층(104)을 향해 이동하게 된다. 이동한 정공과 전자가 발광층(104)에서 만나 결합하면서 전자의 에너지가 안정 상태에서 불안정한 높은 에너지 상태를 거쳐 다시 안정된 상태로 돌아오게 된다. 이때 전자가 높은 에너지 상태에서 안정 상태로 돌아올 때의 에너지 차이만큼 빛이 발생하게 된다.
OLED를 제조하기 위하여 유기물과 금속 물질을 증착하는 방법은, 일반적으로 열증착 방법(Thermal Evaporation)과 E-빔 증착 방법(E-beam Evaporation)을 사용한다.
도 2는 열증착 방법의 개념을 도시한다. 챔버(110) 내에 증착할 물질인 원료(114)가 수용된 도가니(202)와 원료(114)가 증착될 기판(112)이 배치된다. 도가니(202)를 가열하여 원료(114)를 녹이면, 녹아나온 원료 물질(114)이 상부의 기판(112)에 날아가 증착된다.
도 3은 E-빔 증착 방법의 개념을 도시한다. 챔버(120)를 진공 펌프(129)에 의해 감압하여 진공 상태로 만들고, 여기에 반응 가스 공급기(128)를 통해 아르곤(Ar) 가스를 주입하고, E-빔 소스(127)에서 E-빔을 조사하되 자기장에 의해 E-빔을 회전시켜 타겟(114)에 E-빔이 조사되도록 한다. 회전된 E-빔은 원료 물질(114)을 가열하여 녹이게 되고, 녹아나온 원료 물질(114)이 상부의 기판 홀더(121)에 배치된 기판(112)에 증착된다.
한편, 임의의 기판에 임의의 물질을 증착하는 방법으로 스퍼터링 증착 방법(Sputtering Deposition)이 있다. 스퍼터링 증착 방법은 활성된 입자들을 타겟에 충돌시켜 타겟 입자를 방출시키고, 방출된 타겟 입자가 기판에 증착되도록 한다. 스퍼터링은 화학적 열적 반응 과정이 없는 물리적인 방법이기 때문에 모든 타겟 및 기판에 대하여 사용될 수 있다. 특히, RF 스퍼터링 증착 방법은, 산화물이나 절연체를 DC 스퍼터링보다 낮은 압력에서 증착가능하며 또한 증착시 타겟 물질의 분산이 DC 스퍼터링보다 상대적으로 적어 비금속류의 증착시에 많이 사용된다.
한편, 종래의 OLED의 제조 방법은 다음과 같다. 먼저, 스퍼터링 챔버에서 기판에 스퍼터링 방법으로 ITO를 증착하여 애노드(101)를 형성한다. 이어서 열증착 챔버 또는 E-빔 증착 챔버에서, 애노드(101) 위에 열증착 방법 또는 E-빔 증착 방법을 사용하여 정공 주입층(102)과 정공 운송층(103)과 같은 금속류의 박막을 형성한다. 다음으로, 상기 금속류의 박막 형성시보다 낮은 온도가 적용되는 별도의 유기물 전용 증착 챔버에서, 유기물을 열증착 방법 또는 E-빔 증착 방법을 사용하여 기판에 증착하여 발광층(104)을 형성한다. 다음으로, 보다 높은 온도가 적용되는 챔버에서, 열증착 방법 또는 E-빔 증착 방법으로 금속류를 증착하여 전자 운송층(105)과 전자 주입층(106)을 형성한다. 마지막으로 그 위에 캐소드 역할을 하는 알루미늄이나 구리와 같은 금속을 증착한다.
이처럼 종래의 OLED 제조 방법에서는, 스퍼터링 방법과 열증착 방법과 E-빔 증착 방법이 혼용되므로, 각 증착 방법마다의 서로 다른 내부 조건을 가진 다수의 챔버가 필요하거나 소수의 챔버를 내부 조건을 변경하여 재사용하여야 하므로, 제조 설비 구성 비용이 높고 제조 시간이 길다는 단점이 있다.
또한, 열증착 방법과 E-빔 증착 방법은 타겟 물질을 가열하여 증발시키는 방식이므로, 기판의 증착 대상 면적이 넓을수록 중앙과 좌우상하의 증착된 막두께를 균일하게 제어하기 어렵다.
한편, 종래의 OLED 제조 방법에서는 스퍼터링 방법을 사용하지 못하는데, 그 이유는 다음과 같다.
첫째는, 스퍼터링 방법에서 타겟에 가해지는 충격 에너지는, 열증착 방법이나 E-빔 증착 방법에서 타겟 물질에 인가되는 열에너지보다 4배 이상의 높기 때문이다. 이러한 높은 에너지가 타겟에 가해짐으로써, 유기물인 타겟이 손상시킬 수 있다.
둘째는, 타겟으로부터 떨어져나온 타겟 물질이 기판에 충돌하는 에너지가 커서 증착시 손상될 수 있기 때문이다.
셋째는, 스퍼터링 방법에 사용되는 OLED 유기물의 타겟을 성형할 때의 열에 의해 유기물이 손상될 수 있기 때문이다. 일반적으로 OLED 유기물은 200℃ 이상의 온도에서 특성이 손상된다. 따라서, 스퍼터링용 타겟을 종래의 고온에서 소결하는 방식으로 제작하면, 유기물이 손상되어 특성이 저하되고, 또한 타겟 제작 과정에서 유기물이 대기 중에 노출되면 산소 및 수분과 결합하여 유기물 고유의 특성이 손상될 수 있다.
