WO2019031609A1 - 改質リグニン及び改質ポリフェノールの製造方法、並びに改質リグニンを用いた樹脂組成材料 - Google Patents

改質リグニン及び改質ポリフェノールの製造方法、並びに改質リグニンを用いた樹脂組成材料 Download PDF

Info

Publication number
WO2019031609A1
WO2019031609A1 PCT/JP2018/030112 JP2018030112W WO2019031609A1 WO 2019031609 A1 WO2019031609 A1 WO 2019031609A1 JP 2018030112 W JP2018030112 W JP 2018030112W WO 2019031609 A1 WO2019031609 A1 WO 2019031609A1
Authority
WO
WIPO (PCT)
Prior art keywords
modified
lignin
polyphenol
modified lignin
reaction
Prior art date
Application number
PCT/JP2018/030112
Other languages
English (en)
French (fr)
Inventor
田代 裕統
啓人 小山
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to CN201880051532.4A priority Critical patent/CN110891960A/zh
Priority to EP18842933.6A priority patent/EP3666784A4/en
Priority to US16/635,394 priority patent/US11518886B2/en
Priority to JP2019535728A priority patent/JPWO2019031609A1/ja
Publication of WO2019031609A1 publication Critical patent/WO2019031609A1/ja
Priority to US17/951,913 priority patent/US20230025187A1/en
Priority to JP2022210905A priority patent/JP2023024830A/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/005Lignin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07GCOMPOUNDS OF UNKNOWN CONSTITUTION
    • C07G1/00Lignin; Lignin derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials

