WO2019031310A1 - 賦形フィルム及び光硬化型組成物 - Google Patents

賦形フィルム及び光硬化型組成物 Download PDF

Info

Publication number
WO2019031310A1
WO2019031310A1 PCT/JP2018/028669 JP2018028669W WO2019031310A1 WO 2019031310 A1 WO2019031310 A1 WO 2019031310A1 JP 2018028669 W JP2018028669 W JP 2018028669W WO 2019031310 A1 WO2019031310 A1 WO 2019031310A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
photocurable composition
radically polymerizable
polymerizable component
acrylic monomer
Prior art date
Application number
PCT/JP2018/028669
Other languages
English (en)
French (fr)
Inventor
近藤 秀一
優雅 橘
康利 時田
淳一 亀井
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to CN201880051129.1A priority Critical patent/CN110997770A/zh
Priority to CN202310372793.9A priority patent/CN116396519A/zh
Priority to JP2019535129A priority patent/JP7210844B2/ja
Priority to KR1020207000882A priority patent/KR20200039659A/ko
Publication of WO2019031310A1 publication Critical patent/WO2019031310A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/305Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates

Definitions

  • the present invention relates to a shaped film and a photocurable composition.
  • optical sheets optical films
  • a prism sheet used for back light of a liquid crystal display device for example, a lenticular lens sheet used for stereoscopic photography, projection screen, etc., a Fresnel lens sheet used for a condenser lens of an overhead projector, etc.
  • a Fresnel lens sheet used for a condenser lens of an overhead projector etc.
  • Examples thereof include diffraction gratings used for filters and the like, illumination shaped films and the like used for game machines, toys, home appliances and the like.
  • Such an optical sheet is also referred to as a shaped film, and generally comprises a substrate and a shaped layer laminated to the substrate. The fine shape is transferred to the shaping layer by a mold or the like to impart desired optical properties.
  • the optical sheet may be worn or deformed due to impact or vibration during manufacturing, for example, the surface and side surfaces of the shaping layer may be deformed or broken, such as the top of the microstructure.
  • Such abrasion of the optical sheet causes unevenness on the display surface of the display device and degrades display performance.
  • various proposals have been made for the material of the shaping layer (see, for example, Patent Document 1).
  • the present invention comprises a shaped layer having high hardness, and a shaped film capable of maintaining the adhesion of the shaped layer to a substrate for a long time even under high temperature and high humidity conditions, and to produce the same. It is an object of the present invention to provide a photocurable composition of
  • a shaped film according to one aspect of the present disclosure includes a substrate, and a shaped layer laminated on the substrate, and the shaped layer includes (A) a photocurable composition containing a radically polymerizable component.
  • the (A) radically polymerizable component comprises (A1) a urethane acrylate having two or more (meth) acryloyl groups, and (A2) a nitrogen-containing monofunctional (meth) acrylic monomer.
  • the above-mentioned shaped film contains, as the (A) radically polymerizable component, urethane acrylate having two or more (meth) acryloyl groups as (A1), whereby the adhesion of the cured product (that is, the shaped layer) to the substrate is obtained. Will be much stronger. Then, by combining the component (A1) with the component (A2), even under high temperature and high humidity conditions in which the adhesion tends to decrease, the excipient layer can maintain the adhesion to the substrate for a long time . In addition, the hardness of the cured product (that is, the shaped layer) is improved.
  • a shaped film comprising a cured product of a photocurable resin composition having a composition combining the above components (A1) and (A2) in a shaped layer comprises a shaped layer having high hardness, and a high temperature and Even under high humidity conditions, the adhesion of the shaping layer to the substrate can be maintained for a long time.
  • the (A) radically polymerizable component may further contain (A3) an ethylene oxide-modified bisphenol A di (meth) acrylate represented by the following general formula (1).
  • the shrinkage at the time of curing of the photocurable composition is alleviated, so even if the curing reaction of the photocurable composition proceeds by light irradiation and high temperature treatment, curing on the substrate is achieved. The adhesion of objects is maintained for a long time.
  • the (A3) ethylene oxide-modified bisphenol A di (meth) acrylate can appropriately improve the flexibility of the cured product, thereby improving the adhesion of the cured product.
  • the (A) radically polymerizable component may further contain (A4) an alicyclic monofunctional (meth) acrylic monomer.
  • the (A4) alicyclic monofunctional (meth) acrylic monomer may have a dicyclopentadiene skeleton.
  • the adhesion of the excipient layer to the substrate can be maintained for a long time under high temperature conditions.
  • the (A) radically polymerizable component may further contain (A5) a polyfunctional (meth) acrylic monomer having two or more (meth) acryloyl groups.
  • the (A1) urethane acrylate may have a polycarbonate structure.
  • the adhesion of the shaping layer to the substrate is further enhanced.
  • the photocurable composition may further contain (B) a photopolymerization initiator.
  • the photopolymerization initiator (B) is useful for efficient curing of the photocurable composition by photoradical polymerization.
  • the photocurable composition may further contain (C) a phenolic antioxidant containing a structure represented by the following general formula (2). [Wherein, R 3 represents a tert-butyl group or a methyl group. ] (C) Phenolic antioxidants are effective in improving long-term reliability such as heat resistance yellowing of cured product, adhesion of a shaped layer to a substrate, and life of a polymer by suppressing thermal oxidative deterioration of the cured product There is.
  • the photocurable composition may further contain (D) a light stabilizer.
  • D Light stabilizers are useful to obtain better adhesion, hardness and light stability of the shaped layer.
  • the content of the (A1) urethane acrylate in the photocurable composition may be 0.1 to 50% by mass based on the total amount of the (A) radically polymerizable component.
  • the content of the urethane acrylate is in this range, the adhesion of the excipient layer to the substrate can be maintained for a longer time under high temperature and high humidity conditions.
  • the content of the (A3) ethylene oxide-modified bisphenol A di (meth) acrylate in the photocurable composition may be 0.1 to 20% by mass based on the total amount of the (A) radically polymerizable component. .
  • the content of the ethylene oxide-modified bisphenol A di (meth) acrylate is equal to or more than the above lower limit, it is possible to give flexibility more suitable for obtaining excellent adhesion, and the photocurable composition cures. It is possible to further reduce the contraction during the treatment.
  • the content of the ethylene oxide-modified bisphenol A di (meth) acrylate is less than or equal to the above upper limit value, the glass transition temperature of the cured product can be maintained at a certain level or more.
  • the Tg of the cured product is a certain value or more, it is possible to suppress the decrease in adhesion due to the movement of the molecules of the cured product under high temperature conditions.
  • the content of the (A4) alicyclic monofunctional (meth) acrylic monomer in the photocurable composition may be 30 to 75% by mass based on the total amount of the (A) radically polymerizable component.
  • the content of the alicyclic monofunctional (meth) acrylic monomer is 30 to 75% by mass, the adhesion of the excipient layer to the substrate can be maintained for a long time under high temperature conditions.
  • the substrate may be a polycarbonate film.
  • the shaping layer of the shaping film according to the above aspect of the present disclosure exhibits excellent adhesion even if the substrate is a polycarbonate film.
  • the photocurable composition according to one aspect of the present disclosure includes (A) a radically polymerizable component, and the (A) radically polymerizable component is a urethane acrylate having (A1) two or more (meth) acryloyl groups. And (A2) a nitrogen-containing monofunctional (meth) acrylic monomer.
  • the (A) radically polymerizable component may further contain (A3) an ethylene oxide-modified bisphenol A di (meth) acrylate represented by the following general formula (1).
  • the (A) radically polymerizable component may further contain (A4) an alicyclic monofunctional (meth) acrylic monomer.
  • the (A4) alicyclic monofunctional (meth) acrylic monomer may have a dicyclopentadiene skeleton.
  • the (A) radically polymerizable component may further contain (A5) a polyfunctional (meth) acrylic monomer having two or more (meth) acryloyl groups.
  • the (A1) urethane acrylate may have a polycarbonate structure.
  • the photocurable composition may further contain (B) a photopolymerization initiator.
  • the photocurable composition may further contain (C) a phenolic antioxidant containing a structure represented by the following general formula (2). [Wherein, R 3 represents a tert-butyl group or a methyl group. ]
  • the photocurable composition may further contain (D) a light stabilizer.
  • the viscosity at 25 ° C. of the photocurable composition may be 40 to 1000 mPa ⁇ s. When the viscosity is in this range, it is advantageous from the viewpoint of the coatability of the photocurable composition and the viewpoint of transferring the fine shape from the mold to the excipient layer.
  • a shaped layer having high hardness is provided, and adhesion of the shaped layer to the substrate is long even under high temperature and high humidity conditions (for example, a temperature of 85 ° C. or more and a humidity of 85% RH or more). It is possible to provide a shaped film which can be maintained for a time (for example, 50 hours or more), and a photocurable composition for producing the same. In particular, even if the substrate is a polycarbonate film, the above-mentioned shaped film can maintain the adhesion of the shaped layer to the substrate under high temperature and high humidity conditions for a long time.
  • high temperature and high humidity conditions for example, a temperature of 85 ° C. or more and a humidity of 85% RH or more.
  • (meth) acrylic means methacrylic or acrylic.
  • (meth) acryloyl means methacrylate.
  • a shaped film according to one aspect of the present disclosure includes a substrate and a shaped layer laminated on the substrate, and the shaped layer is a cured product of a photocurable composition containing a radically polymerizable component. (Hereinafter, also simply referred to as a "cured product").
  • FIG. 1 schematically shows an embodiment of a shaping film.
  • a shaped film 10 shown in FIG. 1 includes a substrate 5 and a shaped layer 1 laminated on the substrate 5, and the shaped layer 1 is a cured product of a photocurable composition containing a radically polymerizable component. including.
  • the shaping layer 1 may consist only of the cured product of the photocurable composition.
  • the high adhesion of the cured product to the substrate means the adhesion of the shaped layer to the substrate. It is synonymous with high.
  • adheresion of the cured product to the substrate is also referred to as “adhesion of the cured product”
  • “adhesiveness of the shaping layer to the substrate” is referred to as “adhesion of the shaping layer”. Yes, there are cases where these are simply referred to as “adhesion”.
  • FIG. 2 schematically shows another embodiment of the shaping film.
  • the shaping film 20 shown in FIG. 2 includes a substrate 5 and a shaping layer 4 laminated on the substrate 5, and the shaping layer 4 is a cured product of a photocurable composition containing a radically polymerizable component.
  • the shaping layer 4 is formed of a first shaping layer 2 (also referred to as a primer layer), which is a cured product of a photocurable composition, and a second shaping layer laminated on the first shaping layer 2.
  • the shaped layer 3 of The material of the second shaping layer 3 is not particularly limited as long as it is a material capable of forming a microstructure in the second shaping layer 3, and may be a material conventionally used for a shaping film.
  • the second excipient layer 3 may be a cured product of the same photocurable composition as the first excipient layer 2. In the latter case, it can be said that the shaping layer 4 consists only of the cured product of the photocurable composition.
  • the shaping layer of the present disclosure may have a microstructure on the surface.
  • the shaped layer 1 in FIG. 1 may have a microstructure (not shown) on the surface.
  • the shaped layer 4 in FIG. 2, more precisely, the second shaped layer 3 in FIG. 2 may have a microstructure (not shown) on the surface.
  • the shaped layer has high hardness because it includes the cured product of the photocurable composition.
  • a shaped layer having high hardness has good shape retention.
  • good shape retention means that the surface and the side surface of the shaped layer are less likely to be deformed and chipped.
  • each of the shaping layers 1 and 4 may be 0.5 ⁇ m or more or 1 ⁇ m or more, and may be 200 ⁇ m or less or 100 ⁇ m or less.
  • shaping to the shaping layer tends to be easy (that is, formation of a fine structure is facilitated), and when the shaping layer is thin, the haze of the shaping layer becomes small, The optical properties of the shaped film tend to be excellent.
  • the thickness of the shaping layer is in the above range, the ease of shaping to the shaping layer and the optical properties can be compatible at a higher level. As in the embodiment shown in FIG.
  • the thickness of the first excipient layer 2 made of a cured product of the photocurable composition is, for example, 1 to 5 ⁇ m.
  • the thickness of the second shaping layer 3 can be appropriately designed according to the thickness of the first shaping layer 2.
  • the substrate may be a film of polycarbonate (PC), polyethylene terephthalate (PET), polyester, cycloolefin polymer (COP), polyimide, etc.
  • PC film is preferred.
  • the adhesion of the forming layer to the PC film tends to be lower than the adhesion of the forming layer to the PET film.