본 발명은 다양한 증착 방법과 다양한 챔버를 사용하던 종래 제조 방법의 문제점을 개선하고자 한다. 즉, OLED 제조시 금속류뿐만 아니라 유기 물질을 증착하는 데에 스퍼터링 증착 방법을 사용함으로써, OLED를 스퍼터링 증착 방법만을 사용하여 제조하고자 한다.
상술한 바와 같은 목적을 달성하기 위한 본 발명의 일 실시예에 따른 RF 스퍼터링 장치를 이용하여 OLED용 발광성 유기 물질의 박막층을 형성하기 위한 방법은: RF 스퍼터링 장치의 챔버 내부의 캐소드에 OLED용 발광성 유기 물질의 박막층 형성하기 위한 타겟 물질을 포함하는 타겟을 배치하고 상기 챔버 내부에 상기 타겟 물질이 증착될 기판을 배치하는 단계; 상기 챔버 내부를 진공으로 유지한 후 반응 가스를 주입하는 단계; 및 상기 타겟 물질을 손상시키지 않으면서 플라즈마를 발생시킬 수 있을 정도의 최소 RF 전력 및 최대 자기장을 상기 타겟에 인가하는 단계를 포함할 수 있다.
이때, 상기 타겟에 인가되는 자기장은 1000 내지 5000 가우스이며, 상기 타겟에 인가되는 RF 전력은 0.5 내지 10 W/㎠일 수 있다. 또한, 상기 타겟은: 타겟 제작용 챔버를 준비하는 것, 상기 타겟 물질을 상기 챔버 내의 타겟 제작용 금형에 삽입하는 것, 상기 챔버를 소정의 진공도로 유지하고, 상기 금형을 소정의 온도로 가열하는 것, 상기 금형에 삽입된 상기 타겟 물질을 소정의 압력으로 누르는 것, 그리고 상기 진공도, 상기 온도, 상기 압력을 소정의 시간 동안 유지하는 것을 포함하는 단계로써 제작될 수 있다. 또한, 상기 진공도는 10-3 토르 이하이고, 상기 온도는 50 내지 300 ℃이고, 상기 압력은 10 내지 500 kg/㎠이고, 상기 시간은 10 분 이상일 수 있다. 또한, 상기 제작 단계는, 상기 성형된 타겟의 일측면에 백킹 플레이트(backing plate)를 부착하는 것을 더 포함할 수 있다. 또한, 상기 타겟과 상기 기판 사이의 거리는 100 내지 200 mm일 수 있다. 또한, 상기 반응 가스는, 냉각기에 의해 냉각된 후 상기 챔버로 주입되되, 상기 타겟을 냉각시키기 위하여 상기 타겟의 근방에 설치된 노즐을 통해 주입될 수 있다.
상술한 바와 같은 목적을 달성하기 위한 본 발명의 또하나의 실시예에 따른 OLED용 발광성 유기 물질의 박막층을 형성하는 데에 사용할 수 있는 RF 스퍼터링 장치는: 챔버; 타겟 물질이 증착될 기판이 배치되는 기판 홀더; OLED용 발광성 유기 물질의 박막층 형성하기 위한 상기 타겟 물질을 포함하는 타겟이 배치될 수 있고, 상기 타겟과 상기 기판의 사이에 소정의 자기장을 인가하기 위한 자석이 배치된 타겟 홀더; 상기 챔버 내부를 진공으로 유지하기 위한 진공 펌프; 상기 챔버 내부로 소정의 반응 가스를 주입하기 위한 반응 가스 공급기; 상기 타겟과 상기 기판의 사이에 플라즈마를 발생시키기 위해 상기 타겟 홀더를 통해 상기 타겟에 소정의 RF 전력을 인가하는 RF 파워서플라이를 포함하고, 상기 RF 파워서플라이는 상기 타겟 물질을 손상시키지 않으면서 플라즈마를 발생시킬 수 있을 정도의 최소 RF 전력을 인가하고, 상기 자석은 상기 타겟 물질을 손상시키지 않는 최대 자기장을 인가하도록 제어될 수 있다.
이때, 상기 자석에 의해 상기 타겟에 인가되는 자기장은 1000 내지 5000 가우스이고, 상기 RF 파워서플라이에 의해 상기 타겟에 인가되는 RF 전력은 0.5 내지 10 W/㎠일 수 있다.
상술한 바와 같은 목적을 달성하기 위한 본 발명의 다른 실시예에 따른 OLED용 발광성 유기 물질의 박막층을 형성하는 RF 스퍼터링 장치에서 사용되는 타겟을 성형하기 위한 장치는: 챔버; 상기 챔버 내부를 소정의 진공도로 유지하기 위한 진공 펌프; 상기 RF 스퍼터링 장치에서 사용되는 타겟의 형태를 갖는 공간을 구비한 금형; 상기 금형의 상기 공간 내에 삽입된 원료 물질을 가열하기 위한 히터; 상기 히터를 동작시키기 위한 파워서플라이; 상기 금형의 상기 공간 내에 삽입된 OLED용 발광성 유기 물질의 박막층 형성하기 위한 원료 물질을 소정의 압력으로 누르기 위한 프레스; 를 포함할 수 있다.
