WO2019031226A1 - スピン流磁気抵抗効果素子及び磁気メモリ - Google Patents

スピン流磁気抵抗効果素子及び磁気メモリ Download PDF

Info

Publication number
WO2019031226A1
WO2019031226A1 PCT/JP2018/027646 JP2018027646W WO2019031226A1 WO 2019031226 A1 WO2019031226 A1 WO 2019031226A1 JP 2018027646 W JP2018027646 W JP 2018027646W WO 2019031226 A1 WO2019031226 A1 WO 2019031226A1
Authority
WO
WIPO (PCT)
Prior art keywords
spin
point
current
effect element
magnetoresistive
Prior art date
Application number
PCT/JP2018/027646
Other languages
English (en)
French (fr)
Inventor
陽平 塩川
智生 佐々木
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to US16/333,176 priority Critical patent/US11276447B2/en
Priority to JP2019535082A priority patent/JP6733822B2/ja
Publication of WO2019031226A1 publication Critical patent/WO2019031226A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/18Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using Hall-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/329Spin-exchange coupled multilayers wherein the magnetisation of the free layer is switched by a spin-polarised current, e.g. spin torque effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/325Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being noble metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3286Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices

Definitions

  • the present invention relates to a spin current magnetoresistive element and a magnetic memory.
  • Priority is claimed on Japanese Patent Application No. 2017-152468, filed Aug. 7, 2017, the content of which is incorporated herein by reference.
  • a giant magnetoresistive (GMR) element comprising a multilayer film of a ferromagnetic layer and a nonmagnetic layer, and a tunnel magnetoresistive (TMR) element using an insulating layer (tunnel barrier layer, barrier layer) as the nonmagnetic layer are known.
  • GMR giant magnetoresistive
  • TMR tunnel magnetoresistive
  • MR magnetoresistance
  • the MRAM reads and writes data by utilizing the characteristic that the element resistance of the TMR element changes as the direction of magnetization of the two ferromagnetic layers sandwiching the insulating layer changes.
  • writing magnetization reversal
  • writing is performed using spin transfer torque (STT) generated by flowing a current in the stacking direction of the magnetoresistance effect element.
  • STT spin transfer torque
  • the magnetization reversal of the TMR element using STT is efficient from the viewpoint of energy efficiency, but the switching current density for causing the magnetization reversal is high. From the viewpoint of the long life of the TMR element, it is desirable that the reversal current density be low. The same applies to the GMR element.
  • Non-Patent Document 1 magnetization inversion utilizing pure spin current generated by spin-orbit interaction as a means for reducing the inversion current.
  • SOT spin-orbit torque
  • Pure spin current is produced by the same number of upward spin electrons and downward spin electrons flowing in opposite directions, and the charge flow is offset. Therefore, the current flowing through the magnetoresistive element is zero, and it is expected to extend the life of the magnetoresistive element.
  • Patent Document 1 describes an element including a magnetoresistive element, a wire connected to the magnetoresistive element to produce a spin Hall effect, and a transistor disposed at a position different from the magnetoresistive element in plan view. ing. Patent Document 1 describes that magnetization reversal by STT is assisted by SOT by supplying a current at the time of writing in the stacking direction of the magnetoresistive element and the extending direction of the wiring.
  • the magnetoresistive element In order to use the magnetoresistive element as a recording part of information, it is required not only to write data appropriately but also to read data appropriately. However, although studies have been made on a method of writing data, it has not been sufficient to consider control at the time of reading data.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a spin current magnetoresistive element in which erroneous writing at the time of reading is suppressed.
  • the present inventors examined the flow of the read current. As a result, in the spin current magnetoresistance effect element having a spin orbit torque wiring for inducing SOT, a problem was found that part of the read current flows along the spin orbit torque wiring. The flow of current along the spin orbit torque wiring at the time of reading induces SOT, which may cause erroneous writing.
  • the present inventors have found that by controlling the current flowing through the spin orbit torque wiring at the time of reading, erroneous writing at the time of reading can be suppressed. That is, the present invention provides the following means in order to solve the above problems.
  • the spin current magnetoresistance effect element includes the first ferromagnetic metal layer, the second ferromagnetic metal layer, and the first ferromagnetic metal layer and the second ferromagnetic metal layer.
  • a second magnetic metal layer of the magnetoresistive element extending in a first direction intersecting the stacking direction of the magnetoresistive element;
  • a control unit for controlling the direction of the current flowing through the magnetoresistive element and the spin track torque wiring at the time of reading, the control unit including the spin track torque wiring.
  • control unit reads The out current, shunted toward the first point and the second point from the third point, or to merge toward the third point from the first point and the second point.
  • control unit may set the potentials of the first point and the second point higher or lower than the potential of the third point at the time of reading.
  • the spin current magnetoresistance effect element according to the above aspect may include a second transistor connected to the first point and a third transistor connected to the second point.
  • the resistance value between the magnetoresistive element and the first point is the same as the magnetoresistive element and the second point May be equal to the resistance value between
  • the first point and the second point may be in symmetrical positions with respect to the magnetoresistive element in plan view.
  • the area of the cross section obtained by cutting the spin path torque wiring at a plane orthogonal to the first direction is a plane orthogonal to the lamination direction of the magnetoresistance effect element. Or less of the area of the cross section cut by
  • the area of the first surface of the second ferromagnetic metal layer on the spin track torque wiring side is larger than the area of the second surface of the nonmagnetic layer.
  • the spin current magnetoresistance effect element according to the above aspect may further include a rectifier electrically connected to the first ferromagnetic metal layer.
  • the magnetic memory according to the second aspect includes a plurality of spin current magnetoresistive elements according to the above aspect.
  • FIG. 2 is a cross-sectional view schematically showing a spin current magnetoresistive element according to the first embodiment. It is a schematic diagram for demonstrating the spin Hall effect.
  • FIG. 5 is a circuit diagram of a magnetic memory in which a plurality of spin current magnetoresistive elements according to the first embodiment are arranged.
  • FIG. 7 is a cross-sectional view of a spin current magnetoresistive element in which a read current does not shunt at a spin orbit torque wiring but flows toward one electrode.
  • FIG. 5 is a circuit diagram of a magnetic memory in which a plurality of spin current magnetoresistive elements without a control unit are arranged.
  • FIG. 1 is a cross-sectional view schematically showing a spin current magnetoresistive element according to the first embodiment.
  • the spin current magnetoresistance effect element 100 according to the first embodiment includes a magnetoresistance effect element 10, a spin orbit torque wiring 20, and a control unit 30.
  • the spin current magnetoresistance effect element 100 shown in FIG. 1 also includes an electrode 40 for assisting the electrical connection, and an element selection unit 50 for determining whether or not current flows to the element.
  • the stacking direction of the magnetoresistance effect element 10 is the z direction
  • the first direction in which the spin track torque wiring 20 extends is the x direction
  • the second direction orthogonal to both the z direction and the x direction is the y direction.
  • the magnetoresistance effect element 10 includes a first ferromagnetic metal layer 1, a second ferromagnetic metal layer 2 whose magnetization direction changes, and a non-ferromagnetic metal layer 1 and a second ferromagnetic metal layer 2. And the magnetic layer 3.
  • the magnetization M 1 of the first ferromagnetic metal layer 1 is relatively fixed with respect to the magnetization M 2 of the second ferromagnetic metal layer 2.
  • the magnetoresistive effect element 10 functions by relatively changing the direction of the magnetization M1 of the first ferromagnetic metal layer 1 and the magnetization M2 of the second ferromagnetic metal layer 2.
  • a coercive force difference type prseudo spin valve type
  • the coercive force of the first ferromagnetic metal layer 1 of the magnetoresistance effect element 10 is maintained by the second ferromagnetic metal layer 2. Make it larger than the magnetic force.
  • an exchange bias type (spin valve type) MRAM the magnetization M1 of the first ferromagnetic metal layer 1 in the magnetoresistive element 10 is fixed by exchange coupling with the antiferromagnetic layer.
  • the magnetoresistive effect element 10 is a tunneling magnetoresistive (TMR) element when the nonmagnetic layer 3 is made of an insulator, and a giant magnetoresistive (GMR) element when the nonmagnetic layer 3 is made of a metal. ) Element.
  • TMR tunneling magnetoresistive
  • GMR giant magnetoresistive
  • the lamination structure of the magnetoresistive effect element can adopt the lamination structure of a well-known magnetoresistive effect element.
  • each layer may be composed of a plurality of layers, or may be provided with another layer such as an antiferromagnetic layer for fixing the magnetization direction of the first ferromagnetic metal layer 1.
  • the first ferromagnetic metal layer 1 is called a fixed layer or a reference layer
  • the second ferromagnetic metal layer 2 is called a free layer or a storage layer.
  • a known material can be used as the material of the first ferromagnetic metal layer 1.
  • a metal selected from the group consisting of Cr, Mn, Co, Fe and Ni, and an alloy exhibiting one or more of these metals and exhibiting ferromagnetism can be used.
  • an alloy containing these metals and at least one or more elements of B, C, and N can also be used.
  • Co-Fe and Co-Fe-B can be mentioned.
  • a Heusler alloy such as Co 2 FeSi can also be used as the material of the first ferromagnetic metal layer 1.
  • the Heusler alloy has a high spin polarization and can increase the MR ratio of the magnetoresistance effect element 10.
  • the Heusler alloy contains an intermetallic compound having a chemical composition of XYZ or X 2 YZ, X is a transition metal element or noble metal element of Co, Fe, Ni, or Cu group on the periodic table, and Y is Mn , V, Cr or a transition metal of the Ti group or an elemental species of X, and Z is a typical element of the III to V groups.
  • Co 2 FeSi, Co 2 MnSi, Co 2 Mn 1-a Fe a Al b Si 1-b and the like can be mentioned.
  • an antiferromagnetic material such as IrMn or PtMn is used as a material in contact with the first ferromagnetic metal layer 1. It is also good. Furthermore, in order to prevent the stray magnetic field of the first ferromagnetic metal layer 1 from affecting the second ferromagnetic metal layer 2, a synthetic ferromagnetic coupling structure may be used.
  • the lamination film of Co and Pt in order to make the direction of magnetization of the first ferromagnetic metal layer 1 perpendicular to the lamination surface, it is preferable to use a lamination film of Co and Pt.
  • FeB 1.0 nm
  • Ta 0.2 nm
  • 4 / Ru (0.9 nm) / [Co (0.24 nm) / Pt (0.16 nm)] 6 can be used.
  • a ferromagnetic material in particular, a soft magnetic material can be applied.
  • a metal selected from the group consisting of Cr, Mn, Co, Fe and Ni, an alloy containing one or more of these metals, and these metals and at least one or more elements of B, C, and N Alloys can be used.
  • Co-Fe, Co-Fe-B and Ni-Fe can be mentioned.
  • the magnetization direction of the second ferromagnetic metal layer 2 is oriented in the z direction (perpendicular to the stacking plane).
  • the orientation of the magnetization of the second ferromagnetic metal layer 2 is oriented in the z direction, whereby the size of the magnetoresistive effect element 10 can be reduced.