  • the shaping layer of the shaping film according to the above aspect of the present disclosure exhibits excellent adhesion even when the substrate is a PC film.
  • the thickness of the substrate is not particularly limited, and is, for example, 10 to 125 ⁇ m.
  • the photocurable composition will be described below.
  • the photocurable composition contains (A) a urethane acrylate and (A2) a nitrogen-containing monofunctional (meth) acrylic monomer as the (A) radically polymerizable component.
  • the radically polymerizable component (A) is radically polymerized by light irradiation to form a crosslinked polymer. This cures the photocurable composition.
  • (A1) Urethane Acrylate Urethane acrylate (also referred to as “component (A1)”) has two or more (meth) acryloyl groups.
  • component (A2) By including such a urethane acrylate, the adhesion of the cured product to the substrate is greatly enhanced.
  • the excipient layer can maintain the adhesiveness to the base material for a long time even under high temperature and high humidity conditions in which the adhesive strength tends to decrease.
  • cured material improves because a photocurable composition contains a urethane acrylate.
  • the urethane acrylate is obtained, for example, by reacting a polyurethane chain, which is a polycondensate of a polyol and a polyisocyanate, with a monofunctional (meth) acrylic monomer having a hydroxyl group.
  • polyol used as a raw material of urethane acrylate examples include diols such as polycarbonate diol, polyester diol, polyether diol, and polycaprolactone diol. These polyols may be used alone or in combination of two or more. Generally, urethane acrylates obtained using polycarbonate diol, polyester diol, polyether diol or polycaprolactone diol are respectively referred to as polycarbonate urethane acrylate, polyester urethane acrylate, polyether urethane acrylate or caprolactone urethane acrylate.
  • polyisocyanate used as a raw material of urethane acrylate for example, tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, tetramethyl xylylene diisocyanate, isophorone diisocyanate, hydrogenated tolylene diisocyanate And hydrogenated diisocyanates such as hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, m-phenylene diisocyanate, biphenylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate and the like.
  • These polyisocyanates may be used alone or in combination of two or more.
  • hydroxyl group-containing monofunctional (meth) acrylic monomer used as a raw material of urethane acrylate for example, 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, and 1,4-cyclohexanedimethanol mono (meth) acrylate.
  • These (meth) acrylic monomers may be used alone or in combination of two or more.
  • urethane acrylate which has a polycarbonate (PC) structure is preferable, and urethane acrylate which has PC structure and does not have alicyclic structure is more preferable.
  • PC polycarbonate
  • urethane acrylate having a PC structure the adhesion of the shaping layer becomes higher.
  • a urethane acrylate having no alicyclic structure a cured product having high transparency (that is, small haze) can be obtained.
  • the weight average molecular weight of the urethane acrylate is not particularly limited, but is preferably 1000 or more and 30000 or less, more preferably 2000 or more and 20000 or less, and still more preferably 3000 or more and 10000 or less.
  • the weight average molecular weight of the urethane acrylate is 1,000 or more, the viscosity of the photocurable composition becomes good for coating by a roll-to-roll method, and the coatability of the photocurable composition tends to be improved.
  • the weight average molecular weight is 30,000 or less, the amount of the dilution monomer to be used for maintaining the coatability can be small, and the hardness and the adhesion of the cured product tend to be improved.
  • the weight average molecular weight of the urethane acrylate can be adjusted, for example, by the molar ratio of the polyol and the polyisocyanate, or their molecular weight.
  • Mw weight average molecular weight
  • GPC gel permeation chromatography
  • the number of (meth) acryloyl groups contained in the urethane acrylate is not particularly limited as long as it is 2 or more, but is preferably 6 or less, more preferably 4 or less, and still more preferably 3 or less.
  • the adhesion of the excipient layer to the substrate can be maintained for a long time under high temperature and high humidity conditions.
  • the content of urethane acrylate in the photocurable composition may be 0.1 to 90% by mass based on the total amount of the radically polymerizable component. From the viewpoint of maintaining the adhesion of the excipient layer for a long time under high temperature and high humidity conditions, the content of urethane acrylate may be 5 to 90% by mass based on the total amount of radically polymerizable components. From the viewpoint of setting the viscosity of the photocurable composition to a value suitable for the formation of the excipient layer, the content of urethane acrylate may be 10 to 70% by mass based on the total amount of the radically polymerizable component, It may be up to 50% by mass, or 15 to 35% by mass. In addition, the content of urethane acrylate may be 0.1 to 50% by mass based on the total amount of the radically polymerizable component.
  • the nitrogen-containing monofunctional (meth) acrylic monomer (also referred to as “(A2) component”) has only one (meth) acryloyl group and has a nitrogen atom. It is a monofunctional (meth) acrylic monomer having a functional group to be contained.
  • the adhesion of the excipient layer to the substrate can be improved from the physical and mechanical aspects. More specifically, by including this component, chemical interaction occurs between the cured product and the substrate (physical side), and the anchor effect of the cured product on the substrate is exhibited. Because of the (mechanical side), the adhesion of the cured product to the substrate is improved. In addition, the hardness of the cured product is also improved.
  • nitrogen-containing monofunctional (meth) acrylic monomers examples include (meth) acrylamide, acryloyl morpholine, dialkylaminoalkyl (meth) acrylates and derivatives thereof, with (meth) acrylamide and its derivatives being preferred.
  • the nitrogen-containing monofunctional (meth) acrylic monomer may be a (meth) acrylamide derivative (including (meth) acrylamide) represented by the following general formula (3a) or (3b).
  • R is a hydrogen atom or a methyl group.
  • R 1 and R 2 each independently represent a monovalent group consisting of at least one atom selected from a carbon atom, a hydrogen atom and an oxygen atom.
  • R 1 and R 2 may be each independently an alkyl group having 1 to 3 carbon atoms, which may or may not have a substituent, or a hydrogen atom, and in particular, a methyl group, an ethyl group, an isopropyl group or a hydroxyethyl group It may be.
  • R 1 and R 2 may be each independently a hydrogen atom or a methyl group.
  • R 3 and R 4 each independently represent a divalent group consisting of at least one atom selected from a carbon atom, a hydrogen atom and an oxygen atom.
  • R 3 , R 4 and nitrogen atom (N) may form a tetrahydro-1,4-oxazine ring.
  • nitrogen-containing monofunctional (meth) acrylic monomer examples include acrylamide, N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl acrylamide, N, N-dimethyl acrylamide, (meth) acryloyl morpho. Phosphorus, N-isopropylacrylamide, N, N-diethylacrylamide, and N-hydroxyethylacrylamide are included. These nitrogen-containing monofunctional (meth) acrylic monomers may be used alone or in combination of two or more.
  • the content of the nitrogen-containing monofunctional (meth) acrylic monomer in the photocurable composition may be 5 to 70% by mass, or 5 to 40% by mass, based on the total amount of the radically polymerizable component. It may be 5.5 to 30% by mass, or 6 to 25% by mass.
  • the content of the nitrogen-containing monofunctional (meth) acrylic monomer is in the above range, the hardness of the excipient layer can be improved, and the adhesion of the excipient layer to the substrate under high temperature and high humidity conditions Can be maintained for a longer time.
  • the content of the nitrogen-containing monofunctional (meth) acrylic monomer is 40% by mass or less, the haze of the cured product can be reduced as compared to the case where the content exceeds 40% by mass.
  • the photocurable composition comprises (A) an ethylene oxide-modified bisphenol A di (meth) acrylate represented by the following general formula (1) as a radically polymerizable component You may further include "EO modified
  • Tg glass transition temperature
  • the compound represented by the general formula (1) is preferably EO-modified bisphenol A diacrylate.
  • the content of the EO-modified bisphenol A di (meth) acrylate in the photocurable composition may be 0.1 to 20% by mass, or 5 to 19% by mass, based on the total amount of radically polymerizable components. It may be 10 to 15% by mass.
  • the content of the EO-modified bisphenol A di (meth) acrylate is 0.1% by mass or more, flexibility is obtained more suitably for obtaining excellent adhesion, and the photocurable composition cures. The contraction can be more alleviated.
  • the content of EO-modified bisphenol A di (meth) acrylate is 20% by mass or less, the Tg of the cured product can be maintained at a certain level or more. When the Tg of the cured product is a certain value or more, it is possible to suppress the decrease in adhesion due to the movement of the molecules of the cured product under high temperature conditions.
  • the photocurable composition comprises, as the (A) radically polymerizable component, an alicyclic monofunctional (meth) acrylic monomer (also referred to as "(A4) component"). It may further be included.
  • the alicyclic monofunctional (meth) acrylic monomer is a monofunctional (meth) acrylic monomer having only one (meth) acryloyl group and having an alicyclic structure.
  • alicyclic structure for example, cyclohexyl skeleton, dicyclopentadiene skeleton, adamantane skeleton, isobornyl skeleton, cycloalkane skeleton (cycloheptane skeleton, cyclooctane skeleton, cyclononane skeleton, cyclodecane skeleton, cyclodecane skeleton, cycloundecane skeleton, cyclododecane skeleton, etc.),
  • Examples thereof include a cycloalkene skeleton (cycloheptene skeleton, cyclooctene skeleton and the like), a norbornene skeleton, a norbornadiene skeleton, a polycyclic skeleton (cubane skeleton, a basketan skeleton, a housen skeleton and the like), a spiro skeleton and the like.
  • a cyclohexyl skeleton, a dicyclopentadiene skeleton, an adamantane skeleton or an isobornyl skeleton is preferable from the viewpoint of maintaining the adhesion of the excipient layer for a long time under high temperature conditions.
  • (meth) acrylate is preferable, and specifically, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, adamantyl (meth) acrylate, isobornyl (meth) Acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyl oxyethyl (meth) acrylate and the like.
  • isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, or dicyclopentenyl oxyethyl (meth) acrylate is preferable from the viewpoint of maintaining the adhesion of the excipient layer for a long time under high temperature conditions. .
  • These may be used alone or in combination of two or more.
  • the content of the alicyclic monofunctional (meth) acrylic monomer in the photocurable composition is 0 based on the total amount of radically polymerizable components from the viewpoint of maintaining the adhesion of the excipient layer for a long time under high temperature conditions. 1 to 75% by mass, 0.1 to 70% by mass, 40 to 65% by mass, or 45 to 60% by mass. From the same viewpoint, the content of the alicyclic monofunctional (meth) acrylic monomer may be 30 to 75% by mass, and 30 to 70% by mass, based on the total amount of the photocurable composition. It may be 35 to 65% by mass, 40 to 60% by mass, or 45 to 57% by mass.
  • the photocurable composition is a (A) multifunctional (meth) acrylic monomer having two or more (meth) acryloyl groups as a radically polymerizable component ("(A5) component” (Also referred to as “)” may be further included.
  • (A5) component Also referred to as “)
  • the component (A5) is a component which does not correspond to the component (A1) or the component (A3).
  • Multifunctional (meth) acrylic monomers include, for example, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, polyethylene glycol di (Meth) acrylate, diethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, hydroxypivalic acid ester neopentyl glycol di (meth) Acrylate, trimethylolpropane di (meth) acrylate, 3-methylpentanediol di (meth) acrylate, ⁇ , ⁇ -di (meth) acrylic bisdiethylene glycol phthalate, trimethylolpropane Tri (meth) acrylate, trimethylolethane tri (meth
  • the content of the polyfunctional (meth) acrylic monomer in the photocurable composition is preferably 0.1 to 90% by mass based on the total amount of the radically polymerizable component, and is 0.5 to 50% by mass. Is more preferable, and 1 to 40% by mass is more preferable.
  • the photocurable composition can further include (A) a radically polymerizable component other than the components (A1) to (A5).
  • examples of the radical polymerizable component (A) other than the components (A1) to (A5) include, for example, diluting monomers such as tetrahydrofurfuryl acrylate and orthophenyl phenoxyethyl acrylate.
  • the content of the radically polymerizable component other than the components (A1) to (A5) may be 90% by mass or less based on the total amount of the radically polymerizable component (A), and is 0.1 to 90% by mass. It may be 0.5 to 80% by mass, may be 1 to 75% by mass, or may be 1 to 50% by mass.
  • the photocurable composition further contains a photopolymerization initiator (also referred to as "(B) component") for efficient curing of the photocurable composition by photoradical polymerization.
  • a photopolymerization initiator also referred to as "(B) component
  • the photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization when irradiated with active energy rays.
  • active energy rays include, for example, ultraviolet rays, electron beams, alpha rays, beta rays, and gamma rays.
  • photopolymerization initiator benzophenone photopolymerization initiator, anthraquinone photopolymerization initiator, benzoyl photopolymerization initiator, sulfonium salt photopolymerization initiator, diazonium salt photopolymerization initiator, onium salt photopolymerization initiation And photopolymerization initiators such as acyl phosphine oxide photopolymerization initiators can be used.