여기서, 상기 진공도는 10-3 토르 이하이고, 상기 히터에 의해 상기 원료물질을 가열하는 온도는 50 내지 300 ℃이고, 상기 프레스가 누르는 상기 압력은 10 내지 500 kg/㎠일 수 있다.
상술한 바와 같은 구성을 포함하는 본 발명에 의하면, 단지 스퍼터링 증착용 챔버를 이용하여 OLED의 복수의 금속층 및 유기물층을 형성할 수 있으므로, 챔버의 개수를 최소화할 수 있을뿐 아니라 제조 공정이 간단해지고, 이로써 설비 구성 비용이 감소하고 제조 시간을 줄일 수 있다. 또한, 스퍼터링 증착 방법을 사용함으로써, 증착되는 타겟의 막두께를 균일하게 제어할 수 있게 되고, 넓은 면적에 적용할 수 있게 된다. 또한, 스퍼터링 조건을 최적화함으로써, 유기물의 특성을 손상시키지 않는다.
또한, OLED의 유기 박막층을 스퍼터링 증착 방법만으로 제조할 수 있으므로, 스퍼터링 챔버를 인라인으로 배치하여 연속 작업이 가능하게 된다. 이로써, 대량 연속 생산이 가능하게 되며, 필름 형태의 제품에 대해서도 연속 생산이 가능하게 된다.
도 1은 일반적인 OLED의 유기 박막층 구조를 보여주는 도면이다.
도 2는 열증착 방법을 설명하기 위한 도면이다.
도 3은 E-빔 증착 방법을 설명하기 위한 도면이다.
도 4는 본 발명의 일 실시예에 따른 유기 박막층을 형성하는 스퍼터링 증착 방법을 수행하는 스퍼터링 장치의 구성을 설명하기 위한 도면이다.
도 5는 본 발명에 따른 스퍼터링 장치를 사용하여 유기 박막층을 형성하는 방법을 보여주는 흐름도이다.
도 6은 본 발명에 따른 스퍼터링 장치에서 사용할 타겟을 성형하는 장치의 구성을 설명하기 위한 도면이다.
도 7은 상기 타겟을 성형하는 방법을 보여주는 흐름도이다.
도 8은 타겟의 제공 형태를 보여주는 도면이다.
도 9는 본 발명에 따른 스퍼터링 장치의 캐소드의 구성을 설명하기 위한 도면이다.
도 10은 본 발명에 따른 스퍼터링 증착 방법을 사용하는 인라인 제조 설비를 보여주는 도면이다.
도 11은 본 발명에 따른 스퍼터링 증착 방법에 의하여 유기 물질이 증착된 형태를 보여주는 TEM 사진이다.
도 12는 본 발명에 따른 스퍼터링 증착 방법에 의하여 제조된 OLED의 발광 상태를 보여주는 PL 스펙트럼이다.
본 발명은, OLED용 발광 유기 물질을 증착하여 유기 박막층을 형성하는 데에 종래에는 적용되지 않았던 스퍼터링 방법, 특히 RF 스퍼터링 방법을 적용한다.
본 발명에 적용되는 OLED용 발광 유기 물질은, 예를 들면, Cupc, PTPC, Tiopc, NPB, DTAF, Dpfi-NPB, TAPC, TTP, TFB, DTAA, PEDOT:pis, HMTPD, BCP, TPBC, Tp3pc, BALq, naq, PFNBR, PFN-DoF, TAZ, BTPymB, LiF, ReO3, Moo3, C545T, Alq3, Rubrene을 포함할 수 있다. 또한, 추가로 2T-NATA, HAT-CN, 3TPYMB, TPBi, UGH-2, Fir-6, Ir(bt)2acac, Ir(ppy)3, CDBP, mCP, TCTA, Ir(piq)3, Ir(pq)2acac, DPVBi, DCJTB, Tp3po, Tp3po, ReO3, TPBA를 포함할 수 있다.
이에 사용되는 스퍼터링 장치의 구성은 도 4를 참조하여 이해할 수 있다. 또한, 상기 스퍼터링 장치에 의해 수행될 수 있는 유기 박막층을 형성하는 방법을 도 5를 참조하여 이해할 수 있다.
스퍼터링 장치는, 챔버(210), 기판 홀더(226), 타겟 홀더(236), RF 파워서플라이(253), 반응 가스 공급기(214), 냉각기(215), 진공 펌프(219)를 포함할 수 있다.
챔버(210)의 내부에는 적어도 기판(220)과 타겟(230)이 배치될 수 있으며, 여기서 타겟 물질이 기판(220)에 증착되는 스퍼터링 반응이 일어난다.
기판 홀더(226)는 타겟 물질이 증착될 기판(220)을 챔버(210) 내에 위치시킨다. 기판 홀더(226)는, 진공 또는 정전 흡착, 접착제 또는 접착 테이프, 체결 수단을 포함하는 임의의 방식을 사용하여 기판(220)을 고정시킬 수 있다.
타겟 홀더(236)는 타겟 물질이 소결되어 임의의 형태로 성형된 타겟(230)을 챔버(210) 내에 위치시킨다. 타겟 홀더(236)는 도 7에 상세히 도시된 바와 같이, 금속판(234), 자석(235), 실드(239)를 더 포함할 수 있다. 이때 자석(235)은 타겟(230)과 기판(220)의 사이에 자기장을 형성한다.
