WO2019031189A1 - 強化ガラス板及び強化ガラス球 - Google Patents

強化ガラス板及び強化ガラス球 Download PDF

Info

Publication number
WO2019031189A1
WO2019031189A1 PCT/JP2018/027142 JP2018027142W WO2019031189A1 WO 2019031189 A1 WO2019031189 A1 WO 2019031189A1 JP 2018027142 W JP2018027142 W JP 2018027142W WO 2019031189 A1 WO2019031189 A1 WO 2019031189A1
Authority
WO
WIPO (PCT)
Prior art keywords
tempered glass
less
compressive stress
glass
mol
Prior art date
Application number
PCT/JP2018/027142
Other languages
English (en)
French (fr)
Inventor
結城 健
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2019535064A priority Critical patent/JP7365004B2/ja
Publication of WO2019031189A1 publication Critical patent/WO2019031189A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to a tempered glass plate, and more particularly to a tempered glass plate suitable for a cover glass of a touch panel display such as a mobile phone, a digital camera, a PDA (mobile terminal) and the like.
  • the present invention also relates to a tempered glass ball, and in particular to a tempered glass ball suitable for a rolling element incorporated in a rolling device or the like.
  • JP 2006-83045 A Japanese Patent Publication No. 2016-524581 JP 2011-510903 gazette
  • Sapphire appears to be suitable for the cover member due to its high hardness. However, sapphire is difficult to mass-produce large sized plates.
  • This invention is made in view of the said situation,
  • the technical subject is to create the tempered glass board which can be shape
  • the inventors of the present invention have found that the above technical problems can be solved by restricting the glass composition to a predetermined range and raising the compressive stress value of the compressive stress layer and the Vickers hardness as a result of various investigations by the inventor. It is proposed as an invention.
  • the tempered glass plate of the present invention is a tempered glass plate having a compressive stress layer on the surface, and the composition by mole as SiO 2 58-70%, Al 2 O 1 12.24-16.5% as a glass composition B 2 O 3 containing 0 to 3%, Li 2 O 0 to 4%, Na 2 O 14.5 to 21%, K 2 O 0 to 3%, MgO 0 to 5%, [Na 2 O] — It satisfies the relationship of [Al 2 O 3 ]> 1.4 mol%, has a Vickers hardness of 800 or more, and has a compressive stress value of 1250 MPa or more.
  • “[Na 2 O]-[Al 2 O 3 ]” refers to a value obtained by subtracting the mol% content of Al 2 O 3 from the mol% content of Na 2 O.
  • “Vickers hardness” refers to a value measured based on a method according to JIS Z 2244, with a measurement load of 100 gf.
  • “compression stress value” and “stress depth” refer to the value calculated from the number of interference fringes observed using a surface stress meter (FSM-6000 manufactured by Toshiba Corporation) and their intervals, The refractive index of glass is 1.50, and the optical elastic constant is 29.4 [(nm / cm) / MPa].
  • the scratch resistance has conventionally been evaluated by the degree of occurrence of a crack caused by pressing of a Vickers indenter, or the degree of occurrence of lateral cracks caused by scratching of a Knoop indenter (see Patent Document 3).
  • the crack generation mechanism is different between the crack generated in the above evaluation and the surface flaw recognized by light having high illuminance and parallelism. Therefore, even if it is glass which is hard to generate a crack by conventional evaluation, there may be a case where a surface flaw recognized by light having high parallelism with the illuminance may be generated, and there is a possibility that the above technical problem will not be solved.
  • the incidence of surface flaws recognized by light having high parallelism and parallelism is correlated with Vickers hardness, and the surface flaws are reduced when the Vickers hardness after ion exchange treatment is increased. be able to.
  • the Vickers hardness after the ion exchange treatment is affected by the compressive stress value of the compressive stress layer in addition to the influence of the glass component, and the Vickers hardness tends to be larger as the compressive stress value is higher. Therefore, the tempered glass sheet of the present invention regulates the compressive stress value of the compressive stress layer to 1250 MPa or more and the Vickers hardness to 800 or more to prevent the occurrence of the surface scratch.
  • tempered glass of the present invention includes an Al 2 O 3 12.4 mol% in the glass composition. This makes it easy to increase the Vickers hardness to 800 or more. However, when the content of Al 2 O 3 is increased, the high temperature viscosity is increased, and the meltability and the formability are easily reduced. Therefore, the tempered glass sheet of the present invention is characterized by satisfying the relationship of [Na 2 O]-[Al 2 O 3 ]> 1.4 mol%. This makes it easy to lower the temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s.
  • tempered glass of the present invention preferably satisfies the 0.90 ⁇ ([Al 2 O 3 ] + [MgO]) / [Na 2 O] ⁇ 1.07 relationships.
  • “([Al 2 O 3 ] + [MgO]) / [Na 2 O]” is the total amount of the molar percentage of Al 2 O 3 and the molar percentage of MgO as the molar amount of Na 2 O It refers to the value divided by% content.
  • tempered glass of the present invention preferably satisfies the 3.9 ⁇ [SiO 2] / [ Al 2 O 3] ⁇ 4.5 in the relation.
  • [SiO 2 ] / [Al 2 O 3 ] refers to a value obtained by dividing the molar percentage content of SiO 2 by the molar percentage content of Al 2 O 3 .
  • tempered glass of the present invention preferably satisfies the relationship of [Na 2 O] / [Al 2 O 3] ⁇ 1.14.
  • “[Na 2 O] / [Al 2 O 3 ]” refers to a value obtained by dividing the mol% content of Na 2 O by the mol% content of Al 2 O 3 .
  • the tempered glass sheet of the present invention preferably has a content of MgO of less than 1 to 3 mol%.
  • the temperature in the high temperature viscosity of 10 2.5 dPa ⁇ s is lower than 1640 ° C.
  • “the temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s” can be measured, for example, by a platinum ball pulling method.
  • the tempered glass plate of the present invention preferably has a stress depth of 25 ⁇ m or more.
  • the tempered glass board of this invention has an overflow joint surface in the center part of plate thickness direction, ie, it forms by an overflow down draw method.
  • the molten glass is caused to overflow from both sides of the formed refractory, and the overflowed molten glass is drawn and formed downward while being merged at the lower end of the formed refractory. It is a method of manufacturing.
  • the surface to be the surface of the glass plate is not in contact with the surface of the formed refractory and is formed into a plate shape in the state of the free surface. For this reason, a glass plate which is not polished and has a good surface quality can be manufactured at low cost.
  • tempered glass of the present invention on the surface in the range of 1 cm 2, the average particle diameter of 50 [mu] m, plated quartz sand of 1 mg, 10 This is the number of scratches when scratching with a load of 4kg through the denim It is preferable that it is the following.
  • the scratch test is performed under the following conditions. The scratching is performed only once in one direction, and the scratching distance is 1 cm. The number of scratching tests is four, and the average value is taken as the measured value.
  • the wound surface is irradiated with fiber light with an illumination of 100,000 lux, and the number of scratches is measured visually.
  • the tempered glass board of this invention for the cover glass of a touch-panel display.
  • the tempered glass sphere of the present invention is a tempered glass sphere having a compressive stress layer on the surface, and the glass composition is 58-70% SiO 2 , 12.4-16.5% Al 2 O 3 in mole%, B 2 O 3 containing 0 to 3%, Li 2 O 0 to 4%, Na 2 O 14.5 to 21%, K 2 O 0 to 3%, MgO 0 to 5%, [Na 2 O] — It satisfies the relationship of [Al 2 O 3 ]> 1.4 mol%, has a Vickers hardness of 800 or more, and has a compressive stress value of 1250 MPa or more.
  • the tempered glass sheet of the present invention has a composition by mole as SiO 2 58-70%, Al 2 O 3 12.4-16.5%, B 2 O 3 0-3%, Li 2 O 0- It contains 4%, 14.5 to 21% of Na 2 O, 0 to 3% of K 2 O, 0 to 5% of MgO, and the relation of [Na 2 O]-[Al 2 O 3 ]> 1.4 mol% Meet.
  • the reason which limited the content range of each component is shown below.
  • % indication refers to mol% unless there is particular notice.
  • SiO 2 is a component that forms a glass network.
  • the content of SiO 2 is 58 to 70%, preferably 59 to 68%, 60 to 66%, 61 to 65%, in particular 62 to 64.5%.
  • the content of SiO 2 is too small, it becomes difficult to vitrify and the thermal expansion coefficient becomes too high, and the thermal shock resistance tends to be lowered.
  • the content of SiO 2 is too large, the meltability and the formability tend to be lowered, and the thermal expansion coefficient becomes too low, making it difficult to match the thermal expansion coefficient of the peripheral material.
  • Al 2 O 3 is a component that enhances Vickers hardness, and is a component that enhances ion exchange performance, strain point, and Young's modulus. If the content of Al 2 O 3 is too small, the Vickers hardness tends to be lowered, and there is a possibility that the ion exchange performance can not be sufficiently exhibited. Therefore, a suitable lower limit range of Al 2 O 3 is 12.6% or more, preferably 13.5% or more, 14% or more, 14.4% or more, 15% or more, particularly 15.3% or more. . On the other hand, when the content of Al 2 O 3 is too large, the high temperature viscosity is increased, and the meltability and the formability are easily reduced.
  • devitrified crystals are easily precipitated on glass, and it becomes difficult to form a glass plate by an overflow down draw method or the like.
  • an alumina-based refractory is used as the formed refractory and the glass plate is formed by the overflow down draw method
  • devitrified crystals of spinel are easily precipitated at the interface with the alumina-based refractory.
  • the acid resistance also decreases, making it difficult to apply to the acid treatment step.
  • the upper limit range of Al 2 O 3 is 16.5% or less, preferably 16% or less, and particularly 15.5% or less.
  • the [SiO 2 ] / [Al 2 O 3 ] is preferably 3.9 to 4.5, 4.0 to 4.4, in particular 4.1 to 4.3.
  • [SiO 2 ] / [Al 2 O 3 ] is too small, devitrified crystals are easily precipitated on the glass, and it becomes difficult to form the glass plate by the overflow down draw method or the like.
  • an alumina-based refractory is used as the formed refractory and the glass plate is formed by the overflow down draw method, devitrified crystals of spinel are easily precipitated at the interface with the alumina-based refractory.
  • [SiO 2 ] / [Al 2 O 3 ] is too large, the Vickers hardness tends to be lowered, and there is a possibility that the ion exchange performance can not be sufficiently exhibited.
  • B 2 O 3 is a component that lowers the high temperature viscosity and density, stabilizes the glass, makes it difficult to precipitate crystals, and lowers the liquidus temperature.