  • the direction of magnetization of the second ferromagnetic metal layer 2 is affected by the crystal structure of the second ferromagnetic metal layer 2 and the thickness of the second ferromagnetic metal layer 2.
  • the thickness of the second ferromagnetic metal layer 2 is preferably 2.5 nm or less. Since the effect is attenuated by increasing the film thickness of the second ferromagnetic metal layer 2 in the perpendicular magnetic anisotropy, the film thickness of the second ferromagnetic metal layer 2 is preferably smaller.
  • Nonmagnetic layer 3 can be used for the nonmagnetic layer 3.
  • the nonmagnetic layer 3 is made of an insulator (in the case of a tunnel barrier layer)
  • Al 2 O 3 , SiO 2 , MgO, MgAl 2 O 4 or the like can be used as the material.
  • materials in which a part of Al, Si and Mg is substituted by Zn, Be or the like can also be used.
  • MgO and MgAl 2 O 4 are materials that can realize coherent tunneling, so spins can be injected efficiently.
  • the nonmagnetic layer 3 is made of metal, Cu, Au, Ag or the like can be used as the material.
  • the magnetoresistive effect element 10 may have other layers.
  • an underlayer may be provided on the surface of the second ferromagnetic metal layer 2 opposite to the nonmagnetic layer 3, or a cap may be provided on the surface of the first ferromagnetic metal layer 1 opposite to the nonmagnetic layer 3. It may have a layer.
  • the layer disposed between the spin orbit torque wiring 20 and the magnetoresistive effect element 10 does not dissipate the spins propagating from the spin orbit torque wiring 20.
  • the spin orbit torque wiring 20 it is known that silver, copper, magnesium, aluminum, and the like have a long spin diffusion length of 100 nm or more and do not easily dissipate spin.
  • the thickness of this layer is preferably equal to or less than the spin diffusion length of the material constituting the layer. If the thickness of the layer is equal to or less than the spin diffusion length, the spins propagating from the spin orbit torque wiring 20 can be sufficiently transmitted to the magnetoresistance effect element 10.
  • the spin track torque wiring 20 extends in the x direction.
  • the spin orbit torque wiring 20 is located on one surface of the second ferromagnetic metal layer 2 in the z direction.
  • the spin orbit torque wiring 20 may be directly connected to the second ferromagnetic metal layer 2 or may be connected via another layer.
  • the spin orbit torque wiring 20 is made of a material in which a pure spin current is generated by the spin Hall effect when current flows. As such a material, a material having a configuration in which a pure spin current is generated in the spin orbit torque wiring 20 is sufficient. Therefore, the spin orbit torque wiring 20 is not limited to a material composed of a single element, but is composed of a part composed of a material in which a pure spin current is generated and a part composed of a material in which a pure spin current is not generated. It may be.
  • the spin Hall effect is a phenomenon in which a pure spin current is induced in a direction perpendicular to the direction of the current based on spin-orbit interaction when a current is supplied to a material.
  • FIG. 2 is a schematic view for explaining the spin Hall effect.
  • FIG. 2 is a cross-sectional view of the spin track torque wiring 20 shown in FIG. 1 cut along the x direction. The mechanism by which a pure spin current is generated by the spin Hall effect will be described based on FIG.
  • the first spin S1 oriented to the back of the drawing and the second spin S2 oriented to the front of the drawing are orthogonal to the current. It is bent in the direction.
  • the ordinary Hall effect and the spin Hall effect are common in that moving (moving) charges (electrons) can bend the direction of movement (moving), but the ordinary Hall effect causes charged particles moving in a magnetic field to move the Lorentz force.
  • the spin Hall effect is largely different in that the direction of movement is bent only by electron movement (only current flow) even though there is no magnetic field.
  • the number of electrons in the first spin S1 is equal to the number of electrons in the second spin S2 in a nonmagnetic material (a material that is not a ferromagnetic material)
  • the number of electrons in the first spin S1 going upward in the figure and downward
  • the number of electrons of the second spin S2 to be directed is equal.
  • the current as a net flow of charge is zero.
  • a spin current without this current is particularly called a pure spin current.
  • the material of the spin orbit torque wiring 20 does not include a material consisting of only a ferromagnetic material.
  • J S J ⁇ -J ⁇ .
  • J S flows upward in the figure as a pure spin current.
  • J S is a flow of electrons having a polarizability of 100%.
  • the spin orbit torque wiring 20 may contain nonmagnetic heavy metal.
  • heavy metal is used in the meaning of the metal which has specific gravity more than yttrium.
  • the spin orbit torque wiring 20 may be made of only nonmagnetic heavy metal.
  • the nonmagnetic heavy metal is preferably a nonmagnetic metal having an atomic number of 39 or more, which has d electrons or f electrons in the outermost shell.
  • Such nonmagnetic metals have a large spin-orbit interaction that causes the spin Hall effect.
  • the spin orbit torque wiring 20 may be made of only a nonmagnetic metal having a large atomic number of 39 or more, which has d electrons or f electrons in the outermost shell.
  • the spin track torque wiring 20 may include magnetic metal.
  • Magnetic metal refers to ferromagnetic metal or antiferromagnetic metal.
  • the spin-orbit interaction is enhanced, and the spin current generation efficiency with respect to the current flowing through the spin-orbit torque wiring 20 can be increased.
  • the spin orbit torque wiring 20 may be made of only an antiferromagnetic metal.
  • the spin-orbit interaction is caused by the intrinsic internal field of the material of the spin-orbit torque wiring material, a pure spin current is also generated in the nonmagnetic material.
  • the spin current generation efficiency is improved because the magnetic metal itself scatters the electron spins flowing therethrough.
  • the addition amount of the magnetic metal is excessively increased, the generated pure spin current is scattered by the added magnetic metal, and as a result, it becomes difficult to efficiently generate the spin current. Therefore, it is preferable that the molar ratio of the magnetic metal to be added be sufficiently smaller than the molar ratio of the main component of the pure spin generating portion in the spin track torque wiring.
  • the molar ratio of the magnetic metal added is preferably 3% or less.
  • the spin track torque wire 20 may include a topological insulator.
  • the spin track torque wire 20 may be made of only the topological insulator.
  • the topological insulator is a substance in which the inside of the substance is an insulator or a high resistance, but a spin-polarized metal state is generated on the surface thereof.
  • spin-orbit interaction There is something like an internal magnetic field called spin-orbit interaction in matter. Therefore, even if there is no external magnetic field, a new topological phase appears due to the effect of spin-orbit interaction. This is a topological insulator, and strong spin-orbit interaction and inversion symmetry breaking at the edge can generate pure spin current with high efficiency.
  • topological insulators example, SnTe, Bi 1.5 Sb 0.5 Te 1.7 Se 1.3, TlBiSe 2, Bi 2 Te 3, preferably such as (Bi 1-x Sb x) 2 Te 3. These topological insulators can generate spin current with high efficiency.
  • the spin current magnetoresistance effect element 100 may have components other than the magnetoresistance effect element 10 and the spin orbit torque wiring 20.
  • a substrate or the like may be provided as a support.
  • the substrate is preferably excellent in flatness, and as a material, for example, Si, AlTiC or the like can be used.
  • the electrode 40 is provided at the connection point with the current flowing through the magnetoresistive effect element 10 and the spin orbit torque wiring 20.
  • the spin current magnetoresistance effect element 100 shown in FIG. 1 is connected to the first electrode 41 connected to the first ferromagnetic metal layer 1 of the magnetoresistance effect element 10 and to the first point 21 of the spin orbit torque wiring 20.
  • a second electrode 42 and a third electrode 43 connected to the second point 22 of the spin track torque wire 20 are provided.
  • the electrode 40 is not particularly limited as long as it has excellent conductivity.
  • the element selection unit 50 includes a first transistor 51, a second transistor 52, and a third transistor 53. A well-known thing can be used for the 1st transistor 51, the 2nd transistor 52, and the 3rd transistor 53.
  • FIG. 1st transistor 51, the 2nd transistor 52, and the 3rd transistor 53 A well-known thing can be used for the 1st transistor 51, the 2nd transistor 52, and the 3rd transistor 53.
  • the first transistor 51 is electrically connected to a third point 11 on the first ferromagnetic metal layer 1 side of the magnetoresistive element 10. In FIG. 1, the first transistor 51 is connected via the first electrode 41 stacked in the z direction of the first ferromagnetic metal layer 1. The first transistor 51 can also be provided outside the device.
  • the second transistor 52 is electrically connected to the first point 21 of the spin orbit torque wiring 20.
  • the second transistor 52 is connected via the second electrode 42 connected to the first point 21 of the spin track torque wire 20.
  • the first point 21 of the spin track torque wire 20 may be any portion of the spin track torque wire 20 which does not overlap with the magnetoresistive effect element 10 when viewed from the z direction.
  • the third transistor 53 is electrically connected to the second point 22 of the spin orbit torque wiring 20.
  • the third transistor 53 is connected via the third electrode 43 connected to the second point 22 of the spin track torque wire 20.
  • the second point 22 of the spin track torque wire 20 is located at the first point 21 and the magnetoresistive effect element 10 in the x direction of the spin track torque wire 20 as viewed from the z direction.
  • the positions of the first point 21 and the second point 22 may be shifted in the y direction as long as the magnetoresistive effect element 10 is sandwiched in the x direction by the first point 21 and the second point 22.
  • the control unit 30 controls the direction of the read current flowing through the magnetoresistive element 10 and the spin track torque wiring 20 at the time of reading.
  • the control unit 30 has first and second points 21 and 22 at positions sandwiching the magnetoresistive effect element 10 in the first direction in the spin orbit torque wiring 20, and the first ferromagnetic layer 1 side of the magnetoresistive effect element 10. Are connected to at least one of the third points 11 of FIG.
  • the control unit 30 shown in FIG. 1 is a switching element electrically connected to the first point 21 of the spin track torque wiring 20.
  • the control unit 30 shown in FIG. 1 controls the potential of the first point 21.
  • the control unit 30 is not limited to a switching element as long as the control unit 30 can change the potential between the first point 21 and the second point 22 of the spin track torque wiring 20, and any known element can be used. Further, although the control unit 30 is electrically connected to the first point 21 in FIG. 1, the control unit 30 may be electrically connected to the second point 22.
  • control unit 30 can be shared.
  • the control unit 30 is for raising the potential of the second electrode 42 at the time of writing to the potential of the third electrode 43, and is connected to the reference potential at the time of reading.
  • the reference potential is set to ground G.
  • FIG. 3 is a circuit diagram of a magnetic memory in which a plurality of spin current magnetoresistive elements 100 are arranged.
  • the magnetic memory 200 shown in FIG. 3 includes a plurality of spin current magnetoresistive elements 100.
  • the plurality of spin current magnetoresistive elements 100 share the control unit 30.
  • one control unit 30 is provided for each of two elements in FIG. 3, one control unit 30 may be provided for each element, or one control unit 30 may be shared by all elements.
  • the first transistor 51 is provided for each element in FIG. 3, the first transistor 51 may be shared by a plurality of elements.
  • the spin track torque wiring 20 is illustrated as resistors 20A and 20B.
  • the write operation and the read operation to the spin current magnetoresistance effect element 100 will be described with reference to FIGS. 1 and 3.