한편, 타겟 홀더(236) 자체 또는 타겟 홀더(236)를 포함하는 이러한 구조물 전체를 '캐소드'라고 지칭할 수도 있다.
RF 파워서플라이(253)는 타겟 홀더(236)를 통해 타겟(230)에 고주파 전력(RF power)을 인가한다.
반응 가스 공급기(214)는 챔버(210) 내부에 스퍼터링 증착에 필요한 반응 가스를 제공한다. 반응 가스는, 예를 들면, 아르곤, 수소, 질소, 불소 등을 포함할 수 있다. 또한, 반응 가스는 필요에 따라서 산소를 포함할 수 있다.
냉각기(215)는 챔버(210)에 주입되는 반응 가스를 냉각시킨다.
이와 같은 스퍼터링 장치를 이용한 스퍼터링 방식으로 OLED용 유기 물질을 기판(220)에 증착시켜 유기 박막층을 형성하는 방법은, 스퍼터링 챔버(210)를 준비하고 기판 홀더(226)에 OLED 제조용 유기 박막층이 형성될 기판(220)을 위치시키고 또한 타겟 홀더(236)에 OLED 제조용 유기 물질로 만들어진 타겟(230)을 위치시키는 단계(S10)와, 챔버(210) 내부를 진공으로 유지하면서 반응 가스를 주입하는 단계(S20)와, 타겟(230)에 자기장과 RF 파워를 인가하는 단계(S30)를 포함한다. 이로써, 타겟(230)과 기판(220) 사이에 플라즈마가 형성되고 아르곤이 타겟(230)을 충격함으로써 타겟(230)으로부터 떨어져나온 타겟 물질이 기판(220)에 스퍼터링 증착된다.
특히, 종래에는 OLED용 유기 물질을 스퍼터링 증착하여 박막층을 형성하지 못하였으나, 본 발명에서는 스퍼터링 장치의 각종 제어 조건을 변경하여 OLED용 유기 물질의 박막층을 스퍼터링 증착 방법에 의해 제조할 수 있게 하였다. 이러한 제어 조건에 대해 아래에서 설명한다.
먼저, 타겟(230)을 구성하는 유기물 소재 분자가 증착 과정에서 물리적인 힘에 의한 손상되는 것을 방지하기 위하여, 본 발명의 일 실시예에서는, 증착 파워(RF 파워)를 최소로 낮춘다. 즉, RF 파워서플라이(253)에서 인가하는 RF 파워를 플라즈마를 형성할 수 있을 정도의 최소한으로(또는 스퍼터링 반응이 일어날 수 있을 정도의 최소한) 제어한다.
일반적으로 RF 스퍼터링 장치는, DC 스퍼터링이나 MF 스퍼터링에 비해서 증착율(rate)이 매우 낮지만 타겟의 분산이 우수하여, SiO2와 같은 비금속류의 증착에 주로 사용되고 있다. 여기에 증착 속도를 향상시키기 위해서, 종래에는 RF 파워를 높이는(예를 들면, 3 내지 10 W/㎠) 방식을 사용하였다.
하지만, 증착율의 향상을 위해 RF 파워를 계속 높이게 되면, RF 파워 스퍼터링의 특성상 상대적으로 파워 손실이 발생하여 플라즈마가 불안정하게 될 수 있다. 그래서 RF 파워를 높이더라도 플라즈마 상태를 안정화시키기 위하여 낮은 자기장 수준을 인가하였다. 가장 좋은 증착율은 높은 RF 파워에 대해 자기장이 50 내지 700 가우스 정도일 때 나타난다. 하지만, 이러한 높은 RF 파워 및 낮은 자기장의 조건에서는, 높은 RF 전력에 의해 증가된 많은 수량의 전자와 Ar(+) 이온들이 발광 유기 물질 타겟에 충돌할 때, 타겟 표면에 강한 열과 충격을 전달하게 되어 유기 물질이 손상을 받게 된다.
이에 비하여, 본 발명에서는, RF 파워를 가능한 최저(기판과 타겟 사이에서 플라즈마 방전이 일어날 수 있을 정도의 최저)로 낮춤으로써 캐소드로부터 최소 수량의 전자를 방출시켜 타겟(230)에 충돌하게 되는 아르곤 이온의 갯수를 최소화한다. 이로써, 타겟(230)에 충돌하는 아르곤 이온의 개수가 최소화되어 타겟(230)에서 발생하는 열이 최소화할 수 있는 것이다.
여기에, 본 발명의 또하나의 실시예에서는, 최저의 RF 파워 예를 들면 0.1 내지 10 W/㎠를 인가하여도 안정적으로 플라즈마가 형성되게끔, 타겟(230)에 예를 들면 1000 내지 5000 가우스의 자기장이 형성되도록 할 수 있다. 이러한 자기장은 종래의 스퍼터링 증착 방법에서 적용되는 자기장보다 강하다. 이러한 종래의 스퍼터링보다 강한 자기장을 형성하는 자석(235)은 영구자석 또는 전자석을 이용할 수 있다.
이처럼, 본 발명의 중요한 특징 중 하나는, OLED용 유기 물질을 증착하는 데에 스퍼터링 장치를 사용할 수 있다는 것이며, 이때 종래의 스퍼터링 증착 처리와는 달리 RF 파워를 최소로 낮추고 자기장을 최대로 세게 인가한다는 것이다.