  • the content of B 2 O 3 is 0 to 3%, preferably 0 to 2%, 0 to 1%, 0 to 0.5%, particularly 0 to less than 0.1%.
  • Li 2 O is an ion exchange component, and is a component that reduces the high temperature viscosity to enhance the meltability and the formability, and also increases the Vickers hardness. Furthermore, although Li 2 O generally has a large effect of increasing the compressive stress value among alkali metal oxides, the content of Li 2 O is extremely high in a glass system containing 12% or more of Na 2 O If so, the compressive stress value tends to decrease. In addition, when the content of Li 2 O is too large, it may be eluted in the ion exchange solution at the time of the ion exchange treatment, and the ion exchange solution may be deteriorated.
  • the content of Li 2 O is 0 to 4%, preferably 0 to 3%, 0 to 1.5%, 0 to less than 1%, 0 to 0.5%, 0 to 0.3%, It is from 0 to less than 0.1%, in particular from 0.01 to 0.05%.
  • Na 2 O is a component that enhances the compressive stress value of the compressive stress layer, and is also a component that reduces the high temperature viscosity and enhances the meltability and the formability.
  • Na 2 O is a component that enhances the devitrification resistance, and in particular is a component that suppresses the devitrification that occurs due to the reaction with the alumina-based refractory.
  • the lower limit range of Na 2 O is 14.5% or more, preferably 15% or more, 15.5% or more, 16% or more, 17% or more, particularly 18% or more.
  • the upper limit range of Na 2 O is 21% or less, preferably 20% or less, 19% or less, and particularly 18.5% or less.
  • [Na 2 O]-[Al 2 O 3 ] is more than 1.4%, preferably more than 2.0%, more than 2.5%, more than 2.8, especially more than 3.0 to 5.0 is there.
  • the amount of [Na 2 O]-[Al 2 O 3 ] is too small, the high temperature viscosity is increased, and the meltability and the formability are easily reduced.
  • the amount of [Na 2 O]-[Al 2 O 3 ] is too large, the Vickers hardness tends to decrease.
  • the preferable lower limit range of the molar ratio [Na 2 O] / [Al 2 O 3 ] is 1 or more, 1.1 or more, 1.14 or more, and particularly 1.2 or more.
  • the preferable upper limit range of the molar ratio [Na 2 O] / [Al 2 O 3 ] is 2 or less, 1.5 or less, 1.4 or less, 1.35 or less, 1.3 or less, particularly 1.25 or less It is.
  • K 2 O is a component that lowers the viscosity at high temperature to improve the meltability and formability, but in alkali metal oxides, it reduces the compressive stress value of the compressive stress layer and increases the stress depth Since it is a component, it is not advantageous from the viewpoint of raising Vickers hardness. Therefore, the upper limit range of K 2 O is preferably 3% or less, 2% or less, 1.5% or less, 1% or less, less than 1%, 0.5% or less, particularly less than 0.1%.
  • MgO is a component that lowers the viscosity at high temperature to enhance the meltability and formability, and increases the strain point and Vickers hardness.
  • MgO is a component having a large effect of enhancing the ion exchange performance. is there.
  • the content of MgO is 0 to 5%, preferably 0.1 to 4%, 1 to 3.5%, 1.5 to 3%, particularly 2 to less than 3%.
  • ([Al 2 O 3 ] + [MgO]) / [Na 2 O] is preferably 0.90 to 1.07, 0.92 to 1.05, 0.94 to 1.04, 0.96 to 1.03, in particular 0.98 to 1.02.
  • ([Al 2 O 3 ] + [MgO]) / [Na 2 O] is too small, the Vickers hardness tends to decrease.
  • ([Al 2 O 3 ] + [MgO]) / [Na 2 O] is too large, the high temperature viscosity will increase and the meltability and formability will decrease, or the compressive stress value of the compressive stress layer will It becomes easy to fall.
  • CaO is a component having a large effect of reducing the high temperature viscosity to enhance the meltability and the formability, and increasing the strain point and the Vickers hardness, as compared with other components, without decreasing the devitrification resistance. is there.
  • the preferred content of CaO is 0 to 6%, 0 to 5%, 0 to 4%, 0 to 3.5%, 0 to 3%, 0 to 2%, 0 to 1%, particularly 0 to 0. .5%.
  • SrO and BaO are components that lower the high temperature viscosity to enhance the meltability and formability, or increase the strain point and Young's modulus, but if their contents are too large, the ion exchange reaction is likely to be inhibited. In addition to this, the density and thermal expansion coefficient increase and the glass tends to be devitrified. Therefore, preferable contents of SrO and BaO are 0 to 2%, 0 to 1.5%, 0 to 1%, 0 to 0.5%, 0 to 0.1%, particularly 0 to 0.1, respectively. Less than%.
  • ZnO is a component that enhances the ion exchange performance, and in particular is a component that has a large effect of enhancing the compressive stress value. Moreover, it is a component which reduces high temperature viscosity, without reducing low temperature viscosity.
  • the content of ZnO is too large, there is a tendency that the glass is phase separated, the devitrification resistance is decreased, the density is increased, and the stress depth is decreased.
  • the preferred content of ZnO is 0 to 3%, 0 to 2%, 0 to 1%, in particular 0 to less than 1%.
  • ZrO 2 is a component that enhances the Vickers hardness and is a component that enhances the viscosity and strain point near the liquidus viscosity, but if the content is too large, the devitrification resistance may be significantly reduced. Accordingly, the content of ZrO 2 is 0.1 to 3%, preferably 0.3 to 2.5%, 0.5 to 2%, and particularly 0.8 to 1.5%.
  • TiO 2 is a component that enhances the ion exchange performance and is a component that reduces the high temperature viscosity, but when the content is too large, the transparency and the devitrification resistance tend to be reduced. Therefore, the content of TiO 2 is preferably 0 to 4.5%, 0 to less than 1%, 0 to 0.5%, particularly 0 to 0.3%.
  • SnO 2 is a component that enhances the ion exchange performance, but if its content is too large, the devitrification resistance tends to decrease.
  • the preferred content of SnO 2 is 0 to 3%, 0.01 to 3%, 0.05 to 3%, 0.1 to 3%, in particular 0.2 to 3%.
  • P 2 O 5 is a component that enhances the ion exchange performance, and in particular is a component that increases the stress depth.
  • the preferred content of P 2 O 5 is 0 to 10%, 0 to 3%, 0 to 1%, in particular 0 to 0.5%.
  • one or two or more selected from the group of Cl, SO 3 , CeO 2 may be added in an amount of 0.001 to 1%.
  • the preferred content of Fe 2 O 3 is less than 1000 ppm (less than 0.1%), less than 800 ppm, less than 600 ppm, less than 400 ppm, in particular less than 300 ppm. Furthermore, the molar ratio SnO 2 / (Fe 2 O 3 + SnO 2 ) is regulated to 0.8 or more, 0.9 or more, particularly 0.95 or more, while regulating the content of Fe 2 O 3 to the above range. Is preferred. In this way, the total light transmittance at a wavelength of 400 to 770 nm and a thickness of 1 mm can be easily improved.
  • Rare earth oxides such as Nd 2 O 3 and La 2 O 3 are components that increase the Vickers hardness. However, the cost of the raw material itself is high, and when added in large amounts, the devitrification resistance tends to decrease. Therefore, the preferred content of the rare earth oxide is 3% or less, 2% or less, 1% or less, 0.5% or less, and particularly 0.1% or less.
  • Tempered glass plate of the present invention from environmental considerations, as a glass composition, substantially As 2 O 3, Sb 2 O 3, PbO, and preferably contains no F. Moreover, environmental considerations, it is also preferable to contain substantially no Bi 2 O 3. Although "does not substantially contain " does not actively add an explicit component as a glass component, it is intended to allow the addition of an impurity level, and specifically, the content of the explicit component is 0 .05% is the case.
  • the Vickers hardness is 800 or more, preferably 820 or more, 830 or more, 840 or more, 850 or more, particularly 860 to 910. If the Vickers hardness is too low, surface flaws which are recognized by light having high parallelism with the illuminance are easily attached.
  • the tempered glass sheet of the present invention has a compressive stress layer on the surface.
  • the compressive stress value of the compressive stress layer is 1250 MPa or more, preferably 1300 MPa or more, 1350 MPa or more, 1400 MPa or more, and particularly 1430 MPa or more.
  • the higher the compressive stress value the higher the Vickers hardness.
  • the compressive stress value of the compressive stress layer is preferably 1800 MPa or less, 1650 MPa or less, and particularly preferably 1500 MPa or less. The compressive stress value tends to increase if the ion exchange time is shortened or the temperature of the ion exchange solution is lowered.
  • the tempered glass sheet of the present invention preferably has the following properties.
  • Silicon sand with an average particle size of 50 ⁇ m and 1 mg is ground on a surface of 1 cm 2 , and the number of scratches when scratched with a load of 4 kg through denim fabric is preferably 10 or less, 8 or less, in particular It is seven or less. When the number of flaws increases, surface flaws that are recognized by light having high illuminance and parallelism are likely to be attached.
  • Density is preferably 2.60 g / cm 3 or less, 2.55 g / cm 3 or less, 2.50 g / cm 3 or less, 2.49 g / cm 3 or less, especially at 2.40 ⁇ 2.47g / cm 3 .
  • the content of SiO 2 , B 2 O 3 and P 2 O 5 in the glass composition is increased, or the content of alkali metal oxide, alkaline earth metal oxide, ZnO, ZrO 2 and TiO 2 is reduced. If so, the density tends to decrease.
  • the temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s is preferably 1660 ° C. or less, less than 1640 ° C., 1630 ° C. or less, particularly preferably 1550 to 1620 ° C. If the temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s is too high, the meltability and the formability decrease, and it becomes difficult to form the molten glass into a plate shape.
  • the liquid phase viscosity is preferably 10 4.0 dPa ⁇ s or more, 10 4.4 dPa ⁇ s or more, 10 4.8 dPa ⁇ s or more, 10 5.0 dPa ⁇ s or more, 10 5.3 dPa ⁇ s Above, 10 5.5 dPa ⁇ s or more, 10 5.7 dPa ⁇ s or more, 10 5.8 dPa ⁇ s or more, particularly 10 6.0 dPa ⁇ s or more.
  • the liquidus viscosity is higher, the devitrification resistance is improved, and devitrification bumps hardly occur at the time of molding.
  • liquid phase viscosity refers to the value which measured the viscosity in liquidus temperature by the platinum ball pulling-up method.
  • “Liquid phase temperature” means to pass a standard sieve of 30 mesh (500 ⁇ m), put the glass powder remaining on 50 mesh (300 ⁇ m) in a platinum boat, hold it in a temperature gradient furnace for 24 hours, and then take out the platinum boat. At the highest temperature at which devitrification (devitrification defects) was observed inside the glass by microscopic observation.
  • the stress depth of the compressive stress layer is preferably 25 ⁇ m or more, 30 ⁇ m or more, 35 ⁇ m or more, 40 ⁇ m or more, particularly 42 ⁇ m or more.
  • the stress depth is larger, even if the tempered glass plate is deeply scratched, the tempered glass is less likely to be broken and the variation in mechanical strength is reduced. On the other hand, it becomes difficult to cut a tempered glass board, so that stress depth is large.