Definitions

  • the present invention relates to a method for producing modified lignin and modified polyphenol, and a resin composition material using the modified lignin.
  • Plant-derived substances mainly include cellulose derived from sugar, hemicellulose, lignin and the like.
  • lignin is desired to be useful as a plastic material because it has an aromatic ring, an aliphatic hydroxyl group and an aromatic hydroxyl group.
  • lignin is difficult to biodegrade, hardly soluble in solvents, not only difficult to handle due to its high softening point, and poorly reactive with existing plastic materials, so its use as a plastic material is almost found. Not. Therefore, in order to make lignin suitable as a plastic material, appropriate modification is given, and also examination of the technique using this modified lignin is made.
  • Patent Document 1 discloses a modified lignin obtained by introducing a benzoxazine skeleton into lignin without lowering the molecular weight of lignin to impart reactivity, and the mechanical strength and the like of a molded article by containing the modified lignin.
  • a technique relating to improved molding materials is disclosed.
  • Patent Document 2 after lignin and phenols are reacted and phenolated in the presence of a catalyst, they are heated with an alkali to form an alkalized lignin, and an aldehyde is further added thereto to form a hydroxymethylated lignin.
  • Patent Document 3 discloses a phenol-modified lignin resin and the like in which the curability is improved and the resin strength is improved by a method in which lignin, phenols and aldehydes are reacted in the presence of an acid.
  • Patent No. 5671430 Japanese Patent Application Publication No. 2016-540058 International Publication No. 2015/147165
  • the present invention provides a method for producing modified lignin and modified polyphenol having improved reactivity with existing plastic materials, and a modified lignin-containing resin composition capable of giving a molded article having improved physical properties such as bending strength.
  • the task is to provide materials.
  • the present inventors can solve the above problems by achieving conversion of the skeleton ratio of the basic skeleton of lignin, reduction of aliphatic hydroxyl groups, and reduction of molecular weight in one reaction. Found out. That is, the present invention is as follows.
  • Double relative abundance of H-type framework H (%) and relative abundance of G-type framework relative to relative abundance S (%) of S-type framework determined from integral value measured by 31 P-NMR The ratio of the total of G (%) [(2H + G) / S] is 2.5 or more 31.
  • Modified lignin in which the abundance of the aliphatic hydroxyl group relative to the sum of the abundances of the aliphatic hydroxyl group and the aromatic hydroxyl group determined from an integral value measured by P-NMR is less than 20%.
  • a process for producing a modified polyphenol which comprises the step of reacting a polyphenol-containing composition with a phenol compound in which at least one of the 2-, 4- and 6-positions which are positions of substituents relative to hydroxyl groups is a hydrogen atom.
  • a modified lignin-containing resin composition material containing the modified lignin.
  • a composition material can be provided.
  • [Modified lignin] (Basic framework of lignin) Lignin is a polymer compound obtained by polymerizing three kinds of lignin monomers which are p-hydroxycinnamic alcohols, and has a basic skeleton represented by the following formula (2).
  • the substituents R 3 and R 4 each represent a hydrogen atom or a methoxy group.
  • R 3 and R 4 are both hydrogen atoms, p-hydroxyphenyl nucleus (H-type skeleton), and when any one of R 3 and R 4 is hydrogen atom, guaiacyl nucleus (G-type skeleton), R 3 and R 4 Those in which both of R 4 are not hydrogen atoms are referred to as syringyl nucleus (S-type skeleton).
  • X represents a carbon atom
  • Y represents a hydrogen atom or a carbon atom.
  • a carbon atom bonded to R 3 and R 4 in the basic skeleton of lignin is a reactive point (hereinafter may be simply referred to as “reactive point”), but R 3 and R 4 are methoxy groups. In some cases, the carbon atoms become less reactive. Therefore, to react lignin, R 3 and R 4 need to be hydrogen atoms. Further, not only the above-mentioned aromatic site but also an aliphatic site is present in lignin, and the hydroxyl group present in the aliphatic site is poor in oxidation stability (it is easily changed to an aldehyde or a carboxylic acid by oxidation). It is preferable that the reactivity with the existing plastic material be as small as possible.
  • lignin is improved in mixability by lowering its molecular weight without significantly lowering the softening point, and its reactivity with existing plastic materials is improved. That is, if it is a lignin having a large number of aliphatic hydroxyl groups and a highly reactive H-type skeleton and a G-type skeleton with a large amount of these two types of skeletons, and a low molecular weight lignin without significantly lowering the softening point. It is rich in reactivity and suitable as a plastic material.
  • the abundance of each type of basic skeleton and the aliphatic hydroxyl groups differ depending on the type of plant material of lignin.
  • natural lignin is originally a large molecule whose molecular weight can not be measured, and the existing separation method has a drawback that the softening point is also greatly lowered when the molecular weight is lowered.
  • the G-type skeleton and the S-type skeleton are present in hardwood-derived lignin
  • the G-type skeleton and S-type skeleton are present in conifer-derived lignin
  • the G-type skeleton is There are many.
  • lignin derived from hardwoods and conifers has almost no H skeleton.
  • H-type skeleton, G-type skeleton and S-type skeleton are present in lignin derived from herbaceous biomass, but the abundance ratio of H-type skeleton is low.
  • softwood-derived lignin has many aliphatic hydroxyl groups, and the presence of aliphatic hydroxyl groups decreases in the order of broadleaf tree-derived lignin and herbaceous lignin. Therefore, in order to increase the reactivity of lignin, lignin modification is carried out using a method of reducing the molecular weight by increasing the abundance of H-type and G-type frameworks, reducing aliphatic hydroxyl groups, and not significantly lowering the softening point. It is necessary to
  • the modified lignin of the present invention is twice the relative abundance H (%) of the H-type framework to the relative abundance S (%) of the S-type framework determined from the integral value measured by 31 P-NMR
  • the ratio of the total of relative abundance G (%) of the skeleton [(2H + G) / S] is 2.5 or more, and the aliphatic hydroxyl group and aromatic hydroxyl group obtained from the integral value similarly measured by 31 P-NMR
  • the abundance of the aliphatic hydroxyl group relative to the total abundance is less than 20%.
  • the modified lignin of the present invention is preferably reduced in molecular weight to have a number average molecular weight of less than 1,000, and a softening point of 90 ° C. or more.
  • aliphatic hydroxyl groups are all hydroxyl groups (aliphatic hydroxyl groups and 20% or more with respect to the sum total of the abundance ratio of aromatic hydroxyl groups, which is not preferable as a plastic material. Therefore, if the above ratio is less than 2.5 or the presence ratio of aliphatic hydroxyl group is 20% or more, the reactivity as modified lignin is not sufficient and it is not suitable as a plastic material. Also, it can not be expected to provide a molded article having improved physical properties such as bending strength.
  • the ratio [(2H + G) / S] of the abundance ratio is 2.5 or more, and the presence of the aliphatic hydroxyl group to the total of the abundance ratio of the aliphatic hydroxyl group and the aromatic hydroxyl group The rate is less than 20%.
  • the ratio [(2H + G) / S] is preferably 2.8 or more, from the viewpoint of expecting to further improve the reactivity of the modified lignin and to give a molded article having improved physical properties such as bending strength.
  • 3.0 or more is more preferable, 3.5 or more is more preferable, 4.5 or more is further more preferable, 5.5 or more is still more preferable, 7.0 or more is still more preferable, 9.0 or more is further more
  • 12.0 or more is more preferable, and 14.0 or more is even more preferable. From the same point of view, less than 15% is preferable, less than 12% is more preferable, less than 10% is more preferable, less than 6% is more preferable, and less than 3% is more preferable. .
  • S-type backbone, the relative abundance of H-type skeleton and G-type skeleton and the existence ratio of aliphatic hydroxyl groups is a value obtained from the integral value measured by 31 P-NMR, the 31 P-NMR measurements More specifically, it is as described in MAGNETIC RESONANCE IN CHEMISTRY, VOL. 33, 375-382 (1995). In the present invention, more specifically, it can be measured by the method described in the examples described later.
  • the modified lignin of the present invention is reduced in molecular weight because the molecular chains of R 3 and R 4 are modified by substitution reaction in the production method described later.
  • the mixing property (kneading property or stirring property) with other plastic materials is improved, and further, a molded article in which physical properties such as bending strength are improved can be provided. .
  • the raw material lignin is reduced in molecular weight by occurrence of cleavage of the carbon chain by the substitution reaction.
  • the modified lignin of the present invention since a phenolic compound is always inserted at a substitution site in the production method described later, the softening point does not decrease so much even if the molecular weight reduction occurs. Therefore, the modified lignin of the present invention preferably has a softening point of 90 ° C. or more, more preferably 130 ° C. or more, and still more preferably 160 ° C. or more. When the softening point is 90 ° C.
  • the softening point of the modified lignin is preferably 200 ° C. or less, more preferably 190 ° C. or less, still more preferably 180 ° C. or less, and still more preferably 170 ° C. or less. If the said softening point is 200 degrees C or less, the resin composition material containing modified lignin becomes easier to handle.
  • the modified lignin of the present invention preferably has, for example, a number average molecular weight of 900 to 1,200 and a weight average molecular weight of 1,900 to 2,700, and a number average molecular weight of 600 to less than 900 and weight
  • the average molecular weight is preferably 1,100 or more and less than 1,900, and the number average molecular weight is preferably 500 or more and less than 600, and the weight average molecular weight is preferably 900 or more and less than 1,100.
  • the modified lignin of the present invention has, for example, a molecular weight distribution (Mw / Mn) of usually about 1.2 to 3.0, preferably 1.3 to 2.8, and preferably 1.4 to 2.5. Some are more preferable, 1.5 to 2.0 is more preferable, 1.5 to 1.9 is further more preferable, and 1.5 to 1.8 is more preferable.
  • Mw / Mn molecular weight distribution
  • the softening point is preferably 160 ° C. or more and 200 ° C. or less, and if the number average molecular weight is 600 or more and less than 900
  • the softening point is preferably 130 ° C. or more and 190 ° C. or less, and if the number average molecular weight is 500 or more and less than 600, the softening point is preferably 110 ° C. or more and 170 ° C. or less, and the number average molecular weight is 300 or more and less than 500 If it exists, the softening point is preferably 90 ° C. or more and 170 ° C.
  • the modified lignin of the present invention has a softening point of 160 ° C. or more and 200 ° C. or less if, for example, the number average molecular weight is 900 or more and 1,200 or less and the weight average molecular weight is 2,400 or more and 3,000 or less
  • the softening point is preferably 130 ° C. or more and 190 ° C. or less if the number average molecular weight is 600 or more and less than 900 and the weight average molecular weight is 1,100 or more and less than 2,400, and the number average molecular weight is 500 or more and less than 600 and If the weight average molecular weight is 900 or more and less than 1,100, the softening point is preferably 110 ° C.
  • the said number average molecular weight and a weight average molecular weight can be measured by the method described in the Example mentioned later.
  • the method for producing a modified polyphenol according to the present invention comprises a polyphenol-containing composition and a phenol compound in which at least one of the 2-, 4- and 6-positions which are positions of substituents relative to hydroxyl groups is a hydrogen atom (hereinafter simply referred to as “phenol (Hereinafter sometimes referred to as "compound").
  • the method for producing a modified polyphenol of the present invention is, for example, a method for producing a modified polyphenol applied to the modification of a polyphenol-containing composition such as tannin and lignin.
  • a polyphenol-containing composition such as tannin and lignin.
  • the raw material polyphenol contained in the above-mentioned polyphenol-containing composition is preferably lignin from the viewpoint of usefulness as a plastic material.
  • the polyphenol-containing composition is preferably a lignin-containing composition or lignin, more preferably lignin, and the modified polyphenol is preferably modified lignin.
  • the raw material polyphenol contained in the above-mentioned polyphenol-containing composition is lignin (hereinafter sometimes referred to as "raw material lignin”) and the modified polyphenol is a modified lignin as an example.
  • the method for producing the modified polyphenol of the present invention is not limited to these raw material lignin and modified lignin.
  • the raw material lignin used as a raw material in the method for producing a modified polyphenol of the present invention is derived from plant biomass of woody biomass and herbaceous biomass.
  • woody biomass and biomass residue derived from plant biomass of herbaceous biomass can also be used as the lignin-containing composition.
  • black liquor sulfite lignin, kraft lignin, soda lignin etc.
  • tannin etc. are mentioned, and this may use 1 type or 2 types or more together.
  • Examples of plant biomass include woody biomass and herbaceous biomass.
  • woody biomass include conifers such as cedar, cypress, hiba, cherry, eucalyptus, beech and bamboo, and hardwoods.
  • As herbaceous biomass there are palm palm trunk / empty, palm palm fiber and seeds, bagasse (sugarcane and high biomass amount sugarcane squeezed), cane top (sugarcane top and leaf), energy cane, rice straw, straw, Corn cobs / stalks / leaves (corn stover, corn cob, corn hull), sorghum (including sweet sorghum) residue, hides and shells of Jatropha seeds, cashew shells, switchgrass, erianthus, high biomass yield crops, energy crops, etc.
  • herbaceous biomass is preferable from the viewpoint of easy availability and compatibility with the production method applied in the present invention, and palm trees, straw and corn cobs / stalks / residues (corn stover) , Corn cob, corn hull), bagasse, cane top, energy cane, residues after extraction of their useful components are more preferable, and corn cob, stem and leaf, residue (corn stover, corn cob, corn hull), bagasse, cane top, energy cane More preferable.
  • useful ingredients include, for example, hemicellulose, sugars, minerals, water and the like.
  • the bagasse contains about 5 to 30% by mass of lignin.
  • lignin in bagasse contains all of H nucleus, G nucleus and S nucleus as a basic skeleton. Plant-based biomass can also be used after being crushed. It may be in the form of a block, a chip, a powder, or a water-containing hydrate.
  • Organosolv method pressurized hot water method, steam explosion method, ammonia treatment method, ammonia explosion method, acid treatment method, alkali treatment method, oxidative decomposition method, thermal decomposition A microwave heating method etc. are mentioned.
  • the organosolv method is preferred from the viewpoint of easy removal of the solvent. Specifically, for example, an organic solvent or a solvent containing an organic solvent and water is treated at a high temperature to elute lignin contained in plant biomass to a solvent, and the lignin-containing solution is filtered to obtain cellulose etc. After removal, the solution can be concentrated to dryness to separate the raw material lignin.
  • the number average molecular weight (Mn) of the raw material lignin is usually about 500 to 10,000, preferably 1,000 to 5,000, more preferably 1,250 to 3,000, 1,1 More preferably, it is 250 to 2,500. If it is said range, melt
  • the weight average molecular weight (Mw) of the raw material lignin is usually about 1,000 to 100,000, preferably 2,000 to 10,000, and preferably 2,500 to 4,000, for the same reason. More preferably, the degree is 2,500, and more preferably 2,500 to 3,500.
  • the molecular weight distribution (Mw / Mn) of the raw material lignin is usually about 1.5 to 10.0, preferably 2.0 to 5.0, and preferably 2.0 to 3. It is more preferably 0, and still more preferably 2.0 to 2.5.
  • the said number average molecular weight, a weight average molecular weight, and molecular weight distribution can be measured by the method described in the Example mentioned later.
  • pH of the biomass residue of a water-containing state is first adjusted to acidity. The same amount or more by weight and the amount of lignin contained in the raw material is added thereto.
  • the heating is performed to remove the water in the heat (the phenol compound has a high boiling point and the water can be removed by providing an appropriate oil-water separator such as Dean-Stark). Heating is continued for 1 to 2 hours after water removal.
  • the heating liquid contains insolubles and is filtered hot using 5 C filter paper. The filtered solids are unreacted and inorganic contaminants. The filtrate is distilled under reduced pressure to remove unreacted phenolic compounds.
  • Phenol compounds that can not be removed by distillation are dissolved in acetone as necessary, and removed by repeated reprecipitation with water as a poor solvent.
  • the solids to be separated are already modified reformed lignin. It is also possible to use the phenol compound that remains upon distillation as it is if it does not cause a problem in the post reaction.
  • the phenol compound used in the method for producing a modified polyphenol of the present invention needs to have a hydrogen atom at least one of the 2-, 4- and 6-positions which is the position of the substituent to the hydroxyl group.
  • a phenolic compound having hydrogen atoms at the 2-, 4- and 6-positions i.e., ortho- and para-positions
  • the substituent of R 3 and R 4 in the basic skeleton of the raw material lignin represented by the above-mentioned formula (2) is transferred to the 2-, 4- or 6-position of the phenolic compound.
  • R 3 or R 4 or both of the raw material lignin can be a hydrogen atom, and the above-mentioned reactive point can be a modified lignin having an increased reaction point. Therefore, the substitution reaction reduces the S-type skeleton in the raw material lignin, increases the G-type skeleton and the H-type skeleton, and improves the reactivity.
  • the molecular chain of the raw material lignin is modified by the substitution reaction to lower the molecular weight, and the mixing property of the modified lignin is improved.
  • the phenol compound may be used alone or in combination of two or more.
  • a phenol compound is a compound represented by following formula (1).
  • the saucer of the said substituent becomes at least three places, substitution reaction can be advanced favorably.
  • R 1 and R 2 each independently represent a hydrogen atom, a hydroxyl group or an alkyl group having 1 to 15 carbon atoms, and R 1 and R 2 may be the same or different.
  • the alkyl group having 1 to 15 carbon atoms may be linear or branched. It is preferably a linear or branched alkyl group having 1 to 15 carbon atoms, more preferably a linear or branched alkyl group having 1 to 10 carbon atoms, and still more preferably 1 to 5 carbon atoms. It is a linear or branched alkyl group, more preferably a linear alkyl group having 1 to 5 carbon atoms.
  • 3-alkyl phenols such as a phenol, a resorcinol, phloroglucin; metacresol, 3-ethylphenol, and 3-propylphenol; 5-methylresorcinol, 5-ethylresorcinol, and 5-alkylresorcinol such as 5-propylresorcinol; 3,5-dialkylphenol such as 3,5-dimethylphenol, 3-methyl-5-ethyl-phenol, and 3,5-diethylphenol.
  • At least one of R 1 and R 2 is a hydroxyl group, from the viewpoint that the acidity of the compound is increased by the phenol compound having a plurality of hydroxyl groups, and the reaction is expected to proceed without a catalyst.
  • phenolic compounds include resorcinol, phloroglucin, 5-alkylresonosinol (5-methylresorcinol, 5-ethylresorcinol, etc.) and the like.
  • the mass ratio of the phenolic compound to the raw material lignin (raw material polyphenol, lignin in biomass residue in the case of biomass residue) [phenolic compound / raw material lignin] is usually about 0.1 to 15, but 0 3 to 15 is preferable, 0.5 to 15 is more preferable, 1 to 15 is further preferable, 1 to 13 is further more preferable, 1 to 12 is further more preferable, 1 to 10 is further more preferable, 1 to 5 Is even more preferred.
  • the mass ratio of the phenolic compound to the raw material lignin is in the above range, the above-mentioned substitution reaction can be favorably advanced.
  • calculation of content of lignin contained in a biomass residue is measured by constituent sugar analysis, after pre-processing which grinds the raw material used as a sample using a Willey mill, and it dries at 105 degreeC.
  • the reaction between lignin and the phenolic compound is preferably non-catalytic or more than 0 to 3.0% by mass, further 0.2 to 3 with respect to the total amount of the raw material lignin and the phenolic compound.
  • the reaction is carried out in the presence of 0% by weight of an acid catalyst.
  • the reaction can be allowed to proceed without catalyst by the phenol compound used for the reaction.
  • post-treatment (purification step) after the reaction step can be omitted, and physical properties such as bending strength of a molded article using the obtained modified lignin as a plastic material We can expect improvement.
  • the acid catalyst examples include inorganic acids such as phosphoric acid, phosphoric acid esters, hydrochloric acid, sulfuric acid and sulfuric acid esters, and organic acids such as acetic acid, formic acid, oxalic acid and p-toluenesulfonic acid.
  • the acid catalyst may be used alone or in combination of two or more.
  • the amount of the acid catalyst used is generally not less than 0 with respect to the total amount of the raw material lignin and the phenolic compound, but the effect by the addition of the acid catalyst can be exhibited well
  • the reaction is usually carried out in the presence of 0.01 to 3.0% by mass of an acid catalyst from the viewpoint of impurities remaining in the modified lignin, preferably 0.1 to 3.0% by mass, preferably 0.2 to 3.0% by mass. 3.0 mass% is more preferable, and 0.4 to 2.6 mass% is more preferable. If the amount of the acid catalyst used is in the above range, the above-mentioned substitution reaction can be favorably advanced.
  • the reaction temperature is not particularly limited as long as it is usually 100 ° C. or more, but is usually more than 140 ° C. and 350 ° C. or less, preferably more than 140 ° C. and 300 ° C. or less, more preferably more than 140 ° C. and 270 ° C. or less, 140 More preferably, the temperature is higher than ° C. and 250 ° C. or lower, still more preferably 150 to 230 ° C., and still more preferably 150 to 200 ° C. When the temperature is higher than 140 ° C., most of the phenol compounds can be dissolved to proceed the reaction, and when the temperature is 300 ° C. or lower, the progress of the reverse reaction can be prevented.
  • the reaction time is usually about 0.1 to 15 hours, but is preferably 0.5 hours or more, preferably 1 hour or more, from the viewpoint that the reaction can be sufficiently advanced to reform the raw material lignin.
  • the upper limit is preferably 10 hours or less, more preferably 2 to 8 hours, from the viewpoint that reaction progress can not be expected even if the reaction time is too long.
  • the reaction between the raw material lignin and the phenol compound can be carried out without a solvent.
  • any one or more of alcohols such as methanol, ethanol and isopropyl alcohol, ketones such as acetone and methyl ethyl ketone, ethers such as tetrahydrofuran, and organic solvents such as aromatics, or water may be used; It is preferable to use any one or more of acetone and water. From the viewpoint of preventing the mixing of the solvent into the modified lignin and efficiently performing the step of removing the solvent after the reaction, it is preferable to carry out without solvent.