또한, 본 발명에 따른 다른 실시예에서는, 챔버(210)에 주입되는 반응 가스를 냉각시킴으로써 타겟(230)의 온도를 낮출 수 있다. 예를 들면, 반응 가스 공급기(214)로부터 챔버(210)에 이르는 배관을 액화 질소가 충전된 냉각기(215)를 통과하도록 구성함으로써, 배관을 흐르는 반응 가스를 냉각시킬 수 있다.
또한, 종래의 스퍼터링 장치에서는 반응 가스를 캐소드의 밑면 또는 기판 홀더(226)의 후면으로부터 주입하였으나, 본 실시예에서는 반응 가스가 챔버(210)로 주입되는 노즐의 위치를 수정하여 냉각된 반응 가스가 직접 타겟(230)의 표면으로 흘러갈 수 있도록 하였다. 이렇게, 냉각된 반응 가스가 직접 타겟(230)의 표면을 냉각시키게 되므로, 타겟(230)의 온도 상승을 효과적으로 방지할 수 있게 된다. 또한, 본 실시예에서는, 유기물인 타겟 물질의 산화를 방지하기 위하여 아르곤에, 산소를 대신하여, 질소, 수소 및 불소 중 적어도 하나 이상을 혼합하여 사용할 수 있다. 스퍼터링 증착 장치 내에서의 작업 중에 타겟(230)으로부터 분리된 OLED 유기물 입자가 질소 및/또는 불소 가스 분위기의 플라즈마를 통과하게 되면 질소 및/또는 불소 입자가 OLED 유기물 입자의 표면을 감싸서 캡슐화되어 유기물의 표면 노출이 방지됨으로써, 유기물의 산화되는 것이 방지된다.
또한, 본 발명에 따른 또다른 실시예에서는, 타겟(230)에서 분리된 OLED 유기물 입자(즉, 타겟 물질)가 기판(220)에 충돌할 때의 충격 에너지에 의해 손상되는 것을 줄이기 위하여, 타겟(230)과 기판(220) 사이의 거리(D)를 종래보다 크게 이격하였다. 본 실시예에서 타겟(230)과 기판(220)과의 거리(D)는 100 내지 200 mm로 설정될 수 있다.
이제, 도 6을 참조하여 OLED용 유기 물질을 스퍼터링 방식으로 증착하기 위해 사용되는 타겟을 제작하는 성형 장치의 구성을 설명하고, 도 7을 참조하여 상기 장치에 의해 타겟을 제작하는 방법을 설명한다.
OLED용 발광성 유기 물질의 박막층을 형성하는 RF 스퍼터링 장치에서 사용되는 타겟(230)을 성형하기 위한 장치는, 분말 형태일 수 있는 타겟 제작용 원료 물질(231)을 가온/가압하여 소결함으로써 원하는 형태의 타겟(230)으로 성형할 수 있다.
이러한 타겟 성형 장치는, 챔버(250)와, 챔버(250) 내부를 소정의 진공도로 유지하기 위한 진공 펌프(259)와, RF 스퍼터링 장치에서 사용되는 타겟(230)의 형태를 갖는 공간을 구비한 금형(252)과, 금형(252)의 상기 공간 내에 삽입된 원료 물질(231)을 가열하기 위한 히터(254)와, 히터(254)를 동작시키기 위한 파워를 공급하는 파워서플라이(253)와, 금형(252)의 상기 공간 내에 삽입된 원료 물질(231)을 소정의 압력으로 누르기 위한 프레스(251)를 포함할 수 있다.
유기 발광 소자의 제조에 사용되는 유기 물질은 200℃ 이상의 열에 노출되면 특성이 변화하기 때문에, 열을 가해 녹여서 소결하는 일반적인 타켓 제작 방법은 사용할 수 없다.
따라서, 본 발명에서는, 타겟 성형 장치의 챔버(250)에 배치된 금형(252)에 타겟을 제작하는 원료 물질(231)인 OLED용 유기 물질을 삽입하고(S51), 진공 펌프(259)를 동작시켜 챔버(250)를 진공 상태로 감압한 상태에서 유기 물질이 손상되지 않는 한도로 금형(252)을 가열하고 이러한 가열된 상태를 임의의 시간 동안 유지하고(S52), 가열된 원료 물질(231)을 눌러 압축한 채로 다시 임의의 시간 동안 유지함으로써(S53) 금형(252) 내의 원료 물질(231)을 소결 및 성형하는 방식으로 타겟(230)을 제작한다.
이때, 챔버(250)의 내부는 10-3 torr 이하의 진공 상태로 유지되는 것이 바람직하다. 더욱, 진공 상태를 10분 이상 유지하여 챔버(210) 내부 뿐만 아니라 금형(252) 내에 삽입된 원료 물질들 사이에 잔류하는 수분이나 이물질(예를 들면, 반응 가스를 제외한 분자들)이 원료 물질들 사이에서 모두 빠져나오도록 할 수 있다.
또한, 파워서플라이(253)에 의해 히터(254)를 동작시켜 금형(252)을 가열함으로써(결과적으로는 금형 내의 원료 물질이 가열됨), 원료 물질 사이의 수분이나 이물질을 신속히 증발시킬 수 있다. 여기서, 금형(252)에 히터(254)를 적용하는 것뿐만 아니라, 금형 자체가 발열하도록 구성할 수도 있다.