  • Writing to the spin current magnetoresistance effect element 100 is performed by controlling the relative angle between the magnetization M 2 of the second ferromagnetic metal layer 2 and the magnetization M 1 of the first ferromagnetic metal layer 1.
  • the relative angle of the magnetizations M1 and M2 is controlled by the direction of the magnetization M2 of the second ferromagnetic metal layer.
  • the direction of the magnetization M2 of the second ferromagnetic metal layer 2 is reversed by a pure spin current generated by spin-orbit interaction or a spin orbit torque (SOT) induced by the Rashba effect at the interface of different materials.
  • SOT spin orbit torque
  • the switching element (control unit 30) is switched, and the second electrode 42 (see FIG. 1) is connected to the potential V2. Then, the spin current magnetoresistive element 100 to which data is to be written is selected, and the second transistor 52 and the third transistor 53 of the selected spin current magnetoresistive element 100 are opened.
  • the second electrode 42 in the selected spin current magnetoresistance effect element 100 has the same potential as the potential V2, and thus has a higher potential than the potential of the third electrode 43 connected to the ground G (see FIG. 1).
  • the write current I W flows in the direction from the second electrode 42 to the third electrode 43 of the spin orbit torque wiring 20.
  • This current produces a pure spin current.
  • the spins oriented in a predetermined direction are injected from the spin orbit torque wiring 20 into the second ferromagnetic metal layer 2 by a pure spin current.
  • the injected spin gives a spin orbit torque to the magnetization M2 of the second ferromagnetic metal layer 2, and the magnetization M2 of the second ferromagnetic metal layer 2 reverses the magnetization to write data.
  • the spin current magnetoresistance effect element 100 reads out, as data, the resistance value of the magnetoresistance effect element 10 changed by the relative angle between the magnetization M 2 of the second ferromagnetic metal layer 2 and the magnetization M 1 of the first ferromagnetic metal layer 1. .
  • the switching element (control unit 30) is switched to connect the second electrode 42 to the ground G. Then, the first transistor 51, the second transistor 52, and the third transistor 53 are opened.
  • the second electrode 42 is connected to the ground G, the second electrode 42 and the third electrode 43 become equipotential.
  • the first electrode 41 connected to the potential V1 is higher in potential than the second electrode 42 and the third electrode 43. Therefore, the read current I R flows from the first electrode 41 in the stacking direction of the magnetoresistive effect element 10 and is divided by the spin track torque wiring 20 and then flows to the second electrode 42 and the third electrode 43. Data is read out by outputting the read current I R to the outside.
  • Spin current magnetoresistive element 100 by the read current I R is shunted in the middle, it can be suppressed erroneous writing during reading.
  • FIG. 4 is a cross-sectional view of the spin current magnetoresistance effect element 101 which flows toward one of the electrodes without the read current being shunted by the spin orbit torque wiring.
  • the spin current magnetoresistive element 101 shown in FIG. 4 differs from the spin current magnetoresistive element 100 according to the first embodiment in that it does not have the control unit 30.
  • the other configurations are the same, and the same reference numerals are given.
  • FIG. 5 is a circuit diagram of a magnetic memory in which a plurality of spin current magnetoresistive elements 101 not having the control unit 30 are arranged.
  • each spin current magnetoresistance effect element 100 has three transistors (a first transistor 51, a second transistor 52 and a third transistor 53), while in FIG.
  • each spin current magnetoresistive element 101 has two transistors (first transistor 51 and second transistor 52), and a plurality of spin current magnetoresistive elements 101 is a single transistor (third transistor 53). It differs in that it shares).
  • the second transistor 52 and the third transistor 53 are opened. By opening the two transistors, the write current I W flows from the second electrode 42 toward the third electrode 43. The direction of the magnetization M2 of the second ferromagnetic metal layer 2 is controlled by the write current I W to write data. The flow of the write current I W is the same as that of the spin current magnetoresistance effect element 100 shown in FIG.
  • the first transistor 51 and the third transistor 53 are opened.
  • the read current I R ′ flows from the first electrode 41 to the third electrode 43 by opening the two transistors.
  • the read current I R ′ is a component flowing in the x direction , This current is referred to as x component I Rx '.
  • the x component I Rx ′ generates a pure spin current and injects spins into the second ferromagnetic metal layer 2 in the same manner as the write current I W.
  • the injected spins give SOT to the magnetization M 2 of the second ferromagnetic metal layer 2.
  • the current density of the x component I Rx ' is sufficiently smaller than the current density of the write current I W. Therefore, inversion of the magnetization M2 of the second ferromagnetic metal layer 2 due to the spin orbit torque induced by the x component I Rx 'does not occur in principle. However, when an external factor such as thermal fluctuation is added, the spin orbit torque induced by the x component I Rx 'causes an erroneous writing.
  • the read current I R is shunted at the spin orbit torque wiring 20 (see FIG. 1). Therefore, in the superimposing unit 23, the read current I R is a component (hereinafter, this current is referred to as an x component I Rx ) flowing in the x direction in the spin orbit torque wiring 20 and a component (hereinafter, this The current is called -x component I R -x.
  • the read current I R is divided. Therefore, the amount of current of the x component I Rx and the -x component IR x is smaller than that of the x component I Rx 'shown in FIG. SOT the x component I Rx and -x component I Rx can induce small, erroneous writing can be suppressed.
  • the flow direction of the x component I Rx and the ⁇ x component IR x is opposite to each other. Therefore, the direction of the spin injected by the x component I Rx into the second ferromagnetic metal layer 2 and the direction of the spin injected by the ⁇ x component IR x into the second ferromagnetic metal layer 2 are opposite to each other.
  • the vectors of the spin orbit torque given to the magnetization M2 of the second ferromagnetic metal layer 2 are also reverse. Therefore, the force and the x component I Rx and -x component I Rx given to the magnetization M2 is canceled each other, erroneous write is suppressed.
  • the first point 21 and the second point of spin orbit torque wiring 20 with respect to magnetoresistance effect element 10 are in symmetrical positions with 22.
  • the resistance value between the magnetoresistive element 10 and the first point 21 is the same as that of the magnetoresistive element 10 and the first point 21. It is preferable that the resistance value between the two points 22 be equal.
  • the spin current magnetoresistance effect element 100 As described above, according to the spin current magnetoresistance effect element 100 according to the first embodiment, it is possible to suppress erroneous write caused by the read current I R at the time of reading. Further, erroneous write can be further suppressed by equalizing the amount of read current divided in the x direction and ⁇ x direction by the spin orbit torque wiring 20.
  • Jc in the above relation (1) is a threshold switching current density required for magnetization reversal
  • S SOT is the area of the section cut along a yz plane orthogonal spin-orbit torque wires 20 and x-direction
  • the magnetization M2 of the second ferromagnetic metal layer 2 of the magnetoresistive effect element 10 is reversed depends on the current density of the flowing current.
  • the current density required to reverse the magnetization M2 is referred to as a threshold reverse current density.
  • the threshold switching current density required for magnetization switching by SOT and the threshold switching current density required for magnetization switching by STT are considered to be approximately equal.
  • the read current I R itself can be larger than the Jc ⁇ S SOT.
  • the output signal can be increased. That is, it is possible to avoid that the data is mixed with noise and erroneous reading occurs.
  • the area S SOT of the cross section obtained by cutting the spin track torque wiring 20 in the yz plane orthogonal to the x direction is the xy plane orthogonal to the z direction in the magnetoresistance effect element 10 It is preferable that it is below area S MTJ of the cut
  • FIG. 6 is a schematic cross-sectional view of another example of the spin current magnetoresistive element according to the first embodiment.
  • the area of the first surface of the second ferromagnetic metal layer 2 ′ on the spin orbit torque wiring 20 side is on the nonmagnetic layer 3 ′ side. Larger than the second surface area.
  • the read current I R flows along the shape of the magnetoresistive element 10 '. Therefore, it is possible to avoid that the read current I R generates the current flow along the spin orbit torque wiring 20 which is a cause of the spin orbit torque. As a result, the spin current magnetoresistance effect element 102 can further suppress erroneous writing.
  • the spin current magnetoresistance effect elements 100 and 101 may further include a rectifier electrically connected to the first ferromagnetic metal layers 1 and 1 ′. By providing the rectifier, the write current I W can be prevented from flowing in the stacking direction of the magnetoresistance effect element 10.
  • the spin current magnetoresistance effect element 100 shown in FIG. 1 is controlled by the control unit 30 so that the second electrode 42 (first point 21) and the third electrode 43 (second point 22) have equal potential at the time of reading. I have control.
  • the second electrode 42 (the first point 21) and the third electrode 43 (the second point 22) do not necessarily have to be at the same potential as long as the reading current is divided and flows.
  • the potential difference between the first electrode 41 (third point 11) and the second electrode 42 (first point 21) is the potential difference between the first electrode 41 (third point 11) and the third electrode 43 (second point 22).
  • the first point 21 and the second point 22 are in symmetrical positions with reference to the magnetoresistance effect element 10.
  • the positional relationship between the first point 21 and the second point may be asymmetrical with respect to the magnetoresistance effect element 10.
  • the distance between the first point 21 and the magnetoresistive element 10 is shorter than the distance between the second point 22 and the magnetoresistive element 10 It is preferable to do.
  • the read current I R that many flows side by shortening the distance that the read current I R flows, can reduce the parasitic resistance due to spin-orbit torque wire 20.
  • the resistance value between the magnetoresistive element 10 and the first point 21 is preferably 50% or more and 150% or less of the resistance value between the magnetoresistive element 10 and the second point 22. More preferably, the resistance value between the effect element 10 and the second point 22 is equal.
  • the potential V1 of the third point 11 to be lower than the ground G may be the flow direction of the read current I R in the opposite.
  • the controller 30 of the spin current magnetoresistance effect element 103 shown in FIG. 7 makes the potentials of the first point 21 and the second point 22 higher than the potential of the third point 11 at the time of reading.
  • the read current I R merges from the first point 21 and the second point 22 toward the third point 11. Even when the read current I R merges, the amount of current of the x component I Rx and the -x component IR x is smaller than the x component I Rx 'shown in FIG. SOT the x component I Rx and -x component I Rx can induce small, erroneous writing can be suppressed.
  • the flow direction of the x component I Rx and the ⁇ x component IR x is opposite to each other. Therefore, the direction of the spin injected by the x component I Rx into the second ferromagnetic metal layer 2 and the direction of the spin injected by the ⁇ x component IR x into the second ferromagnetic metal layer 2 are opposite to each other.
  • the vectors of the spin orbit torque given to the magnetization M2 of the second ferromagnetic metal layer 2 are also reverse. Therefore, the force and the x component I Rx and -x component I Rx given to the magnetization M2 is canceled each other, erroneous write is suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