  • the photopolymerization initiator may be a photopolymerization initiator that initiates polymerization by extracting hydrogen in the molecule.
  • the photopolymerization initiator examples include benzophenone, 4-methylbenzophenone, N, N, N ', N'-tetramethyl-4,4'-diaminobenzophenone (Michler's ketone), N, N, N', N ' -Tetraethyl-4,4'-diaminobenzophenone, 4-methoxy-4'-dimethylaminobenzophenone, ⁇ -hydroxyisobutylphenone, 2-ethyl anthraquinone, t-butyl anthraquinone, 1,4-dimethyl anthraquinone, 1-chloroanthraquinone, 2,3-dichloroanthraquinone, 3-chloro-2-methylanthraquinone, 1,2-benzoanthraquinone, 2-phenylanthraquinone, 1,4-naphthoquinone, 9,10-phenanthraquinon
  • 2- (o-chlorophenyl)- 4 5-diphenylimidazole dimer 2- (o-chlorophenyl) -4,5-di (m-methoxyphenyl) imidazole dimer, 2- (o-fluorophenyl) -4,5-diphenylimidazole dimer , 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer, 2- (p-methoxyphenyl) -4,5-diphenylimidazole dimer, 2,4-di (p-methoxyphenyl) -5-phenylimidazole dimer, 2- (2,4-dimethoxyphenyl) -4,5-diphenylimidazole dimer, 2- (p-methylmercaptophenyl) -4,5-diphenylimidazole dimer, etc.
  • 2,4,5-Triarylimidazole dimer of 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone ⁇ -aminoalkylphenone compounds such as 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-1-propane; bis (2,4,6-trimethylbenzoyl) -phenyl phosphine oxide and 2, 4,6-trimethyl benzoyl diphenyl phosphine oxide; and oligo (2-hydroxy-2-methyl-1- (4- (1-methylvinyl) phenyl) propanone).
  • These compounds may be used alone or in combination of two or more.
  • the content of the photopolymerization initiator in the photocurable composition is 0.01 parts by mass or more, 0.1 parts by mass or more, or 0.5 parts by mass or more with respect to 100 parts by mass of the radically polymerizable component. It may be 10 parts by mass or less, 6 parts by mass or less, or 5 parts by mass or less. When the content of the photopolymerization initiator is in this range, particularly good photopolymerizability can be obtained.
  • the photocurable composition may further contain a phenolic antioxidant (also referred to as "(C) component”) including a structure represented by the following general formula (2) Good.
  • the phenolic antioxidant has an effect of enhancing long-term reliability such as heat resistance yellowing of the cured product, adhesion of the excipient layer to the substrate, and life of the polymer by suppressing thermal oxidative deterioration of the cured product.
  • R 3 represents a tert-butyl group or a methyl group.
  • phenolic antioxidant for example, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], thiodiethylene bis [3- (3,5-di-tert- Butyl-4-hydroxyphenyl) propionate], n-octadecyl-3- (4'-hydroxy-3 ', 5'-di-tert-butyl-phenyl) propionate, N, N'-hexane-1,6-diylbis [3- (3,5-Di-tert-butyl-4-hydroxyphenylpropionamide), hexamethylene bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 3, 9 -Bis ⁇ 2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionio Di] -1,1-Dimethylethyl ⁇
  • antioxidants may be used alone or in combination of two or more.
  • pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate]
  • the content of the phenolic antioxidant in the photocurable composition is preferably 0.5 to 2.0 parts by mass with respect to 100 parts by mass of the total of the radically polymerizable component and the photopolymerization initiator.
  • the photocurable composition may further contain a light stabilizer (ultraviolet absorber) (also referred to as "(D) component").
  • a light stabilizer for example, a radical scavenger such as a thiol compound, a thioether compound or a hindered amine compound, or an ultraviolet absorber such as a benzotriazole ultraviolet absorber or a hydroxyphenyltriazine (HPT) ultraviolet absorber can do.
  • HPT hydroxyphenyltriazine
  • These light stabilizers may be used alone or in combination of two or more.
  • HPT ultraviolet absorbers are preferable from the viewpoint of obtaining excellent adhesion, hardness and light stability and compatibility with the (meth) acrylic monomer contained in the photocurable composition.
  • HPT-based UV absorbers examples include 85% 2- (4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl) -5-hydroxyphenyl, and oxirane
  • the content of the light stabilizer in the photocurable composition is 0.01 to 10 parts by mass with respect to 100 parts by mass in total of the radically polymerizable component and the photopolymerization initiator from the viewpoint of preventing yellowing of the cured product due to high temperature It is preferably part, and more preferably 0.1 to 5 parts by mass.
  • the photocurable composition may further contain a release agent. Adding a mold release agent to the photocurable composition is useful when using a mold to form a microstructure in the shaped layer.
  • the microstructure optionally formed in the shaping layer can be transferred from the mold having a minute shape, for example, to the shaping layer before curing, and the photocurable composition contains a release agent. Is easy for the shaped layer to be released from the mold.
  • a mold release agent the polyether modified polydimethylsiloxane which does not contain a (meth) acryloyl group, for example is mentioned.
  • polyether modified polydimethylsiloxane containing (meth) acryloyl group is preferable.
  • the content of the release agent in the photocurable composition is preferably 0.1 to 1.0 parts by mass with respect to 100 parts by mass of the total of the radically polymerizable component and the photopolymerization initiator.
  • additives such as silicone surfactants, thickeners, leveling agents, antistatic agents and antifoaming agents may be further added to the photocurable composition, and a solvent may be further added. It is also good.
  • the total content of the additive and the solvent in the photocurable composition may be, for example, 0.01 to 10 parts by mass with respect to 100 parts by mass of the total of the radically polymerizable component and the photopolymerization initiator.
  • the viscosity of the photocurable composition has a sufficiently low viscosity suitable for coating.
  • the viscosity at 25 ° C. of the photocurable composition is preferably 40 to 1000 mPa ⁇ s, more preferably 45 to 500 mPa ⁇ s.
  • the viscosity can be adjusted, for example, by adjusting the amount of solvent, the molecular weight of each component, and the like.
  • the glass transition temperature (Tg) of the cured product of the photocurable composition is heat resistance (for example, heat resistance to heat from the surrounding environment when the formed film is used as an optical sheet, and the optical sheet It is preferable that the temperature is 20 to 90 ° C., from the viewpoint of heat resistance to heat radiation of the display when used for a display and from the viewpoint of maintaining the adhesion of a shaped layer under high temperature and high humidity conditions for a long time It is more preferable that the temperature is 90 ° C. As used herein, glass transition temperature is measured using a dynamic viscoelasticity measuring device.
  • the method for producing the above-described shaped film is not particularly limited.
  • the above-described shaped film can be produced by the following production method.
  • the coating of the photocurable composition is formed by uniformly applying the photocurable composition to one surface (main surface) of the substrate.
  • the coating film may be covered with a release film.
  • an active energy ray to the coating film from the side of the substrate to cure the coating film, it is possible to obtain a shaped film in which the cured product of the photocurable composition is laminated on the substrate.
  • the light source is not particularly limited as long as it can sufficiently cure the photocurable composition, and a light source generally used to cure a photocurable composition such as a metal halide lamp Can be used.
  • the irradiation amount of the active energy ray is also not particularly limited as long as it can fully cure the photocurable composition, and may be, for example, 1000 mJ / cm 2 .
  • the first shaping layer When the shaping layer is composed of two layers as shown in FIG. 2, first, the first shaping layer can be formed on the substrate by the same method as described above. Next, the material of the second shaping layer is uniformly applied to the surface of the first shaping layer to form a coating, and the coating is cured according to the method of the material of the second shaping layer. Thus, a shaped film in which the substrate, the first shaped layer, and the second shaped layer are laminated in this order can be obtained.
  • the shaping layer of the shaping film may have a microstructure, and the microstructure can be formed by a known method.
  • the mold shape is transferred to the coating film by pressing the mold imitating the shape of the microstructure to the coating film before or simultaneously with curing of the coating film. be able to. After curing, the coating becomes a shaped layer having a microstructure.
  • the shape of the microstructure is appropriately designed according to the application of the forming film.
  • the shaped film according to the above aspect of the present disclosure has excellent optical properties, for example, a prism sheet used for backlights of liquid crystal display devices, a lenticular lens sheet used for stereoscopic photography, projection screen, etc. It can be used for a Fresnel lens sheet used for lenses or the like, or a diffraction grating used for color filters.
  • the above-mentioned shaping film is excellent in heat resistance as well as maintaining the adhesion of the shaping layer even under high temperature and high humidity conditions, it is an optical sheet used for a game machine, a toy, a home appliance etc. Besides, it can be suitably used also as an optical sheet used for an in-vehicle display.
  • Table 1 shows the raw materials used to prepare the photocurable composition in the following examples.
  • A1-3 in Table 1 was obtained as follows. In a 300 mL flask, 167.4 g of pentaerythritol tetraacrylate (Alonix M 305: manufactured by Toagosei Co., Ltd.), 0.1 g of methoquinone and 0.1 g of dibutyltin dilaurate were charged, uniformly stirred, and heated to 75 ° C. After heat stabilization was carried out at 75 ° C., 28.8 g of isophorone diisocyanate was added in 24 portions (1.2 g in one portion) at intervals of 5 minutes. After the addition was completed, the reaction was completed by incubating at 75 ° C. for 4 hours.
  • the obtained A1-3 was a polyfunctional urethane acrylate having an alicyclic structure and no PC structure.
  • the weight average molecular weight Mw is a value converted from a calibration curve using standard polystyrene by the GPC method.
  • the measurement conditions of the GPC method are as follows. -Device: Tosoh Corp. HLC-8320GPC (RI detector built-in) ⁇ Detector: RI (differential refractometer) -Solvent: Genuine first grade THF (tetrahydrofuran) ⁇ Guard column: TSK-guardcolumn SuperMP (HZ) -H (one) -Guard column size: 4.6 mm (ID) ⁇ 20 mm ⁇ Column: Tosoh Corp.
  • the viscosity of each photocurable composition was measured at 25 ° C. using a digital viscometer RE80R manufactured by Toki Sangyo Co., Ltd.
  • the coated film of the photocurable composition thus formed is covered with a 50 ⁇ m thick release film (manufactured by Fujimori Kogyo Co., Ltd., trade name: FilmVina (registered trademark) BD), and a metal halide lamp is used from the PC film side
  • the coating was cured by irradiation with ultraviolet light of 1000 mJ / cm 2 .
  • the adhesion was evaluated by a cross cut peeling test according to the standard of JIS K 5600-5-6: 1999. Specifically, first, cuts of 1 mm were cut in a grid pattern using a cutter knife in a section of 10 mm ⁇ 10 mm in the test piece. Cellophane tape (manufactured by Nichiban Co., Ltd., Cellotape (registered trademark)) was crimped to the cut portion, the end of the tape was held, and the tape was peeled off at an angle of 45 °.
  • Cellophane tape manufactured by Nichiban Co., Ltd., Cellotape (registered trademark)
  • the test piece is observed, and in the case where the cured product is not peeled from the substrate at any of the cut portions, it is determined that the cured product is “in close contact” and the cured product is peeled from the substrate starting from the cut portion.
  • the cured product was determined to be "not in close contact” when there were any parts.
  • the PCT was repeated until it was determined that the cured product was not "in tight contact", and the time during which the cured product was in close contact with the substrate was recorded. After 25 hours from the start of PCT, when the cured product was not already in contact, the time during which the contact was maintained was recorded as 0 hour.
  • the test pieces maintained in close contact for 50 hours or more from the start of PCT can be evaluated as maintaining the adhesion of the excipient layer to the substrate for a long time even under high temperature and high humidity conditions. .
  • the pencil hardness of the shaped layer (cured product) in the sample for evaluating adhesion was measured according to the standard of JIS K 5600-5-4: 1999.
  • the pencil was scratched at a 45 ° angle to the major surface of the shaping layer, while applying a load of 200 g. This was repeated five times with pencils of different hardnesses, and among the hardnesses of the pencils that did not leave a scratch in the shaping layer four or more times, the hardest one was recorded.
  • a sample having a pencil hardness of 3 B or more can be evaluated as having high hardness.
  • Table 4 shows the results of the above evaluation and measurement.
  • the ratio of each component represents the blending amount (mass%) based on the total amount of the radically polymerizable component.
  • the shaped films of Examples 1 to 11 provided with the cured product of the photocurable composition containing the combination of the components (A1) and (A2) as a shaped layer are also subjected to tests under severe temperature and humidity for a long time The high adhesion of the shaped layer and the excellent haze of the shaped layer were maintained.
  • the shaped films of Examples 1 to 11 can maintain excellent appearance because they have a shaped layer with high hardness.
  • the adhesion of the shaped layer was significantly reduced by the tests under severe temperature and humidity.
  • the shaping layer in the shaping film of Comparative Example 3 did not have sufficient hardness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Polymerisation Methods In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