금형(252)의 온도가 예를 들면 50 내지 150℃에 도달하면 (또한, 이러한 온도에 도달한 상태로 소정의 시간동안 유지된 후) 원료 물질(231)에 잔류하는 수분과 이물질이 모두 제거될 수 있고, 이때 프레스(251)를 동작시켜 원료 물질(231)을 금형(252) 내에서 누른다. 인가하는 압력은 10 내지 500 kg/㎠일 수 있다. 그리고, 압력이 가하는 상태를 10분 이상, 바람직하게는 60분 이상 유지한다. 이로써 금형(252)의 형태로 성형된 타겟(230)의 제작이 완료된다.
한편, 타겟(230)의 성형이 완료되면, 성형된 유기물 타겟(230)을 도 8에 도시된 바와 같이 백킹 플레이트(backing plate)(232)에 부착할 수 있다. 백킹 플레이트(232)에 부착된 유기 물질의 타겟(230)은 타겟 홀더(또는, 도 9의 금속류 전극판)에 고정될 수 있다. 고정 방식은 백킹 플레이트(232)를 통한 볼트 체결, 접착제 또는 접착 테이프, 진공/정전 흡착 등의 방식을 포함할 수 있다.
다음은, 도 9를 참조하여 본 발명에 따른 스퍼터링 장치의 캐소드의 구성을 설명한다. 캐소드는 RF 파워가 인가되며 타겟(230)이 배치되는 타겟 홀더(236)를 포함한다. 또한, 타겟 홀더(236)에는 배치된 타겟(230)과 기판(220)의 사이에 자기장을 형성할 수 있도록 자석(235)이 배치될 수 있다. 이때, 타겟(또는, 타겟의 백킹 플레이트)과 접촉하는 부분은 구리와 같은 전도성 금속류에 의한 전극판(234)이 배치될 수 있다.
그리고, 타겟 홀더(236)의 주변에는 타겟(230)을 제외한 다른 부분이 외부로 노출되지 않도록 또는 노출을 최소화하기 위한 실드(239)가 형성될 수 있다.
상술한 바와 같은 구성 및 방식의 스퍼터링 장치는 인라인으로 배치되어 연속 공정으로 복수의 박막층을 형성할 수 있다. 즉, 도 1에 도시된 바와 같은 복수의 박막층의 각각의 층을 형성할 때에 모두 스퍼터링 증착 방법을 사용할 수 있으므로, 스퍼터링 장치를 모두 연결하여 연속 공정으로 통합할 수 있게 된다.
도 10은 정공 주입층(102)을 스퍼터링 방식으로 증착하는 챔버(201)와, 정공 운송층(103)을 스퍼터링 방식으로 증착하는 챔버(202)와, 발광층(104) 스퍼터링 방식으로 증착하는 챔버(210)와, 전자 운송층(105)을 스퍼터링 방식으로 증착하는 챔버(206)와, 전자 주입층(106)을 스퍼터링으로 증착하는 챔버(207)가 일렬로 연결된 것을 도시한다.
각각의 챔버들은 제품 이송 통로(209)로 연결될 수 있다.
이렇게 다수의 챔버들을 일렬로 연결하고 제품 이송 통로(209)를 구성함으로써, 다양한 박막층을 연속 공정으로 증착할 수 있게 된다. 따라서, 제조 속도가 빠르며 대량 생산이 가능하게 된다. 또한, 타겟 물질이 증착되는 기판(220)이 이동하는 방식을 적용할 수 있으므로, 인라인 시트(sheet) 방식과 필름류의 롤투롤(roll-to-roll) 방식으로 연속 작업이 가능하게 된다.
여기서, 타겟 물질이 변경되는 챔버(202)와 챔버(210)의 사이 그리고 챔버(206)와 챔버(210)의 사이에는, 챔버들 사이의 물질의 이동을 억제하기 위한 완충 챔버(203 및 205)가 각각 배치될 수 있다. 이 완충 챔버(203 및 205)는 빈 공간으로 구성될 수 있으며, 이로써, 인접한 챔버에서 누출된 반응 가스 및 타겟 물질들이 반대쪽의 다른 인접한 챔버로 이동하는 것을 최소화한다.
도 11은 상술한 바와 같은 구성의 스퍼터링 장치 및 제어 조건으로 유기 물질이 증착된 형태를 보여주는 TEM 사진이다. 사진의 좌측에서, 종래의 스퍼터링 장치 및 스퍼터링 방법을 그대로 사용하여 유기 물질을 증착하는 경우에 유기 물질이 손상된 형태를 볼 수 있다. 한편, 사진의 우측에서, 본 발명에 따른 스퍼터링 방법에 의하여 제조된 균일한 두께로 증착된 유기 물질층(901)과 그 위에 또한 균일한 두께로 증착된 ITO층(902)을 볼 수 있다.
다음, 도 12는 본 발명에 따른 스퍼터링 증착 방법에 의하여 제조된 OLED의 발광 상태를 보여주는 PL 스펙트럼이다. 도면에서, 본 발명에 따른 스퍼터링 방법에 의하여 손상없이 증착된 유기 물질이 바람직한 발광 특성을 보여주는 것을 확인할 수 있다.