  • the tensile stress inherent in the tempered glass plate may be extremely high, and the dimensional change may be large before and after the ion exchange treatment.
  • the stress depth is preferably 60 ⁇ m or less, 50 ⁇ m or less, particularly 45 ⁇ m or less. The stress depth tends to be increased if the ion exchange time is increased or the temperature of the ion exchange solution is increased.
  • the internal tensile stress value is preferably 150 MPa or less, 140 MPa or less, 130 MPa or less, 120 PMa or less, 110 MPa or less, 100 MPa or less, 90 MPa or less, 80 MPa or less, particularly 70 MPa or less. If the internal tensile stress value is too high, physical point collisions tend to cause the tempered glass sheet to self-destruct. On the other hand, when the tensile stress value inside is too low, it becomes difficult to secure the mechanical strength of the tempered glass sheet.
  • the internal tensile stress value is preferably 25 MPa or more, 35 MPa or more, 45 MPa or more, particularly 50 MPa or more.
  • the internal tensile stress can be calculated by Equation 1 below.
  • the plate thickness is preferably 2.0 mm or less, 1.5 mm or less, 1.3 mm or less, 1.1 mm or less, 1.0 mm or less, particularly 0.9 mm or less.
  • the plate thickness is preferably 0.3 mm or more, 0.4 mm or more, 0.5 mm or more, 0.6 mm or more, particularly 0.7 mm or more.
  • the method for producing the tempered glass sheet of the present invention is, for example, as follows. First, a glass raw material prepared so as to obtain a desired glass composition is introduced into a continuous melting furnace, heated and melted at 1550 to 1700 ° C., clarified, and then the molten glass is supplied to a forming apparatus and formed into a plate. It is preferable to cool. A known method can be adopted as a method of cutting to a predetermined size after forming into a plate shape.
  • the overflow down draw method can produce a large amount of high quality glass plates and can easily produce a large glass plate. Furthermore, in the overflow down draw method, an alumina-based refractory or a zirconia-based refractory is used as a formed body refractory. And since the tempered glass board of the present invention has good compatibility with alumina refractories and zirconia refractories (especially alumina refractories), it reacts with these refractories to generate bubbles, bumps and the like. It has the property that it is difficult to do.
  • a forming method such as a float method, a down draw method (slot down draw method, redraw method, etc.), a roll out method, a press method or the like can be employed.
  • the temperature range between the annealing point and the strain point of the molten glass it is preferable to cool the temperature range between the annealing point and the strain point of the molten glass at a cooling rate of 3 ° C./min or more and less than 1000 ° C./min. It is 10 ° C./min or more, 20 ° C./min or more, 30 ° C./min or more, particularly 50 ° C./min or more, preferably less than 1000 ° C./min, less than 500 ° C./min, particularly less than 300 ° C./min. If the cooling rate is too fast, the structure of the glass becomes rough and it becomes difficult to increase the Vickers hardness after the ion exchange treatment. On the other hand, if the cooling rate is too slow, the production efficiency of the glass plate is reduced.
  • the conditions for the ion exchange treatment are not particularly limited, and the optimum conditions are selected in consideration of the viscosity characteristics of the glass, application, thickness, internal tensile stress, dimensional change, etc. Just do it.
  • the K ion in the KNO 3 molten salt is ion-exchanged with the Na component in the glass, a compressive stress layer can be efficiently formed.
  • the temperature of the ion exchange solution is preferably 400 to 450 ° C., and the ion exchange time is preferably 2 to 6 hours. In this way, a compressive stress layer can be efficiently formed on the surface.
  • the tempered glass sphere of the present invention is a tempered glass sphere having a compressive stress layer on the surface, and the glass composition is 58-70% SiO 2 , 12.4-16.5% Al 2 O 3 in mole%, B 2 O 3 containing 0 to 3%, Li 2 O 0 to 4%, Na 2 O 14.5 to 21%, K 2 O 0 to 3%, MgO 0 to 5%, [Na 2 O] — It satisfies the relationship of [Al 2 O 3 ]> 1.4 mol%, has a Vickers hardness of 800 or more, and has a compressive stress value of 1250 MPa or more.
  • Preferred glass compositions and glass properties of the tempered glass spheres of the present invention are the same as those of the tempered glass sheet of the present invention. Here, the detailed description is omitted.
  • the diameter is preferably 15 mm or less, 10 mm or less, particularly 5 mm or less, and preferably 1 mm or more.
  • the diameter is out of the above range, it becomes difficult to use for rolling elements such as rolling devices.
  • the surface roughness Ra of the surface of the tempered glass sphere is preferably 10 nm or less, 5 nm or less, particularly 3 nm or less.
  • surface roughness Ra can be measured by the method according to JIS B0601: 2001, in a state where the glass spheres are fixed by a jig or the like.
  • the dimensional tolerance of the diameter is preferably within 0.015%, within 0.010%, in particular within 0.005%.
  • the difference in diameter is preferably 1.5 ⁇ m or less, 1.0 ⁇ m or less, 0.5 ⁇ m or less, particularly 0.1 ⁇ m or less. If the dimensional tolerance of the diameter or the diameter unevenness is too large, the drive stability tends to be reduced.
  • the “diameter inequalities” refers to the difference between the maximum value and the minimum value of ten diameters of a sphere measured by a contact type or non-contact length measurement machine (for example, Lightmatic VL-50 manufactured by Mitutoyo Corporation).
  • the tempered glass sphere of the present invention can be produced, for example, as follows. First, the prepared glass batch is charged into a continuous melting furnace and heated and melted at 1500 to 1600 ° C. to obtain a molten glass, which is then supplied to a forming container via a clarifying container and a stirring container to form a spherical shape. Shape and anneal.
  • polishing is preferable. Also preferred is a method of lapping and polishing a glass formed by a droplet forming method. In the latter method, the dimensional accuracy of the glass spheres can be improved, and the amount of polishing on the surface can be reduced.
  • tempered glass spheres By ion exchange treatment of the glass spheres, tempered glass spheres can be obtained.
  • the conditions and the like of the ion exchange treatment are the same as in the case of the tempered glass plate.
  • the compressive stress value and stress depth of the compressive stress layer of the tempered glass sphere at the time of ion exchange treatment of the glass sphere, a glass plate for tempering having the same glass composition and heat history is simultaneously inserted as a reference sample. Then, the compressive stress value and the stress depth of the compressive stress layer of the obtained tempered glass plate are measured by the above method, and the values are treated as the compressive stress value and the stress depth of the compressive stress layer of the tempered glass sphere Do.
  • Table 1 shows the glass compositions and the glass properties of the examples of the present invention (samples No. 1 to 11) and the comparative example (sample No. 12).
  • the density is a value measured by the well-known Archimedes method.
  • the temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s is a value measured by a platinum ball pulling method.
  • Liquidus viscosity is the value which measured the viscosity in liquidus temperature by the platinum ball pulling-up method.
  • the liquidus temperature passes a standard sieve of 30 mesh (500 ⁇ m) and the glass powder remaining on 50 mesh (300 ⁇ m) is put in a platinum boat and kept in a temperature gradient furnace for 24 hours, then the platinum boat is taken out and observed microscopically. The highest temperature at which devitrification (black loss) was observed inside the glass.
  • the compatibility with the alumina refractory was evaluated as follows. After holding each sample in contact with the alumina refractory for 48 hours at a temperature at a high temperature viscosity of 10 4.5 dPa ⁇ s, the contact interface between each sample and the alumina refractory is observed, and pieces / mm 2) was measured to evaluate the case where the number density thereof is less than 0.5 pieces / mm 2 as " ⁇ ", " ⁇ " in the case of 0.5 number / mm 2 or more.
  • each sample was immersed in a KNO 3 molten salt at 430 ° C. for 4 hours to perform ion exchange treatment to obtain a strengthened glass plate. Furthermore, after cleaning the surface of each tempered glass plate, the number of interference fringes observed using a surface stress meter (FSM-6000 manufactured by Toshiba Corporation) and the distance from the interval to the compressive stress value of the compressive stress layer on the surface ( The CS) and stress depth (DOL) were calculated. In the calculation, the refractive index of each sample is 1.50, and the photoelastic constant is 29.4 [(nm / cm) / MPa].
  • the Vickers hardness Hv is a value measured based on a method according to JIS Z2244, with a measurement load of 100 gf for each sample after the ion exchange treatment.
  • the scratch resistance test was conducted as follows. First, silica sand having an average particle diameter of 50 ⁇ m and 1 mg was uniformly placed on the surface of 1 cm 2 of each sample, and scratched with a load of 4 kg through a commercially available denim fabric. The scratching was performed only once in one direction, and the scratching distance was 1 cm. After the surface of each sample was scratched, the scratches were observed with a fiber light with an illuminance of 100,000 lux, and the number of scratches visually checked was counted. The test was conducted 4 times, and the average value of 4 times was taken as the measured value.
  • the sample no. Nos. 1 to 11 have a Vickers hardness of 821 or more, so the scratch resistance evaluation is good, and further, the temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s is 1637 ° C. or less, and the liquidus viscosity is 10 4.28 dPa ⁇ Since it is s or more, it is considered that it can be formed into a plate shape.
  • the temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s is 1637 ° C. or less
  • the liquidus viscosity is 10 4.28 dPa ⁇ Since it is s or more, it is considered that it can be formed into a plate shape.
  • the tempered glass plate of the present invention is suitable as a cover glass of a touch panel display such as a mobile phone, a digital camera, a PDA (portable terminal) and the like.
  • the tempered glass sheet of the present invention is required to have high mechanical strength, such as window glass, substrates for magnetic disks, substrates for flat panel displays, cover glasses for solar cells, solid-state imaging Application to a device cover glass is expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