このスピン流磁気抵抗効果素子は、磁気抵抗効果素子と、前記磁気抵抗効果素子の積層方向に対して交差する第1の方向に延在し、前記磁気抵抗効果素子の前記第2強磁性金属層の側に位置するスピン軌道トルク配線と、読み出し時の電流の向きを制御する制御部と、を備え、前記制御部は、前記スピン軌道トルク配線において第1の方向に前記磁気抵抗効果素子を挟む位置にある第1点及び第2点、と、前記磁気抵抗効果素子の前記第1強磁性層側の第3点とのうち少なくとも一つに接続され、前記制御部は、読み出し時に読み出し電流を、前記第3点から前記第1点及び前記第2点に向かって分流する、または、前記第1点及び前記第2点から前記第3点に向かって合流させる。

Description

スピン流磁気抵抗効果素子及び磁気メモリ
 本発明は、スピン流磁気抵抗効果素子及び磁気メモリに関する。
本願は、2017年8月7日に、日本に出願された特願2017-152468号に基づき優先権を主張し、その内容をここに援用する。
 強磁性層と非磁性層の多層膜からなる巨大磁気抵抗(GMR)素子、及び、非磁性層に絶縁層(トンネルバリア層、バリア層)を用いたトンネル磁気抵抗(TMR)素子が知られている。一般に、TMR素子は、GMR素子と比較して素子抵抗が高いものの、TMR素子の磁気抵抗(MR)比は、GMR素子のMR比より大きい。そのため、磁気センサ、高周波部品、磁気ヘッド及び不揮発性ランダムアクセスメモリ(MRAM)用の素子として、TMR素子に注目が集まっている。
 MRAMは、絶縁層を挟む二つの強磁性層の互いの磁化の向きが変化すると、TMR素子の素子抵抗が変化するという特性を利用してデータを読み書きする。MRAMの書き込み方式としては、電流が作る磁場を利用して書き込み(磁化反転)を行う方式や磁気抵抗効果素子の積層方向に電流を流して生ずるスピントランスファートルク(STT)を利用して書き込み(磁化反転)を行う方式が知られている。
 STTを用いたTMR素子の磁化反転はエネルギーの効率の視点から考えると効率的ではあるが、磁化反転をさせるための反転電流密度が高い。 TMR素子の長寿命の観点からはこの反転電流密度は低いことが望ましい。この点は、GMR素子についても同様である。
 そこで近年、反転電流を低減する手段としてスピン軌道相互作用により生成された純スピン流を利用した磁化反転に注目が集まっている(例えば、非特許文献1)。このメカニズムはまだ十分には明らかになっていないが、スピン軌道相互作用によって生じた純スピン流又は異種材料の界面におけるラシュバ効果が、スピン軌道トルク(SOT)を誘起し、磁化反転が生じると考えられている。純スピン流は上向きスピンの電子と下向きスピン電子が同数で互いに逆向きに流れることで生み出されるものであり、電荷の流れは相殺されている。そのため磁気抵抗効果素子に流れる電流はゼロであり、磁気抵抗効果素子の長寿命化が期待されている。
 また特許文献1には、磁気抵抗効果素子と、磁気抵抗効果素子に接続されスピンホール効果を生じる配線と、平面視で磁気抵抗効果素子と異なる位置に配置されたトランジスタとを備える素子が記載されている。特許文献1には、書き込み時の電流を磁気抵抗効果素子の積層方向及び配線の延在方向に流すことで、STTによる磁化反転がSOTによりアシストされることが記載されている。
米国特許第8889433号明細書
I.M.Miron, K.Garello, G.Gaudin, P.-J.Zermatten, M.V.Costache, S.Auffret, S.Bandiera, B.Rodmacq ,A.Schuhl, and P.Gambardella, Nature, 476, 189(2011).
 磁気抵抗効果素子を情報の記録部として用いるためには、データを適切に書き込むだけでなく、データを適切に読み出すことが求められる。しかしながら、データの書込み方法の検討は進められているが、データの読み出し時の制御についての検討は十分とは言えなかった。
 本発明は上記問題に鑑みてなされたものであり、読み出し時の誤書き込みを抑制したスピン流磁気抵抗効果素子を提供することを目的とする。
 本発明者らは、読み出し電流の流れについて検討を行った。その結果、SOTを誘起するスピン軌道トルク配線を有するスピン流磁気抵抗効果素子において、読み出し電流の一部がスピン軌道トルク配線に沿って流れてしまうと言う問題を見出した。読み出し時におけるスピン軌道トルク配線に沿う電流の流れはSOTを誘起し、誤書き込みの原因となりうる。
 そして、本発明者らは鋭意検討の結果、読み出し時にスピン軌道トルク配線を流れる電流を制御することで、読み出し時の誤書き込みを抑制できることを見出した。
 すなわち、本発明は、上記課題を解決するため、以下の手段を提供する。
(1)第1の態様にかかるスピン流磁気抵抗効果素子は、第1強磁性金属層と、第2強磁性金属層と、前記第1強磁性金属層及び前記第2強磁性金属層に挟持された非磁性層と、を有する磁気抵抗効果素子と、前記磁気抵抗効果素子の積層方向に対して交差する第1の方向に延在し、前記磁気抵抗効果素子の前記第2強磁性金属層の側に位置するスピン軌道トルク配線と、読み出し時に前記磁気抵抗効果素子及び前記スピン軌道トルク配線に流れる電流の向きを制御する制御部と、を備え、前記制御部は、前記スピン軌道トルク配線において第1の方向に前記磁気抵抗効果素子を挟む位置にある第1点及び第2点と、前記磁気抵抗効果素子の前記第1強磁性層側の第3点と、のうち少なくとも一つに接続され、前記制御部は、読み出し時に読み出し電流を、前記第3点から前記第1点及び前記第2点に向かって分流する、または、前記第1点及び前記第2点から前記第3点に向かって合流させる。
(2)上記態様にかかるスピン流磁気抵抗効果素子において、前記制御部は、読み出し時に前記第1点及び前記第2点の電位を、前記第3点の電位より高く又は低くしてもよい。
(3)上記態様にかかるスピン流磁気抵抗効果素子は、前記第1点に接続された第2トランジスタと、前記第2点に接続された第3トランジスタと、を備えてもよい。
(4)上記態様にかかるスピン流磁気抵抗効果素子の前記スピン軌道トルク配線において、前記磁気抵抗効果素子と前記第1点との間の抵抗値が、前記磁気抵抗効果素子と前記第2点との間の抵抗値と等しくてもよい。
(5)上記態様にかかるスピン流磁気抵抗効果素子において、前記第1点と前記第2点とが、平面視で前記磁気抵抗効果素子に対して対称な位置にあってもよい。
(6)上記態様にかかるスピン流磁気抵抗効果素子において、前記スピン軌道トルク配線を前記第1の方向と直交する面で切断した断面の面積が、前記磁気抵抗効果素子を積層方向と直交する面で切断した断面の面積以下であってもよい。
(7)上記態様にかかるスピン流磁気抵抗効果素子において、前記第2強磁性金属層の前記スピン軌道トルク配線側の第1面の面積が、前記非磁性層側の第2面の面積より大きくてもよい。
(8)上記態様にかかるスピン流磁気抵抗効果素子において、前記第1強磁性金属層と電気的に接続された整流器をさらに備えてもよい。
(9)第2の態様にかかる磁気メモリは、上記態様にかかるスピン流磁気抵抗効果素子を複数備える。
 上記態様にかかるスピン流磁気抵抗効果素子及び磁気メモリによれば、読み出し時の誤書き込みを抑制できる。
第1実施形態に係るスピン流磁気抵抗効果素子を模式的に示した断面図である。 スピンホール効果について説明するための模式図である。 第1実施形態に係るスピン流磁気抵抗効果素子が複数配列した磁気メモリの回路図である。 読出し電流がスピン軌道トルク配線で分流せず、一方の電極に向かって流れるスピン流磁気抵抗効果素子の断面図である。 制御部を有さないスピン流磁気抵抗効果素子が複数配列した磁気メモリの回路図である。 第1実施形態にかかるスピン流磁気抵抗効果素子の別の例の断面模式図である。 第1実施形態にかかるスピン流磁気抵抗効果素子の別の例の断面模式図である。
 以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。
(スピン流磁気抵抗効果素子)
 図1は、第1実施形態に係るスピン流磁気抵抗効果素子を模式的に示した断面図である。第1実施形態に係るスピン流磁気抵抗効果素子100は、磁気抵抗効果素子10と、スピン軌道トルク配線20と、制御部30とを有する。また図1に示すスピン流磁気抵抗効果素子100は、電気的な接続を補助する電極40と、素子に電流を流すか否かを決定する素子選択部50とを備える。
 以下、磁気抵抗効果素子10の積層方向をz方向、スピン軌道トルク配線20が延在する第1の方向をx方向、z方向及びx方向のいずれにも直交する第2の方向をy方向とする。
<磁気抵抗効果素子>
 磁気抵抗効果素子10は、第1強磁性金属層1と、磁化方向が変化する第2強磁性金属層2と、第1強磁性金属層1及び第2強磁性金属層2に挟持された非磁性層3とを有する。第1強磁性金属層1の磁化M1は、第2強磁性金属層2の磁化M2に対して相対的に固定されている。
 磁気抵抗効果素子10は、第1強磁性金属層1の磁化M1と、第2強磁性金属層2の磁化M2との向きが相対的に変化することで機能する。保磁力差型(擬似スピンバルブ型;Pseudo spin valve 型)のMRAMに適用する場合には、磁気抵抗効果素子10の第1強磁性金属層1の保磁力を第2強磁性金属層2の保磁力よりも大きくする。交換バイアス型(スピンバルブ;spin valve型)のMRAMに適用する場合には、磁気抵抗効果素子10における第1強磁性金属層1の磁化M1を、反強磁性層との交換結合によって固定する。