Claims (11)

  1. RF 스퍼터링 장치를 이용하여 OLED용 발광성 유기 물질의 박막층을 형성하기 위한 방법으로서:
    RF 스퍼터링 장치의 챔버 내부의 캐소드에 OLED용 발광성 유기 물질의 박막층 형성하기 위한 타겟 물질을 포함하는 타겟을 배치하고 상기 챔버 내부에 상기 타겟 물질이 증착될 기판을 배치하는 단계;
    상기 챔버 내부를 진공으로 유지한 후 반응 가스를 주입하는 단계; 및
    상기 타겟 물질을 손상시키지 않으면서 플라즈마를 발생시킬 수 있을 정도의 최소 RF 전력 및 최대 자기장을 상기 타겟에 인가하는 단계를 포함하는, RF 스퍼터링을 이용한 OLED용 유기 박막층 형성 방법.
  2. 제1항에 있어서,
    상기 타겟에 인가되는 자기장은 1000 내지 5000 가우스이며,
    상기 타겟에 인가되는 RF 전력은 0.5 내지 10 W/㎠인 것을 특징으로 하는, RF 스퍼터링을 이용한 OLED용 유기 박막층 형성 방법.
  3. 제1항에 있어서,
    상기 타겟은:
    타겟 제작용 챔버를 준비하는 것,
    상기 타겟 물질을 상기 챔버 내의 타겟 제작용 금형에 삽입하는 것,
    상기 챔버를 소정의 진공도로 유지하고, 상기 금형을 소정의 온도로 가열하는 것,
    상기 금형에 삽입된 상기 타겟 물질을 소정의 압력으로 누르는 것, 그리고
    상기 진공도, 상기 온도, 상기 압력을 소정의 시간 동안 유지하는 것을 포함하는 단계로써 제작되는 것을 특징으로 하는, RF 스퍼터링을 이용한 OLED용 유기 박막층 형성 방법.
  4. 제3항에 있어서,
    상기 진공도는 10-3 토르 이하이고,
    상기 온도는 50 내지 300 ℃이고,
    상기 압력은 10 내지 500 kg/㎠이고,
    상기 시간은 10 분 이상인 것을 특징으로 하는, RF 스퍼터링을 이용한 OLED용 유기 박막층 형성 방법.
  5. 제3항에 있어서,
    상기 제작 단계는,
    상기 성형된 타겟의 일측면에 백킹 플레이트(backing plate)를 부착하는 것을 더 포함하는 것을 특징으로 하는, RF 스퍼터링을 이용한 OLED용 유기 박막층 형성 방법.
  6. 제1항에 있어서,
    상기 타겟과 상기 기판 사이의 거리는 100 내지 200 mm인 것을 특징으로 하는, RF 스퍼터링을 이용한 OLED용 유기 박막층 형성 방법.
  7. 제1항에 있어서,
    상기 반응 가스는,
    냉각기에 의해 냉각된 후 상기 챔버로 주입되되,
    상기 타겟을 냉각시키기 위하여 상기 타겟의 근방에 설치된 노즐을 통해 주입되는 것을 특징으로 하는, RF 스퍼터링을 이용한 OLED용 유기 박막층 형성 방법.
  8. OLED용 발광성 유기 물질의 박막층을 형성하는 데에 사용할 수 있는 RF 스퍼터링 장치로서:
    챔버;
    타겟 물질이 증착될 기판이 배치되는 기판 홀더;
    OLED용 발광성 유기 물질의 박막층 형성하기 위한 상기 타겟 물질을 포함하는 타겟이 배치될 수 있고, 상기 타겟과 상기 기판의 사이에 소정의 자기장을 인가하기 위한 자석이 배치된 타겟 홀더;
    상기 챔버 내부를 진공으로 유지하기 위한 진공 펌프;
    상기 챔버 내부로 소정의 반응 가스를 주입하기 위한 반응 가스 공급기;
    상기 타겟과 상기 기판의 사이에 플라즈마를 발생시키기 위해 상기 타겟 홀더를 통해 상기 타겟에 소정의 RF 전력을 인가하는 RF 파워서플라이를 포함하고,
    상기 RF 파워서플라이는 상기 타겟 물질을 손상시키지 않으면서 플라즈마를 발생시킬 수 있을 정도의 최소 RF 전력을 인가하고,
    상기 자석은 상기 타겟 물질을 손상시키지 않는 최대 자기장을 인가하도록 제어되는 것을 특징으로 하는, OLED용 유기 박막층 형성용 RF 스퍼터링 장치.
  9. 제8항에 있어서,
    상기 자석에 의해 상기 타겟에 인가되는 자기장은 1000 내지 5000 가우스이고,
    상기 RF 파워서플라이에 의해 상기 타겟에 인가되는 RF 전력은 0.5 내지 10 W/㎠인 것을 특징으로 하는, OLED용 유기 박막층 형성용 RF 스퍼터링 장치.
  10. OLED용 발광성 유기 물질의 박막층을 형성하는 RF 스퍼터링 장치에서 사용되는 타겟을 성형하기 위한 장치로서:
    챔버;
    상기 챔버 내부를 소정의 진공도로 유지하기 위한 진공 펌프;
    상기 RF 스퍼터링 장치에서 사용되는 타겟의 형태를 갖는 공간을 구비한 금형;
    상기 금형의 상기 공간 내에 삽입된 원료 물질을 가열하기 위한 히터;
    상기 히터를 동작시키기 위한 파워서플라이;
    상기 금형의 상기 공간 내에 삽입된 OLED용 발광성 유기 물질의 박막층 형성하기 위한 원료 물질을 소정의 압력으로 누르기 위한 프레스;
    를 포함하는, OLED용 유기 박막층 형성용 RF 스퍼터링 장치에서 사용되는 타겟 성형 장치.
  11. 제10항에 있어서,
    상기 진공도는 10-3 토르 이하이고,
    상기 히터에 의해 상기 원료물질을 가열하는 온도는 50 내지 300 ℃이고,
    상기 프레스가 누르는 상기 압력은 10 내지 500 kg/㎠인 것을 특징으로 하는, OLED용 유기 박막층 형성용 RF 스퍼터링 장치에서 사용되는 타겟 성형 장치.
PCT/KR2017/011601 2016-10-07 2017-10-19 Rf 스퍼터링 장치를 이용한 oled용 유기 박막층 형성 방법 및 상기 rf 스퍼터링 장치, 그리고 상기 rf 스퍼터링 장치에서 사용되는 타겟을 성형하는 장치 WO2019031647A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020530294A JP2020530531A (ja) 2016-10-07 2017-10-19 Rfスパッタリング装置を用いたoled用有機薄膜層の形成方法及び前記rfスパッタリング装置、並びに前記rfスパッタリング装置で使用されるターゲットを成形する装置
US16/637,534 US20200259084A1 (en) 2016-10-07 2017-10-19 Method for forming oled organic thin film layers for using rf sputtering apparatus, rf sputtering apparatus, and apparatus for forming target to be used in rf sputtering apparatus
CN201780093821.6A CN111051565A (zh) 2016-10-07 2017-10-19 利用rf溅射装置形成oled用有机薄膜层的方法及rf溅射装置及用于rf溅射装置的靶材成型装置
KR1020207023728A KR20200105942A (ko) 2016-10-07 2017-10-19 Rf 스퍼터링 장치를 이용한 oled용 유기 박막층 형성 방법 및 상기 rf 스퍼터링 장치, 그리고 상기 rf 스퍼터링 장치에서 사용되는 타겟을 성형하는 장치
KR1020207003460A KR20200030078A (ko) 2016-10-07 2017-10-19 Rf 스퍼터링 장치를 이용한 유기 박막층 형성 방법 및 상기 rf 스퍼터링 장치, 그리고 상기 rf 스퍼터링 장치에서 사용되는 타겟을 성형하는 장치