  • the modified lignin of the present invention is produced by performing the above-mentioned reaction step. Therefore, although it is possible to use the modified lignin-containing substance obtained by the reaction step as a plastic material as it is, a purification step may be performed after the reaction step. Solid-liquid separation After the above reaction, the modified lignin is dissolved in the phenol compound, but the unreacted substance and the inorganic residue are present in the liquid as a solid. These are preferably removed by filtration (hot). For example, the reaction solution is NO. 5C or NO. Put it in a filter under pressure and heat when filter paper of size 2 etc.
  • the filtered solids may optionally be diluted and / or washed with phenolic compounds and filtered.
  • the modified lignin is contained in the filtrate.
  • the reaction product solution is diluted with one or more kinds of low boiling point general purpose hydrophilic solvents such as water, ketones such as acetone and methyl ethyl ketone, alcohols such as methanol, ethanol and isopropyl alcohol, and ethers such as tetrahydrofuran. It may be washed and / or separated into solid and liquid.
  • the modified lignin is contained in the solution.
  • the method of performing solid-liquid separation is not particularly limited, filtration, filter press, centrifugal separation, dehydrator and the like can be mentioned.
  • Distillation is carried out under reduced pressure, for example, under a reduced pressure of about 40 to 200 ° C., usually about 80 to 150 ° C., about 3 to 20 kPa, usually about 5 to 10 kPa, of the modified lignin-containing substance obtained by the reaction step.
  • the phenol compound after reaction can be removed for purification.
  • modified lignin is obtained as a solid.
  • modified lignin is obtained as a solid.
  • the modified lignin obtained by distillation may be generally heated to 50 to 200 ° C., and may be purified by removing the phenol compound after reaction by vacuum drying in a solid or molten state, and in a vacuum state.
  • the modified lignin in a heated fluid state after distillation may be purified by removing the phenolic compound after the reaction by vacuum drying as it is.
  • a solvent such as acetone
  • ion-exchanged water which is a poor solvent for modified lignin
  • the above-mentioned filtration, distillation under reduced pressure, evaporation under reduced pressure and reprecipitation may be combined, and the same steps may be repeated.
  • the phenolic compound remaining in the modified lignin is not particularly limited, but is usually less than 30%, preferably less than 10%, more preferably less than 5%, and still more preferably less than 1%.
  • the method for producing the modified polyphenol of the present invention increases the reactive hydroxyl groups of the raw material lignin at the same time as there are more H- and G-type skeletons of the modified lignin.
  • modified lignin with reduced aliphatic hydroxyl groups can be obtained.
  • the number-average molecular weight and the weight-average molecular weight of the modified polyphenol are smaller than those of the raw material polyphenol in the polyphenol-containing composition. Therefore, the modified lignin obtained by the above-mentioned production method is reduced in molecular weight to improve the mixing property.
  • the molecular weight distribution (Mw / Mn) of a modified polyphenol becomes smaller than the raw material polyphenol in the polyphenol containing composition by the manufacturing method of the modified polyphenol of this invention.
  • H (%) of the H-type framework and the relative abundance H (%) of the G-type framework determined from the integral value measured by 31 P-NMR according to the production method of the present invention Increase the total [2H + G] of reaction points by 3% or more, preferably 4% or more, usually before and after modification, and make the modified lignin having an aliphatic hydroxyl group content of less than 20%.
  • the modified lignin has a number average molecular weight and a weight average molecular weight lower than those of the raw material lignin, but preferably the softening point does not fall below 90 ° C.
  • the present invention also provides a modified lignin-containing material comprising the above-described modified lignin or a modified lignin produced by the above-mentioned production method, in particular a modified lignin-containing resin composition material, and a molded article using it.
  • resin components such as a thermosetting resin and a thermoplastic resin may be contained. The components other than the modified lignin are described below. (Thermosetting resin)
  • the modified lignin-containing resin composition material can further contain a thermosetting resin.
  • thermosetting resin examples include other common thermosetting resins such as phenol resin, epoxy resin, polyurethane resin, melamine resin, urea resin, unsaturated polyester resin, silicone resin and alkyd resin.
  • phenolic resin similar to modified lignin, phenolic resin is preferable because it has a phenolic hydroxyl group, can react with modified lignin, and can be used as a diluent for modified lignin.
  • phenolic resins novolac based phenolic resins and resol based phenolic resins are more preferred. These thermosetting resins may be used alone or in combination of two or more.
  • the content of the thermosetting resin in the above modified lignin-containing resin composition material may be determined according to the purpose, but preferably 100 parts by mass of modified lignin from the viewpoint of obtaining good physical properties and moldability.
  • the amount is 100 to 300 parts by mass, more preferably 150 to 250 parts by mass.
  • the said modified lignin containing resin composition material can further contain aldehydes.
  • a self-curing molding material can be obtained by using a resin composition material containing modified lignin and aldehydes and modified lignin-containing resin composition.
  • aldehydes include formaldehyde, paraformaldehyde, acetaldehyde, propionaldehyde, furfural, benzaldehyde, phenylacetaldehyde, and salicylaldehyde. Among these, formaldehyde is preferable.
  • the molar ratio [formaldehyde / phenol group] of phenol group to formaldehyde contained in the modified lignin is preferably 1.0 to 2.5, and more preferably 1.2 to 2.0. If the molar ratio is in the above-mentioned range, there is no possibility that the curing rate at the time of reaction decreases. It is preferable to use an alkali from the viewpoint of promoting the curing reaction between the modified lignin and the aldehyde.
  • the alkali sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, ammonia, tetramethylammonium hydroxide, alkylamine and the like can be used.
  • the temperature and reaction time of the curing reaction between the modified lignin and the aldehyde are not particularly limited, but usually about 60 to 130 ° C., and the reaction time is usually about 0.5 hour to 5 hours.
  • the modified lignin-containing resin composition material may further contain one or more selected from thermosetting resins and aldehydes in combination.
  • the modified lignin-containing resin composition material may further contain a filler.
  • the filler may be an inorganic filler or an organic filler.
  • the inorganic filler spherical or crushed fused silica, silica powder such as crystalline silica, alumina powder, glass powder, glass fiber, glass flake, mica, talc, calcium carbonate, alumina, hydrated alumina, boron nitride, nitrided Aluminum, silicon nitride, silicon carbide, titanium nitride, zinc oxide, tungsten carbide, magnesium oxide and the like can be mentioned.
  • the organic filler include carbon fiber, aramid fiber, paper powder, wood powder, cellulose fiber, cellulose powder, rice husk powder, fruit shell / nut powder, chitin powder, starch and the like.
  • the inorganic filler and the organic filler may be used alone or in combination of two or more, and the content thereof is determined according to the purpose.
  • an inorganic filler and / or an organic filler it is desirable for the content of the inorganic filler and / or the organic filler to be an appropriate amount in order to obtain good physical properties and moldability.
  • the content of the inorganic filler and / or the organic filler is preferably 50 to 200 parts by mass, more preferably 80 to 150 parts by mass, with respect to 100 parts by mass of the modified lignin.
  • the modified lignin-containing resin composition material may further contain a curing agent.
  • the curing agent include hexamethylenetetramine, hexaformaldehyde, and paraformaldehyde. One or more of these may be used in combination.
  • inorganic bases such as calcium hydroxide, sodium hydroxide, potassium hydroxide, calcium oxide and magnesium oxide, Lewis acids such as zinc chloride and zinc acetate A catalyst such as triethylamine may be used. One or more of these may be used in combination.
  • additives Various additives can be added to the resin composition material according to the present embodiment as long as the properties of the molded product obtained from the resin composition material are not impaired.
  • compatibilizers, surfactants and the like can be added according to the purpose.
  • a resin obtained by adding maleic anhydride, epoxy or the like to a thermoplastic resin and introducing a polar group for example, a combination of a maleic anhydride modified polyethylene resin, a maleic anhydride modified polypropylene resin, and various commercially available compatibilizers
  • the surfactant include linear fatty acids such as stearic acid, palmitic acid and oleic acid, and branched / cyclic fatty acids with rosins, but not limited thereto.
  • additives that can be blended in addition to those described above, flexibilizers, heat stabilizers, UV absorbers, flame retardants, antistatic agents, antifoaming agents, thixotropic agents, mold release agents, antioxidants Agents, plasticizers, stress reducing agents, coupling agents, dyes, light scattering agents, small amounts of thermoplastic resins and the like. One or more of these may be used in combination.
  • thermoplastic resin The thermoplastic resin that can be added to the modified lignin-containing resin composition material is an amorphous thermoplastic resin having a glass transition temperature of 200 ° C. or less, or a crystalline thermoplastic resin having a melting point of 200 ° C. or less preferable.
  • the thermoplastic resin includes, for example, polycarbonate resin, styrene resin, polystyrene elastomer, polyethylene resin, polypropylene resin, polyacrylic resin (polymethyl methacrylate resin etc.), polyvinyl chloride resin, cellulose acetate resin, polyamide resin, Low melting point polyester resin (PET, PBT etc.) represented by polyester of a combination of terephthalic acid and ethylene glycol, terephthalic acid and 1,4-butanediol, copolymer containing polylactic acid and / or polylactic acid, acrylonitrile-butadiene -Styrene resin (ABS resin), polyphenylene oxide resin (PPO), polyketone resin, polysulfone resin, polyphenylene sulfide resin (PPS), fluorocarbon resin, silicon resin, polyimide resin, polybenzimide Tetrazole resins, polyamide elastomers, and copolymers thereof with other monomers.
  • modified lignin as an additive for a thermoplastic resin
  • conventionally known methods described in JP-A-2014-15579, WO 2016/104634 and the like can be used.
  • the content of the thermoplastic resin in the modified lignin resin composition material is 30% by mass or more and 99.9% by mass or less based on the total amount of the resin composition material from the viewpoint of obtaining remarkable fluidity and strength. 40 mass% or more and 99.9 mass% or less are more preferable, 45 mass% or more and 99.9 mass% or less are more preferable, and 50 mass% or more and 99.9 mass% or less are particularly preferable.
  • the modified lignin-containing resin composition material may contain, in addition to the above-described cellulose-containing solid and thermoplastic resin, a resin compatible with the thermoplastic resin composition material, an additive, and a filler.
  • Blending and kneading of each component used for the modified lignin-containing resin composition material is carried out by premixing with a commonly used device, for example, a ribbon blender, drum tumbler, etc., and a Henschel mixer, Banbury mixer, single screw extruder It can be carried out by a method using a twin-screw extruder, a multi-screw extruder, a roll kneader, a coneda or the like.
  • the heating temperature at the time of kneading is usually selected appropriately in the range of 100 to 300.degree.
  • the method for molding the modified lignin-containing resin composition material is not particularly limited.
  • a press molding method for example, a press molding method, an injection molding method, a transfer molding method, a middle molding, an FRP molding method and the like can be mentioned.
  • a resin composition material is a thermoplastic resin composition material, an extrusion molding method, an injection molding method, etc. are mentioned as a method of shape
  • a molded article using a modified lignin-containing resin composition material one obtained by curing a resin composition material containing a modified lignin and a curing agent, various fillers, and industrially obtained materials
  • the resin composition of the present invention is further blended according to need, molded into a predetermined shape and then cured, or cured and cured after molding, or resin composition material obtained by mixing modified lignin with thermoplastic resin. What was processed etc. can be mentioned.
  • a modified lignin-containing resin composition material for example, a heat insulating material for housing, an electronic component, a resin for flax sand, a resin for coated sand, a resin for impregnation, a resin for lamination, a resin for FRP molding , Automobile parts, automobile tire reinforcement materials, office automation equipment, machinery, information communication equipment, industrial materials and the like.
  • Modified lignin is also applicable to modified lignin-containing materials in addition to resin composition materials.
  • modified lignin-containing materials other than modified lignin-containing resin composition materials, for example, carbon materials such as carbon black and carbon fibers, lubricants such as grease base materials, food and cosmetics such as antioxidant and antibacterial properties, cements Packaging materials such as additives, concrete additives, binders, rubber compositions, gas barrier films, agricultural materials such as plant revitalizers and soil conditioners, inks and toners, adhesives, surfactants, UV absorbers, storage battery electrode materials And growth promoters for aquatic organisms and the like, food discoloration inhibitors, and the like.
  • the various measurements were performed by the following method about the modified lignin obtained by the Example, and a raw material lignin.
  • ⁇ Molecular weight measurement> The number average molecular weight (Mn), weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the modified lignin obtained in each example and the raw material lignin 1 and 2 were measured by GPC (gel permeation chromatography) It calculated
  • the raw material lignin 2 is not completely dissolved in tetrahydrofuran, only the soluble matter was measured.
  • the measuring apparatus and conditions are as follows. ⁇ Separation column: Tosoh Corp.
  • TKgel SuperMultipore HZ-M2 Tetrahydrofuran Eluent flow rate: 1.0 mL / min ⁇ Detector: Suggested refractive index (RI) ⁇ Measurement temperature: 40 ° C
  • Pulse width 30 ° Repeating time: 2 seconds Measuring range: -60 to 200 ppm ⁇ Number of integrations: 200 times
  • the internal standard cyclohexanol derived signal is 145.2 ppm, 144.0 to 142.0 ppm is identified as S-type skeleton, and 141.0 to 136.6 ppm is identified as G-type skeleton, from the integral value
  • the relative abundance percentage of each basic skeleton was calculated.
  • the relative abundance of the H-type framework was calculated by subtracting the relative abundance of the S-type framework and the G-type framework from the total amount of aromatic hydroxyl groups.
  • 150.0 to 145.5 ppm is identified as an aliphatic hydroxyl group, and 144.7 to 136.6 ppm as an aromatic hydroxyl group, and from the integral curve, the amount of aliphatic hydroxyl group (mol / g) and the amount of aromatic hydroxyl group (mol / g) ) was calculated to determine the respective hydroxyl group percentages.
  • ⁇ Softening point (° C)> The modified lignin obtained in each example or the raw material lignin 1 or 2 (solid sample) is ground in a mortar and sieved (40 mesh) to remove large particles, and the crushed sample is made of an aluminum cup (circular top 60, lower 10 to 20 mg in ⁇ 53 ⁇ depth 15 mm).
  • the aluminum cup containing the sample was placed on a hot plate (ASONEND-2A) and covered with a glass plate (0.5 mm in thickness). After heating to 80 ° C., the temperature was raised in 10 ° C. steps, and visual observation was carried out through the glass, and the temperature which was melted visually was adopted as the softening point.
  • ⁇ Raw material lignin 1> A 500 g bagasse (dried squeezed sugarcane residue) was heat-treated at 200 ° C. for 4 hours in the presence of 2.1 L of 1-butanol and 3.3 L of water to take out a 1-butanol layer. The removed 1-butanol layer was filtered (Whatman NO. 2 filter paper) to remove cellulose-containing solids. The filtrate was concentrated and dried to obtain 90 g of raw material lignin 1.
  • Example 1 Reaction process 100 parts by mass (100.0 g) of raw material lignin 1, 100 parts by mass of phenol and 1 part by mass of phosphoric acid are put into a stirable 1.0 L pressure container and heated, and when phenol is dissolved, it is agitated Started. Continue to heat and heat at 200 ° C. for 4 hours.
  • Example 2 The same procedure as in Example 1 was carried out except using no acid catalyst, to obtain modified lignin 2 (4.5 g).
  • Example 3 A modified lignin 3 (4.4 g) was obtained in the same manner as in Example 1 except that 19 parts by mass of the raw material lignin 1 and 181 parts by mass of phenol were used.
  • Example 4 The reaction was performed in the same manner as in Example 3 except that the reaction time was changed to 8 h, to obtain modified lignin 4 (4.5 g).
  • Example 5 The same procedure as in Example 3 was carried out except that the reaction temperature was changed to 220 ° C., to obtain modified lignin 5 (4.5 g).
  • Example 6 The same procedure as in Example 3 was carried out except that the amount of catalyst was changed to 5 parts by mass, to obtain modified lignin 6 (4.4 g).
  • Example 7 The same procedure as in Example 3 was repeated except that m-cresol was used instead of phenol to obtain modified lignin 7 (4.5 g).
  • Example 8 A modified lignin 8 (4.6 g) was obtained in the same manner as in Example 1 except that 61 parts by mass of the raw material lignin 1 and 139 parts by mass of phenol were used.
  • Example 9 The same procedure as in Example 8 was carried out except using no acid catalyst, to obtain modified lignin 9 (4.5 g).
  • Example 10 The reaction was performed in the same manner as in Example 1 except that the reaction temperature was 150 ° C. and the reaction time was 1 hour, to obtain modified lignin 10 (4.4 g).
  • modified lignin 11 A modified lignin 11 (4.6 g) was obtained in the same manner as in Example 10 except that the acid catalyst was changed to sulfuric acid.
  • a modified lignin 12 (4.5 g) was obtained in the same manner as in Example 3 except that the acid catalyst was changed to 0.2 parts by mass of sulfuric acid.
  • Examples 13 to 24 100 parts by mass of novolac type phenol resin (Sumitomo Bakelite Co., Ltd., PR-53195), 50 parts by mass of wood powder, 50 parts by mass (50.0 g) of the modified lignin obtained in Examples 1 to 12
  • Each of 1 to 12 is mixed with 20 parts by mass of hexamethylenetetramine as a curing agent and 1 part by mass of zinc stearate as an internal release agent, and kneaded for 3 minutes at 100 to 110 ° C. in a two-roll kneader A modified lignin-containing resin composition material was obtained.
  • the obtained modified lignin-containing resin composition material is pressed into a heated mold cavity, molded by transfer molding method at 170 ° C. for 5 minutes under molding conditions, and cured in an oven at 180 ° C. for 8 hours, A molded body was obtained.
  • the results of the above evaluation of the resin composition material and the molded body are shown in Table 2.
  • Comparative Example 1 A resin composition material and a molded body were obtained in the same manner as in Example 13 except that the raw material lignin 1 was used instead of the modified lignin. The results of the above evaluation of the resin composition material and the molded product are shown in Table 2 (Table 2-1 or Table 2-2).
  • Examples 25 to 36 In a 0.5 L separable flask equipped with a reflux apparatus and a stirring blade, 50 parts by mass (50.0 g) of each of the modified lignins 1 to 12 obtained in Examples 1 to 12 above, 40% by mass aqueous formaldehyde solution 30 parts by mass were added and stirred. The molar ratio of formaldehyde to phenol in the modified lignin was 1.5. It heated at 100 degreeC for 2 hours, dripping gradually 50 mass% sodium carbonate aqueous solution 35 mass parts, and obtained the liquid composition. Furthermore, 54 parts by mass of wood flour was added and the mixture was stirred until it became uniform to obtain a modified lignin-containing resin composition material.
  • the resulting modified lignin-containing resin composition material is decompressed to remove moisture, pressed at a contact pressure of 0.2 MPa and 180 ° C. for 10 minutes, and then cured in an oven at 200 ° C. for 4 hours to obtain a molded article I got
  • Table 3 The results of the above evaluation of the resin composition material and the molded body are shown in Table 3.
  • Comparative Example 2 A molded body was obtained in the same manner as in Example 25 except that the raw material lignin 1 was used instead of the modified lignin. The results of the above evaluations of the resin composition material and the molded product are shown in Table 3 (Table 3-1 or Table 3-2).
  • the modified lignin 1 to 12 is improved in mixing property because it is superior in kneadability easier than the raw material lignin 1 and stirring property at the time of reaction.
  • the molded body using modified lignin is better than the raw material lignin 1 also in bending physical properties.
  • Example 38 The same procedure as in Example 37 was carried out except using no acid catalyst and setting the reaction temperature to 300 ° C., to obtain modified lignin 14 (4.5 g).
  • Example 39 A resin composition material and a molded body were obtained in the same manner as in Example 13 except that the modified lignin 13 was used. The results of the above evaluations of the resin composition material and the molded body are shown in Table 5. Comparative Example 3 A resin composition material and a molded body were obtained in the same manner as in Example 13 except that the raw material lignin 2 was used instead of the modified lignin. The results of the above evaluations of the resin composition material and the molded body are shown in Table 5.
  • Example 40 A resin composition material and a molded product were obtained in the same manner as in Example 25 except that the modified lignin 13 was used. The results of the above evaluations of the resin composition material and the molded body are shown in Table 6. Comparative Example 4 A resin composition material and a molded body were obtained in the same manner as in Example 25 except that the raw material lignin 2 was used instead of the modified lignin. The results of the above evaluations of the resin composition material and the molded body are shown in Table 6.
  • the modified lignin 13 is improved in mixing property because it has better kneadability easier than the raw material lignin 2 and stirring property at the time of reaction. Further, it is also understood that the molded body using modified lignin is better than the raw material lignin 2 also in bending physical properties.
  • the modified lignin of the present invention is reduced in molecular weight to improve the miscibility with other plastic materials and to increase the reaction point. It is possible to expect the improvement of the physical properties of the molded product by the improvement of the mixing property and the increase of the reaction point, and it is also possible to eliminate the large-scale apparatus which is costly when manufacturing the cured member by the easy mixing. In addition, since lignin, which has been mostly disposed of until now, can be used effectively, it is also effective for environmental protection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Compounds Of Unknown Constitution (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