本開示の一側面に係る賦形フィルムは、基材と、該基材に積層された賦形層と、を備える賦形フィルムであって、賦形層は(A)ラジカル重合性成分を含有する光硬化型組成物の硬化物を含み、(A)ラジカル重合性成分は、(A1)2個以上の(メタ)アクリロイル基を有するウレタンアクリレートと、(A2)窒素含有単官能(メタ)アクリルモノマーと、を含む。

Description

賦形フィルム及び光硬化型組成物
 本発明は、賦形フィルム及び光硬化型組成物に関する。
 液晶表示装置等のディスプレイ技術の急速な発展に伴って、それに用いられる光学シート(光学フィルム)についても、新しい機能を有するもの及びより高品質なものに対する需要が高まっている。このような光学シートとしては、例えば、液晶表示装置等のバックライトに用いられるプリズムシート、立体写真、投影スクリーン等に用いられるレンチキュラーレンズシート、オーバーヘッドプロジェクターのコンデンサーレンズ等に用いられるフレネルレンズシート、カラーフィルタ等に用いられる回折格子、遊技機、玩具、家電等に用いられる照明用賦形フィルムなどを挙げることができる。このような光学シートは賦形フィルムとも呼ばれ、通常、基材と、該基材に積層された賦形層とを備えている。賦形層には金型等により微細形状が転写され、所望の光学特性が付与される。
 上記光学シートは、製造する際の衝撃又は振動によって、例えば微細構造の頂部等、賦形層の表面及び側面が変形又は欠損し、磨耗することがある。こうした光学シートの摩耗は、表示装置の表示面にムラを生じさせて表示性能を低下させる。このような問題点を改善するために、賦形層の材料について種々の提案がなされている(例えば、特許文献1参照)。
特開2011-21114号公報
 近年、車載液晶表示装置に光学シートが使用されることが増えつつあり、摩耗しにくいだけでなく、高温及び高湿環境下での耐久性に優れた光学シートが要求されている。しかしながら、特許文献1に開示された光学シートは、高温及び高湿の環境下で、基材に対する賦形層の密着性が低下する場合があった。本発明は、高い硬度を有する賦形層を備え、かつ、高温及び高湿条件下でも基材に対する賦形層の密着性を長時間維持することができる賦形フィルム、及びこれを製造するための光硬化型組成物を提供することを目的とする。
 本開示の一側面に係る賦形フィルムは、基材と、該基材に積層された賦形層と、を備え、上記賦形層は(A)ラジカル重合性成分を含有する光硬化型組成物の硬化物を含み、上記(A)ラジカル重合性成分は、(A1)2個以上の(メタ)アクリロイル基を有するウレタンアクリレートと、(A2)窒素含有単官能(メタ)アクリルモノマーと、を含む。
 上記賦形フィルムは、(A)ラジカル重合性成分として、(A1)2個以上の(メタ)アクリロイル基を有するウレタンアクリレートを含むことにより、基材に対する硬化物(すなわち賦形層)の密着力が大幅に強くなる。そして、この(A1)成分を(A2)成分と組み合わせることで、密着力が低下しやすい高温及び高湿条件下においても、賦形層は、基材に対する密着性を長時間維持することができる。また、硬化物(すなわち賦形層)の硬度が向上する。ラジカル重合性成分として、(A2)窒素含有単官能(メタ)アクリルモノマーを含むことで、物理的及び機械的な側面から、基材に対する硬化物の密着性を向上させることができる。また、硬化物の硬度が向上する。以上の(A1)及び(A2)成分を組み合わせた組成を有する光硬化型樹脂組成物の硬化物を賦形層に含む賦形フィルムは、高い硬度を有する賦形層を備え、かつ、高温及び高湿条件下においても、基材に対する賦形層の密着性を長時間維持することができる。
 上記(A)ラジカル重合性成分は、(A3)下記一般式(1)で表されるエチレンオキサイド変性ビスフェノールAジ(メタ)アクリレートをさらに含んでいてもよい。
Figure JPOXMLDOC01-appb-C000005
[式中、R及びRは、それぞれ独立に水素原子又はメチル基を示し、n及びmは、n+m=20~40となるように選ばれる正の整数を示す。]
このような成分を含むことで、光硬化型組成物が硬化する際の収縮が緩和されるため、光照射及び高温処理により光硬化型組成物の硬化反応が進行しても、基材に対する硬化物の密着性が長時間維持される。また、(A3)エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレートは、硬化物の柔軟性を適度に向上させることができ、それによって硬化物の密着性を向上させることができる。
 上記(A)ラジカル重合性成分は、(A4)脂環式単官能(メタ)アクリルモノマーをさらに含んでいてもよい。このような成分を含むことで、光硬化型組成物が硬化する際の収縮が緩和されるため、光照射及び高温処理により光硬化型組成物の硬化反応が進行しても、基材に対する硬化物の密着性が長時間維持される。
 上記(A4)脂環式単官能(メタ)アクリルモノマーはジシクロペンタジエン骨格を有していてもよい。脂環式単官能(メタ)アクリルモノマーがジシクロペンタジエン骨格を有することで、高温条件下において、基材に対する賦形層の密着性を、より長時間維持することができる。
 上記(A)ラジカル重合性成分は、(A5)2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリルモノマーをさらに含んでいてもよい。このような成分を含むことで、賦形層の硬度がより高くなるとともに、高温及び高湿条件下において、基材に対する賦形層の密着性を、より長時間維持することができる。
 上記(A1)ウレタンアクリレートはポリカーボネート構造を有していてもよい。ウレタンアクリレートがポリカーボネート構造を有することで、基材に対する賦形層の密着性がより高くなる。
 上記光硬化型組成物は、(B)光重合開始剤をさらに含んでいてもよい。(B)光重合開始剤は、光ラジカル重合による光硬化型組成物の効率的な硬化に有用である。
 上記光硬化型組成物は、(C)下記一般式(2)で表される構造を含むフェノール系酸化防止剤をさらに含んでいてもよい。
Figure JPOXMLDOC01-appb-C000006
[式中、Rは、tert-ブチル基又はメチル基を示す。]
(C)フェノール系酸化防止剤は硬化物の熱酸化劣化を抑制することで、硬化物の耐熱黄変性、基材に対する賦形層の密着性、及び高分子の寿命といった長期信頼性を高める効果がある。
 上記光硬化型組成物は、(D)光安定剤をさらに含んでいてもよい。(D)光安定剤は、賦形層のより優れた密着性、硬度、及び光安定性を得るのに有用である。
 上記光硬化型組成物における上記(A1)ウレタンアクリレートの含有量は、上記(A)ラジカル重合性成分全量を基準として0.1~50質量%であってもよい。ウレタンアクリレートの含有量がこの範囲にあると、高温及び高湿条件下において、基材に対する賦形層の密着性を、より長時間維持することができる。
 上記光硬化型組成物における上記(A3)エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレートの含有量は、上記(A)ラジカル重合性成分全量を基準として0.1~20質量%であってもよい。エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレートの含有量が上記下限値以上であると、優れた密着性を得る上でより適した柔軟性を与えることができるとともに、光硬化型組成物が硬化する際の収縮をより緩和することができる。また、エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレートの含有量が上記上限値以下であると、硬化物のガラス転移温度を一定以上に保つことができる。硬化物のTgが一定以上であると、高温条件で硬化物の分子が動くことによる密着性の低下を抑えることができる。
 上記光硬化型組成物における上記(A4)脂環式単官能(メタ)アクリルモノマーの含有量は、上記(A)ラジカル重合性成分全量を基準として30~75質量%であってもよい。脂環式単官能(メタ)アクリルモノマーの含有量が30~75質量%であると、高温条件下において、基材に対する賦形層の密着性を、より長時間維持することができる。
 上記基材はポリカーボネートフィルムであってもよい。本開示の上記側面に係る賦形フィルムの賦形層は、基材がポリカーボネートフィルムであっても、優れた密着性を発揮する。
 本開示の一側面に係る光硬化型組成物は、(A)ラジカル重合性成分を含み、上記(A)ラジカル重合性成分は、(A1)2個以上の(メタ)アクリロイル基を有するウレタンアクリレートと、(A2)窒素含有単官能(メタ)アクリルモノマーと、を含む。
 上記(A)ラジカル重合性成分は、(A3)下記一般式(1)で表されるエチレンオキサイド変性ビスフェノールAジ(メタ)アクリレートをさらに含んでいてもよい。
Figure JPOXMLDOC01-appb-C000007
[式中、R及びRは、それぞれ独立に水素原子又はメチル基を示し、n及びmは、n+m=20~40となるように選ばれる正の整数を示す。]
 上記(A)ラジカル重合性成分は、(A4)脂環式単官能(メタ)アクリルモノマーをさらに含んでいてもよい。
 上記(A4)脂環式単官能(メタ)アクリルモノマーはジシクロペンタジエン骨格を有していてもよい。
 上記(A)ラジカル重合性成分は、(A5)2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリルモノマーをさらに含んでいてもよい。
 上記(A1)ウレタンアクリレートはポリカーボネート構造を有していてもよい。
 上記光硬化型組成物は、(B)光重合開始剤をさらに含んでいてもよい。
 上記光硬化型組成物は、(C)下記一般式(2)で表される構造を含むフェノール系酸化防止剤をさらに含んでいてもよい。
Figure JPOXMLDOC01-appb-C000008
[式中、Rは、tert-ブチル基又はメチル基を示す。]
 上記光硬化型組成物は、(D)光安定剤をさらに含んでいてもよい。
 上記光硬化型組成物の25℃での粘度は40~1000mPa・sであってもよい。粘度がこの範囲内にあると、光硬化型組成物の塗工性の観点及び金型から賦形層へ微細形状を転写する観点において有利である。
 本発明によれば、高い硬度を有する賦形層を備え、かつ、高温及び高湿条件下(例えば、温度85℃以上かつ湿度85%RH以上)でも基材に対する賦形層の密着性を長時間(例えば、50時間以上)維持することができる賦形フィルム、及びこれを製造するための光硬化型組成物を提供することができる。特に、上記賦形フィルムは、基材がポリカーボネートフィルムであっても、高温及び高湿条件下における基材に対する賦形層の密着性を長時間維持することができる。
賦形フィルムの一実施形態を示す模式断面図である。 賦形フィルムの一実施形態を示す模式断面図である。
 以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。本明細書において、「(メタ)アクリル」の用語は、メタクリル又はアクリルを意味する。「(メタ)アクリロイル」、「(メタ)アクリレート」等の用語も同様である。
 本開示の一側面に係る賦形フィルムは、基材と、該基材に積層された賦形層と、を備え、賦形層はラジカル重合性成分を含有する光硬化型組成物の硬化物(以下、単に「硬化物」ともいう)を含む。図1に、賦形フィルムの一実施形態を模式的に示す。図1に示す賦形フィルム10は、基材5と、基材5に積層された賦形層1とを備え、賦形層1はラジカル重合性成分を含有する光硬化型組成物の硬化物を含む。賦形層1は光硬化型組成物の硬化物のみからなってもよい。賦形層は、硬化物と基材とが接触するように積層されているため、本明細書において、基材に対する硬化物の密着性が高いことは、基材に対する賦形層の密着性が高いことと同義である。本明細書において、「基材に対する硬化物の密着性」を「硬化物の密着性」、「基材に対する賦形層の密着性」を「賦形層の密着性」とそれぞれ表現する場合もあり、これらを単に「密着性」という場合もある。
 図2に、賦形フィルムの他の実施形態を模式的に示す。図2に示す賦形フィルム20は、基材5と、基材5に積層された賦形層4とを備え、賦形層4はラジカル重合性成分を含有する光硬化型組成物の硬化物を含む。より具体的には、賦形層4は、光硬化型組成物の硬化物である第1の賦形層2(プライマ層ともいう)と、第1の賦形層2に積層された第2の賦形層3とからなる。第2の賦形層3の材料は、第2の賦形層3に微細構造を形成し得る材料であれば特に限定されず、従来賦形フィルムに使用されてきた材料であってもよい。あるいは、第2の賦形層3は、第1の賦形層2と同じ光硬化型組成物の硬化物であってもよい。後者の場合、賦形層4は光硬化型組成物の硬化物のみからなるともいえる。