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20160129451 2016-10-07
KR1020170101839A KR20180038959A (ko) 2016-10-07 2017-08-10 액체질소로 냉각된 혼합 Gas를 사용한 OLED 발광 소재 증착장치
KR10-2017-0101839 2017-08-10

Publications (1)

Publication Number Publication Date
WO2019031647A1 true WO2019031647A1 (ko) 2019-02-14

Family

ID=62083075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011601 WO2019031647A1 (ko) 2016-10-07 2017-10-19 Rf 스퍼터링 장치를 이용한 oled용 유기 박막층 형성 방법 및 상기 rf 스퍼터링 장치, 그리고 상기 rf 스퍼터링 장치에서 사용되는 타겟을 성형하는 장치

Country Status (5)

Country Link
US (1) US20200259084A1 (ko)
JP (1) JP2020530531A (ko)
KR (3) KR20180038959A (ko)
CN (1) CN111051565A (ko)
WO (1) WO2019031647A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210118323A (ko) 2020-03-20 2021-09-30 소문숙 유기 박막, 유기 박막의 제조방법, 유기 박막을 포함하는 oled 디바이스 및 스퍼터링 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050194475A1 (en) * 2004-03-04 2005-09-08 Han-Ki Kim Inductively coupled plasma chemical vapor deposition apparatus
KR20110024222A (ko) * 2009-09-01 2011-03-09 주식회사 선익시스템 원료 공급 유닛 및 스퍼터링 장치
KR20140074687A (ko) * 2012-12-10 2014-06-18 경희대학교 산학협력단 스퍼터링 장치
KR20140076924A (ko) * 2012-12-13 2014-06-23 한국생산기술연구원 저손상 스퍼터 장치 및 이 장치를 이용한 스퍼터링 방법
KR20160149720A (ko) * 2015-06-19 2016-12-28 희성금속 주식회사 스퍼터링 타겟의 제조방법 및 이로부터 제조된 스퍼터링 타겟

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665726A (ja) * 1992-08-25 1994-03-08 Sony Corp スパッタ装置
JPH11329746A (ja) * 1997-04-25 1999-11-30 Tdk Corp 有機el素子
KR100282024B1 (ko) * 1998-10-08 2001-02-15 김선욱 스퍼터링에 의한 유기전기발광소자의 제조방법
JP6048287B2 (ja) * 2013-04-10 2016-12-21 株式会社豊田自動織機 粒子状物質の製造方法
US20170062192A1 (en) * 2015-08-28 2017-03-02 Semiconductor Energy Laboratory Co., Ltd. Film forming apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050194475A1 (en) * 2004-03-04 2005-09-08 Han-Ki Kim Inductively coupled plasma chemical vapor deposition apparatus
KR20110024222A (ko) * 2009-09-01 2011-03-09 주식회사 선익시스템 원료 공급 유닛 및 스퍼터링 장치
KR20140074687A (ko) * 2012-12-10 2014-06-18 경희대학교 산학협력단 스퍼터링 장치
KR20140076924A (ko) * 2012-12-13 2014-06-23 한국생산기술연구원 저손상 스퍼터 장치 및 이 장치를 이용한 스퍼터링 방법
KR20160149720A (ko) * 2015-06-19 2016-12-28 희성금속 주식회사 스퍼터링 타겟의 제조방법 및 이로부터 제조된 스퍼터링 타겟

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210118323A (ko) 2020-03-20 2021-09-30 소문숙 유기 박막, 유기 박막의 제조방법, 유기 박막을 포함하는 oled 디바이스 및 스퍼터링 장치

Also Published As

Publication number Publication date
CN111051565A (zh) 2020-04-21
KR20200105942A (ko) 2020-09-09
JP2020530531A (ja) 2020-10-22
US20200259084A1 (en) 2020-08-13
KR20180038959A (ko) 2018-04-17
KR20200030078A (ko) 2020-03-19

Similar Documents

Publication Publication Date Title
KR100991445B1 (ko) 발광장치의 제조방법
CN1679375B (zh) 制造系统,发光装置以及含有有机化合物层的制造方法
CN1621555B (zh) 掩模、容器和制造装置
CN103385035B (zh) 蒸镀颗粒射出装置和蒸镀装置以及蒸镀方法
KR100961401B1 (ko) 발광 디바이스를 제조하는 방법 및 발광 디바이스를제조하는 장치
KR101466232B1 (ko) 발광 장치의 제조 방법
TW200303700A (en) Fabrication system and a fabrication method of a light emitting device
US20040142098A1 (en) Using compacted organic materials in making white light emitting oleds
JP2004217970A (ja) 製造装置、クリーニング方法、および再利用方法
JP4368633B2 (ja) 製造装置
WO2019031647A1 (ko) Rf 스퍼터링 장치를 이용한 oled용 유기 박막층 형성 방법 및 상기 rf 스퍼터링 장치, 그리고 상기 rf 스퍼터링 장치에서 사용되는 타겟을 성형하는 장치
JP4515060B2 (ja) 製造装置および有機化合物を含む層の作製方法
JP2010121215A (ja) 蒸着装置および蒸着方法
WO2005060317A1 (ja) 有機機能素子およびその製造方法
KR20210118323A (ko) 유기 박막, 유기 박막의 제조방법, 유기 박막을 포함하는 oled 디바이스 및 스퍼터링 장치
JP2004006311A (ja) 発光装置の作製方法および製造装置
KR101895444B1 (ko) 나노 캡슐라이징 유기발광소재를 이용한 양자점 코팅 유기 자가발광 표시장치 제조방법
KR20180057890A (ko) RF 또는 DC power 스퍼터(Sputter)용 나노캡슐화 된 유기발광소자 Target

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921227

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207003460

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020530294

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921227

Country of ref document: EP

Kind code of ref document: A1