 磁気抵抗効果素子10は、非磁性層3が絶縁体からなる場合は、トンネル磁気抵抗(TMR:Tunneling Magnetoresistance)素子であり、非磁性層3が金属からなる場合は巨大磁気抵抗(GMR:Giant Magnetoresistance)素子である。
 磁気抵抗効果素子の積層構成は、公知の磁気抵抗効果素子の積層構成を採用できる。例えば、各層は複数の層からなるものでもよいし、第1強磁性金属層1の磁化方向を固定するための反強磁性層等の他の層を備えてもよい。第1強磁性金属層1は固定層や参照層、第2強磁性金属層2は自由層や記憶層などと呼ばれる。
 第1強磁性金属層1の材料には、公知のものを用いることができる。例えば、Cr、Mn、Co、Fe及びNiからなる群から選択される金属及びこれらの金属を1種以上含み強磁性を示す合金を用いることができる。またこれらの金属と、B、C、及びNの少なくとも1種以上の元素とを含む合金を用いることもできる。具体的には、Co-FeやCo-Fe-Bが挙げられる。
 また第1強磁性金属層1の材料には、CoFeSiなどのホイスラー合金を用いることもできる。ホイスラー合金はスピン分極率が高く、磁気抵抗効果素子10のMR比を大きくできる。ホイスラー合金は、XYZまたはXYZの化学組成をもつ金属間化合物を含み、Xは、周期表上でCo、Fe、Ni、あるいはCu族の遷移金属元素または貴金属元素であり、Yは、Mn、V、CrあるいはTi族の遷移金属又はXの元素種であり、Zは、III族からV族の典型元素である。例えば、CoFeSi、CoMnSiやCoMn1-aFeAlSi1-bなどが挙げられる。
 また、第1強磁性金属層1の第2強磁性金属層2に対する保磁力をより大きくするために、第1強磁性金属層1と接する材料としてIrMn,PtMnなどの反強磁性材料を用いてもよい。さらに、第1強磁性金属層1の漏れ磁場を第2強磁性金属層2に影響させないようにするため、シンセティック強磁性結合の構造としてもよい。
 さらに第1強磁性金属層1の磁化の向きを積層面に対して垂直にする場合には、CoとPtの積層膜を用いることが好ましい。具体的には、第1強磁性金属層1は、非磁性層3側から順にFeB(1.0nm)/Ta(0.2nm)/[Pt(0.16nm)/Co(0.16nm)]/Ru(0.9nm)/[Co(0.24nm)/Pt(0.16nm)]とすることができる。
 第2強磁性金属層2の材料として、強磁性材料、特に軟磁性材料を適用できる。例えば、Cr、Mn、Co、Fe及びNiからなる群から選択される金属、これらの金属を1種以上含む合金、これらの金属とB、C、及びNの少なくとも1種以上の元素とが含まれる合金等を用いることができる。具体的には、Co-Fe、Co-Fe-B、Ni-Feが挙げられる。
 第2強磁性金属層2の磁化の向きはz方向に(積層面に対して垂直に)配向している。第2強磁性金属層2の磁化の向きがz方向に配向することで、磁気抵抗効果素子10の大きさを小さくできる。第2強磁性金属層2の磁化の向きは、第2強磁性金属層2を構成する結晶構造及び第2強磁性金属層2の厚みの影響を受ける。第2強磁性金属層2の厚みを2.5nm以下とすることが好ましい。垂直磁気異方性は第2強磁性金属層2の膜厚を厚くすることによって効果が減衰するため、第2強磁性金属層2の膜厚は薄い方が好ましい。
 非磁性層3には、公知の材料を用いることができる。
 例えば、非磁性層3が絶縁体からなる場合(トンネルバリア層である場合)、その材料としては、Al、SiO、MgO、及び、MgAl等を用いることができる。またこれらの他にも、Al,Si,Mgの一部が、Zn、Be等に置換された材料等も用いることができる。これらの中でも、MgOやMgAlはコヒーレントトンネルが実現できる材料であるため、スピンを効率よく注入できる。
 非磁性層3が金属からなる場合、その材料としては、Cu、Au、Ag等を用いることができる。
 磁気抵抗効果素子10は、その他の層を有していてもよい。例えば、第2強磁性金属層2の非磁性層3と反対側の面に下地層を有していてもよいし、第1強磁性金属層1の非磁性層3と反対側の面にキャップ層を有していてもよい。
 スピン軌道トルク配線20と磁気抵抗効果素子10との間に配設される層は、スピン軌道トルク配線20から伝播するスピンを散逸しないことが好ましい。例えば、銀、銅、マグネシウム、及び、アルミニウム等は、スピン拡散長が100nm以上と長く、スピンが散逸しにくいことが知られている。
 またこの層の厚みは、層を構成する物質のスピン拡散長以下であることが好ましい。層の厚みがスピン拡散長以下であれば、スピン軌道トルク配線20から伝播するスピンを磁気抵抗効果素子10に十分伝えることができる。
<スピン軌道トルク配線>
 スピン軌道トルク配線20は、x方向に延在する。スピン軌道トルク配線20は、第2強磁性金属層2のz方向の一面に位置する。スピン軌道トルク配線20は、第2強磁性金属層2に直接接続されていてもよいし、他の層を介して接続されていてもよい。
 スピン軌道トルク配線20は、電流が流れるとスピンホール効果によって純スピン流が生成される材料からなる。かかる材料としては、スピン軌道トルク配線20中に純スピン流が生成される構成のものであれば足りる。従って、スピン軌道トルク配線20は単体の元素からなる材料に限られず、純スピン流が生成される材料で構成される部分と純スピン流が生成されない材料で構成される部分とからなるもの等であってもよい。
 スピンホール効果とは、材料に電流を流した場合にスピン軌道相互作用に基づき、電流の向きに直交する方向に純スピン流が誘起される現象である。
 図2は、スピンホール効果について説明するための模式図である。図2は、図1に示すスピン軌道トルク配線20をx方向に沿って切断した断面図である。図2に基づいてスピンホール効果により純スピン流が生み出されるメカニズムを説明する。
 図2に示すように、スピン軌道トルク配線20の延在方向に電流Iを流すと、紙面奥側に配向した第1スピンS1と紙面手前側に配向した第2スピンS2はそれぞれ電流と直交する方向に曲げられる。通常のホール効果とスピンホール効果とは運動(移動)する電荷(電子)が運動(移動)方向を曲げられる点で共通するが、通常のホール効果は磁場中で運動する荷電粒子がローレンツ力を受けて運動方向を曲げられるのに対して、スピンホール効果では磁場が存在しないのに電子が移動するだけ(電流が流れるだけ)で移動方向が曲げられる点で大きく異なる。
 非磁性体(強磁性体ではない材料)では第1スピンS1の電子数と第2スピンS2の電子数とが等しいので、図中で上方向に向かう第1スピンS1の電子数と下方向に向かう第2スピンS2の電子数が等しい。そのため、電荷の正味の流れとしての電流はゼロである。この電流を伴わないスピン流は特に純スピン流と呼ばれる。
 強磁性体中に電流を流した場合は、第1スピンS1と第2スピンS2が互いに反対方向に曲げられる点は同じである。一方で、強磁性体中では第1スピンS1と第2スピンS2のいずれかが多い状態であり、結果として電荷の正味の流れが生じてしまう(電圧が発生してしまう)点が異なる。従って、スピン軌道トルク配線20の材料としては、強磁性体だけからなる材料は含まれない。
 ここで、第1スピンS1の電子の流れをJ、第2スピンS2の電子の流れをJ、スピン流をJと表すと、J=J-Jで定義される。図2においては、純スピン流としてJが図中の上方向に流れる。ここで、Jは分極率が100%の電子の流れである。
 図1において、スピン軌道トルク配線20の上面に強磁性体を接触させると、純スピン流は強磁性体中に拡散して流れ込む。すなわち、磁気抵抗効果素子10にスピンが注入される。
 スピン軌道トルク配線20は、非磁性の重金属を含んでもよい。ここで、重金属とは、イットリウム以上の比重を有する金属の意味で用いている。スピン軌道トルク配線20は、非磁性の重金属だけからなってもよい。
 非磁性の重金属は、最外殻にd電子又はf電子を有する原子番号39以上の原子番号が大きい非磁性金属であることが好ましい。かかる非磁性金属は、スピンホール効果を生じさせるスピン軌道相互作用が大きいからである。スピン軌道トルク配線20は、最外殻にd電子又はf電子を有する原子番号39以上の原子番号が大きい非磁性金属だけからなってもよい。
 金属に電流を流すとすべての電子はそのスピンの向きに関わりなく、電流とは逆向きに動くのに対して、最外殻にd電子又はf電子を有する原子番号が大きい非磁性金属はスピン軌道相互作用が大きいためにスピンホール効果によって電子の動く方向が電子のスピンの向きに依存し、純スピン流Jが発生しやすい。
 スピン軌道トルク配線20は、磁性金属を含んでもよい。磁性金属とは、強磁性金属、あるいは、反強磁性金属を指す。非磁性金属に微量な磁性金属が含まれるとスピン軌道相互作用が増強され、スピン軌道トルク配線20に流す電流に対するスピン流生成効率を高くできるからである。スピン軌道トルク配線20は、反強磁性金属だけからなってもよい。
 スピン軌道相互作用はスピン軌道トルク配線材料の物質の固有の内場によって生じるため、非磁性材料でも純スピン流が生じる。スピン軌道トルク配線材料に微量の磁性金属を添加すると、磁性金属自体が流れる電子スピンを散乱するためにスピン流生成効率が向上する。ただし、磁性金属の添加量が増大し過ぎると、発生した純スピン流が添加された磁性金属によって散乱されるため、結果としてスピン流が効率的に発生しにくくなる。したがって、添加される磁性金属のモル比はスピン軌道トルク配線における純スピン生成部の主成分のモル比よりも十分小さい方が好ましい。目安で言えば、添加される磁性金属のモル比は3%以下であることが好ましい。