 本開示の賦形層は、表面に微細構造を有していてもよい。例えば、図1における賦形層1は、表面に微細構造(図示せず)を有していてもよい。同様に、図2における賦形層4、より厳密には、図2における第2の賦形層3は、表面に微細構造(図示せず)を有していてもよい。本開示において、賦形層は光硬化型組成物の硬化物を含むため、高い硬度を有する。高い硬度を有する賦形層は、形状保持性が良好となる。ここで、良好な形状保持性とは、賦形層の表面及び側面が変形及び欠損しにくいことを意味する。例えば、賦形層の表面に任意で形成される微細構造の頂部が変形及び欠損しにくいことも、良好な形状保持性を有することの一例である。
 賦形層1及び4の厚みは、いずれも、0.5μm以上又は1μm以上であってよく、200μm以下又は100μm以下であってよい。賦形層が厚いと、賦形層への賦形が容易となる傾向にあり(すなわち、微細構造の形成が容易となる)、賦形層が薄いと、賦形層のヘイズが小さくなり、賦形フィルムの光学特性が優れる傾向にある。賦形層の厚みが上記範囲にあると、賦形層へ賦形のしやすさと光学特性をより高いレベルで両立することができる。図2に示す実施形態のように、賦形層が2つの層からなる場合、光硬化型組成物の硬化物からなる第1の賦形層2の厚みは、例えば、1~5μmであってよく、第2の賦形層3の厚みは第1の賦形層2の厚みに応じて適宜設計することができる。
 基材は、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエステル、シクロオレフィンポリマー(COP)、ポリイミド等のフィルムであってよく、PCフィルムが好ましい。従来、PETフィルムに対する賦形層の密着性と比べて、PCフィルムに対する賦形層の密着性は低い傾向にあった。本開示の上記側面に係る賦形フィルムの賦形層は、基材がPCフィルムであっても、優れた密着性を発揮する。基材の厚みは特に限定されないが、例えば10~125μmである。
 以下、光硬化型組成物について説明する。光硬化型組成物は、(A)ラジカル重合性成分として、(A1)ウレタンアクリレートと、(A2)窒素含有単官能(メタ)アクリルモノマーとを含む。(A)ラジカル重合性成分は光照射によりラジカル重合し、架橋重合体を形成する。これにより、光硬化型組成物が硬化する。
(A1)ウレタンアクリレート
 ウレタンアクリレート(「(A1)成分」ともいう)は、2個以上の(メタ)アクリロイル基を有する。このようなウレタンアクリレートを含むことで、基材に対する硬化物の密着力が大幅に強くなる。そして、後述する(A2)成分と組み合わせることで、密着力が低下しやすい高温及び高湿条件下においても、賦形層は、基材に対する密着性を長時間維持することができる。また、光硬化型組成物がウレタンアクリレートを含むことで、硬化物の硬度が向上する。ウレタンアクリレートは、例えば、ポリオールとポリイソシアネートとの重縮合体であるポリウレタン鎖と、水酸基を有する単官能(メタ)アクリルモノマーとを反応させて得られる。
 ウレタンアクリレートの原料として用いられるポリオールとしては、例えば、ポリカーボネートジオール、ポリエステルジオール、ポリエーテルジオール、ポリカプロラクトンジオール等のジオールが挙げられる。これらのポリオールは、1種単独で用いても、2種以上を併用してもよい。一般に、ポリカーボネートジオール、ポリエステルジオール、ポリエーテルジオール、又はポリカプロラクトンジオールを用いて得られるウレタンアクリレートは、それぞれ、ポリカーボネートウレタンアクリレート、ポリエステルウレタンアクリレート、ポリエーテルウレタンアクリレート、又はカプロラクトンウレタンアクリレートと称される。
 ウレタンアクリレートの原料として用いられるポリイソシアネートとしては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、テトラメチルキシリレンジイソシアネート、イソホロンジイソシアネート、水素添加されたトリレンジイソシアネート、水素添加されたキシリレンジイソシアネート、水素添加されたジフェニルメタンジイソシアネート、m-フェニレンジイソシアネート、ビフェニレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート等のジイソシーアネートが挙げられる。これらのポリイソシアネートは、1種単独で用いてもよく、2種以上を併用してもよい。
 ウレタンアクリレートの原料として用いられる、水酸基を有する単官能(メタ)アクリルモノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、及び1,4-シクロヘキサンジメタノールモノ(メタ)アクリレートが挙げられる。これらの(メタ)アクリルモノマーは、1種単独で用いてもよく、2種以上を併用してもよい。
 ウレタンアクリレートとしては、ポリカーボネート(PC)構造を有するウレタンアクリレートが好ましく、PC構造を有しかつ脂環構造を有さないウレタンアクリレートがより好ましい。PC構造を有するウレタンアクリレートを使用することで、賦形層の密着性がより高くなる。また、脂環構造を有さないウレタンアクリレートを使用することで、高い透明性(すなわち、小さいヘイズ)を有する硬化物を得ることができる。
 ウレタンアクリレートの重量平均分子量は特に制限されないが、1000以上、30000以下であることが好ましく、2000以上、20000以下であることがより好ましく、3000以上、10000以下であることがさらに好ましい。ウレタンアクリレートの重量平均分子量が1000以上であると、光硬化型組成物の粘度が、ロールtoロール方式で塗工するのに良好となり、光硬化型組成物の塗工性が向上する傾向にある。重量平均分子量が30000以下であると、塗工性を維持するために使用される得る希釈モノマーの量が少なくてすむため、硬化物の硬度及び密着性が向上する傾向にある。ウレタンアクリレートの重量平均分子量は、例えば、ポリオールとポリイソシアネートとのモル比、又はそれらの分子量によって調整できる。本明細書において、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法により、標準ポリスチレンを用いた検量線から換算された値である。
 ウレタンアクリレートが有する(メタ)アクリロイル基は2個以上であれば特に制限されないが、6個以下であることが好ましく、4個以下であることがより好ましく、3個以下であることがさらに好ましい。ウレタンアクリレートが有する(メタ)アクリロイル基の個数が上記範囲内であると、高温及び高湿条件下において、基材に対する賦形層の密着性を、より長時間維持することができる。
 光硬化型組成物におけるウレタンアクリレートの含有量は、ラジカル重合性成分全量を基準として、0.1~90質量%であってよい。高温及び高湿条件下において賦形層の密着性をより長時間維持する観点から、ウレタンアクリレートの含有量は、ラジカル重合性成分全量を基準として、5~90質量%であってもよい。光硬化型組成物の粘度を賦形層の形成に適した値とする観点から、ウレタンアクリレートの含有量は、ラジカル重合性成分全量を基準として、10~70質量%であってもよく、11~50質量%であってもよく、15~35質量%であってもよい。また、ウレタンアクリレートの含有量は、ラジカル重合性成分全量を基準として、0.1~50質量%であってもよい。
(A2)窒素含有単官能(メタ)アクリルモノマー
 窒素含有単官能(メタ)アクリルモノマー(「(A2)成分」ともいう)は、(メタ)アクリロイル基を1個のみ有し、かつ、窒素原子を含有する官能基を有する単官能(メタ)アクリルモノマーである。このような単官能(メタ)アクリルモノマーを含むことで、物理的及び機械的な側面から、基材に対する賦形層の密着性を向上させることができる。より具体的には、この成分を含むことで、硬化物と基材との間に化学的な相互作用が生じ(物理的な側面)、また、基材に対する硬化物のアンカー効果が発揮される(機械的な側面)ため、基材に対する硬化物の密着性が向上する。また、硬化物の硬度も向上する。
 窒素含有単官能(メタ)アクリルモノマーとしては、例えば、(メタ)アクリルアミド、アクリロイルモルフォリン、ジアルキルアミノアルキル(メタ)アクリレート及びこれらの誘導体が挙げられ、(メタ)アクリルアミド及びその誘導体が好ましい。窒素含有単官能(メタ)アクリルモノマーは、下記一般式(3a)又は(3b)で表される(メタ)アクリルアミド誘導体((メタ)アクリルアミドを含む)であってもよい。一般式(3a)及び(3b)中、Rは水素原子又はメチル基である。一般式(3a)中、R及びRはそれぞれ独立に、炭素原子、水素原子及び酸素原子から選ばれる少なくとも1種の原子からなる1価の基を示す。R及びRはそれぞれ独立に、置換基を有する若しくは有しない炭素数1~3のアルキル基、又は水素原子であってもよく、特に、メチル基、エチル基、イソプロピル基又はヒドロキシエチル基であってもよい。R及びRはそれぞれ独立に、水素原子又はメチル基であってもよい。一般式(3b)中、R及びRはそれぞれ独立に、炭素原子、水素原子及び酸素原子から選ばれる少なくとも1種の原子からなる2価の基を示す。R、R及び窒素原子(N)は、テトラヒドロ-1,4-オキサジン環を形成していてもよい。
Figure JPOXMLDOC01-appb-C000009
 窒素含有単官能(メタ)アクリルモノマーの具体例としては、アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジメチルアクリルアミド、(メタ)アクリロイルモルフォリン、N-イソプロピルアクリルアミド、N,N-ジエチルアクリルアミド、及びN-ヒドロキシエチルアクリルアミドが挙げられる。これらの窒素含有単官能(メタ)アクリルモノマーは、1種単独で用いても、2種以上を併用してもよい。
 光硬化型組成物における窒素含有単官能(メタ)アクリルモノマーの含有量は、ラジカル重合性成分全量を基準として、5~70質量%であってよく、5~40質量%であってもよく、5.5~30質量%であってもよく、6~25質量%であってもよい。窒素含有単官能(メタ)アクリルモノマーの含有量が上記範囲内にあると、賦形層の硬度を向上させることができるとともに、高温及び高湿条件下において、基材に対する賦形層の密着性を、より長時間維持することができる。また、窒素含有単官能(メタ)アクリルモノマーの含有量が40質量%以下であると、含有量が40質量%を超える場合と比べて、硬化物のヘイズを小さくすることができる。
(A3)エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート
 光硬化型組成物は、(A)ラジカル重合性成分として、下記一般式(1)で表されるエチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート(「EO変性ビスフェノールAジ(メタ)アクリレート」又は「(A3)成分」ともいう)をさらに含んでいてもよい。このようなEO変性ビスフェノールAジ(メタ)アクリレートを含むことで、硬化物のガラス転移温度(Tg)が適度に向上することにより柔軟性が適度に向上するため、硬化物の密着性がより向上する。また、光硬化型組成物が硬化する際の収縮が緩和されるため、光照射及び高温処理により光硬化型組成物の硬化反応が進行しても、硬化物の密着性が維持される。
Figure JPOXMLDOC01-appb-C000010
[式中、R及びRは、それぞれ独立に水素原子又はメチル基を示し、n及びmは、n+m=20~40となるように選ばれる正の整数を示す。]
 一般式(1)において、硬化物の柔軟性を高める観点から、n及びmは、n+m=22~37となるように選ばれる正の整数であることが好ましく、n+m=25~35となるように選ばれる正の整数であることがより好ましい。また、光硬化型組成物の光硬化性、及び光硬化型組成物の硬化物のTgの観点から、R及びRは水素原子であることが好ましい。いいかえれば、一般式(1)で表される化合物は、EO変性ビスフェノールAジアクリレートであることが好ましい。
 (A3)成分の具体例として、FA-323A(日立化成株式会社製)及びA-BPE-30(新中村化学工業株式会社製)が挙げられる。これらはいずれも、エチレンオキサイド(EO)で変性されたビスフェノールAの、ジアクリレートであり、n+m=30である。
 光硬化型組成物におけるEO変性ビスフェノールAジ(メタ)アクリレートの含有量は、ラジカル重合性成分全量を基準として、0.1~20質量%であってもよく、5~19質量%であってもよく、10~15質量%であってもよい。EO変性ビスフェノールAジ(メタ)アクリレートの含有量が0.1質量%以上である場合、優れた密着性を得る上でより適した柔軟性を与えるとともに、光硬化型組成物が硬化する際の収縮をより緩和することができる。EO変性ビスフェノールAジ(メタ)アクリレートの含有量が20質量%以下である場合、硬化物のTgを一定以上に保つことができる。硬化物のTgが一定以上であると、高温条件で硬化物の分子が動くことによる密着性の低下を抑えることができる。