板状に成形可能であり、表面傷が付き難い強化ガラス板を創案する 本発明の強化ガラス板は、表面に圧縮応力層を有する強化ガラス板において、ガラス組成として、モル%で、SiO2 58~70%、Al2O3 12.4~16.5%、B2O3 0~3%、Li2O 0~4%、Na2O 14.5~21%、K2O 0~2%、MgO 0~5%を含有し、[Na2O]-[Al2O3]>1.4モル%の関係を満たし、ビッカース硬度が800以上であり、且つ圧縮応力層の圧縮応力値が1250MPa以上であることを特徴とする。

Description

強化ガラス板及び強化ガラス球
 本発明は、強化ガラス板に関し、特に携帯電話、デジタルカメラ、PDA(携帯端末)等のタッチパネルディスプレイのカバーガラスに好適な強化ガラス板に関する。また、本発明は、強化ガラス球に関し、特に転動装置等に組み込まれる転動体に好適な強化ガラス球に関する。
 携帯電話、デジタルカメラ、PDA(携帯端末)等は、益々普及する傾向にある。これらの用途には、タッチパネルディスプレイのカバーガラスとして、イオン交換処理された強化ガラス板が用いられている(特許文献1、非特許文献1参照)。
特開2006-83045号公報 特表2016-524581号公報 特表2011-510903号公報
泉谷徹郎等、「新しいガラスとその物性」、初版、株式会社経営システム研究所、1984年8月20日、p.451-498
 カバーガラス、特にスマートフォンに使用されるカバーガラスは、屋外で使用されることが多いため、照度と平行度が高い光により、表面傷が認識され易くなり、結果としてタッチパネルディスプレイの視認性が低下してしまう。よって、強化ガラス板の耐傷性を高めることが重要になる。
 耐傷性を高める方法として、ガラスの硬度を高めることが有用であると考えられる。詳述すると、従来のガラスは、地上に多く存在するシリカ(砂)よりも硬度が大幅に低いため、シリカに起因して表面傷が付き易いという性質を有している。よって、ガラスの硬度を高めると、表面に傷が付き難くなると考えられる。しかし、ガラスの硬度を高めようとすると、ガラスの高温粘度が上昇して、溶融性や成形性が大幅に低下する。更にガラス組成のバランスが崩れて、成形時に失透ブツが発生し易くなる。結果として、板状に成形することが困難になる。
 また、表面に硬質の薄膜を形成すると、カバーガラスの硬度が高くなることが知られている(例えば、特許文献2参照)。しかし、表面に硬質の薄膜を形成すると、カバーガラスの透明性が低下したり、膜応力によってカバーガラスに反りが発生したりする虞がある。
 なお、サファイアは、硬度が高いため、カバー部材に好適であるように見える。しかし、サファイアは、大きな寸法の板状体を大量生産することが困難である。
 本発明は、上記事情に鑑みなされたものであり、その技術的課題は、板状に成形可能であり、表面傷が付き難い強化ガラス板を創案することである。
 本発明者が種々の検討を行った結果、ガラス組成を所定範囲に規制すると共に、圧縮応力層の圧縮応力値とビッカース硬度を高めることにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明の強化ガラス板は、表面に圧縮応力層を有する強化ガラス板において、ガラス組成として、モル%で、SiO 58~70%、Al 12.4~16.5%、B 0~3%、LiO 0~4%、NaO 14.5~21%、KO 0~3%、MgO 0~5%を含有し、[NaO]-[Al]>1.4モル%の関係を満たし、ビッカース硬度が800以上であり、且つ圧縮応力層の圧縮応力値が1250MPa以上であることを特徴とする。ここで、「[NaO]-[Al]」は、NaOのモル%含有量からAlのモル%含有量を減じた値を指す。「ビッカース硬度」は、測定荷重を100gfとし、JIS Z2244に準拠した方法に基づいて測定した値を指す。また、「圧縮応力値」と「応力深さ」は、表面応力計(株式会社東芝製FSM-6000)を用いて観察される干渉縞の本数とその間隔から算出した値を指し、その算出に際し、ガラスの屈折率を1.50、光学弾性定数を29.4[(nm/cm)/MPa]とする。
 耐傷性は、従来までビッカース圧子の押し込みによるクラックの発生度、或いはヌープ圧子の引っ掻きによるラテラルクラックの発生度等により評価されてきた(特許文献3参照)。しかし、上記評価で発生するクラックと、照度と平行度が高い光により認識される表面傷とは、傷の発生メカニズムが異なっている。よって、従来の評価でクラックが発生し難いガラスであっても、照度と平行度が高い光により認識される表面傷が発生する場合があり、上記技術課題の解決に至らない虞がある。
 本発明者の調査によると、照度と平行度が高い光により認識される表面傷の発生度は、ビッカース硬度と相関があり、イオン交換処理後のビッカース硬度を高めると、上記表面傷を低減することができる。そして、イオン交換処理後のビッカース硬度は、ガラス成分の影響以外に、圧縮応力層の圧縮応力値の影響を受けると共に、圧縮応力値が高い程、ビッカース硬度が大きくなる傾向がある。そこで、本発明の強化ガラス板は、圧縮応力層の圧縮応力値を1250MPa以上、且つビッカース硬度を800以上に規制して、上記表面傷の発生を防止している。
 更に、本願発明の強化ガラス板は、ガラス組成中にAlを12.4モル%以上含んでいる。これにより、ビッカース硬度を800以上に高め易くなる。しかし、Alの含有量が多くなると、高温粘度が高くなって、溶融性や成形性が低下し易くなる。そこで、本願発明の強化ガラス板は、[NaO]-[Al]>1.4モル%の関係を満たすことを特徴とする。これにより、高温粘度102.5dPa・sにおける温度を低下させ易くなる。
 また、本発明の強化ガラス板は、0.90≦([Al]+[MgO])/[NaO]≦1.07の関係を満たすことが好ましい。ここで、「([Al]+[MgO])/[NaO]」は、Alのモル%含有量とMgOのモル%含有量の合量をNaOのモル%含有量で割った値を指す。
 また、本発明の強化ガラス板は、3.9≦[SiO]/[Al]≦4.5の関係を満たすことが好ましい。ここで、「[SiO]/[Al]」は、SiOのモル%含有量をAlのモル%含有量で割った値を指す。
 また、本発明の強化ガラス板は、[NaO]/[Al]≧1.14の関係を満たすことが好ましい。ここで、「[NaO]/[Al]」は、NaOのモル%含有量をAlのモル%含有量で割った値を指す。
 また、本発明の強化ガラス板は、MgOの含有量が1~3モル%未満であることが好ましい。
 また、本発明の強化ガラス板は、高温粘度102.5dPa・sにおける温度が1640℃未満であることが好ましい。ここで、「高温粘度102.5dPa・sにおける温度」は、例えば、白金球引き上げ法で測定することができる。
 また、本発明の強化ガラス板は、応力深さが25μm以上であることが好ましい。
 また、本発明の強化ガラス板は、板厚方向の中央部にオーバーフロー合流面を有すること、つまりオーバーフローダウンドロー法で成形されてなることが好ましい。ここで、「オーバーフローダウンドロー法」は、成形体耐火物の両側から溶融ガラスを溢れさせて、溢れた溶融ガラスを成形体耐火物の下端で合流させながら、下方に延伸成形してガラス板を製造する方法である。オーバーフローダウンドロー法では、ガラス板の表面となるべき面は成形体耐火物の表面に接触せず、自由表面の状態で板状に成形される。このため、未研磨で表面品位が良好なガラス板を安価に製造することができる。
 また、本発明の強化ガラス板は、1cmの範囲の表面上に、平均粒径50μm、1mgの珪砂を撒き、デニム生地を介して4kgの荷重で加傷した時の傷の本数が10本以下であることが好ましい。ここで、加傷試験は、以下の条件で行うものとする。加傷は1方向に1回のみ行い、加傷する距離を1cmとする。加傷試験の回数は4回とし、その平均値を測定値とする。照度10万luxのファイバーライトを加傷表面に照射し、目視で傷の本数を計測する。
 また、本発明の強化ガラス板は、タッチパネルディスプレイのカバーガラスに用いることが好ましい。