31P-NMRで測定される積分値から求めたS型骨格の相対存在率S(%)に対するH型骨格の相対存在率H(%)の2倍及びG型骨格の相対存在率G(%)の合計の比[(2H+G)/S]が2.5以上であり、同手法にて測定される脂肪族水酸基の存在率が20%未満である改質リグニン及び改質ポリフェノールの製造方法、並びに改質リグニン含有樹脂組成材料である。

Description

改質リグニン及び改質ポリフェノールの製造方法、並びに改質リグニンを用いた樹脂組成材料
 本発明は、改質リグニン及び改質ポリフェノールの製造方法、並びに改質リグニンを用いた樹脂組成材料に関する。
 温室効果ガス削減の観点からカーボンニュートラルである植物由来物質のプラスチック材料への利用が期待されている。植物由来物質には、主として糖由来のセルロース、ヘミセルロース、さらにリグニン等が含まれる。このうち、リグニンは、芳香環や、脂肪族水酸基及び芳香族水酸基を有していることからプラスチック材料として有用利用が望まれる。しかし、リグニンは生分解されにくく、溶剤に殆ど溶けず、また軟化点が高いため取り扱いにくいだけでなく、既存のプラスチック材料との反応性に乏しいことから、プラスチック材料としての用途が殆ど見出されていない。そのため、リグニンをプラスチック材料として好適なものとするため適切な改質を施し、さらにこの改質したリグニンを利用する技術の検討がなされている。
 例えば、特許文献1にはリグニンを低分子化することなくベンゾオキサジン骨格をリグニンへ導入して反応性を付与させた変性リグニン、及び当該変性リグニンを含有することにより成形品の機械的強度等を向上させた成形材料に関する技術が開示されている。
 また、特許文献2では、リグニンとフェノール類を触媒の存在下で反応させてフェノール化した後、アルカリと共に加熱することでアルカリ化リグニンとし、さらにそこへアルデヒド類を加えることでヒドロキシメチル化リグニンとしてリングニンの反応性を上げる技術、及び当該反応性を上げたリグニンを結合剤組成物へ利用する技術が開示されている。
 また、特許文献3にはリグニン、フェノール類及びアルデヒド類を酸の存在下で反応させる製法により、硬化性を向上させて樹脂強度を改良させたフェノール変性リグニン樹脂等が開示されている。
特許5671430号公報 特表2016-540058号公報 国際公開第2015/147165号
 従来技術によれば、リグニンを含む材料の硬化反応性を向上させることがある程度可能である。ところが、金属部材代替の様な高品質材料を想定した場合、従来技術の手法では成形材の性能、例えば曲げ強度等が不十分である。そのため、リグニンのさらなる反応性の改良を行う必要がある。
 そこで本発明は、既存のプラスチック材料との反応性を向上させた改質リグニン及び改質ポリフェノールの製造方法、並びに曲げ強度等の物性が向上した成形品を与えることができる改質リグニン含有樹脂組成材料を提供することを課題とする。
 上記課題を解決すべく鋭意検討した結果、本発明者らはリグニンの基本骨格の骨格比率変換、脂肪族水酸基削減、さらには低分子量化を一つの反応で達成することで、上記課題を解決できることを見出した。
 すなわち、本発明は下記のとおりである。
[1]31P-NMRで測定される積分値から求めたS型骨格の相対存在率S(%)に対するH型骨格の相対存在率H(%)の2倍及びG型骨格の相対存在率G(%)の合計の比[(2H+G)/S]が2.5以上であり、
 31P-NMRで測定される積分値から求めた脂肪族水酸基及び芳香族水酸基の存在率の合計に対する該脂肪族水酸基の存在率が20%未満である改質リグニン。
[2]ポリフェノール含有組成物と、水酸基に対する置換基の位置である2位、4位及び6位のうち少なくとも1つが水素原子であるフェノール化合物とを反応させる工程を有する、改質ポリフェノールの製造方法。
[3]前記改質リグニンを含む改質リグニン含有樹脂組成材料。
 本発明によれば、既存のプラスチック材料との反応性を向上させた改質リグニン及び改質ポリフェノールの製造方法、並びに曲げ強度等の物性が向上した成形品を与えることができる改質リグニン含有樹脂組成材料を提供することができる。
[改質リグニン]
(リグニンの基本骨格)
 リグニンは、p-ヒドロキシケイ皮アルコール類である3種類のリグニンモノマーが重合した高分子化合物であり、下記式(2)で表される基本骨格を有する。
Figure JPOXMLDOC01-appb-C000002
 上記式(2)において、置換基であるR及びRは水素原子又はメトキシ基を示す。R及びRの両方が水素原子のものはp-ヒドロキシフェニル核(H型骨格)、R及びRのいずれか一方が水素原子のものはグアイアシル核(G型骨格)、R及びRの両方が水素原子でないものはシリンギル核(S型骨格)と称される。
 なお、上記式(2)中のXは炭素原子、Yは水素原子又は炭素原子に結合していることを示す。
 リグニンの基本骨格においてR及びRと結合する炭素原子が反応性の高い反応点(以下、単に「反応点」と称すことがある。)となるが、R及びRがメトキシ基である場合当該炭素原子の反応性が乏しくなる。そのためリグニンを反応させるためには、R及びRは水素原子である必要がある。
 また、リグニンには上記芳香族部位だけではなく脂肪族部位も存在し、脂肪族部位に存在する水酸基は酸化安定性に乏しい(酸化によりアルデヒドやカルボン酸に変化しやすい)ため、脂肪族水酸基はできるだけ少ない方が既存プラスチック材料との反応性が好適である。
 さらにリグニンは、軟化点を大きく降下させることなく低分子量化させることで混合性が向上し、既存プラスチック材料との反応性が向上する。
 すなわち、脂肪族水酸基が少なく、反応性に富むH型骨格及びG型骨格のこれら2種の骨格が多く存在するリグニンであり、かつ軟化点を大きく降下させずに低分子量化したリグニンであれば、反応性に富み、プラスチック材料として好適なものとなる。
 しかしながら、上記基本骨格の各型の存在率と脂肪族水酸基は、リグニンの原料植物の種類によって異なる。また、天然リグニンは元々分子量が測定できないほどの巨大分子であり、既存の分離手法では分子量を下げると軟化点も大きく下がってしまう欠点があった。
 例えば、木本系バイオマスにおいて、広葉樹由来のリグニンには上記G型骨格及びS型骨格が存在し、針葉樹由来のリグニンには上記G型骨格及びS型骨格が存在するがG型骨格の方が多く存在する。さらに、広葉樹及び針葉樹由来のリグニンにはH型骨格がほとんど存在しない。
 また、草本系バイオマス由来のリグニンには、上記H型骨格、G型骨格及びS型骨格が存在するがH型骨格の存在率は低い。
 また、針葉樹由来リグニンには脂肪族水酸基が多く、広葉樹由来リグニン、草本系リグニンの順番で脂肪族水酸基の存在は減少する。
 そこで、リグニンの反応性を上げるためには、H型骨格及びG型骨格の存在率を増やし、脂肪族水酸基を減少させ、軟化点を大きく下げないような低分子量化手法を用いてリグニン改質することが必要となる。
(改質リグニン)
 本発明の改質リグニンは、31P-NMRで測定される積分値から求めたS型骨格の相対存在率S(%)に対するH型骨格の相対存在率H(%)の2倍及びG型骨格の相対存在率G(%)の合計の比[(2H+G)/S]が2.5以上であり、同じく31P-NMRで測定される積分値から求めた脂肪族水酸基及び芳香族水酸基の存在率の合計に対する該脂肪族水酸基の存在率が20%未満である。さらに、本発明の改質リグニンは低分子量化されて数平均分子量が1,000未満であり、軟化点は90℃以上であることが好ましい。
〈反応点(H型骨格×2+G型骨格)と非反応点(S型骨格)の存在率の比[(2H+G)/S]、及び脂肪族水酸基の存在率〉
 後述する製造方法における置換反応により原料リグニンは、上記R及びRが水素原子となり、改質リグニンの反応点が増加し、また脂肪族水酸基が減少し、さらに軟化点を大幅に下げることなく低分子量化される。
 上述のとおりH型には反応点が2箇所、G型には1箇所であり、上記比[(2H+G)/S]が示すように、本発明の改質リグニンには反応点が多く存在し、反応性が良好なものである。
 しかしながら、スギ材等の針葉樹由来リグニンでは、改質前に上記比[(2H+G)/S]が3以上になることが分析上判明しているが、脂肪族水酸基が全水酸基(脂肪族水酸基及び芳香族水酸基の存在率の合計)に対して20%以上存在しておりプラスチック材料として好ましくない。
 したがって、上記比が2.5未満であるか、あるいは脂肪族水酸基の存在率が20%以上である場合、改質リグニンとしての反応性が十分でないためプラスチック材料としては好適なものとはならず、また曲げ強度等の物性が向上した成形品を与えることも期待できない。
 これに対し本発明の改質リグニンは、前記存在率の比[(2H+G)/S]が2.5以上であり、かつ脂肪族水酸基及び芳香族水酸基の存在率の合計に対する脂肪族水酸基の存在率が20%未満である。また、改質リグニンの反応性をさらに向上させ、曲げ強度等の物性が向上した成形品を与えることが期待できる観点から、上記比[(2H+G)/S]は、2.8以上が好ましく、3.0以上がより好ましく、3.5以上がさらに好ましく、4.5以上がよりさらに好ましく、5.5以上がよりさらに好ましく、7.0以上がよりさらに好ましく、9.0以上がよりさらに好ましく、12.0以上がよりさらに好ましく、14.0以上がよりさらに好ましい。また、同観点から、脂肪族水酸基の上記存在率は、15%未満が好ましく、12%未満がより好ましく、10%未満がさらに好ましく、6%未満がよりさらに好ましく、3%未満がよりさらに好ましい。
 なお、S型骨格、H型骨格及びG型骨格の相対存在率と脂肪族水酸基の上記存在率は、31P-NMRで測定される積分値から求めた値であり、31P-NMR測定についてより詳しくは、MAGNETIC RESONANCE IN CHEMISTRY, VOL. 33, 375-382 (1995) に記載のとおりである。本発明において、より具体的には、後述する実施例に記載する方法により測定することができる。
〈低分子量化と軟化点〉
 本発明の改質リグニンは、後述する製造方法における置換反応により、R及びRの分子鎖が改変されるため分子量が低下する。このように、リグニンは低分子量化されることによって、他のプラスチック材料との混合性(混練性又は攪拌性)が向上し、さらに曲げ強度等の物性が向上した成形品を与えることが期待できる。
 上述のとおり、原料リグニンは置換反応により炭素鎖の開裂が発生することで低分子量化する。しかしながら、本発明の改質リグニンは、後述の製造方法において置換部位にフェノール化合物が必ず挿入されるため、低分子量化が起こってもさほど軟化点の低下は起こらない。したがって、本発明の改質リグニンは、軟化点が好ましくは90℃以上であり、より好ましくは130℃以上であり、さらに好ましくは160℃以上となることが可能である。上記軟化点が90℃以上であれば改質リグニンを含有する樹脂組成材料の成形・後硬化時に膨れ等の不具合が生じにくくなる。また、改質リグニンの軟化点は、好ましくは200℃以下であり、より好ましくは190℃以下であり、さらに好ましくは180℃以下であり、よりさらに好ましくは170℃以下である。上記軟化点が200℃以下であれば改質リグニンを含有する樹脂組成材料をより取扱いやすくなる。
 また、本発明の改質リグニンは、例えば数平均分子量が900以上1,200以下かつ重量平均分子量が1,900以上2,700以下であることが好ましく、数平均分子量が600以上900未満かつ重量平均分子量が1,100以上1,900未満であることが好ましく、数平均分子量が500以上600未満かつ重量平均分子量が900以上1,100未満であることが好ましい。
 本発明の改質リグニンは、例えば分子量分布(Mw/Mn)が通常1.2~3.0程度であり、1.3~2.8であることが好ましく、1.4~2.5であることがより好ましく、1.5~2.0であることがさらに好ましく、1.5~1.9であることがよりさらに好ましく、1.5~1.8であることがよりさらに好ましい。
 さらに、本発明の改質リグニンは、例えば数平均分子量が900以上1,200以下であれば軟化点は160℃以上200℃以下であることが好ましく、数平均分子量が600以上900未満であれば軟化点は130℃以上190℃以下であることが好ましく、数平均分子量が500以上600未満であれば軟化点は110℃以上170℃以下であることが好ましく、数平均分子量が300以上500未満であれば軟化点は90℃以上170℃以下であることが好ましい。
 また、本発明の改質リグニンは、例えば数平均分子量が900以上1,200以下かつ重量平均分子量が2,400以上3,000以下であれば軟化点は160℃以上200℃以下であることが好ましく、数平均分子量が600以上900未満かつ重量平均分子量が1,100以上2,400未満であれば軟化点は130℃以上190℃以下であることが好ましく、数平均分子量が500以上600未満かつ重量平均分子量が900以上1,100未満であれば軟化点は110℃以上170℃以下であることが好ましく、数平均分子量が300以上500未満かつ重量平均分子量が600以上900未満であれば軟化点は90℃以上170℃以下であることが好ましい。反応させる既存プラスチック材料の性質によってこれらを使い分けることが可能であり、混合性の改善により改質リグニンの反応性を向上させ、曲げ強度等の物性が向上した成形品を与えることが期待できる。
 なお、上記数平均分子量及び重量平均分子量は、後述する実施例に記載する方法により測定することができる。
[改質ポリフェノールの製造方法]
 本発明の改質ポリフェノールの製造方法は、ポリフェノール含有組成物と、水酸基に対する置換基の位置である2位、4位及び6位のうち少なくとも1つが水素原子であるフェノール化合物(以下、単に「フェノール化合物」と称すことがある。)とを反応させる工程を有する。
 本発明の改質ポリフェノールの製造方法は、例えばタンニン及びリグニン等のポリフェノール含有組成物の改質に適用した改質ポリフェノールの製造方法である。特に本発明の改質ポリフェノールの製造方法において、上記ポリフェノール含有組成物中に含まれる原料ポリフェノールは、プラスチック材料としての有用性の観点から、リグニンであることが好ましい。したがって、上記ポリフェノール含有組成物は、好ましくはリグニン含有組成物又はリグニンであり、より好ましくはリグニンであり、また、上記改質ポリフェノールは、好ましくは改質リグニンである。
 以下において、上記ポリフェノール含有組成物中に含まれる原料ポリフェノールがリグニン(以下、「原料リグニン」と称すことがある。)であって、改質ポリフェノールが改質リグニンである場合を例にして具体的に説明するが、本発明の改質ポリフェノールの製造方法はこれら原料リグニン及び改質リグニンに限定されるものではない。
(反応工程)
〈リグニン〉
 本発明の改質ポリフェノールの製造方法において原料として用いられる原料リグニンは、木本系バイオマス及び草本系バイオマスの植物系バイオマス由来のものである。
 なお、本発明の改質リグニンの製造方法において、リグニン含有組成物として、木本系バイオマス及び草本系バイオマスの植物系バイオマス由来のバイオマス残渣等を使用することもできる。
 バイオマス残渣としては、黒液(サルファイトリグニン、クラフトリグニン、ソーダリグニン等)、及びタンニン等が挙げられ、これは1種又は2種以上を併用してもよい。
 植物系バイオマスとしては、木本系バイオマス、草本系バイオマスが挙げられる。木本系バイオマスとしては、スギ、ヒノキ、ヒバ、サクラ、ユーカリ、ブナ、タケ等の針葉樹、広葉樹が挙げられる。
 草本系バイオマスとしては、パームヤシの樹幹・空房、パームヤシ果実の繊維及び種子、バガス(さとうきび及び高バイオマス量さとうきびの搾り滓)、ケーントップ(さとうきびのトップ及びリーフ)、エナジーケーン、稲わら、麦わら、トウモロコシの穂軸・茎葉・残渣(コーンストーバー、コーンコブ、コーンハル)、ソルガム(スイートソルガムを含む)残渣、ヤトロファ種の皮及び殻、カシュー殻、スイッチグラス、エリアンサス、高バイオマス収量作物、エネルギー作物等が挙げられる。
 これらのなかでも、入手容易性や本発明において適用する製造方法との適合性の観点から、草本系バイオマスであることが好ましく、パームヤシの空房、麦わら、トウモロコシの穂軸・茎葉・残渣(コーンストーバー、コーンコブ、コーンハル)、バガス、ケーントップ、エナジーケーン、それら有用成分抽出後の残渣がより好ましく、トウモロコシの穂軸・茎葉・残渣(コーンストーバー、コーンコブ、コーンハル)、バガス、ケーントップ、エナジーケーンがさらに好ましい。なお、上記有用成分には、例えば、ヘミセルロース、糖質、ミネラル、水分等が含まれる。
 バガスには、5~30質量%程度のリグニンが含まれる。また、バガス中のリグニンは基本骨格として、H核、G核及びS核の全てを含む。
 植物系バイオマスは、粉砕されたものを用いることもできる。また、ブロック、チップ、粉末、また水が含まれた含水物のいずれの形態でもよい。
 植物系バイオマスから原料リグニンを分離する方法としては、オルガノソルブ法、加圧熱水法、水蒸気爆砕法、アンモニア処理法、アンモニア爆砕法、酸処理法、アルカリ処理法、酸化分解法、熱分解及びマイクロ波加熱法等が挙げられる。これらの中では、溶媒を容易に除去できる観点から、オルガノソルブ法が好ましい。
 具体的には、例えば、有機溶媒又は有機溶媒及び水を含む溶媒を用い、高温で処理することで植物系バイオマスに含まれるリグニンを溶媒に溶出させ、当該リグニン含有溶液を濾過してセルロース等を除去した後、溶液を濃縮、乾固することにより、原料リグニンを分離することができる。
 原料リグニンの数平均分子量(Mn)は、通常500~10,000程度であり、1,000~5,000であることが好ましく、1,250~3,000であることがより好ましく、1,250~2,500であることがさらに好ましい。上記の範囲であれば、フェノール化合物への原料リグニンの溶解を反応温度においてスムーズに進行させることができる。
 また、原料リグニンの重量平均分子量(Mw)は、同上の理由から、通常1,000~100,000程度であり、2,000~10,000であることが好ましく、2,500~4,000程度であることがより好ましく、2,500~3,500であることがさらに好ましい。
 また、原料リグニンの分子量分布(Mw/Mn)は、同上の理由から、通常1.5~10.0程度であり、2.0~5.0であることが好ましく、2.0~3.0であることがより好ましく、2.0~2.5であることがさらに好ましい。
 なお、上記数平均分子量、重量平均分子量及び分子量分布は、後述する実施例に記載する方法により測定することができる。
 上記バイオマス残渣をリグニン含有組成物(原料)として用いる場合は、まず含水状態のバイオマス残渣のpHを酸性へ調整する。そこにフェノール化合物を原料に含有されるリグニン量と重量で同量以上添加する。加熱を行い、水分を熱時除去する(フェノール化合物は高沸点でありディーン-スターク等の適切な油水分離装置を設けることで水分は除去可能である)。水分除去後1~2時間加熱を継続する。加熱液は不溶物を含んでおり、5C濾紙を用いて熱時濾過する。濾過固体は未反応物と無機夾雑物である。濾過液は減圧下で蒸留し、未反応フェノール化合物を除去する。蒸留で除去しきれないフェノール化合物は必要に応じてアセトンに溶解させ、貧溶媒である水で再沈殿等を繰り返すことで除去される。分離される固体は既に改質された改質リグニンである。蒸留時に残るフェノール化合物が後反応で問題にならなければそのまま使用することも可能である。
〈フェノール化合物〉
 本発明の改質ポリフェノールの製造方法において用いられるフェノール化合物は、水酸基に対する置換基の位置である2位、4位及び6位のうち少なくとも1つが水素原子である必要がある。これは、上記2位、4位及び6位の位置(即ち、オルト位及びパラ位)が水素原子であるフェノール化合物は、その配向性により置換反応による置換基の受け皿として特に好適であり、原料リグニンとフェノール化合物を混合させることで、前述の式(2)で表される原料リグニンの基本骨格におけるR及びRの置換基が、フェノール化合物の上記2位又は4位又は6位へ転移するからである。当該置換反応により、原料リグニンのR又はR又は両方が水素原子となり、前述の反応点が増加した改質リグニンとすることができる。
 したがって、当該置換反応により原料リグニン中のS型骨格が減少し、G型骨格及びH型骨格が増加して反応性が改善される。また、前述のとおり当該置換反応により原料リグニンの分子鎖が改変されることで分子量の低下が起こり、改質リグニンの混合性が改良されることとなる。
 フェノール化合物は、1種又は2種以上を併用してもよい。
 また、フェノール化合物は下記式(1)で表される化合物であることが好ましい。当該フェノール化合物であることにより、上記置換基の受け皿が少なくとも3箇所となるため置換反応を良好に進行させることができる。
Figure JPOXMLDOC01-appb-C000003
 上記式(1)において、R1及びR2はそれぞれ独立して、水素原子、水酸基又は炭素数1~15のアルキル基を示し、R1及びR2は同一でも異なっていてもよい。
 炭素数1~15のアルキル基としては、直鎖状であってもよく分岐状であってよい。好ましくは炭素数1~15の直鎖状又は分岐状のアルキル基であり、より好ましくは炭素数1~10の直鎖状又は分岐状のアルキル基であり、さらに好ましくは炭素数1~5の直鎖状又は分岐状のアルキル基であり、よりさらに好ましくは炭素数1~5の直鎖状のアルキル基である。
 上記式(1)で表されるフェノール化合物としては、フェノール、レゾルシノール、フロログルシン;メタクレゾール、3-エチルフェノール、及び3-プロピルフェノール等の3-アルキルフェノール;5-メチルレゾルシノール、5-エチルレゾルシノール、及び5-プロピルレゾルシノール等の5-アルキルレゾルシノール;3,5-ジメチルフェノール、3-メチル-5-エチル-フェノール、及び3,5-ジエチルフェノール等の3,5-ジアルキルフェノール等が挙げられる。
 また、フェノール化合物が複数の水酸基を有することにより化合物の酸性度が上がり、触媒不要で反応が進行することが期待できる観点から、R1及びR2のうち少なくとも一方が水酸基であることがより好ましい。このようなフェノール化合物として具体的には、レゾルシノール、フロログルシン、5-アルキルレゾノシノール(5-メチルレゾルシノール、5-エチルレゾルシノール等)等が挙げられる。
〈質量比[フェノール化合物/原料ポリフェノール]〉
 本発明の製造方法において、原料リグニン(原料ポリフェノール、バイオマス残渣の場合はバイオマス残渣中のリグニン)に対するフェノール化合物の質量比[フェノール化合物/原料リグニン]は通常0.1~15程度であるが、0.3~15が好ましく、0.5~15がより好ましく、1~15がさらに好ましく、1~13がよりさらに好ましく、1~12がよりさらに好ましく、1~10がよりさらに好ましく、1~5がよりさらに好ましい。原料リグニンに対するフェノール化合物の質量比が上記範囲であることによって、上述の置換反応を良好に進行させることができる。
 なお、バイオマス残渣に含まれるリグニンの含有量の算出は、ウィレーミルを用いて試料となる原料を粉砕し、105℃で乾燥する前処理を行った後、構成糖分析によって測定する。