(A4)脂環式単官能(メタ)アクリルモノマー
 光硬化型組成物は、(A)ラジカル重合性成分として、脂環式単官能(メタ)アクリルモノマー(「(A4)成分」ともいう)をさらに含んでいてもよい。脂環式単官能(メタ)アクリルモノマーは、(メタ)アクリロイル基を1個のみ有し、かつ、脂環構造を有する単官能(メタ)アクリルモノマーである。このような単官能(メタ)アクリルモノマーを含むことで、光硬化型組成物が硬化する際の収縮が軽減されるため、光照射及び高温処理により光硬化型組成物の硬化反応が進行しても、硬化物の密着性が維持される。
 脂環構造としては、例えば、シクロヘキシル骨格、ジシクロペンタジエン骨格、アダマンタン骨格、イソボルニル骨格、シクロアルカン骨格(シクロヘプタン骨格、シクロオクタン骨格、シクロノナン骨格、シクロデカン骨格、シクロウンデカン骨格、シクロドデカン骨格等)、シクロアルケン骨格(シクロヘプテン骨格、シクロオクテン骨格等)、ノルボルネン骨格、ノルボルナジエン骨格、多環式骨格(キュバン骨格、バスケタン骨格、ハウサン骨格等)、スピロ骨格などが挙げられる。これらの中でも、高温条件下において賦形層の密着性をより長時間維持する観点から、シクロヘキシル骨格、ジシクロペンタジエン骨格、アダマンタン骨格又はイソボルニル骨格が好ましい。
 脂環式単官能(メタ)アクリルモノマーとしては、(メタ)アクリレートが好ましく、具体的には、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート等が挙げられる。これらの中でも、高温条件下において賦形層の密着性をより長時間維持する観点から、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、又はジシクロペンテニルオキシエチル(メタ)アクリレートが好ましい。これらは、1種単独で用いてもよく、2種以上を併用してもよい。
 光硬化型組成物における脂環式単官能(メタ)アクリルモノマーの含有量は、高温条件下において賦形層の密着性をより長時間維持する観点から、ラジカル重合性成分全量を基準として、0.1~75質量%であってよく、0.1~70質量%であってもよく、40~65質量%であってよく、45~60質量%であってもよい。また、同様の観点から、脂環式単官能(メタ)アクリルモノマーの含有量は、光硬化型組成物の全量を基準として、30~75質量%であってよく、30~70質量%であってもよく、35~65質量%であってもよく、40~60質量%であってもよく、45~57質量%であってもよい。
(A5)多官能(メタ)アクリルモノマー
 光硬化型組成物は、(A)ラジカル重合性成分として、2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリルモノマー(「(A5)成分」ともいう)をさらに含んでいてもよい。このような多官能(メタ)アクリルモノマーを含むことで、高温及び高湿条件下において、基材に対する賦形層の密着性を、より長時間維持することができる。また、硬化物の硬度がより高くなる。なお、(A5)成分は、(A1)成分にも(A3)成分にも該当しない成分である。
 多官能(メタ)アクリルモノマーは、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、3-メチルペンタンジオールジ(メタ)アクリレート、α,ω-ジ(メタ)アクリルビスジエチレングリコールフタレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、トリス(メタクリロキシエチル)イソシアヌレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ポリグリセリンポリアクリレート、並びに、これらをエチレンオキサイド変性又はプロピレンオキサイド変性したアルキレンオキサイド変性多官能(メタ)アクリレート、及びこれらをカプロラクトン変性したカプロラクトン変性多官能(メタ)アクリレートが挙げられる。これらの多官能(メタ)アクリルモノマーは、1種単独で用いても、2種以上を併用してもよい。これらの中でも、ポリエチレングリコールジ(メタ)アクリレートが好ましい。
 光硬化型組成物における多官能(メタ)アクリルモノマーの含有量は、ラジカル重合性成分全量を基準として、0.1~90質量%であることが好ましく、0.5~50質量%であることがより好ましく、1~40質量%であることがさらに好ましい。
 光硬化型組成物は、上記(A1)~(A5)成分以外の(A)ラジカル重合性成分をさらに含むことができる。(A1)~(A5)成分以外の(A)ラジカル重合性成分としては、例えば、テトラヒドロフルフリルアクリレート、オルトフェニルフェノキシエチルアクリレート等の希釈モノマーが挙げられる。(A1)~(A5)成分以外のラジカル重合性成分の含有量は、(A)ラジカル重合性成分全量を基準として、90質量%以下であってもよく、0.1~90質量%であってもよく、0.5~80質量%であってもよく、1~75質量%であってもよく、1~50質量%であってもよい。
 (B)光重合開始剤
 光硬化型組成物は、光ラジカル重合による光硬化型組成物の効率的な硬化のために、光重合開始剤(「(B)成分」ともいう)をさらに含有していてもよい。光重合開始剤は、活性エネルギー線が照射されたときにラジカル重合を開始させる化合物であれば、特に制限されない。活性エネルギー線の例は、例えば、紫外線、電子線、α線、β線、及びγ線を含む。光重合開始剤としては、ベンゾフェノン系光重合開始剤、アントラキノン系光重合開始剤、ベンゾイル系光重合開始剤、スルホニウム塩系光重合開始剤、ジアゾニウム塩系光重合開始剤、オニウム塩系光重合開始剤、アシルフォスフィンオキサイド系光重合開始剤等の光重合開始剤を使用することができる。光重合開始剤は、分子内の水素を引き抜くことにより重合を開始させる光重合開始剤であってもよい。
 光重合開始剤の具体例としては、ベンゾフェノン、4-メチルベンゾフェノン、N,N,N’,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン)、N,N,N’,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、α-ヒドロキシイソブチルフェノン、2-エチルアントラキノン、t-ブチルアントラキノン、1,4-ジメチルアントラキノン、1-クロロアントラキノン、2,3-ジクロロアントラキノン、3-クロロ-2-メチルアントラキノン、1,2-ベンゾアントラキノン、2-フェニルアントラキノン、1,4-ナフトキノン、9,10-フェナントラキノン、チオキサントン、2-クロロチオキサントン、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等の芳香族ケトン化合物;ベンゾイン、メチルベンゾイン、エチルベンゾイン等のベンゾイン化合物;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル化合物;ベンジル、ベンジルジメチルケタール等のベンジル化合物;2,2-ジエトキシアセトフェノン等の芳香族ケトン化合物;β-(アクリジン-9-イル)(メタ)アクリル酸のエステル化合物、9-フェニルアクリジン、9-ピリジルアクリジン、1,7-ジアクリジノヘプタン等のアクリジン化合物;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(m-メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2,4-ジ(p-メトキシフェニル)-5-フェニルイミダゾール二量体、2-(2,4-ジメトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メチルメルカプトフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパン等のα-アミノアルキルフェノン化合物;ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド及び2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド;並びにオリゴ(2-ヒドロキシ-2-メチル-1-(4-(1-メチルビニル)フェニル)プロパノン)が挙げられる。これらの化合物は、1種単独で用いても、2種以上を併用してもよい。
 光硬化型組成物における光重合開始剤の含有量は、ラジカル重合性成分100質量部に対して、0.01質量部以上、0.1質量部以上、又は0.5質量部以上であってよく、10質量部以下、6質量部以下、又は5質量部以下であってよい。光重合開始剤の含有量がこの範囲にあることで、特に良好な光重合性が得られる。
(C)フェノール系酸化防止剤
 光硬化型組成物は、下記一般式(2)で表される構造を含むフェノール系酸化防止剤(「(C)成分」ともいう)をさらに含有していてもよい。該フェノール系酸化防止剤は硬化物の熱酸化劣化を抑制することで、硬化物の耐熱黄変性、基材に対する賦形層の密着性、高分子の寿命といった長期信頼性を高める効果がある。
Figure JPOXMLDOC01-appb-C000011
[式中、Rは、tert-ブチル基又はメチル基を示す。]
 フェノール系酸化防止剤としては、例えば、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]、チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、n-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-tert-ブチル-フェニル)プロピオネート、N,N’-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニルプロピオンアミド]、ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス{2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、ジエチル{[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシルフェニル]メチル}ホスホネート等が好ましく挙げられる。これらの酸化防止剤は、1種単独で用いてもよく、2種以上を併用してしてもよい。これらの中でも、より良好な耐熱黄変性及び密着性を得る観点から、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]、又は3,9-ビス{2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンが好ましい。
 光硬化型組成物におけるフェノール系酸化防止剤の含有量は、ラジカル重合性成分と光重合開始剤の総量100質量部に対して、0.5~2.0質量部であることが好ましい。
(D)光安定剤
 光硬化型組成物は、光安定剤(紫外線吸収剤)(「(D)成分」ともいう)をさらに含有していてもよい。光安定剤としては、例えば、チオール系化合物、チオエーテル系化合物、ヒンダードアミン系化合物等のラジカル捕捉剤、又はベンゾトリアゾール系紫外線吸収剤、ヒドロキシフェニルトリアジン(HPT)系紫外線吸収剤等の紫外線吸収剤を使用することができる。これらの光安定剤は、1種単独で用いてもよく、2種以上を併用してもよい。中でも、優れた密着性、硬度、及び光安定性を得る観点、並びに、光硬化型組成物に含有される(メタ)アクリルモノマーとの相溶性の観点から、HPT系紫外線吸収剤が好ましい。
 HPT系紫外線吸収剤としては、例えば、85% 2-(4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-ヒドロキシフェニルと、オキシラン(特に、[(アルキルオキシ)メチル]オキシランであって、アルキルオキシはC10~C16、主としてC12~C13である)との反応生成物の15% 1-メトキシ-2-プロパノール溶液(商品名:TINUVIN(登録商標) 400)、2-(2,4-ジヒドロキシフェニル)-4,6-ビス-(2,4-ジメチルフェニル)-1,3,5-トリアジンと(2-エチルヘキシル)-グリシド酸エステルの反応生成物(商品名:TINUVIN 405)、2,4-ビス「2-ヒドロキシ-4-ブトキシフェニル]-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン(商品名:TINUVIN 460)、TINUVIN 477、及びTINUVIN 479が挙げられる(いずれもBASFジャパン株式会社製である)。中でも、優れた光安定性を得る観点及び光硬化型組成物に含有される(メタ)アクリルモノマーとの相溶性の観点から、TINUVIN 479が好ましい。TINUVIN 479は、4-[4,6-ビス(ビフェニル-4-イル)-1,3,5-トリアジン-2-イル]ベンゼン-1、3-ジオールと、アルキル=2-ブロモプロパノアートとの反応生成物であり、アルキル=2-{4-[4,6-ビス(ビフェニル-4-イル)-1,3,5-トリアジン-2-イル]-3-ヒドロキシフェノキシ}プロパノアートを主成分とする。上記「アルキル」は炭素数8の分岐型アルキルを指す。