 本発明の強化ガラス球は、表面に圧縮応力層を有する強化ガラス球であって、ガラス組成として、モル%で、SiO 58~70%、Al 12.4~16.5%、B 0~3%、LiO 0~4%、NaO 14.5~21%、KO 0~3%、MgO 0~5%を含有し、[NaO]-[Al]>1.4モル%の関係を満たし、ビッカース硬度が800以上であり、且つ圧縮応力層の圧縮応力値が1250MPa以上であることを特徴とする。
 本発明の強化ガラス板は、ガラス組成として、モル%で、SiO 58~70%、Al 12.4~16.5%、B 0~3%、LiO 0~4%、NaO 14.5~21%、KO 0~3%、MgO 0~5%を含有し、[NaO]-[Al]>1.4モル%の関係を満たす。各成分の含有範囲を限定した理由を下記に示す。なお、各成分の含有範囲の説明において、%表示は、特に断りがない限り、モル%を指す。
 SiOは、ガラスのネットワークを形成する成分である。SiOの含有量は58~70%であり、好ましくは59~68%、60~66%、61~65%、特に62~64.5%である。SiOの含有量が少な過ぎると、ガラス化し難くなり、また熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下し易くなる。一方、SiOの含有量が多過ぎると、溶融性や成形性が低下し易くなり、また熱膨張係数が低くなり過ぎて、周辺材料の熱膨張係数に整合させ難くなる。
 Alは、ビッカース硬度を高める成分であり、またイオン交換性能、歪点、ヤング率を高める成分である。Alの含有量が少な過ぎると、ビッカース硬度が低下し易くなり、またイオン交換性能を十分に発揮できない虞が生じる。よって、Alの好適な下限範囲は12.6%以上であり、好ましくは13.5%以上、14%以上、14.4%以上、15%以上、特に15.3%以上である。一方、Alの含有量が多過ぎると、高温粘度が上昇して、溶融性や成形性が低下し易くなる。また、ガラスに失透結晶が析出し易くなって、オーバーフローダウンドロー法等でガラス板を成形し難くなる。特に、成形体耐火物としてアルミナ系耐火物を用いて、オーバーフローダウンドロー法でガラス板を成形する場合、アルミナ系耐火物との界面にスピネルの失透結晶が析出し易くなる。更に耐酸性も低下し、酸処理工程に適用し難くなる。Alの上限範囲は16.5%以下であり、好ましくは16%以下、特に15.5%以下である。
 [SiO]/[Al]は、好ましくは3.9~4.5、4.0~4.4、特に4.1~4.3である。[SiO]/[Al]が小さ過ぎると、ガラスに失透結晶が析出し易くなって、オーバーフローダウンドロー法等でガラス板を成形し難くなる。特に、成形体耐火物としてアルミナ系耐火物を用いて、オーバーフローダウンドロー法でガラス板を成形する場合、アルミナ系耐火物との界面にスピネルの失透結晶が析出し易くなる。一方、[SiO]/[Al]が大き過ぎると、ビッカース硬度が低下し易くなり、またイオン交換性能を十分に発揮できない虞が生じる。
 Bは、高温粘度や密度を低下させると共に、ガラスを安定化させて、結晶を析出させ難くし、液相温度を低下させる成分である。しかし、Bの含有量が多過ぎると、応力深さが小さくなったり、ビッカース硬度を高め難くなる。よって、Bの含有量は0~3%であり、好ましくは0~2%、0~1%、0~0.5%、特に0~0.1%未満である。
 LiOは、イオン交換成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分であると共に、ビッカース硬度を高める成分である。更にLiOは、一般的には、アルカリ金属酸化物の中で圧縮応力値を高める効果が大きいが、NaOを12%以上含むガラス系において、LiOの含有量が極端に多くなると、かえって圧縮応力値が低下する傾向がある。またLiOの含有量が多過ぎると、イオン交換処理時にイオン交換溶液中に溶出して、イオン交換溶液を劣化させる虞がある。よって、LiOの含有量は0~4%であり、好ましくは0~3%、0~1.5%、0~1%未満、0~0.5%、0~0.3%、0~0.1%未満、特に0.01~0.05%である。
 NaOは、圧縮応力層の圧縮応力値を高める成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。またNaOは、耐失透性を高める成分であり、特にアルミナ系耐火物との反応で生じる失透を抑制する成分である。NaOの含有量が少な過ぎると、高温粘度が上昇して、溶融性や成形性が低下したり、圧縮応力層の圧縮応力値が低下し易くなる。よって、NaOの下限範囲は14.5%以上であり、好ましくは15%以上、15.5%以上、16%以上、17%以上、特に18%以上である。一方、NaOの含有量が多過ぎると、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下し易くなる。またガラス組成の成分バランスが崩れて、かえって耐失透性が低下する場合がある。よって、NaOの上限範囲は21%以下であり、好ましくは20%以下、19%以下、特に18.5%以下である。
 [NaO]-[Al]は1.4%超であり、好ましくは2.0%超、2.5%超、2.8以上、特に3.0超~5.0である。[NaO]-[Al]が少な過ぎると、高温粘度が上昇して、溶融性や成形性が低下し易くなる。一方、[NaO]-[Al]が多過ぎると、ビッカース硬度が低下し易くなる。
 モル比[NaO]/[Al]が小さ過ぎると、高温粘度が上昇して、溶融性や成形性が低下し易くなり、また耐失透性低下し易くなる。特にアルミナ系耐火物との反応で生じる失透を抑制し難くなる。よって、モル比[NaO]/[Al]の好適な下限範囲は1以上、1.1以上、1.14以上、特に1.2以上である。一方、モル比[NaO]/[Al]が大き過ぎると、ビッカース硬度が低下し易くなる。よって、モル比[NaO]/[Al]の好適な上限範囲は2以下、1.5以下、1.4以下、1.35以下、1.3以下、特に1.25以下である。
 KOは、高温粘度を低下させて、溶融性や成形性を高める成分であるが、アルカリ金属酸化物の中では、圧縮応力層の圧縮応力値を低下させて、応力深さを増大させる成分であるため、ビッカース硬度を高める観点からは有利ではない。よって、KOの上限範囲は、好ましくは3%以下、2%以下、1.5%以下、1%以下、1%未満、0.5%以下、特に0.1%未満である。
 MgOは、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やビッカース硬度を高める成分であり、アルカリ土類金属酸化物の中では、イオン交換性能を高める効果が大きい成分である。しかし、MgOの含有量が多過ぎると、耐失透性が低下し易くなり、特にアルミナ系耐火物との反応で生じる失透を抑制し難くなる。よって、MgOの含有量は0~5%であり、好ましくは0.1~4%、1~3.5%、1.5~3%、特に2~3%未満である。
 ([Al]+[MgO])/[NaO]は、好ましくは0.90~1.07、0.92~1.05、0.94~1.04、0.96~1.03、特に0.98~1.02である。([Al]+[MgO])/[NaO]が小さ過ぎると、ビッカース硬度が低下し易くなる。一方、([Al]+[MgO])/[NaO]が大き過ぎると、高温粘度が上昇して、溶融性や成形性が低下したり、圧縮応力層の圧縮応力値が低下し易くなる。
 上記成分以外にも、例えば以下の成分を添加してもよい。
 CaOは、他の成分と比較して、耐失透性の低下を伴うことなく、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やビッカース硬度を高める効果が大きい成分である。しかし、CaOの含有量が多過ぎると、イオン交換性能が低下したり、イオン交換処理時にイオン交換溶液を劣化させ易くなる。よって、CaOの好適な含有量は0~6%、0~5%、0~4%、0~3.5%、0~3%、0~2%、0~1%、特に0~0.5%である。
 SrOとBaOは、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分であるが、それらの含有量が多過ぎると、イオン交換反応が阻害され易くなることに加えて、密度や熱膨張係数が高くなったり、ガラスが失透し易くなる。よって、SrOとBaOの好適な含有量は、それぞれ0~2%、0~1.5%、0~1%、0~0.5%、0~0.1%、特に0~0.1%未満である。