〈酸触媒〉
 本発明の製造方法において、リグニンとフェノール化合物との反応は、無触媒、又は、原料リグニン及び前記フェノール化合物の合計量に対し好ましくは0超~3.0質量%、さらには0.2~3.0質量%の酸触媒の存在下で反応が行われることが好ましい。
 上述のとおり反応に用いるフェノール化合物によって無触媒で反応を進行させることができる。反応が無触媒で進行することによって、例えば反応工程後の後処理(精製工程)を省略することが可能となり、また得られた改質リグニンをプラスチック材料として用いた成形品の曲げ強度等の物性向上を期待することができる。
 また、酸触媒としては、リン酸、リン酸エステル、塩酸、硫酸、及び硫酸エステル等の無機酸、酢酸、ギ酸、シュウ酸、及びp-トルエンスルホン酸等の有機酸等が挙げられる。酸触媒は、1種又は2種以上を併用してもよい。
 上記反応に酸触媒を用いる場合、原料リグニン及びフェノール化合物の合計量に対し酸触媒の使用量は通常0超であれば特に制限はないが、酸触媒を添加することによる効果を良好に発揮でき、改質リグニン中に残存する不純物の観点から通常0.01~3.0質量%の酸触媒の存在下で反応が行われ、0.1~3.0質量%が好ましく、0.2~3.0質量%がより好ましく、0.4~2.6質量%がさらに好ましい。酸触媒の使用量が上記範囲であれば、上述の置換反応を良好に進行させることができる。
〈反応温度及び時間〉
 反応温度は通常100℃以上であれば特に限定されないが、通常140℃超及び350℃以下程度であるが、140℃超及び300℃以下が好ましく、140℃超及び270℃以下がより好ましく、140℃超及び250℃以下がさらに好ましく、150~230℃がよりさらに好ましく、150~200℃がよりさらに好ましい。140℃超であればほとんどのフェノール化合物が溶解して反応を進行させることができ、また300℃以下であれば逆反応の進行を防ぐことができる。
 反応時間は通常0.1~15時間程度であるが、反応が十分に進行し原料リグニンを改質することができる観点から0.5時間以上であることが好ましく、1時間以上であることがより好ましく、また反応時間が長すぎても反応進行が期待できない観点から上限は10時間以下であることが好ましく、2~8時間であることがより好ましい。
〈溶媒〉
 原料リグニンとフェノール化合物との反応は、無溶媒で行うことができる。また、メタノール、エタノール、イソプロピルアルコール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、テトラヒドロフラン等のエーテル類、及び芳香族類等の有機溶媒や水のいずれか1種以上を用いてもよく、エタノール、アセトン、水のいずれか1種以上を用いることが好ましい。改質リグニンに溶媒の混入を防ぎ、また反応後に溶媒を除去する工程を必要とせず効率的にする観点からは、無溶媒で行うことが好ましい。
(精製工程)
 本発明の改質リグニンは、上述の反応工程を行うことにより製造される。よって、反応工程により得られた改質リグニン含有物をそのままプラスチック材料として用いることが可能であるが、反応工程の後に精製工程を行ってもよい。
〈固液分離〉
 上述の反応後、改質リグニンはフェノール化合物に溶解しているが、未反応物や無機残渣は固体として液中に存在している。これらは濾過(熱時)により除去することが好ましい。例えば、反応液はNO.5CあるいはNO.2等の濾紙を取り付けた加圧熱時濾過器に入れ、20~150℃程度、通常40~90℃程度で、0.1~0.99MPa程度、通常0.1~0.4MPa程度で加圧濾過する。濾過固体は適宜フェノール化合物で希釈及び/又は洗浄し、濾過してもよい。当該濾過において改質リグニンは濾液中に含まれる。また、例えば、反応生成液を水、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール、イソプロピルアルコール等のアルコール類、テトラヒドロフラン等のエーテル類等の低沸点汎用親水性溶媒のいずれか1種以上で希釈及び/又は洗浄し、固液分離してもよい。当該固液分離において改質リグニンは溶液中に含まれる。
 固液分離を行う方法は特に限定されないが、濾過、フィルタープレス、遠心分離、脱水機等を挙げることができる。
〈蒸留〉
 蒸留は、例えば、反応工程により得られた改質リグニン含有物を、40~200℃程度、通常80~150℃程度の温度、3~20kPa程度、通常5~10kPa程度の減圧下、減圧蒸留して反応後のフェノール化合物を除去して精製することができる。当該蒸留において改質リグニンは固体として得られる。また、例えば、フェノール化合物以外の希釈溶媒を用いる場合は、フェノール化合物以外の溶媒を、溶媒の沸点を考慮した適当な温度で、減圧蒸留して低沸点汎用親水性溶媒を除去し、その後、上記と同様の方法でフェノール化合物を除去して行うことができる。当該蒸留において改質リグニンは固体として得られる。
〈減圧乾固〉
 蒸留により得られた改質リグニンを、通常50~200℃に加熱して、固体あるいは溶融状態で、真空乾燥することにより、反応後のフェノール化合物を除去して精製してもよい。また、蒸留後の加熱された流動状態にある改質リグニンを、そのまま同様の真空乾燥をすることにより、反応後のフェノール化合物を除去して精製してもよい。
〈再沈殿〉
 また、反応工程により得られた改質リグニン含有物を、アセトン等の溶媒に溶解させ、改質リグニンの貧溶媒であるイオン交換水等を加えて再沈殿させることにより反応後のフェノール化合物を除去して精製することができる。
 また、精製において、上記濾過、減圧蒸留、減圧乾固及び再沈殿を組み合わせてもよく、同じ工程を繰り返し行ってもよい。
 なお、改質リグニン中に残留するフェノール化合物は、特に限定されないが、通常30%未満であり、10%未満が好ましく、5%未満がより好ましく、1%未満がさらに好ましい。
(改質度)
 本発明の改質ポリフェノールの製造方法により、原料リグニンの基本骨格に比べ、改質リグニンのH型骨格及びG型骨格が多く存在すると同時に原料リグニンの脂肪族水酸基は減少して、反応点が増加しかつ脂肪族水酸基が減少した改質リグニンを得ることができる。
 また、本発明の改質ポリフェノールの製造方法により、ポリフェノール含有組成物中の原料ポリフェノールよりも改質ポリフェノールの方が数平均分子量及び重量平均分子量が小さくなる。したがって、上述の製造方法により得られた改質リグニンは低分子量化して混合性が改善される。
 さらに、本発明の改質ポリフェノールの製造方法により、ポリフェノール含有組成物中の原料ポリフェノールよりも改質ポリフェノールの分子量分布(Mw/Mn)が小さくなることが好ましい。
 具体的には、本発明の製造方法により、31P-NMRで測定される積分値から求めたH型骨格の相対存在率H(%)及びG型骨格の相対存在率H(%)に基づく反応点の合計[2H+G]を、改質の前後で通常3%以上増加させ、好ましくは4%以上増加させ、また上述した脂肪族水酸基の存在率が20%未満である改質リグニンにすることも可能である。さらに上記改質リグニンは、原料リグニンに比べ数平均分子量及び重量平均分子量は低下するが、好ましくは軟化点が90℃未満には下がらないものである。
[改質リグニン含有樹脂組成材料及び成形品]
 本発明は、前述の改質リグニン又は前述の製造方法で製造される改質リグニンを含む改質リグニン含有材料、特に改質リグニン含有樹脂組成材料、並びにそれを用いた成形品をも提供する。また上記製造方法により得られた改質リグニン以外に、熱硬化性樹脂、熱可塑性樹脂等の樹脂成分が含まれていてもよい。改質リグニン以外の成分について、以下に説明する。
(熱硬化性樹脂)
 上記改質リグニン含有樹脂組成材料は、熱硬化性樹脂をさらに含有することができる。
 熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、ポリウレタン樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル樹脂、シリコーン樹脂、アルキド樹脂等の他の一般的な熱硬化性樹脂が挙げられる。これらの中でも、改質リグニンと同様に、フェノール性水酸基を有しており、改質リグニンと反応することができ、改質リグニンの希釈剤としても使用可能であることから、フェノール樹脂が好ましい。フェノール樹脂の中でもノボラック系フェノール樹脂及びレゾール系フェノール樹脂がより好ましい。これら熱硬化性樹脂は、1種又は2種以上を併用してもよい。
 上記改質リグニン含有樹脂組成材料における熱硬化性樹脂の含有量は、目的に応じて決定すればよいが、良好な物性や成形性を得る観点から、改質リグニン100質量部に対し、好ましくは100~300質量部、より好ましくは150~250質量部である。
(アルデヒド類)
 また、上記改質リグニン含有樹脂組成材料は、アルデヒド類をさらに含有することができる。
 改質リグニンとアルデヒド類を含む改質リグニン含有樹脂組成材料により自己硬化型の成形材料とすることができる。
 アルデヒド類としては、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、フルフラール、ベンズアルデヒド、フェニルアセトアルデヒド、サルチルアルデヒド等が挙げられ、これらの中でもホルムアルデヒドが好ましい。
 改質リグニン中に含まれるフェノール基とホルムアルデヒドのモル比[ホルムアルデヒド/フェノール基]は、1.0~2.5であることが好ましく、1.2~2.0であることがより好ましい。モル比が上記範囲であれば反応時の硬化速度が低下するおそれがない。
 改質リグニンとアルデヒド類の硬化反応を促進させる観点からアルカリを用いることが好ましい。アルカリとしては水酸化ナトリウム、水酸化カリウム、炭酸ナトリム、炭酸カリウム、アンモニア、テトラメチルアンモニウムヒドロキシド、アルキルアミン等を使用することができる。
 改質リグニンとアルデヒド類の硬化反応時の温度及び反応時間に制限はないが、通常60~130℃程度であり、反応時間は通常0.5時間~5時間程度である。
 なお、上記改質リグニン含有樹脂組成材料には、熱硬化性樹脂及びアルデヒド類から選ばれる1種又は2種以上を併用してさらに含有させてもよい。
(充填剤)
 上記改質リグニン含有樹脂組成材料には、充填材をさらに含有させてもよい。充填材は、無機充填材であっても有機充填材であってもよい。
 無機充填材としては、球状又は破砕状の溶融シリカ、結晶シリカ等のシリカ粉末、アルミナ粉末、ガラス粉末、ガラス繊維、ガラスフレーク、マイカ、タルク、炭酸カルシウム、アルミナ、水和アルミナ、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、窒化チタン、酸化亜鉛、炭化タングステン、酸化マグネシウム等が挙げられる。
 また有機充填材としては炭素繊維、アラミド繊維、紙粉、木粉、セルロース繊維、セルロース粉、籾殻粉、果実殻・ナッツ粉、キチン粉、澱粉等が挙げられる。
 無機充填材及び有機充填材は1種又は2種以上を併用してもよく、その含有量は目的に応じて決定される。無機充填材及び/又は有機充填材が含有される場合には、無機充填材及び/又は有機充填材の含有量が適量であることが良好な物性や成形性を得るために望ましい。この観点から、無機充填材及び/又は有機充填材の含有量は、改質リグニン100質量部に対し、好ましくは50~200質量部、より好ましくは80~150質量部である。
(硬化剤)
 改質リグニン含有樹脂組成材料には硬化剤をさらに含有させてもよい。
 硬化剤としては、ヘキサメチレンテトラミン、ヘキサホルムアルデヒド、及びパラホルムアルデヒド等が挙げられる。これらは、1種又は2種以上を併用してもよい。
 硬化剤に加え、さらに硬化速度及び硬化度を増進するためには、水酸化カルシウム、水酸化ナトリウム、水酸化カリウム、酸化カルシウム、及び酸化マグネシウム等の無機塩基、塩化亜鉛及び酢酸亜鉛等のルイス酸、トリエチルアミン等の触媒を用いてもよい。これらは、1種又は2種以上を併用してもよい。
(その他の添加剤)
 本実施形態に係る樹脂組成材料には、該樹脂組成材料から得られる成形品の特性を損ねない範囲で各種添加剤を添加することができる。また、目的に応じてさらに、相溶化剤、界面活性剤等を添加することができる。
 相溶化剤としては、熱可塑性樹脂に無水マレイン酸やエポキシ等を付加し極性基を導入した樹脂、例えば無水マレイン酸変性ポリエチレン樹脂、無水マレイン酸変性ポリプロピレン樹脂、市販の各種相溶化剤を併用してもよい。
 また、界面活性剤としては、ステアリン酸、パルミチン酸、オレイン酸等の直鎖脂肪酸、またロジン類との分岐・環状脂肪酸等が挙げられるが、特にこれに限定されない。
 さらに、上述したものの他に配合可能な添加剤としては、可撓化剤、熱安定剤、紫外線吸収剤、難燃剤、帯電防止剤、消泡剤、チキソトロピー性付与剤、離型剤、酸化防止剤、可塑剤、低応力化剤、カップリング剤、染料、光散乱剤、少量の熱可塑性樹脂などが挙げられる。これらは、1種又は2種以上を併用してもよい。
(熱可塑性樹脂)
 改質リグニン含有樹脂組成材料に配合可能な熱可塑性樹脂としては、200℃以下のガラス転移温度を持つ非晶性熱可塑性樹脂、若しくは融点が200℃以下である結晶性熱可塑性樹脂であることが好ましい。熱可塑性樹脂としては、例えば、ポリカーボネート系樹脂、スチレン系樹脂、ポリスチレン系エラストマー、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアクリル系樹脂(ポリメチルメタクリレート樹脂等)、ポリ塩化ビニル樹脂、酢酸セルロース樹脂、ポリアミド樹脂、テレフタル酸とエチレングリコール、テレフタル酸と1,4-ブタンジオールの組み合わせのポリエステルに代表される低融点ポリエステル樹脂(PET、PBT等)、ポリ乳酸及び/又はポリ乳酸を含む共重合体、アクリロニトリル-ブタジエン-スチレン樹脂(ABS樹脂)、ポリフェニレンオキサイド樹脂(PPO)、ポリケトン樹脂、ポリスルホン樹脂、ポリフェニレンスルフィド樹脂(PPS)、フッ素樹脂、ケイ素樹脂、ポリイミド樹脂、ポリベンズイミダゾール樹脂、ポリアミドエラストマー等、及びこれらと他のモノマーとの共重合体が挙げられる。
 改質リグニンを熱可塑性樹脂の添加剤として使用する場合、例えば、特開2014-15579、国際公開第2016/104634号等に挙げられる従来公知の手法を用いることができる。当該改質リグニン樹脂組成材料における熱可塑性樹脂の含有量は、顕著な流動性及び強度を得る観点から、当該樹脂組成材料の全体量に対して、30質量%以上99.9質量%以下であることが好ましく、40質量%以上99.9質量%以下がより好ましく、45質量%以上99.9質量%以下が更に好ましく、50質量%以上99.9質量%以下が特に好ましい。
 前記改質リグニン含有樹脂組成材料は、上述したセルロース含有固形物、熱可塑性樹脂のほかに、熱可塑性樹脂組成材料と相溶可能な樹脂、添加剤、充填材が含まれていてもよい。
(混練及び成形)
 改質リグニン含有樹脂組成材料に用いられる各成分の配合及び混練は、通常用いられている機器、例えば、リボンブレンダー、ドラムタンブラー等で予備混合して、ヘンシェルミキサー、バンバリーミキサー、単軸スクリュー押出機、二軸スクリュー押出機、多軸スクリュー押出機、ロール混練機、コニーダ等を用いる方法で行うことができる。混練の際の加熱温度は、通常100~300℃の範囲で適宜選択される。
 改質リグニン含有樹脂組成材料を成形する方法としては特に限定されない。例えば、プレス成形法、射出成形法、トランスファ成形法、中型成形、FRP成形法等が挙げられる。また、樹脂組成材料が熱可塑性樹脂組成材料である場合は、所定形状に成形する方法には、押出成形法、射出成形法等が挙げられる。
 改質リグニン含有樹脂組成材料を用いた成形品の一例としては、改質リグニンと硬化剤とが配合されてなる樹脂組成材料を硬化させたもの、また各種の充填材や工業的に得られる一般のフェノール樹脂を必要に応じてさらに配合し、所定形状に成形した後に硬化させたもの、あるいは硬化させた後に成形加工したもの、改質リグニンを熱可塑性樹脂と混合してなる樹脂組成材料を成形加工したもの等を挙げることができる。このような改質リグニン含有樹脂組成材料を用いた成形品として、例えば、住宅用の断熱材、電子部品、フラックサンド用樹脂、コーテッドサンド用樹脂、含浸用樹脂、積層用樹脂、FRP成型用樹脂、自動車部品、自動車タイヤの補強材、OA機器、機械、情報通信機器、産業資材等が挙げられる。
 改質リグニンは、樹脂組成材料以外にも、改質リグニン含有材料への利用可能性がある。改質リグニン含有樹脂組成材料以外の改質リグニン含有材料としては、例えば、カーボンブラック・炭素繊維等の炭素材料、グリース基材等の潤滑剤、抗酸化性・抗菌性等の食品・化粧品、セメント添加剤、コンクリート添加剤、バインダ、ゴム組成物、ガスバリアフィルム等の包装資材、植物活力剤・土壌改良剤等の農業資材、インク・トナー、接着剤、界面活性剤、紫外線吸収剤、蓄電池電極材料、水産生物等の成長促進剤、食品用変色防止剤等が挙げられる。
 以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれらに限定されるものではない。
 実施例で得られた改質リグニン及び原料リグニンについて、下記の方法で各種測定を行った。
〈分子量測定〉
 各実施例で得られた改質リグニン並びに原料リグニン1及び2について、数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(Mw/Mn)を、GPC(ゲルパーミエーションクロマトグラフィー)により標準ポリスチレン換算分子量で求めた。なお、原料リグニン2はテトラヒドロフランに全溶解しないため、可溶分のみ測定した。測定装置及び条件は、以下のとおりである。
・分離カラム :東ソー株式会社製 「TSKgel SuperMultiporeHZ-M2本」
・溶離液   :テトラヒドロフラン
・溶離液流量 :1.0mL/min
・検出器   :示唆屈折率(RI)
・測定温度  :40℃
〈基本骨格の相対存在率(%)及び水酸基割合(%)〉
(1)重クロロホルム、ピリジン、シクロヘキサノール(内部標準)を混合した溶媒を各実施例で得られた改質リグニン又は原料リグニン1及び2に加え、さらに、誘導体化試薬として2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholaneを添加し、50℃、1時間加熱した。なお、原料リグニン2はテトラヒドロフランに全溶解しないため、可溶分のみ測定した。その後、以下の測定条件で31P-NMR測定を実施した。
・パルス幅   :30°
・繰り返し時間 :2秒
・測定範囲   :-60~200ppm
・積算回数   :200回
 内部標準であるシクロヘキサノール由来シグナルを145.2ppmとし、144.0~142.0ppmをS型骨格、141.0~136.6ppmをG型骨格と同定し、積分値から各基本骨格の相対存在率%を算出した。H型骨格の相対存在率は全芳香族水酸基量からS型骨格及びG型骨格の相対存在率を差引いて算出した。
 さらに、150.0~145.5ppmを脂肪族水酸基、144.7~136.6ppmを芳香族水酸基と同定し、積分曲線より脂肪族水酸基量(mol/g)、芳香族水酸基量(mol/g)を算出してそれぞれの水酸基割合%を求めた。
(2)存在率の比及び反応点
 上記各基本骨格の相対存在率%に基づき、
・S型骨格の相対存在率S(%)に対するH型骨格の相対存在率H(%)の2倍及びG型骨格の相対存在率G(%)の合計の比[(2H+G)/S]、
・H型骨格の相対存在率H(%)及びG型骨格の相対存在率G(%)に基づく反応点の合計[2H+G]、
・[2H+G]についての改質前後の増加割合(%)
を算出した。
〈軟化点(℃)〉
 各実施例で得られた改質リグニン又は原料リグニン1あるいは2(固体試料)を乳鉢で粉砕し、篩(40メッシュ)にかけて大きな粒子を取り除き、砕いた試料をアルミ製カップ(円形上部φ60、下部φ53×深さ15mm)に10~20mgに入れた。試料を入れたアルミ製カップをホットプレート(ASONEND-2A)に置き、ガラス板(厚さ0.5mm)でふたをした。80℃まで加熱後、10℃刻みに温度を上げ、ガラス越しに目視観察を行い、目視により溶解した温度を軟化点として採用した。
<原料リグニン1>
 バガス(サトウキビの搾りカスを乾燥させたもの)500gを、1-ブタノール2.1Lと水3.3Lの存在下で、200℃、4時間、熱処理し1-ブタノール層を取り出した。取り出した1-ブタノール層を濾過(ワットマンNO.2ろ紙)し、セルロース含有固形物を除去した。濾液を濃縮し、乾固することで原料リグニン1を90g得た。
<改質リグニン>
[実施例1]
(1)反応工程
 原料リグニン1を100質量部(100.0g)、フェノール100質量部、リン酸1質量部を撹拌可能な1.0Lの耐圧容器に入れて加熱し、フェノールが溶解したところで撹拌を開始した。そのまま加熱し続け、200℃で4時間加熱した。
(2)精製工程
・フェノールの蒸留除去: 
 耐圧容器から反応液を取出し、クーゲルロールを用い、減圧下(5~10kPa)加熱(100~130℃)して反応液を減圧蒸留してフェノールを除去した。クーゲルロールでは反応後のフェノールは完全には除去できず改質リグニンに対し、約10質量%残留していた。
・改質リグニン再沈殿: 
 上記フェノールを蒸留除去した改質リグニン1質量部(5.0g)に、2質量部のアセトンを加え、完全に溶解させた。ここに40質量部のイオン交換水を加えて改質リグニンを沈殿させた。沈殿した改質リグニンは遠心分離し回収した。この操作を3~4回繰り返し、反応後のフェノールを完全に除去し、改質リグニン1(4.5g)を得た。
[実施例2]
 酸触媒を使用しない以外は実施例1と同様に行い、改質リグニン2(4.5g)を得た。
[実施例3]
 原料リグニン1を19質量部、フェノールを181質量部とした以外は実施例1と同様に行い、改質リグニン3(4.4g)を得た。
[実施例4]
 反応時間を8hにした以外は実施例3と同様に行い、改質リグニン4(4.5g)を得た。
[実施例5]
 反応温度を220℃にした以外は実施例3と同様に行い、改質リグニン5(4.5g)を得た。
[実施例6]
 触媒量を5質量部にする以外は実施例3と同様に行い、改質リグニン6(4.4g)を得た。
[実施例7]
 フェノールの代りにm-クレゾールを用いた以外は実施例3と同様に行い、改質リグニン7(4.5g)を得た。
[実施例8]
 原料リグニン1を61質量部、フェノールを139質量部とした以外は実施例1と同様に行い、改質リグニン8(4.6g)を得た。
[実施例9]
 酸触媒を使用しない以外は実施例8と同様に行い、改質リグニン9(4.5g)を得た。
[実施例10]
 反応温度を150℃、反応時間を1時間にした以外は実施例1と同様に行い、改質リグニン10(4.4g)を得た。
[実施例11]
 酸触媒を硫酸とした以外は実施例10と同様に行い、改質リグニン11(4.6g)を得た。
[実施例12]
 酸触媒を硫酸0.2質量部とした以外は実施例3と同様に行い、改質リグニン12(4.5g)を得た。
 上記実施例1~12で得られた改質リグニン1~12、及び原料リグニン1の性状を表1に示す。
Figure JPOXMLDOC01-appb-T000004