 スピン軌道トルク配線20は、トポロジカル絶縁体を含んでもよい。スピン軌道トルク配線20は、トポロジカル絶縁体だけからなってもよい。トポロジカル絶縁体とは、物質内部が絶縁体、あるいは、高抵抗体であるが、その表面にスピン偏極した金属状態が生じている物質である。物質にはスピン軌道相互作用という内部磁場のようなものがある。そこで外部磁場が無くてもスピン軌道相互作用の効果で新たなトポロジカル相が発現する。これがトポロジカル絶縁体であり、強いスピン軌道相互作用とエッジにおける反転対称性の破れにより純スピン流を高効率に生成することができる。
 トポロジカル絶縁体としては例えば、SnTe,Bi1.5Sb0.5Te1.7Se1.3,TlBiSe,BiTe,(Bi1-xSbTeなどが好ましい。これらのトポロジカル絶縁体は、高効率にスピン流を生成することが可能である。
 スピン流磁気抵抗効果素子100は、磁気抵抗効果素子10とスピン軌道トルク配線20以外の構成要素を有していてもよい。例えば、支持体として基板等を有していてもよい。基板は、平坦性に優れることが好ましく、材料として例えば、Si、AlTiC等を用いることができる。
<電極>
 電極40は、磁気抵抗効果素子10及びスピン軌道トルク配線20に流れる電流との接続点に設けられている。図1に示すスピン流磁気抵抗効果素子100は、磁気抵抗効果素子10の第1強磁性金属層1に接続された第1電極41と、スピン軌道トルク配線20の第1点21に接続された第2電極42と、スピン軌道トルク配線20の第2点22に接続された第3電極43と、を備える。電極40は、導電性に優れるものであれば特に問わない。
<素子選択部>
 素子選択部50は、第1トランジスタ51と、第2トランジスタ52と、第3トランジスタ53とを備える。第1トランジスタ51、第2トランジスタ52、第3トランジスタ53は、公知のものを用いることができる。
 第1トランジスタ51は、磁気抵抗効果素子10の第1強磁性金属層1側の第3点11と電気的に接続されている。図1では、第1トランジスタ51は、第1強磁性金属層1のz方向に積層された第1電極41を介して接続されている。第1トランジスタ51は、素子外部に設けることもできる。
 第2トランジスタ52は、スピン軌道トルク配線20の第1点21と電気的に接続されている。図1では、第2トランジスタ52は、スピン軌道トルク配線20の第1点21に接続された第2電極42を介して接続されている。ここでスピン軌道トルク配線20の第1点21は、スピン軌道トルク配線20のz方向から見て磁気抵抗効果素子10と重ならない部分のいずれでもよい。
 第3トランジスタ53は、スピン軌道トルク配線20の第2点22と電気的に接続されている。図1では、第3トランジスタ53は、スピン軌道トルク配線20の第2点22に接続された第3電極43を介して接続されている。ここでスピン軌道トルク配線20の第2点22は、z方向から見て、スピン軌道トルク配線20のx方向に、第1点21と磁気抵抗効果素子10を挟む位置にある。第1点21と第2点22とで、x方向に磁気抵抗効果素子10を挟んでいれば、第1点21と第2点22の位置はy方向にずれていてもよい。
<制御部>
 制御部30は、読み出し時に磁気抵抗効果素子10及びスピン軌道トルク配線20に流れる読み出し電流の向きを制御する。制御部30は、スピン軌道トルク配線20において第1の方向に磁気抵抗効果素子10を挟む位置にある第1点21及び第2点22と、磁気抵抗効果素子10の第1強磁性層1側の第3点11とのうち少なくとも一つに接続されている。図1に示す制御部30は、スピン軌道トルク配線20の第1点21と電気的に接続されたスイッチング素子である。図1に示す制御部30は、第1点21の電位を制御する。制御部30は、スピン軌道トルク配線20の第1点21と第2点22との間の電位を変えることができるものであれば、スイッチング素子に限られず、公知のものを用いることができる。また図1では制御部30は、第1点21と電気的に接続しているが、第2点22と電気的に接続してもよい。
 制御部30は、スピン流磁気抵抗効果素子100が複数存在する場合は共用することができる。制御部30は、書き込み時の第2電極42の電位を第3電極43の電位を高くするためのものであり、読み込み時は基準電位に接続される。図1では、基準電位をグラウンドGとしている。
(スピン流磁気抵抗効果素子の動作)
 図3は、スピン流磁気抵抗効果素子100が複数配列した磁気メモリの回路図である。図3に示す磁気メモリ200は、複数のスピン流磁気抵抗効果素子100を備える。磁気メモリ200において、複数のスピン流磁気抵抗効果素子100は制御部30を共用している。図3では2つの素子毎に1つの制御部30を設けたが、各素子に一つの制御部30を設けてもよいし、全ての素子で1つの制御部30を共用してもよい。また図3ではそれぞれの素子毎に、第1トランジスタ51を設けたが、第1トランジスタ51は、複数の素子で共用してもよい。図3では、スピン軌道トルク配線20を抵抗20A,20Bとして図示している。以下、図1及び図3を用いて、スピン流磁気抵抗効果素子100への書込み動作及び読出し動作について説明する。
「書込み動作」
 スピン流磁気抵抗効果素子100へのデータ書き込みは、第2強磁性金属層2の磁化M2と、第1強磁性金属層1の磁化M1との相対角の制御により行う。これらの磁化M1,M2の相対角は、第2強磁性金属層の磁化M2の向きにより制御される。第2強磁性金属層2の磁化M2の向きは、スピン軌道相互作用によって生じた純スピン流又は異種材料の界面におけるラシュバ効果が誘起するスピン軌道トルク(SOT)により反転する。
 磁気メモリ200の特定のスピン流磁気抵抗効果素子100にデータを書き込む際には、スイッチング素子(制御部30)を切り替え、第2電極42(図1参照)を電位V2と接続する。そしてデータを書き込むスピン流磁気抵抗効果素子100を選択し、選択したスピン流磁気抵抗効果素子100の第2トランジスタ52と第3トランジスタ53を開放する。
 選択されたスピン流磁気抵抗効果素子100における第2電極42は、電位V2と等電位になるため、グラウンドGに接続される第3電極43の電位より高電位になる(図1参照)。その結果、スピン軌道トルク配線20の第2電極42から第3電極43に向かう方向に書込み電流Iが流れる。この電流は純スピン流を生み出す。そして、所定の方向に配向したスピンが、純スピン流によってスピン軌道トルク配線20から第2強磁性金属層2に注入される。注入されたスピンは、第2強磁性金属層2の磁化M2にスピン軌道トルクを与え、第2強磁性金属層2の磁化M2が磁化反転し、データを書き込む。
「読出し動作」
 スピン流磁気抵抗効果素子100は、第2強磁性金属層2の磁化M2と、第1強磁性金属層1の磁化M1との相対角によって変化した磁気抵抗効果素子10の抵抗値をデータとして読み出す。
 スピン流磁気抵抗効果素子100の読出し動作時には、スイッチング素子(制御部30)を切り替え、第2電極42をグラウンドGと接続する。そして第1トランジスタ51、第2トランジスタ52及び第3トランジスタ53を開放する。第2電極42をグラウンドGと接続すると、第2電極42と第3電極43が等電位になる。電位V1に接続された第1電極41は、第2電極42及び第3電極43より高電位である。そのため、読出し電流Iは、第1電極41から磁気抵抗効果素子10の積層方向に流れ、スピン軌道トルク配線20で分流した後、第2電極42及び第3電極43に流れる。この読出し電流Iを外部に出力することで、データが読み出される。スピン流磁気抵抗効果素子100は、読出し電流Iが途中で分流されることで、読出し時の誤書き込みを抑制できる。
 図4は、読出し電流がスピン軌道トルク配線で分流せず、一方の電極に向かって流れるスピン流磁気抵抗効果素子101の断面図である。図4に示すスピン流磁気抵抗効果素子101は制御部30を有さない点が、第1実施形態にかかるスピン流磁気抵抗効果素子100と異なる。その他の構成は同一であり、同一の符号を付す。
 また図5は、制御部30を有さないスピン流磁気抵抗効果素子101が複数配列した磁気メモリの回路図である。図3に示す磁気メモリ200は、それぞれのスピン流磁気抵抗効果素子100が3つのトランジスタ(第1トランジタ51、第2トランジスタ52及び第3トランジスタ53)を有しているのに対し、図5に示す磁気メモリ201は各スピン流磁気抵抗効果素子101が2つのトランジスタ(第1トランジスタ51、第2トランジスタ52)を有し、複数のスピン流磁気抵抗効果素子101で一つのトランジスタ(第3トランジスタ53)を共有している点で異なる。
 図5に示す磁気メモリ201の特定のスピン流磁気抵抗効果素子101にデータを書き込む際は、第2トランジスタ52と第3トランジスタ53を開放する。二つのトランジスタを開放することで、第2電極42から第3電極43に向かって書き込み電流Iが流れる。書き込み電流Iによって第2強磁性金属層2の磁化M2の向きが制御され、データを書き込む。この書き込み電流Iの流れは、図1に示すスピン流磁気抵抗効果素子100と同じである。