 ZnOは、イオン交換性能を高める成分であり、特に圧縮応力値を高める効果が大きい成分である。また低温粘性を低下させずに、高温粘性を低下させる成分である。しかし、ZnOの含有量が多過ぎると、ガラスが分相したり、耐失透性が低下したり、密度が高くなったり、応力深さが小さくなる傾向がある。よって、ZnOの好適な含有量は0~3%、0~2%、0~1%、特に0~1%未満である。
 ZrOは、ビッカース硬度を高める成分であると共に、液相粘度付近の粘性や歪点を高める成分であるが、その含有量が多過ぎると、耐失透性が著しく低下する虞がある。よって、ZrOの含有量は0.1~3%、好ましくは0.3~2.5%、0.5~2%、特に0.8~1.5%である。
 TiOは、イオン交換性能を高める成分であり、また高温粘度を低下させる成分であるが、その含有量が多過ぎると、透明性や耐失透性が低下し易くなる。よって、TiOの含有量は0~4.5%、0~1%未満、0~0.5%、特に0~0.3%が好ましい。
 SnOは、イオン交換性能を高める成分であるが、その含有量が多過ぎると、耐失透性が低下し易くなる。よって、SnOの好適な含有量は0~3%、0.01~3%、0.05~3%、0.1~3%、特に0.2~3%である。
 Pは、イオン交換性能を高める成分であり、特に応力深さを大きくする成分である。しかし、Pの含有量が多過ぎると、ガラスが分相したり、耐水性が低下し易くなる。よって、Pの好適な含有量は0~10%、0~3%、0~1%、特に0~0.5%である。
 清澄剤として、Cl、SO、CeOの群(好ましくはCl、SOの群)から選択された一種又は二種以上を0.001~1%添加してもよい。
 Feの好適な含有量は1000ppm未満(0.1%未満)、800ppm未満、600ppm未満、400ppm未満、特に300ppm未満である。更に、Feの含有量を上記範囲に規制した上で、モル比SnO/(Fe+SnO)を0.8以上、0.9以上、特に0.95以上に規制することが好ましい。このようにすれば、波長400~770nm、厚み1mmにおける全光線透過率が向上し易くなる。
 Nd、La等の希土類酸化物は、ビッカース硬度を高める成分である。しかし、原料自体のコストが高く、また多量に添加すると、耐失透性が低下し易くなる。よって、希土類酸化物の好適な含有量は3%以下、2%以下、1%以下、0.5%以下、特に0.1%以下である。
 本発明の強化ガラス板は、環境的配慮から、ガラス組成として、実質的にAs、Sb、PbO、及びFを含有しないことが好ましい。また、環境的配慮から、実質的にBiを含有しないことも好ましい。「実質的に~を含有しない」とは、ガラス成分として積極的に明示の成分を添加しないものの、不純物レベルの添加を許容する趣旨であり、具体的には、明示の成分の含有量が0.05%未満の場合を指す。
 本発明の強化ガラス板において、ビッカース硬度は800以上であり、好ましくは820以上、830以上、840以上、850以上、特に860~910である。ビッカース硬度が低過ぎると、照度と平行度が高い光により認識される表面傷が付き易くなる。
 本発明の強化ガラス板は、表面に圧縮応力層を有している。圧縮応力層の圧縮応力値は1250MPa以上であり、好ましくは1300MPa以上、1350MPa以上、1400MPa以上、特に1430MPa以上である。圧縮応力値が大きい程、ビッカース硬度が高くなる。一方、表面に極端に大きな圧縮応力が形成されると、強化ガラスに内在する引っ張り応力が極端に高くなり、またイオン交換処理前後の寸法変化が大きくなる虞がある。このため、圧縮応力層の圧縮応力値は1800MPa以下、1650MPa以下、特に1500MPa以下が好ましい。なお、イオン交換時間を短くしたり、イオン交換溶液の温度を下げれば、圧縮応力値が大きくなる傾向がある。
 本発明の強化ガラス板は、上記特性に加えて、以下の特性を有することが好ましい。
 1cmの範囲の表面上に、平均粒径50μm、1mgの珪砂を撒き、デニム生地を介して4kgの荷重で加傷した時の傷の本数は、好ましくは10本以下、8本以下、特に7本以下である。この傷の本数が多くなると、照度と平行度が高い光により認識される表面傷が付き易くなる。
 密度は、好ましくは2.60g/cm以下、2.55g/cm以下、2.50g/cm以下、2.49g/cm以下、特に2.40~2.47g/cmである。密度が小さい程、強化ガラスを軽量化することができる。なお、ガラス組成中のSiO、B、Pの含有量を増量したり、アルカリ金属酸化物、アルカリ土類金属酸化物、ZnO、ZrO、TiOの含有量を減量すれば、密度が低下し易くなる。
 高温粘度102.5dPa・sにおける温度は、好ましくは1660℃以下、1640℃未満、1630℃以下、特に1550~1620℃が好ましい。高温粘度102.5dPa・sにおける温度が高過ぎると、溶融性や成形性が低下して、溶融ガラスを板状に成形し難くなる。
 液相粘度は、好ましくは104.0dPa・s以上、104.4dPa・s以上、104.8dPa・s以上、105.0dPa・s以上、105.3dPa・s以上、105.5dPa・s以上、105.7dPa・s以上、105.8dPa・s以上、特に106.0dPa・s以上である。なお、液相粘度が高い程、耐失透性が向上し、成形時に失透ブツが発生し難くなる。ここで、「液相粘度」とは、液相温度における粘度を白金球引き上げ法で測定した値を指す。「液相温度」とは、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持した後、白金ボートを取り出し、顕微鏡観察により、ガラス内部に失透(失透ブツ)が認められた最も高い温度とする。
 本発明の強化ガラス板において、圧縮応力層の応力深さは、好ましくは25μm以上、30μm以上、35μm以上、40μm以上、特に42μm以上である。応力深さが大きい程、強化ガラス板に深い傷が付いても、強化ガラスが割れ難くなると共に、機械的強度のバラツキが小さくなる。一方、応力深さが大きい程、強化ガラス板を切断し難くなる。また、強化ガラス板に内在する引っ張り応力が極端に高くなり、またイオン交換処理前後で寸法変化が大きくなる虞がある。更に、応力深さが大き過ぎると、圧縮応力値が低下する傾向がある。このため、応力深さは、好ましくは60μm以下、50μm以下、特に45μm以下である。なお、イオン交換時間を長くしたり、イオン交換溶液の温度を上げれば、応力深さが大きくなる傾向がある。
 内部の引っ張り応力値は、好ましくは150MPa以下、140MPa以下、130MPa以下、120PMa以下、110MPa以下、100MPa以下、90MPa以下、80MPa以下、特に70MPa以下である。内部の引っ張り応力値が高過ぎると、物理的な点衝突により、強化ガラス板が自己破壊し易くなる。一方、内部の引っ張り応力値が低過ぎると、強化ガラス板の機械的強度を確保し難くなる。内部の引っ張り応力値は、好ましくは25MPa以上、35MPa以上、45MPa以上、特に50MPa以上である。なお、内部の引っ張り応力は下記の数式1で計算可能である。
 [数1]
 内部の引っ張り応力値=(圧縮応力値×応力深さ)/(板厚-2×応力深さ)
 本発明の強化ガラス板において、板厚は、好ましくは2.0mm以下、1.5mm以下、1.3mm以下、1.1mm以下、1.0mm以下、特に0.9mm以下である。板厚が小さい程、強化ガラス板の質量を低下させることができる。一方、板厚が薄過ぎると、所望の機械的強度を得難くなる。よって、板厚は、好ましくは0.3mm以上、0.4mm以上、0.5mm以上、0.6mm以上、特に0.7mm以上である。
 本発明の強化ガラス板を製造する方法は、例えば、以下の通りである。まず所望のガラス組成になるように調合したガラス原料を連続溶融炉に投入して、1550~1700℃で加熱溶融し、清澄した後、溶融ガラスを成形装置に供給した上で板状に成形し、冷却することが好ましい。板状に成形した後に、所定寸法に切断加工する方法は、周知の方法を採用することができる。
 溶融ガラスを板状に成形する方法として、オーバーフローダウンドロー法を採用することが好ましい。オーバーフローダウンドロー法は、高品位なガラス板を大量に作製し得ると共に、大型のガラス板も容易に作製し得る方法である。更に、オーバーフローダウンドロー法では、成形体耐火物として、アルミナ系耐火物やジルコニア系耐火物が使用される。そして、本発明の強化ガラス板は、アルミナ系耐火物やジルコニア系耐火物(特にアルミナ系耐火物)との適合性が良好であるため、これらの耐火物と反応して泡やブツ等を発生させ難い性質を有する。