 
<硬化物>
 次に、実施例1~12で得られた改質リグニン又は原料リグニン1を用い、次の各実施例及び比較例において樹脂組成材料及びこれを用いてなる成形体を製造した。
 また、当該樹脂組成材料及び成形体について下記の方法で評価を行った。
(混練容易性)
 実施例13~24及び比較例1において、混練時の容易性を次の指標に基づき評価した。
  ○:混練容易
  △:困難だが混練可能
  ×:混練不可能
(攪拌性)
 実施例25~36及び比較例2において、反応時の攪拌容易性を次の指標に基づき評価した。
  ○:攪拌容易
  △:困難だが攪拌可能
  ×:攪拌不可能
(曲げ強度)
 各実施例及び比較例において得られた成形体から、5mm×50mm×1mmの試料を切り出し、インストロンジャパン社製、インストロン5566型を用いて3点曲げモード、スパン30mm、速度2mm/分の条件で曲げ強度を測定し、指標に基づき評価した。
  ○:試料が割れにくかった
  △:試料が割れた
  ×:試料がすぐに割れた
  -:成形不良
[実施例13~24]
 100質量部のノボラック型フェノール樹脂(住友ベークライト株式会社製、PR-53195)、50質量部の木粉、50質量部(50.0g)の上記実施例1~12で得られた改質リグニン1~12の各々、硬化剤としてヘキサメチレンテトラミンを20質量部、及び内部離型剤としてステアリン酸亜鉛を1質量部混合し、2本ロール混練機にて100~110℃で3分間混練して、改質リグニン含有樹脂組成材料を得た。
 上記得られた改質リグニン含有樹脂組成材料を、加熱した金型キャビティ内に圧入してトランスファ成形法により170℃、5分の成形条件にて成形し、オーブンで180℃、8時間硬化し、成形体を得た。
 上記樹脂組成材料及び成形体の上記評価の結果を表2に示す。
[比較例1]
 改質リグニンの代わりに原料リグニン1を用いた以外は、実施例13と同様に行い樹脂組成材料及び成形体を得た。
 上記樹脂組成材料及び成形体の上記評価の結果を表2(表2-1又は表2-2)に示す。
Figure JPOXMLDOC01-appb-T000005