 一方で、図5に示す磁気メモリ201の特定のスピン流磁気抵抗効果素子101からデータを読み出す際は、第1トランジスタ51と第3トランジスタ53を開放する。二つのトランジスタを開放することで、第1電極41から第3電極43に向かって読出し電流I’が流れる。
 図4に示すように、スピン軌道トルク配線20のz方向から見て磁気抵抗効果素子10と重なる重畳部23において、読出し電流I’はスピン軌道トルク配線20内をx方向に流れる成分(以下、この電流をx成分IRx’という。)を有する。
 このx成分IRx’は、書き込み電流Iと同様に、純スピン流を生み出し、第2強磁性金属層2にスピンを注入する。注入されたスピンは、第2強磁性金属層2の磁化M2にSOTを与える。x成分IRx’の電流密度は、書き込み電流Iの電流密度と比較して充分小さい。そのため、x成分IRx’により誘起されたスピン軌道トルクによって第2強磁性金属層2の磁化M2が反転することは、原則的には生じない。しかしながら、熱揺らぎ等の外的な要因が加わった場合に、このx成分IRx’により誘起されたスピン軌道トルクは、誤書き込みの原因となる。
 これに対し、第1実施形態にかかるスピン流磁気抵抗効果素子100は、読出し電流Iがスピン軌道トルク配線20で分流する(図1参照)。そのため、重畳部23において、読出し電流Iは、スピン軌道トルク配線20内をx方向に流れる成分(以下、この電流をx成分IRxという。)と、-x方向に流れる成分(以下、この電流を-x成分IR-xという。)とを有する。
 スピン流磁気抵抗効果素子100では読出し電流Iが分流している。そのため、x成分IRx及び-x成分IR-xの電流量は、図4に示すx成分IRx’と比較して小さい。x成分IRx及び-x成分IR-xが誘起できるSOTは小さく、誤書き込みが抑制される。
 またx成分IRxと-x成分IR-xが流れる方向は逆向きである。そのため、x成分IRxが第2強磁性金属層2に注入するスピンの向きと、-x成分IR-xが第2強磁性金属層2に注入するスピンの向きとは、逆向きであり、第2強磁性金属層2の磁化M2に与えるスピン軌道トルクのベクトルも逆向きとなる。従って、x成分IRxと-x成分IR-xとが磁化M2に与える力は互いに相殺され、誤書き込みがより抑制される。
 x成分IRxと-x成分IR-xとが磁化M2に与える力を完全に相殺するためには、磁気抵抗効果素子10に対してスピン軌道トルク配線20の第1点21と第2点22とは対称な位置に存在することが好ましい。またスピン軌道トルク配線20を構成する材料、厚み、幅等がx方向の位置によって異なる場合は、磁気抵抗効果素子10と第1点21との間の抵抗値が、磁気抵抗効果素子10と第2点22との間の抵抗値と等しいことが好ましい。
 上述のように、第1実施形態にかかるスピン流磁気抵抗効果素子100によれば、読出し時の読み出し電流Iによる誤書き込みを抑制することができる。またスピン軌道トルク配線20でx方向と-x方向に分流する読出し電流量を等しくすることで、さらに誤書き込みを抑制することができる。
 また第1実施形態にかかるスピン流磁気抵抗効果素子100の読み出し時の誤書き込みを抑制する効果は、以下の関係式(1)を満たす読出し電流Iが読み出し時に印加されている場合に特に有用である。
 Jc×SSOT<I<Jc×SMTJ ・・・(1)
 上記の関係式(1)においてJcは、磁化反転に必要な閾値反転電流密度であり、SSOTはスピン軌道トルク配線20をx方向と直交するyz面で切断した断面の面積であり、SMTJは磁気抵抗効果素子10をz方向と直交するxy面で切断した断面の面積である。
 磁気抵抗効果素子10の第2強磁性金属層2の磁化M2が磁化反転するか否かは、流れる電流の電流密度によって決まる。磁化M2を磁化反転させるために必要な電流密度を閾値反転電流密度という。SOTによる磁化反転に必要な閾値反転電流密度と、STTによる磁化反転に必要な閾値反転電流密度は、ほぼ等しいと考えられている。
 図4に示すスピン流磁気抵抗効果素子101の場合、誤書き込みを防ぐためには、z方向に流れる読出し電流I’によるSTTの効果と、読出し電流I’のx成分IRx’によるSOTの効果とを考慮する必要がある。読み出し電流I’を分流しない場合において、x成分IRx’の電流量は読み出し電流I’の電流量と等しい。そのため、読出し電流I’は、以下の関係式(2)を満たす必要がある。
 I’<Jc×SSOT<Jc×SMTJ ・・・(2)
 これに対し、図1に示すスピン流磁気抵抗効果素子100は、読出し電流Iを途中で分流するため、x成分IRxの電流量は読み出し電流Iの電流量より小さい。そのため以下の関係式(3)を満たせば、読出し電流Iのx成分IRxによるSOTの効果による誤書き込みは抑制できる。
  IRx<Jc×SSOT  ・・・(3)
 つまり第1実施形態にかかるスピン流磁気抵抗効果素子100によれば、読出し電流I自体をJc×SSOTより大きくすることができる。読出し電流Iを大きくすると、出力される信号を大きくすることができる。すなわち、データがノイズに紛れ、誤読出しが生じることを避けることができる。一般式(1)の関係を満たすためには、スピン軌道トルク配線20をx方向と直交するyz面で切断した断面の面積SSOTは、磁気抵抗効果素子10をz方向と直交するxy面で切断した断面の面積SMTJ以下であることが好ましい。
 以上、本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 例えば、図6に示すように、磁気抵抗効果素子10の形状がz方向に一定で無くてもよい。図6は、第1実施形態にかかるスピン流磁気抵抗効果素子の別の例の断面模式図である。図6に示すスピン流磁気抵抗効果素子102の磁気抵抗効果素子10’は、第2強磁性金属層2’のスピン軌道トルク配線20側の第1面の面積が、非磁性層3’側の第2面の面積より大きい。
 図6に示すスピン流磁気抵抗効果素子102は、磁気抵抗効果素子10’の形状に沿って読出し電流Iが流れる。そのため、読出し電流Iが、スピン軌道トルクの発生原因となるスピン軌道トルク配線20に沿った電流の流れを生み出すことを避けることができる。その結果、スピン流磁気抵抗効果素子102は、誤書き込みをより抑制することができる。
 またスピン流磁気抵抗効果素子100、101において、第1強磁性金属層1、1’と電気的に接続された整流器をさらに備えてもよい。整流器を設けることで、書込み電流Iが磁気抵抗効果素子10の積層方向に向かって流れることを避けることができる。
また図1に示すスピン流磁気抵抗効果素子100は、読み出し時に第2電極42(第1点21)と第3電極43(第2点22)とが等電位になるように、制御部30で制御している。第2電極42(第1点21)と第3電極43(第2点22)とは、読み出し電流が分流して流れれば、必ずしも等電位である必要はない。第1電極41(第3点11)と第2電極42(第1点21)との電位差は、第1電極41(第3点11)と第3電極43(第2点22)との電位差の50%以内であることが好ましい。
また図1に示すスピン流磁気抵抗効果素子100は、磁気抵抗効果素子10を基準に第1点21と第2点22とが対称な位置にある。第1点21と第2点との位置関係は、磁気抵抗効果素子10に対して非対称な位置でもよい。例えば、読み出し電流Iが分流後に第1点21側に多く流れる場合は、第1点21と磁気抵抗効果素子10との距離は、第2点22と磁気抵抗効果素子10との距離より短くすることが好ましい。読み出し電流Iが多く流れる側において、読み出し電流Iが流れる距離を短くすることで、スピン軌道トルク配線20による寄生抵抗を低減できる。また磁気抵抗効果素子10と第1点21との間の抵抗値は、磁気抵抗効果素子10と第2点22との間の抵抗値の50%以上150%以下であることが好ましく、磁気抵抗効果素子10と第2点22との間の抵抗値と等しいことがより好ましい。
また図7に示すスピン流磁気抵抗効果素子103のように、第3点11の電位V1をグラウンドGより低くして、読み出し電流Iの流れ方向を反対にしてもよい。図7に示すスピン流磁気抵抗効果素子103における制御部30は、読み出し時に第1点21及び第2点22の電位を、第3点11の電位より高くする。
この場合、読み出し電流Iは第1点21及び第2点22から第3点11に向かって合流する。読み出し電流Iが合流する場合も、x成分IRx及び-x成分IR-xの電流量は、図4に示すx成分IRx’と比較して小さい。x成分IRx及び-x成分IR-xが誘起できるSOTは小さく、誤書き込みが抑制される。
 またx成分IRxと-x成分IR-xが流れる方向は逆向きである。そのため、x成分IRxが第2強磁性金属層2に注入するスピンの向きと、-x成分IR-xが第2強磁性金属層2に注入するスピンの向きとは、逆向きであり、第2強磁性金属層2の磁化M2に与えるスピン軌道トルクのベクトルも逆向きとなる。従って、x成分IRxと-x成分IR-xとが磁化M2に与える力は互いに相殺され、誤書き込みがより抑制される。
1 第1強磁性金属層
2 第2強磁性金属層
3 非磁性層
10 磁気抵抗効果素子
11 第3点
20 スピン軌道トルク配線
21 第1点
22 第2点
23 重畳部
30 制御部
40 電極
41 第1電極
42 第2電極
43 第3電極
50 素子選択部
51 第1トランジスタ
52 第2トランジスタ
53 第3トランジスタ
M1,M2…磁化
 書き込み電流
 読出し電流