 光硬化型組成物における光安定剤の含有量は、高温による硬化物の黄変を防ぐ観点から、ラジカル重合性成分と光重合開始剤の総量100質量部に対して、0.01~10質量部であることが好ましく、0.1~5質量部であることがより好ましい。
 光硬化型組成物は離型剤をさらに含有してもよい。離型剤を光硬化型組成物に添加することは、金型を使用して賦形層に微細構造を形成する場合に有用である。賦形層に任意で形成される微細構造は、微細形状を有する金型から、例えば、硬化前の賦形層に転写することができ、光硬化型組成物が離型剤を含有する場合には、賦形層が金型から離型しやすい。離型剤としては、例えば、(メタ)アクリロイル基を含有する又は含有しないポリエーテル変性ポリジメチルシロキサンが挙げられる。このうち、離型剤が硬化物からブリードアウトするのを抑制する観点から、(メタ)アクリロイル基を含有するポリエーテル変性ポリジメチルシロキサンが好ましい。光硬化型組成物における離型剤の含有量は、ラジカル重合性成分と光重合開始剤の総量100質量部に対して、0.1~1.0質量部であることが好ましい。
 光硬化型組成物には、必要に応じて、シリコーン系界面活性剤、増粘剤、レベリング剤、帯電防止剤、消泡剤等の添加剤をさらに添加してもよく、溶剤をさらに加えてもよい。光硬化型組成物における添加剤及び溶剤の合計含有量は、ラジカル重合性成分と光重合開始剤の総量100質量部に対して、例えば、0.01~10質量部であってもよい。なお、光硬化型組成物に溶剤が含まれない場合でも、光硬化型組成物の粘度は塗工に好適な、十分に低い粘度を有する。
 光硬化型組成物の25℃での粘度は、40~1000mPa・sが好ましく、45~500mPa・sがより好ましい。粘度が上記範囲内にあると、光硬化型組成物の塗工性の観点及び金型から賦形層へ微細形状を転写する観点において有利である。粘度は、例えば、溶媒の量、各成分の分子量等を調節することで調整することができる。
 光硬化型組成物の硬化物のガラス転移温度(Tg)は、耐熱性(例えば、賦形フィルムを光学シートとして使用したときの、周りの環境からの熱に対する耐熱性、及び、該光学シートをディスプレイに使用したときの、ディスプレイの放熱に対する耐熱性)の観点並びに高温及び高湿条件下において賦形層の密着性を長時間維持する観点から、20~90℃であることが好ましく、40~90℃であることがより好ましい。本明細書において、ガラス転移温度は、動的粘弾性測定装置を使用して測定される。
 上記賦形フィルムの製造方法は特に限定されず、例えば、下記のような製造方法により上記賦形フィルムを製造することができる。まず、基材の片面(主面)に光硬化型組成物を均一に塗布することにより、光硬化型組成物の塗膜を形成する。ここで、塗膜を離型フィルムで覆ってもよい。次に、基材の側から塗膜に対して活性エネルギー線を照射して塗膜を硬化することで、基材に光硬化型組成物の硬化物が積層された賦形フィルムを得ることができる。ここで、光源は、光硬化型組成物を十分に硬化することができるものであれば特に制限されず、メタルハライドランプ等、光硬化型の組成物を硬化するのに一般的に使用される光源を使用することができる。活性エネルギー線の照射量も、光硬化型組成物を十分に硬化することができる量であれば特に制限されず、例えば、1000mJ/cmであってよい。
 賦形層が、図2に示すように二層からなる場合、まず、上記と同様の方法により、基材上に第1の賦形層を形成することができる。次に、第2の賦形層の材料を第1の賦形層の表面に均一に塗布して塗膜を形成し、第2の賦形層の材料に応じた方法でこれを硬化することにより、基材、第1の賦形層、及び第2の賦形層がこの順に積層された賦形フィルムを得ることができる。
 賦形フィルムの賦形層は微細構造を有していてもよく、微細構造は公知の方法で形成することができる。例えば、上記のいずれかの製造方法において、塗膜の硬化前又は硬化と同時に、微細構造の形状を模った金型を塗膜に押し当てることで、金型の形状を塗膜に転写することができる。硬化後、塗膜は微細構造を有する賦形層となる。微細構造の形状は、賦形フィルムの用途に応じて適宜設計される。
 本開示の上記側面に係る賦形フィルムは優れた光学特性を有するため、例えば、液晶表示装置等のバックライトに用いられるプリズムシート、立体写真及び投影スクリーン等に用いられるレンチキュラーレンズシート、プロジェクターのコンデンサーレンズ等に用いられるフレネルレンズシート、又は、カラーフィルタに用いられる回折格子に使用することができる。また、上記賦形フィルムは、高温及び高湿条件下においても、賦形層の密着性が維持されることに加え、耐熱性にも優れるため、遊技機、玩具、家電等に用いられる光学シートの他、車載ディスプレイに用いられる光学シートとしても好適に使用することができる。
 以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。
<原材料>
 表1は、以下の例において光硬化型組成物を調製するために用いられた原材料を示す。
Figure JPOXMLDOC01-appb-T000012
 表1におけるA1-3は次にようにして得た。300mLのフラスコ内にペンタエリスリトールテトラアクリレート167.4g(アロニックスM305:東亜合成株式会社製)、メトキノン0.1g及びジブチル錫ジラウレート0.1gを仕込み、均一に撹拌し、75℃まで昇温した。75℃で保温安定化させたのち、イソホロンジイソシアネート28.8gを24回(1回分1.2g)に分け5分間隔で添加した。添加完了後、75℃で4時間保温して反応を完了させた。反応完了後、ペンタエリスリトールテトラアクリレートを投入し、得られたA1-3の25℃での粘度が45~65Pa・sであることを確認した。得られたA1-3は、脂環構造を有し、PC構造を有さない多官能ウレタンアクリレートであった。
 表1において、重量平均分子量Mwは、GPC法により、標準ポリスチレンを用いた検量線から換算された値である。GPC法の測定条件は以下の通りである。
・装置:東ソー株式会社製 HLC-8320GPC(RI検出器内蔵)
・検出器:RI(示差屈折計)
・溶媒:純正1級THF(テトラヒドロフラン)
・ガードカラム:TSK-guardcolumn SuperMP(HZ)-H(1本)
・ガードカラムサイズ:4.6mm(ID)×20mm
・カラム:東ソー株式会社製 TSK-GELSuperMulitipore HZ-H(3本連結)、カラムサイズ:4.6mm(ID)×150mm
・温度:40℃
・試料濃度:0.01g/5mL
・注入量:10μL
・流量:0.35mL/min
<光硬化型組成物の調製>
 表2に示す配合割合のラジカル重合性成分100質量部に対して、表3に示す量(質量部)のその他の成分を配合し、60℃で1時間撹拌して、実施例1~11及び比較例1~4の均一な光硬化型組成物を得た。表2及び表3中の数値は質量部である。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 各光硬化型組成物の粘度を、東機産業株式会社製のデジタル型粘度計 RE80R型を用いて、25℃で測定した。
<密着性及び鉛筆硬度評価用のサンプルの作製>
 厚みが100μmのPCフィルム(三菱ガス化学株式会社製、商品名:ユーピロン(登録商標)・フィルムFE-2000)上に、硬化物の厚みが30μmになるように実施例1~11及び比較例1~4の光硬化型組成物をそれぞれ均一に塗布した。形成された光硬化型組成物の塗膜を、厚み50μmの離型フィルム(藤森工業株式会社製、商品名:フィルムバイナ(登録商標)BD)で覆い、メタルハライドランプを用いて、PCフィルム側から1000mJ/cmの紫外線を照射することにより塗膜を硬化した。
<ガラス転移温度評価用のサンプルの作製>
 ガラス板上に、硬化物の厚みが100μmになるように実施例1~11及び比較例1~4の光硬化型組成物をそれぞれ均一に塗布した。形成された光硬化型組成物の層を、厚み50μmの離型フィルム(フィルムバイナBD)で覆い、メタルハライドランプを用いて、PCフィルム側から1000mJ/cmの紫外線を照射することにより塗膜を硬化した。
<評価>
(1)プレッシャークッカ試験後の密着性の評価
 密着性の評価用のサンプルを切断して、長さ10cm、幅5cmの試験片(賦形層(硬化物)の厚み:30μm)を作製した。試験片をプレッシャークッカ(株式会社平山製作所製PC-242SIII)を用いて、温度121℃、圧力0.2MPa、湿度100%RHの条件で一定時間処理した(プレッシャークッカテスト、以下PCTと略す)。25時間毎にプレッシャークッカから試験片を取り出し、その外観を観察するとともに、PCフィルム(基材)に対する硬化物(賦形層)の密着性を評価した。密着性はJIS K 5600-5-6:1999の規格に準じて、クロスカット剥離試験により評価した。具体的には、まず、試験片中、10mm×10mmの区画に、カッターナイフを用いて1mm間隔の切り傷を碁盤目状につけた。切り傷部分にセロハンテープ(ニチバン株式会社製、セロテープ(登録商標))を圧着させ、テープの端を持って45°の角度でテープを引き剥がした。試験片を観察し、いずれの切り傷部分においても硬化物が基材から剥がれていない場合に、硬化物が「密着している」と判定し、硬化物が切り傷部分を起点として基材から剥がれている箇所があった場合に、硬化物が「密着していない」と判定した。硬化物が「密着していない」と判定されるまでPCTを繰り返し、硬化物が基材に対して密着している状態が維持された時間を記録した。PCT開始から25時間後には既に硬化物が密着していない場合、密着している状態が維持された時間を0時間として記録した。PCT開始から50時間以上密着している状態が維持された試験片は、高温及び高湿条件下においても、基材に対する賦形層の密着性が長時間維持されていると評価することができる。
(2)ヘイズの測定
 (1)における試験片の、PCT前とPCT開始から25時間後の賦形層(硬化物)のヘイズを、ヘイズメーター(スガ試験機株式会社製、型番:HGM-2)を用いて測定し、試験前後のヘイズの変化量ΔHzを算出した。0~1.5のΔHzを有する試験片は、優れた光学特性を有すると評価することができる。
(3)ガラス転移温度の測定
 ガラス転移温度評価用のサンプルを切断し、長さ25mm、幅10mmの試験片を作製した。動的粘弾性測定装置(エスアイアイ・ナノテクノロジー株式会社製、型番:DMS6100)を用いて、「引っ張り正弦波モード」にて、周波数1Hz、歪み振幅0.05%、昇温速度3℃/minの条件下で、試験片の損失正接(tanδ)の極大値(ガラス転移温度)を測定した。
(4)鉛筆硬度の測定
 密着性評価用のサンプルにおける、賦形層(硬化物)の鉛筆硬度を、JIS K 5600-5-4:1999の規格に準じて測定した。鉛筆を賦形層の主面に対して45°の角度であて、200gの荷重をかけながら賦形層の表面をひっかいた。これを、硬さの異なる鉛筆で5回ずつ繰り返し、5回中4回以上賦形層に傷を残さなかった鉛筆の硬さのうち、最も硬いものを記録した。鉛筆硬度が3B以上であったサンプルは、高い硬度を有すると評価することができる。
 以上の評価及び測定の結果を表4に示す。表4中、各成分の割合は、ラジカル重合性成分全量を基準とした配合量(質量%)を表す。(A1)及び(A2)成分の組み合わせを含む光硬化型組成物の硬化物を賦形層として備える実施例1~11の賦形フィルムは、長時間にわたる過酷な温度及び湿度下の試験後も、賦形層の高い密着性、及び、賦形層の優れたヘイズが維持された。また、実施例1~11の賦形フィルムは、硬度の高い賦形層を備えるため、優れた外観を維持することが可能である。一方、比較例1、2及び4の賦形フィルムは、過酷な温度及び湿度下の試験により賦形層の密着性が著しく低下した。また、比較例3の賦形フィルムにおける賦形層は、十分な硬度を有していなかった。
Figure JPOXMLDOC01-appb-T000015
 1、4…賦形層、2…第1の賦形層、3…第2の賦形層、5…基材、10、20…賦形フィルム。