 
[実施例25~36]
 還流装置と攪拌羽根を備えた0.5Lのセパラブルフラスコに、上記実施例1~12で得られた改質リグニン1~12の各々を50質量部(50.0g)、40質量%ホルムアルデヒド水溶液30質量部を加え攪拌した。ホルムアルデヒドと改質リグニン中のフェノールのモル比は1.5であった。50質量%炭酸ナトリウム水溶液35質量部を徐々に滴下しながら、100℃で2時間加熱し、液状の組成物を得た。
 さらに、木粉54質量部を加え均一になるまで攪拌し、改質リグニン含有樹脂組成材料を得た。
 上記得られた改質リグニン含有樹脂組成材料を、減圧して水分を除去し、面圧0.2MPa、180℃、10分でプレス成形した後、オーブンで200℃、4時間硬化し、成形体を得た。
 上記樹脂組成材料及び成形体の上記評価の結果を表3に示す。
[比較例2]
 改質リグニンの代わりに原料リグニン1を用いた以外は、実施例25と同様に行い成形体を得た。
 上記樹脂組成材料及び成形体の上記評価の結果を表3(表3-1又は表3-2)に示す。
Figure JPOXMLDOC01-appb-T000006

 
 表2及び表3から、改質リグニン1~12は、原料リグニン1よりも容易な混練性、反応時の撹拌性が優れていることから、混合性について改良されていることが分かる。また、曲げ物性についても、原料リグニン1よりも改質リグニンを用いた成形体の方が良好なことが分かる。
<原料リグニン2>
 原料リグニン2として、クラフトリグニン(SIGMA-ALDRICH社製のLignin,alkali(製品番号370959))を用いた。
<改質リグニン>
[実施例37]
 原料リグニン2を40質量部、フェノールを160質量部、酸触媒を硫酸0.4質量部、反応時間を2時間とした以外は実施例5と同様に行い、改質リグニン13(4.3g)を得た。
[実施例38]
 酸触媒を使用せず、反応温度を300℃とした以外は実施例37と同様に行い、改質リグニン14(4.5g)を得た。
 上記実施例37及び38で得られた改質リグニン13及び14、並びに原料リグニン2の性状を表4に示す。
Figure JPOXMLDOC01-appb-T000007

 
<硬化物>
 次に、実施例37で得られた改質リグニン13又は原料リグニン2を用い、次の各実施例及び比較例において樹脂組成材料及び成形体について前述の方法で、混練容易性、攪拌性、及び曲げ強度について評価を行った。
[実施例39]
 改質リグニン13を用いた以外は実施例13と同様に行い樹脂組成材料及び成形体を得た。
 上記樹脂組成材料及び成形体の上記評価の結果を表5に示す。
[比較例3]
 改質リグニンの代わりに原料リグニン2を用いた以外は、実施例13と同様に行い樹脂組成材料及び成形体を得た。
 上記樹脂組成材料及び成形体の上記評価の結果を表5に示す。
Figure JPOXMLDOC01-appb-T000008

 
[実施例40]
 改質リグニン13を用いた以外は実施例25と同様に行い樹脂組成材料及び成形体を得た。
 上記樹脂組成材料及び成形体の上記評価の結果を表6に示す。
[比較例4]
 改質リグニンの代わりに原料リグニン2を用いた以外は、実施例25と同様に行い樹脂組成材料及び成形体を得た。
 上記樹脂組成材料及び成形体の上記評価の結果を表6に示す。
Figure JPOXMLDOC01-appb-T000009

 
 表5及び表6から、改質リグニン13は、原料リグニン2よりも容易な混練性、反応時の撹拌性が優れていることから、混合性について改良されていることが分かる。また、曲げ物性についても、原料リグニン2よりも改質リグニンを用いた成形体の方が良好なことが分かる。
 本発明の改質リグニンは、低分子量化されて他のプラスチック材料との混合性が向上し、反応点が増加したものである。混合性の向上と反応点の増加により成形品の物性向上が期待でき、さらに混合が容易になることで硬化部材を製造するときにコストがかかる大掛かりな装置を不要とすることも可能である。また、これまでほとんど廃棄処分されていたリグニンが有効利用できるため、環境保全にも効果的である。

Claims (21)

  1.  31P-NMRで測定される積分値から求めたS型骨格の相対存在率S(%)に対するH型骨格の相対存在率H(%)の2倍及びG型骨格の相対存在率G(%)の合計の比[(2H+G)/S]が2.5以上であり、
     31P-NMRで測定される積分値から求めた脂肪族水酸基及び芳香族水酸基の存在率の合計に対する該脂肪族水酸基の存在率が20%未満である改質リグニン。
  2.  改質リグニンの軟化点が90℃以上である、請求項1に記載の改質リグニン。
  3.  改質リグニンの軟化点が130℃以上である、請求項1に記載の改質リグニン。
  4.  前記相対存在率の比[(2H+G)/S]が2.8以上である、請求項1~3に記載の改質リグニン。
  5.  31P-NMRで測定される積分値から求めた脂肪族水酸基及び芳香族水酸基の存在率の合計に対する脂肪族水酸基の存在率が15%未満である、請求項1~4のいずれかに記載の改質リグニン。
  6.  ポリフェノール含有組成物と、水酸基に対する置換基の位置である2位、4位及び6位のうち少なくとも1つが水素原子であるフェノール化合物とを反応させる工程を有する、改質ポリフェノールの製造方法。
  7.  前記フェノール化合物が下記式(1)で表される、請求項6に記載の改質ポリフェノールの製造方法。
    Figure JPOXMLDOC01-appb-C000001