 オーバーフローダウンドロー法以外にも、種々の成形方法を採用することができる。例えば、フロート法、ダウンドロー法(スロットダウンドロー法、リドロー法等)、ロールアウト法、プレス法等の成形方法を採用することができる。
 溶融ガラスの成形時に、溶融ガラスの徐冷点から歪点の間の温度域を3℃/分以上、且つ1000℃/分未満の冷却速度で冷却することが好ましく、その冷却速度は、好ましくは10℃/分以上、20℃/分以上、30℃/分以上、特に50℃/分以上であり、好ましくは1000℃/分未満、500℃/分未満、特に300℃/分未満である。冷却速度を速過ぎると、ガラスの構造が粗になり、イオン交換処理後にビッカース硬度を高めることが困難になる。一方、冷却速度が遅過ぎると、ガラス板の生産効率が低下してしまう。
 本発明の強化ガラス板の製造方法において、イオン交換処理の条件は、特に限定されず、ガラスの粘度特性、用途、厚み、内部の引っ張り応力、寸法変化等を考慮して最適な条件を選択すればよい。特に、KNO溶融塩中のKイオンをガラス中のNa成分とイオン交換すると、圧縮応力層を効率良く形成することができる。イオン交換処理の際、イオン交換溶液の温度は400~450℃が好ましく、イオン交換時間は2~6時間が好ましい。このようにすれば、表面に圧縮応力層を効率良く形成することができる。
 本発明の強化ガラス球は、表面に圧縮応力層を有する強化ガラス球であって、ガラス組成として、モル%で、SiO 58~70%、Al 12.4~16.5%、B 0~3%、LiO 0~4%、NaO 14.5~21%、KO 0~3%、MgO 0~5%を含有し、[NaO]-[Al]>1.4モル%の関係を満たし、ビッカース硬度が800以上であり、且つ圧縮応力層の圧縮応力値が1250MPa以上であることを特徴とする。本発明の強化ガラス球の好適なガラス組成やガラス特性は、本発明の強化ガラス板と同様である。ここでは、その詳細な説明を省略する。
 本発明の強化ガラス球において、直径は、好ましくは15mm以下、10mm以下、特に5mm以下であり、また好ましくは1mm以上である。直径が上記範囲外になると、転動装置等の転動体に使用し難くなる。
 強化ガラス球の表面の表面粗さRaは、好ましくは10nm以下、5nm以下、特に3nm以下である。強化ガラス球の表面の表面粗さRaが大き過ぎると、高速の回転、高摩擦、高荷重等の過酷な条件で、強化ガラス球が破損し易くなる。ここで、「表面粗さRa」は、ガラス球を治具等で固定した状態で、JIS B0601:2001年に準拠した方法で測定することができる。
 本発明の強化ガラス球において、直径の寸法公差は、好ましくは0.015%以内、0.010%以内、特に0.005%以内である。直径不同は、好ましくは1.5μm以下、1.0μm以下、0.5μm以下、特に0.1μm以下である。直径の寸法公差や直径不同が大き過ぎると、駆動安定性が低下し易くなる。なお、「直径不同」は、接触式又は非接触式測長機(例えば、ミツトヨ製ライトマチックVL-50)により、球の直径を10箇所測定し、その最大値と最小値の差を指す。
 本発明の強化ガラス球は、例えば、以下のようにして作製することができる。まず調合したガラスバッチを連続溶融炉に投入し、1500~1600℃で加熱溶融して、溶融ガラスを得た後、清澄容器、攪拌容器を経由して、成形容器に供給した上で球形状に成形し、徐冷する。
 ガラス球を成形、加工する方法として、板状又はバルク状に切り出したガラスを球形状に研削し、ラッピング研磨、ポリッシュ研磨を行う方法が好ましい。また、液滴成形法で成形したガラスをラッピング研磨、ポリッシュ研磨する方法も好ましい。なお、後者の方法では、ガラス球の寸法精度が向上すると共に、表面における研磨量を低減することができる。
 ガラス球をイオン交換処理すると、強化ガラス球を得ることができる。イオン交換処理の条件等は、強化ガラス板の場合と同様である。なお、「強化ガラス球の圧縮応力層の圧縮応力値と応力深さ」は、ガラス球のイオン交換処理の際に、参照試料として、同じガラス組成と熱履歴を有する強化用ガラス板を同時に入れた上で、得られた強化ガラス板について圧縮応力層の圧縮応力値と応力深さを上記方法で測定し、その値を強化ガラス球の圧縮応力層の圧縮応力値と応力深さと扱うものとする。
 以下、実施例に基づいて、本発明を説明する。なお、以下の実施例は、単なる例示である。本発明は、以下の実施例に何ら限定されない。
 表1は、本発明の実施例(試料No.1~11)と比較例(試料No.12)のガラス組成とガラス特性を示している。
Figure JPOXMLDOC01-appb-T000001
 次のようにして表中の各試料を作製した。まず表中のガラス組成になるように、ガラス原料を調合し、白金ポットを用いて1650℃で21時間溶融した。続いて、得られた溶融ガラスをカーボン板の上に流し出して、平板形状に成形した後、徐冷点から歪点の間の温度域を3℃/分で冷却し、ガラス板を得た。得られたガラス板について、板厚t=0.8mmになるように表面を光学研磨した後、種々の特性を評価した。
 密度は、周知のアルキメデス法によって測定した値である。
 高温粘度102.5dPa・sにおける温度は、白金球引き上げ法で測定した値である。
 液相粘度は、液相温度における粘度を白金球引き上げ法で測定した値である。液相温度は、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持した後、白金ボートを取り出し、顕微鏡観察により、ガラス内部に失透(失透ブツ)が認められた最も高い温度とした。
 次のようにしてアルミナ耐火物との適合性を評価した。高温粘度104.5dPa・sにおける温度で各試料をアルミナ耐火物に接触させた状態で48時間保持した後、各試料とアルミナ耐火物の接触界面を観察し、失透ブツの数密度(個/mm)を測定し、その数密度が0.5個/mm未満の場合を「○」、0.5個/mm以上の場合を「×」として評価した。
 続いて、表中の板厚になるように、各試料の両表面を光学研磨した。その後、430℃のKNO溶融塩中に、各試料を4時間浸漬することにより、イオン交換処理を行い、強化ガラス板を得た。更に、各強化ガラス板の表面を洗浄した上で、表面応力計(株式会社東芝製FSM-6000)を用いて観察される干渉縞の本数とその間隔から表面の圧縮応力層の圧縮応力値(CS)と応力深さ(DOL)を算出した。算出に当たり、各試料の屈折率を1.50、光学弾性定数を29.4[(nm/cm)/MPa]とした。
 ビッカース硬度Hvは、イオン交換処理後の各試料について、測定荷重を100gfとし、JIS Z2244に準拠した方法に基づいて測定した値である。
 次のようにして耐傷性試験を行った。まず各試料の1cmの範囲の表面上に平均粒径50μm、1mgの珪砂を均一に置き、市販のデニム生地を介して4kgの荷重で加傷した。加傷は1方向に1回のみ行い、加傷する距離を1cmとした。各試料の表面を加傷した後、照度10万luxのファイバーライトで傷の観察を行い、目視で確認できる傷の本数を計数した。試験は4回実施し、4回の平均値を測定値とした。
 表1から明らかなように、試料No.1~11は、ビッカース硬度が821以上であるため、耐傷性評価が良好であり、更に高温粘度102.5dPa・sにおける温度が1637℃以下、且つ液相粘度が104.28dPa・s以上であるため、板状に成形可能であると考えられる。一方、試料No.12は、圧縮応力層の圧縮応力値が1062MPa、ビッカース硬度が788であるため、耐傷性の評価が良好ではなく、[NaO]-[Al]が1.37モル%であるため、高温粘度102.5dPa・sにおける温度が1640℃であった。
 本発明の強化ガラス板は、携帯電話、デジタルカメラ、PDA(携帯端末)等のタッチパネルディスプレイのカバーガラスとして好適である。また、本発明の強化ガラス板は、これらの用途以外にも、高い機械的強度が要求される用途、例えば窓ガラス、磁気ディスク用基板、フラットパネルディスプレイ用基板、太陽電池用カバーガラス、固体撮像素子用カバーガラスへの応用が期待される。