Claims (23)

  1.  基材と、該基材に積層された賦形層と、を備える賦形フィルムであって、
     前記賦形層は(A)ラジカル重合性成分を含有する光硬化型組成物の硬化物を含み、
     前記(A)ラジカル重合性成分は、
     (A1)2個以上の(メタ)アクリロイル基を有するウレタンアクリレートと、
     (A2)窒素含有単官能(メタ)アクリルモノマーと、を含む、賦形フィルム。
  2.  前記(A)ラジカル重合性成分が、(A3)下記一般式(1)で表されるエチレンオキサイド変性ビスフェノールAジ(メタ)アクリレートをさらに含む、請求項1に記載の賦形フィルム。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R及びRは、それぞれ独立に水素原子又はメチル基を示し、n及びmは、n+m=20~40となるように選ばれる正の整数を示す。]
  3.  前記(A)ラジカル重合性成分が、(A4)脂環式単官能(メタ)アクリルモノマーをさらに含む、請求項1又は2に記載の賦形フィルム。
  4.  前記(A4)脂環式単官能(メタ)アクリルモノマーがジシクロペンタジエン骨格を有する、請求項3に記載の賦形フィルム。
  5.  前記(A)ラジカル重合性成分が、(A5)2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリルモノマーをさらに含む、請求項1~4のいずれか一項に記載の賦形フィルム。
  6.  前記(A1)ウレタンアクリレートがポリカーボネート構造を有する、請求項1~5のいずれか一項に記載の賦形フィルム。
  7.  前記光硬化型組成物が、(B)光重合開始剤をさらに含有する、請求項1~6のいずれか一項に記載の賦形フィルム。
  8.  前記光硬化型組成物が、(C)下記一般式(2)で表される構造を含むフェノール系酸化防止剤をさらに含有する、請求項1~7のいずれか一項に記載の賦形フィルム。
    Figure JPOXMLDOC01-appb-C000002
    [式中、Rは、tert-ブチル基又はメチル基を示す。]
  9.  前記光硬化型組成物が、(D)光安定剤をさらに含有する、請求項1~8のいずれか一項に記載の賦形フィルム。
  10.  前記光硬化型組成物における前記(A1)ウレタンアクリレートの含有量が、前記(A)ラジカル重合性成分全量を基準として0.1~50質量%である、請求項1~9のいずれか一項に記載の賦形フィルム。
  11.  前記光硬化型組成物における前記(A3)エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレートの含有量が、前記(A)ラジカル重合性成分全量を基準として0.1~20質量%である、請求項2に記載の賦形フィルム。
  12.  前記光硬化型組成物における前記(A4)脂環式単官能(メタ)アクリルモノマーの含有量が、前記(A)ラジカル重合性成分全量を基準として30~75質量%である、請求項3又は4に記載の賦形フィルム。
  13.  前記基材がポリカーボネートフィルムである、請求項1~12のいずれか一項に記載の賦形フィルム。
  14.  (A)ラジカル重合性成分を含む光硬化型組成物であって、
     前記(A)ラジカル重合性成分は、
     (A1)2個以上の(メタ)アクリロイル基を有するウレタンアクリレートと、
     (A2)窒素含有単官能(メタ)アクリルモノマーと、を含む、光硬化型組成物。
  15.  前記(A)ラジカル重合性成分が、(A3)下記一般式(1)で表されるエチレンオキサイド変性ビスフェノールAジ(メタ)アクリレートをさらに含む、請求項14に記載の光硬化型組成物。
    Figure JPOXMLDOC01-appb-C000003
    [式中、R及びRは、それぞれ独立に水素原子又はメチル基を示し、n及びmは、n+m=20~40となるように選ばれる正の整数を示す。]
  16.  前記(A)ラジカル重合性成分が、(A4)脂環式単官能(メタ)アクリルモノマーをさらに含む、請求項14又は15に記載の光硬化型組成物。
  17.  前記(A4)脂環式単官能(メタ)アクリルモノマーがジシクロペンタジエン骨格を有する、請求項16に記載の光硬化型組成物。
  18.  前記(A)ラジカル重合性成分が、(A5)2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリルモノマーをさらに含む、請求項14~17のいずれか一項に記載の光硬化型組成物。
  19.  前記(A1)ウレタンアクリレートがポリカーボネート構造を有する、請求項14~18のいずれか一項に記載の光硬化型組成物。
  20.  (B)光重合開始剤をさらに含有する、請求項14~19のいずれか一項に記載の光硬化型組成物。
  21.  (C)下記一般式(2)で表される構造を含むフェノール系酸化防止剤をさらに含有する、請求項14~20のいずれか一項に記載の光硬化型組成物。
    Figure JPOXMLDOC01-appb-C000004
    [式中、Rは、tert-ブチル基又はメチル基を示す。]
  22.  (D)光安定剤をさらに含有する、請求項14~21のいずれか一項に記載の光硬化型組成物。
  23.  25℃での粘度が40~1000mPa・sである、請求項14~22のいずれか一項に記載の光硬化型組成物。
PCT/JP2018/028669 2017-08-09 2018-07-31 賦形フィルム及び光硬化型組成物 WO2019031310A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880051129.1A CN110997770A (zh) 2017-08-09 2018-07-31 赋形膜及光固化型组合物
CN202310372793.9A CN116396519A (zh) 2017-08-09 2018-07-31 赋形膜及光固化型组合物
JP2019535129A JP7210844B2 (ja) 2017-08-09 2018-07-31 賦形フィルム及び光硬化型組成物
KR1020207000882A KR20200039659A (ko) 2017-08-09 2018-07-31 부형 필름 및 광 경화형 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017154486 2017-08-09
JP2017-154486 2017-08-09

Publications (1)

Publication Number Publication Date
WO2019031310A1 true WO2019031310A1 (ja) 2019-02-14

Family

ID=65271042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028669 WO2019031310A1 (ja) 2017-08-09 2018-07-31 賦形フィルム及び光硬化型組成物

Country Status (5)

Country Link
JP (1) JP7210844B2 (ja)
KR (1) KR20200039659A (ja)
CN (2) CN110997770A (ja)
TW (1) TWI774814B (ja)
WO (1) WO2019031310A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117348A (ja) * 1991-10-31 1993-05-14 Dainippon Printing Co Ltd フレネルレンズ用紫外線硬化型樹脂組成物及び透過型スクリーン
JP2004333902A (ja) * 2003-05-08 2004-11-25 Jsr Corp 光学部材用放射線硬化性樹脂組成物及び光学部材
JP2013112715A (ja) * 2011-11-28 2013-06-10 Toagosei Co Ltd 活性エネルギー線硬化型接着剤組成物
WO2013151119A1 (ja) * 2012-04-06 2013-10-10 東亞合成株式会社 光学層形成用活性エネルギー線硬化型組成物
JP2014211600A (ja) * 2013-04-22 2014-11-13 日立化成株式会社 微細構造形成用光硬化型樹脂組成物及び硬化物
JP2017031249A (ja) * 2015-07-29 2017-02-09 日立マクセル株式会社 モデル材用樹脂組成物、サポート材用樹脂組成物、光造形品、および、光造形品の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021114A (ja) 2009-07-16 2011-02-03 Dainippon Printing Co Ltd 光学シート用電離放射線硬化性樹脂組成物、及び光学シート
CN106414071B (zh) * 2014-07-18 2018-07-13 日立化成株式会社 层叠膜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117348A (ja) * 1991-10-31 1993-05-14 Dainippon Printing Co Ltd フレネルレンズ用紫外線硬化型樹脂組成物及び透過型スクリーン
JP2004333902A (ja) * 2003-05-08 2004-11-25 Jsr Corp 光学部材用放射線硬化性樹脂組成物及び光学部材
JP2013112715A (ja) * 2011-11-28 2013-06-10 Toagosei Co Ltd 活性エネルギー線硬化型接着剤組成物
WO2013151119A1 (ja) * 2012-04-06 2013-10-10 東亞合成株式会社 光学層形成用活性エネルギー線硬化型組成物
JP2014211600A (ja) * 2013-04-22 2014-11-13 日立化成株式会社 微細構造形成用光硬化型樹脂組成物及び硬化物
JP2017031249A (ja) * 2015-07-29 2017-02-09 日立マクセル株式会社 モデル材用樹脂組成物、サポート材用樹脂組成物、光造形品、および、光造形品の製造方法

Also Published As

Publication number Publication date
TW201910132A (zh) 2019-03-16
KR20200039659A (ko) 2020-04-16
TWI774814B (zh) 2022-08-21
CN110997770A (zh) 2020-04-10
JP7210844B2 (ja) 2023-01-24
CN116396519A (zh) 2023-07-07
JPWO2019031310A1 (ja) 2020-07-02

Similar Documents

Publication Publication Date Title
JP5126455B1 (ja) ラジカル硬化性ホットメルトウレタン樹脂組成物、及び光学用成形体
JP5224965B2 (ja) 樹脂硬化物およびキーシート
JPWO2014203779A1 (ja) エンチオール系硬化性組成物およびその硬化物
JP2007030479A (ja) 活性エネルギー線硬化樹脂積層体およびその製造方法
JP2007023147A (ja) 光学材料用活性エネルギー線硬化型組成物
JP2004217809A (ja) 活性エネルギー線硬化樹脂シート
JP2016126141A (ja) 光拡散フィルム用樹脂組成物および光拡散フィルム
WO2013081101A1 (ja) 光学フィルム形成用活性エネルギー線硬化型組成物、光学フィルム、偏光子保護フィルム及び偏光板
KR101508761B1 (ko) 광학 필름용 조성물 및 이로부터 제조된 광학 필름
WO2014092095A1 (ja) 光学フィルム形成用活性エネルギー線硬化型組成物、光学フィルム及び偏光板
JP5059538B2 (ja) 硬化性組成物、その硬化物
JP6780698B2 (ja) 樹脂シートの製造方法
JP5698566B2 (ja) シリコーン樹脂組成物及びその成形体
JP2008081572A (ja) 樹脂組成物およびそれを用いた積層体
JP7210844B2 (ja) 賦形フィルム及び光硬化型組成物
JP2009091586A (ja) 活性エネルギー線硬化樹脂シート
JP7120240B2 (ja) 樹脂シート及びこれを製造するための硬化型組成物
TWI708808B (zh) 光學物品用活性能量射線硬化型樹脂組成物、硬化物及光學片
JP6442973B2 (ja) 微細構造形成用光硬化型組成物及びその硬化物
JP2016199617A (ja) 光硬化性組成物
JP2011080001A (ja) 注型用活性エネルギー線重合性樹脂組成物、その硬化物
JP6299079B2 (ja) 微細構造形成用光硬化型樹脂組成物及び硬化物
JP2012111907A (ja) 活性エネルギー線硬化性樹脂組成物および光学部品
JP2018021186A (ja) 硬化性樹脂組成物
JP7072452B2 (ja) 光硬化性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843456

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535129

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18843456

Country of ref document: EP

Kind code of ref document: A1