    (式(1)において、R1及びR2はそれぞれ独立して、水素原子、水酸基又は炭素数1~15のアルキル基を示し、R1及びR2は同一でも異なっていてもよい。)
  8.  前記反応が、無触媒、又は、前記ポリフェノール含有組成物中の原料ポリフェノール及び前記フェノール化合物の合計量に対し0超~3.0質量%の酸触媒の存在下で行われる、請求項6又は7に記載の改質ポリフェノールの製造方法。
  9.  前記反応が、無触媒、又は、前記ポリフェノール含有組成物中の原料ポリフェノール及び前記フェノール化合物の合計量に対し0.2~3.0質量%の酸触媒の存在下で行われる、請求項6又は7に記載の改質ポリフェノールの製造方法。
  10.  前記反応が、無触媒で行われる、請求項6又は7に記載の改質ポリフェノールの製造方法。
  11.  前記ポリフェノール含有組成物中の原料ポリフェノールに対する前記フェノール化合物の質量比[フェノール化合物/原料ポリフェノール]が1~15である、請求項6~10のいずれかに記載の改質ポリフェノールの製造方法。
  12.  前記反応が、反応温度140℃超及び350℃以下で行われる、請求項6~11のいずれかに記載の改質ポリフェノールの製造方法。
  13.  前記反応が、反応温度140℃超及び250℃以下で行われる、請求項6~11のいずれかに記載の改質ポリフェノールの製造方法。
  14.  前記ポリフェノール含有組成物中の原料ポリフェノールよりも前記改質ポリフェノールの方が数平均分子量及び重量平均分子量が小さくなる、請求項6~13のいずれかに記載の改質ポリフェノールの製造方法。
  15.  前記ポリフェノール含有組成物がリグニン含有組成物であり、前記改質ポリフェノールが改質リグニンである、請求項6~14のいずれかに記載の改質ポリフェノールの製造方法。
  16.  前記ポリフェノール含有組成物がリグニンであり、前記改質ポリフェノールが改質リグニンである、請求項6~14のいずれかに記載の改質ポリフェノールの製造方法。
  17.  31P-NMRで測定される積分値から求めたH型骨格の相対存在率H(%)及びG型骨格の相対存在率H(%)に基づく反応点の合計[2H+G]が、改質の前後で4%以上増加する、請求項15又は16に記載の改質ポリフェノールの製造方法。
  18.  請求項1~5のいずれかに記載の改質リグニン及び請求項15~17のいずれかに記載の改質ポリフェノールの製造方法で製造される改質リグニンのいずれか1以上の改質リグニンを含む改質リグニン含有材料。
  19.  請求項1~5のいずれかに記載の改質リグニン及び請求項15~17のいずれかに記載の改質ポリフェノールの製造方法で製造される改質リグニンのいずれか1以上の改質リグニンを含む改質リグニン含有樹脂組成材料。
  20.  熱硬化性樹脂及びアルデヒド類のいずれか1種以上をさらに含有する、請求項19に記載の改質リグニン含有樹脂組成材料。
  21.  請求項19及び20に記載の改質リグニン含有樹脂組成材料のいずれか1以上を用いてなる成形品。
     
PCT/JP2018/030112 2017-08-10 2018-08-10 改質リグニン及び改質ポリフェノールの製造方法、並びに改質リグニンを用いた樹脂組成材料 WO2019031609A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880051532.4A CN110891960A (zh) 2017-08-10 2018-08-10 改质木质素和改质多元酚的制造方法、以及使用改质木质素的树脂组成材料
EP18842933.6A EP3666784A4 (en) 2017-08-10 2018-08-10 PROCESS FOR THE MANUFACTURING OF MODIFIED LIGNIN AND MODIFIED POLYPHENOL, AND MATERIAL OF COMPOSITION OF RESIN CONTAINING MODIFIED LIGNIN
US16/635,394 US11518886B2 (en) 2017-08-10 2018-08-10 Modified lignin, modified polyphenol manufacturing method, and modified lignin-including resin composition material
JP2019535728A JPWO2019031609A1 (ja) 2017-08-10 2018-08-10 改質リグニン及び改質ポリフェノールの製造方法、並びに改質リグニンを用いた樹脂組成材料
US17/951,913 US20230025187A1 (en) 2017-08-10 2022-09-23 Modified lignin, modified polyphenol manufacturing method, and modified lignin-including resin composition material
JP2022210905A JP2023024830A (ja) 2017-08-10 2022-12-27 改質リグニン及び改質ポリフェノールの製造方法、並びに改質リグニンを用いた樹脂組成材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-156186 2017-08-10
JP2017156186 2017-08-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/635,394 A-371-Of-International US11518886B2 (en) 2017-08-10 2018-08-10 Modified lignin, modified polyphenol manufacturing method, and modified lignin-including resin composition material
US17/951,913 Division US20230025187A1 (en) 2017-08-10 2022-09-23 Modified lignin, modified polyphenol manufacturing method, and modified lignin-including resin composition material

Publications (1)

Publication Number Publication Date
WO2019031609A1 true WO2019031609A1 (ja) 2019-02-14

Family

ID=65272296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030112 WO2019031609A1 (ja) 2017-08-10 2018-08-10 改質リグニン及び改質ポリフェノールの製造方法、並びに改質リグニンを用いた樹脂組成材料

Country Status (5)

Country Link
US (2) US11518886B2 (ja)
EP (1) EP3666784A4 (ja)
JP (2) JPWO2019031609A1 (ja)
CN (1) CN110891960A (ja)
WO (1) WO2019031609A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021036316A1 (zh) * 2019-08-23 2021-03-04 常州市碳索新材料科技有限公司 一种高压绝缘阻燃粉末涂料及其制备方法
WO2022250012A1 (ja) * 2021-05-24 2022-12-01 出光興産株式会社 硬化性組成物、ポリウレタン樹脂組成物及びポリウレタン成形体
EP3922654A4 (en) * 2019-02-08 2022-12-21 Idemitsu Kosan Co., Ltd. PROCESS FOR PREPARING A POLYPHENOL DERIVATE, POLYPHENOL DERIVATE AND POLYPHENOL DERIVATE RESIN COMPOSITION
WO2023153519A1 (ja) * 2022-02-14 2023-08-17 群栄化学工業株式会社 活性炭製造用組成物、その製造方法、活性炭製造用成形体、その製造方法、活性炭素繊維製造用繊維、その製造方法、活性炭前駆体、活性炭素繊維前駆体、炭化物、炭素繊維、活性炭、その製造方法、活性炭素繊維及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11505655B2 (en) * 2017-08-10 2022-11-22 Idemitsu Kosan Co., Ltd. Modified lignin manufacturing method, modified lignin, and modified lignin-including resin composition material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084320A (ja) * 2007-09-27 2009-04-23 Sumitomo Bakelite Co Ltd リグニン誘導体及びその二次誘導体
JP2012082255A (ja) * 2010-10-07 2012-04-26 Harima Chemicals Inc リグニン添加熱硬化性樹脂
JP2013199561A (ja) * 2012-03-23 2013-10-03 Akebono Brake Ind Co Ltd 摩擦材
JP2014015579A (ja) 2012-07-11 2014-01-30 Idemitsu Kosan Co Ltd 熱可塑性樹脂組成物
JP5671430B2 (ja) 2011-09-02 2015-02-18 ハリマ化成株式会社 変性リグニンおよびそれを含有するフェノール樹脂成形材料
WO2015147165A1 (ja) 2014-03-28 2015-10-01 住友ベークライト株式会社 フェノール変性リグニン樹脂及びその製造方法、並びに、樹脂組成物、ゴム組成物、及び硬化物
WO2016104634A1 (ja) 2014-12-25 2016-06-30 出光ライオンコンポジット株式会社 熱可塑性樹脂組成物及びその成形体
JP2016540058A (ja) 2013-09-30 2016-12-22 ユー ピー エム キュンメネ コーポレーション リグニンの反応性を増加させるための方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2895087B2 (ja) 1989-03-08 1999-05-24 正光 船岡 リグノセルロース系物質をポリフェノールと炭水化物とに分離する方法およびこの方法によって得られたポリフェノール系物質
CN1211394C (zh) 1997-09-12 2005-07-20 船冈正光 新颖的木质素衍生物、使用该衍生物的成形体及制造方法
JP5354882B2 (ja) 2006-12-01 2013-11-27 トヨタ車体株式会社 リグニン変性ノボラック型フェノール系樹脂の製造方法
CN101269930B (zh) 2008-05-06 2010-06-09 福州大学 酶解木质素或它的衍生物改性酚醛发泡材料及其制备方法
US8378020B1 (en) * 2009-05-28 2013-02-19 Lignol Innovations Ltd. Processes for recovery of derivatives of native lignin
US20130232853A1 (en) * 2012-03-09 2013-09-12 Thesis Chemistry, Llc Method for selective production of biobased chemicals and biofuels from plant lignin
CN103131022B (zh) 2013-03-15 2015-06-17 中国科学院化学研究所 一种木质素酚化降解的方法
CN103554400A (zh) 2013-10-14 2014-02-05 中国林业科学研究院林产化学工业研究所 一种用于制备热塑性酚醛树脂的木质素液化方法
CN106478906A (zh) 2016-10-14 2017-03-08 安徽格义循环经济产业园有限公司 木质素改性酚醛树脂及其制备方法
US11505655B2 (en) * 2017-08-10 2022-11-22 Idemitsu Kosan Co., Ltd. Modified lignin manufacturing method, modified lignin, and modified lignin-including resin composition material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084320A (ja) * 2007-09-27 2009-04-23 Sumitomo Bakelite Co Ltd リグニン誘導体及びその二次誘導体
JP2012082255A (ja) * 2010-10-07 2012-04-26 Harima Chemicals Inc リグニン添加熱硬化性樹脂
JP5671430B2 (ja) 2011-09-02 2015-02-18 ハリマ化成株式会社 変性リグニンおよびそれを含有するフェノール樹脂成形材料
JP2013199561A (ja) * 2012-03-23 2013-10-03 Akebono Brake Ind Co Ltd 摩擦材
JP2014015579A (ja) 2012-07-11 2014-01-30 Idemitsu Kosan Co Ltd 熱可塑性樹脂組成物
JP2016540058A (ja) 2013-09-30 2016-12-22 ユー ピー エム キュンメネ コーポレーション リグニンの反応性を増加させるための方法
WO2015147165A1 (ja) 2014-03-28 2015-10-01 住友ベークライト株式会社 フェノール変性リグニン樹脂及びその製造方法、並びに、樹脂組成物、ゴム組成物、及び硬化物
WO2016104634A1 (ja) 2014-12-25 2016-06-30 出光ライオンコンポジット株式会社 熱可塑性樹脂組成物及びその成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAGNETIC RESONANCE IN CHEMISTRY, vol. 33, 1995, pages 375 - 382

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3922654A4 (en) * 2019-02-08 2022-12-21 Idemitsu Kosan Co., Ltd. PROCESS FOR PREPARING A POLYPHENOL DERIVATE, POLYPHENOL DERIVATE AND POLYPHENOL DERIVATE RESIN COMPOSITION
WO2021036316A1 (zh) * 2019-08-23 2021-03-04 常州市碳索新材料科技有限公司 一种高压绝缘阻燃粉末涂料及其制备方法
WO2022250012A1 (ja) * 2021-05-24 2022-12-01 出光興産株式会社 硬化性組成物、ポリウレタン樹脂組成物及びポリウレタン成形体
WO2023153519A1 (ja) * 2022-02-14 2023-08-17 群栄化学工業株式会社 活性炭製造用組成物、その製造方法、活性炭製造用成形体、その製造方法、活性炭素繊維製造用繊維、その製造方法、活性炭前駆体、活性炭素繊維前駆体、炭化物、炭素繊維、活性炭、その製造方法、活性炭素繊維及びその製造方法

Also Published As

Publication number Publication date
JPWO2019031609A1 (ja) 2020-07-16
EP3666784A1 (en) 2020-06-17
US11518886B2 (en) 2022-12-06
JP2023024830A (ja) 2023-02-16
CN110891960A (zh) 2020-03-17
EP3666784A4 (en) 2021-04-14
US20230025187A1 (en) 2023-01-26
US20200181410A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
CN110914341B (zh) 改质木质素的制造方法和改质木质素、以及含改质木质素的树脂组成材料
WO2019031609A1 (ja) 改質リグニン及び改質ポリフェノールの製造方法、並びに改質リグニンを用いた樹脂組成材料
AU2018203118B2 (en) Phenolic resin obtained by polycondensation of formaldehyde, phenol and lignin
WO2016039213A1 (ja) リグニン誘導体、リグニン樹脂組成物、ゴム組成物および成形材料
TW201726769A (zh) 純化木質素之製造方法、純化木質素、樹脂組成物及成形體
JP6920317B2 (ja) リグニン含有樹脂組成物の製造方法及びリグニン含有樹脂成形品
WO2020162621A1 (ja) ポリフェノール誘導体の製造方法、ポリフェノール誘導体、及びポリフェノール誘導体含有樹脂組成材料
EP3922664A1 (en) Stable lignin-phenol blend for use in lignin modified phenol-formaldehyde resins
WO2018139074A1 (ja) ノボラック型フェノール樹脂、樹脂組成物およびノボラック型フェノール樹脂の製造方法
WO2017222084A1 (ja) 二段プロセスによる植物系バイオマス由来生成物の製造方法
Zhang et al. Effect of starch and lignin on physico‐chemical properties of phenol–starch resin and its resin core sand
WO2018047928A1 (ja) 耐熱性リグニンの製造方法
WO2022145280A1 (ja) リグニン組成物及びその使用
JP2021123716A (ja) ノボラック型フェノール樹脂および樹脂組成物
EP4321300A1 (en) Lignin-modified novolac-type phenol resin, method for producing same, molding material, resin composition, and grindstone
JP2022104522A (ja) リグニン組成物及びその使用
WO2016194600A1 (ja) 樹脂組成物、樹脂組成物の製造方法、および、成形品
JP2014051573A (ja) ゴム組成物、硬化物およびタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18842933

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535728

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018842933

Country of ref document: EP

Effective date: 20200310