Claims (9)

  1.  第1強磁性金属層と、第2強磁性金属層と、前記第1強磁性金属層及び前記第2強磁性金属層に挟持された非磁性層と、を有する磁気抵抗効果素子と、
     前記磁気抵抗効果素子の積層方向に対して交差する第1の方向に延在し、前記磁気抵抗効果素子の前記第2強磁性金属層の側に位置するスピン軌道トルク配線と、
     読み出し時に前記磁気抵抗効果素子及び前記スピン軌道トルク配線に流れる電流の向きを制御する制御部と、を備え、
     前記制御部は、前記スピン軌道トルク配線において第1の方向に前記磁気抵抗効果素子を挟む位置にある第1点及び第2点と、前記磁気抵抗効果素子の前記第1強磁性層側の第3点と、のうち少なくとも一つに接続され、
    前記制御部は、読み出し時に読み出し電流を、前記第3点から前記第1点及び前記第2点に向かって分流する、または、前記第1点及び前記第2点から前記第3点に向かって合流させる、スピン流磁気抵抗効果素子。
  2. 前記制御部は、読み出し時に前記第1点及び前記第2点の電位を、前記第3点の電位より高く又は低くする、請求項1に記載のスピン流磁気抵抗効果素子。
  3.  前記第1点と電気的に接続された第2トランジスタと、前記第2点と電気的に接続された第3トランジスタと、をさらに備える、請求項1又は2に記載のスピン流磁気抵抗効果素子。
  4.  前記スピン軌道トルク配線において、前記磁気抵抗効果素子と前記第1点との間の抵抗値が、前記磁気抵抗効果素子と前記第2点との間の抵抗値と等しい、請求項1から3のいずれか一項に記載のスピン流磁気抵抗効果素子。
  5.  前記第1点と前記第2点とが、平面視で前記磁気抵抗効果素子に対して対称な位置にある請求項1~4のいずれか一項に記載のスピン流磁気抵抗効果素子。
  6.  前記スピン軌道トルク配線を前記第1の方向と直交する面で切断した断面の面積が、前記磁気抵抗効果素子を積層方向と直交する面で切断した断面の面積より小さい、請求項1~5のいずれか一項に記載のスピン流磁気抵抗効果素子。
  7.  前記第2強磁性金属層の前記スピン軌道トルク配線側の第1面の面積が、前記非磁性層側の第2面の面積より大きい、請求項1~6のいずれか一項に記載のスピン流磁気抵抗効果素子。
  8.  前記第1強磁性金属層と電気的に接続された整流器をさらに備える、請求項1~7のいずれか一項に記載のスピン流磁気抵抗効果素子。
  9.  請求項1~8のいずれか一項に記載のスピン流磁気抵抗効果素子を複数備える、磁気メモリ。
PCT/JP2018/027646 2017-08-07 2018-07-24 スピン流磁気抵抗効果素子及び磁気メモリ WO2019031226A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/333,176 US11276447B2 (en) 2017-08-07 2018-07-24 Spin current magnetoresistance effect element and magnetic memory
JP2019535082A JP6733822B2 (ja) 2017-08-07 2018-07-24 スピン流磁気抵抗効果素子及び磁気メモリ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-152468 2017-08-07
JP2017152468 2017-08-07

Publications (1)

Publication Number Publication Date
WO2019031226A1 true WO2019031226A1 (ja) 2019-02-14

Family

ID=65271357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027646 WO2019031226A1 (ja) 2017-08-07 2018-07-24 スピン流磁気抵抗効果素子及び磁気メモリ

Country Status (3)

Country Link
US (1) US11276447B2 (ja)
JP (1) JP6733822B2 (ja)
WO (1) WO2019031226A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI754538B (zh) * 2020-03-12 2022-02-01 力旺電子股份有限公司 具有寬感測裕度的差動傳感裝置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180351084A1 (en) 2015-11-27 2018-12-06 Tdk Corporation Spin current magnetization reversal-type magnetoresistive effect element and method for producing spin current magnetization reversal-type magnetoresistive effect element
US11502188B2 (en) 2018-06-14 2022-11-15 Intel Corporation Apparatus and method for boosting signal in magnetoelectric spin orbit logic
US11476412B2 (en) 2018-06-19 2022-10-18 Intel Corporation Perpendicular exchange bias with antiferromagnet for spin orbit coupling based memory
US11362263B2 (en) * 2018-06-29 2022-06-14 Intel Corporation Spin orbit torque (SOT) memory devices and methods of fabrication
US11444237B2 (en) 2018-06-29 2022-09-13 Intel Corporation Spin orbit torque (SOT) memory devices and methods of fabrication
KR102517332B1 (ko) * 2018-09-12 2023-04-03 삼성전자주식회사 스핀-궤도 토크 라인을 갖는 반도체 소자 및 그 동작 방법
US11557629B2 (en) 2019-03-27 2023-01-17 Intel Corporation Spin orbit memory devices with reduced magnetic moment and methods of fabrication
US11594673B2 (en) 2019-03-27 2023-02-28 Intel Corporation Two terminal spin orbit memory devices and methods of fabrication
US11250896B2 (en) * 2019-06-23 2022-02-15 Purdue Research Foundation Valley spin hall effect based non-volatile memory

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021468A1 (ja) * 2014-08-08 2016-02-11 国立大学法人東北大学 磁気抵抗効果素子、及び磁気メモリ装置
US20160267961A1 (en) * 2015-02-09 2016-09-15 Qualcomm Incorporated Spin-orbit-torque magnetoresistive random access memory with voltage-controlled anisotropy
WO2016159017A1 (ja) * 2015-03-31 2016-10-06 国立大学法人東北大学 磁気抵抗効果素子、磁気メモリ装置、製造方法、動作方法、及び集積回路
JP2017112351A (ja) * 2015-12-14 2017-06-22 株式会社東芝 磁気メモリ
JP2018093065A (ja) * 2016-12-02 2018-06-14 株式会社東芝 磁気メモリ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2963153B1 (fr) 2010-07-26 2013-04-26 Centre Nat Rech Scient Element magnetique inscriptible
WO2013025994A2 (en) 2011-08-18 2013-02-21 Cornell University Spin hall effect magnetic apparatus, method and applications
CN104704564B (zh) * 2012-08-06 2017-05-31 康奈尔大学 磁性纳米结构中基于自旋霍尔扭矩效应的电栅控式三端子电路及装置
US9076537B2 (en) * 2012-08-26 2015-07-07 Samsung Electronics Co., Ltd. Method and system for providing a magnetic tunneling junction using spin-orbit interaction based switching and memories utilizing the magnetic tunneling junction
US8889433B2 (en) 2013-03-15 2014-11-18 International Business Machines Corporation Spin hall effect assisted spin transfer torque magnetic random access memory
KR102419536B1 (ko) * 2014-07-17 2022-07-11 코넬 유니버시티 효율적인 스핀 전달 토크를 위한 향상된 스핀 홀 효과에 기초한 회로들 및 디바이스들
KR102212558B1 (ko) * 2014-12-22 2021-02-08 삼성전자주식회사 자기 메모리 소자의 제조 방법
JP6137254B2 (ja) 2015-09-10 2017-05-31 ダイキン工業株式会社 空調室内機
JP6200471B2 (ja) * 2015-09-14 2017-09-20 株式会社東芝 磁気メモリ
US9830966B2 (en) * 2015-10-29 2017-11-28 Western Digital Technologies, Inc. Three terminal SOT memory cell with anomalous Hall effect
US9881660B2 (en) * 2015-12-14 2018-01-30 Kabushiki Kaisha Toshiba Magnetic memory
US10381060B2 (en) 2016-08-25 2019-08-13 Qualcomm Incorporated High-speed, low power spin-orbit torque (SOT) assisted spin-transfer torque magnetic random access memory (STT-MRAM) bit cell array
JP6290487B1 (ja) 2017-03-17 2018-03-07 株式会社東芝 磁気メモリ
US10229722B2 (en) * 2017-08-01 2019-03-12 International Business Machines Corporation Three terminal spin hall MRAM

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021468A1 (ja) * 2014-08-08 2016-02-11 国立大学法人東北大学 磁気抵抗効果素子、及び磁気メモリ装置
US20160267961A1 (en) * 2015-02-09 2016-09-15 Qualcomm Incorporated Spin-orbit-torque magnetoresistive random access memory with voltage-controlled anisotropy
WO2016159017A1 (ja) * 2015-03-31 2016-10-06 国立大学法人東北大学 磁気抵抗効果素子、磁気メモリ装置、製造方法、動作方法、及び集積回路
JP2017112351A (ja) * 2015-12-14 2017-06-22 株式会社東芝 磁気メモリ
JP2018093065A (ja) * 2016-12-02 2018-06-14 株式会社東芝 磁気メモリ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI754538B (zh) * 2020-03-12 2022-02-01 力旺電子股份有限公司 具有寬感測裕度的差動傳感裝置

Also Published As

Publication number Publication date
US11276447B2 (en) 2022-03-15
JP6733822B2 (ja) 2020-08-05
US20190244651A1 (en) 2019-08-08
JPWO2019031226A1 (ja) 2019-12-19

Similar Documents

Publication Publication Date Title
JP6733822B2 (ja) スピン流磁気抵抗効果素子及び磁気メモリ
US10658573B2 (en) Magnetic memory
JP7003991B2 (ja) 磁壁利用型アナログメモリ素子、磁壁利用型アナログメモリ、不揮発性ロジック回路及び磁気ニューロ素子
CN110462814B (zh) 自旋元件及磁存储器
JPWO2017090726A1 (ja) スピン流磁化反転素子、磁気抵抗効果素子及び磁気メモリ
JP6642773B2 (ja) スピン流磁化反転素子、スピン軌道トルク型磁気抵抗効果素子、及びスピン流磁化反転素子の製造方法
JP6610847B1 (ja) スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
JP7013839B2 (ja) 磁壁利用型アナログメモリ、不揮発性ロジック回路及び磁気ニューロ素子
JP6428988B1 (ja) スピン素子の安定化方法及びスピン素子の製造方法
JP6462191B1 (ja) データの書き込み方法、検査方法、スピン素子の製造方法及び磁気抵抗効果素子
CN111052398B (zh) 自旋轨道转矩型磁化反转元件和磁存储器
JP2020035971A (ja) スピン流磁化回転型磁気素子、スピン流磁化回転型磁気抵抗効果素子及び磁気メモリ
US10374151B2 (en) Spin current magnetoresistance effect element and magnetic memory
JP7139701B2 (ja) スピン流磁化反転素子、スピン軌道トルク型磁気抵抗効果素子、磁気メモリ及び高周波磁気素子
JP7095434B2 (ja) スピン流磁気抵抗効果素子及び磁気メモリ
JP2019161176A (ja) スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子、磁気メモリ及び発振器
JP2019204948A (ja) スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
JP7056316B2 (ja) 磁壁移動型磁気記録素子、磁壁移動型磁気抵抗効果素子及び磁気メモリ
JP2020035792A (ja) スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
JP7124788B2 (ja) スピン流磁化回転型磁気抵抗効果素子、及び磁気メモリ
JP6485588B1 (ja) データの書き込み方法
JP5050318B2 (ja) 磁気メモリ
JP2020188138A (ja) 記憶素子、半導体装置及び磁気記録アレイ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844127

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535082

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18844127

Country of ref document: EP

Kind code of ref document: A1