Claims (11)

  1.  表面に圧縮応力層を有する強化ガラス板において、ガラス組成として、モル%で、SiO 58~70%、Al 12.4~16.5%、B 0~3%、LiO 0~4%、NaO 14.5~21%、KO 0~3%、MgO 0~5%を含有し、[NaO]-[Al]>2.0モル%の関係を満たし、ビッカース硬度が800以上であり、且つ圧縮応力層の圧縮応力値が1250MPa以上であることを特徴とする強化ガラス板。
  2.  0.90≦([Al]+[MgO])/[NaO]≦1.07の関係を満たすことを特徴とする請求項1に記載の強化ガラス板。
  3.  3.9≦[SiO]/[Al]≦4.5の関係を満たすことを特徴とする請求項1又は2に記載の強化ガラス板。
  4.  [NaO]/[Al]≧1.14の関係を満たすことを特徴とする請求項1~3の何れか一項に記載の強化ガラス板。
  5.  MgOの含有量が1~3モル%未満であることを特徴とする請求項1~4の何れか一項に記載の強化ガラス板。
  6.  高温粘度102.5dPa・sにおける温度が1640℃未満であることを特徴とする請求項1~5の何れか一項に記載の強化ガラス板。
  7.  応力深さが25μm以上であることを特徴とする請求項1~6の何れか一項に記載の強化ガラス板。
  8.  板厚方向の中央部にオーバーフロー合流面を有することを特徴とする請求項1~7の何れか一項に記載の強化ガラス板。
  9.  1cmの範囲の表面上に、平均粒径50μm、1mgの珪砂を撒き、デニム生地を介して4kgの荷重で加傷した時の傷の本数が10本以下であることを特徴とする請求項1~8の何れか一項に記載の強化ガラス板。
  10.  タッチパネルディスプレイのカバーガラスに用いることを特徴とする請求項1~9の何れか一項に記載の化学強化ガラス板。
  11.  表面に圧縮応力層を有する強化ガラス球であって、ガラス組成として、モル%で、SiO 58~70%、Al 12.4~16.5%、B 0~3%、LiO 0~4%、NaO 14.5~21%、KO 0~3%、MgO 0~5%を含有し、[NaO]-[Al]>2.0モル%の関係を満たし、ビッカース硬度が800以上であり、且つ圧縮応力層の圧縮応力値が1250MPa以上であることを特徴とする強化ガラス球。
PCT/JP2018/027142 2017-08-08 2018-07-19 強化ガラス板及び強化ガラス球 WO2019031189A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019535064A JP7365004B2 (ja) 2017-08-08 2018-07-19 強化ガラス板及び強化用ガラス板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-153052 2017-08-08
JP2017153052 2017-08-08

Publications (1)

Publication Number Publication Date
WO2019031189A1 true WO2019031189A1 (ja) 2019-02-14

Family

ID=65271991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027142 WO2019031189A1 (ja) 2017-08-08 2018-07-19 強化ガラス板及び強化ガラス球

Country Status (2)

Country Link
JP (1) JP7365004B2 (ja)
WO (1) WO2019031189A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057271A (ja) * 2007-08-03 2009-03-19 Nippon Electric Glass Co Ltd 強化ガラス基板及びその製造方法
JP2014073952A (ja) * 2012-06-08 2014-04-24 Nippon Electric Glass Co Ltd 強化ガラス及び強化ガラス板並びに強化用ガラス
JP2015042607A (ja) * 2013-07-24 2015-03-05 日本電気硝子株式会社 強化ガラス及び強化用ガラス
JP2017015147A (ja) * 2015-06-30 2017-01-19 日本精工株式会社 転動装置
JP2018100209A (ja) * 2016-12-16 2018-06-28 日本電気硝子株式会社 球状ガラス及びガラス転動体の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9346703B2 (en) 2010-11-30 2016-05-24 Corning Incorporated Ion exchangable glass with deep compressive layer and high damage threshold

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057271A (ja) * 2007-08-03 2009-03-19 Nippon Electric Glass Co Ltd 強化ガラス基板及びその製造方法
JP2014073952A (ja) * 2012-06-08 2014-04-24 Nippon Electric Glass Co Ltd 強化ガラス及び強化ガラス板並びに強化用ガラス
JP2015042607A (ja) * 2013-07-24 2015-03-05 日本電気硝子株式会社 強化ガラス及び強化用ガラス
JP2017015147A (ja) * 2015-06-30 2017-01-19 日本精工株式会社 転動装置
JP2018100209A (ja) * 2016-12-16 2018-06-28 日本電気硝子株式会社 球状ガラス及びガラス転動体の製造方法

Also Published As

Publication number Publication date
JP7365004B2 (ja) 2023-10-19
JPWO2019031189A1 (ja) 2020-07-02

Similar Documents

Publication Publication Date Title
US10173923B2 (en) Tempered glass, tempered glass plate, and glass for tempering
JP6879215B2 (ja) 光学ガラス
JP5743125B2 (ja) 強化ガラス及び強化ガラス基板
JP5867574B2 (ja) 強化ガラス基板及びその製造方法
JP5429684B2 (ja) 強化ガラス基板及びその製造方法
JP6168288B2 (ja) 強化ガラス及び強化ガラス板
JP5875133B2 (ja) 強化ガラス基板
WO2009157297A1 (ja) 強化ガラスおよびその製造方法
TWI752252B (zh) 化學強化玻璃及化學強化玻璃的製造方法
WO2020138062A1 (ja) 強化ガラス板及びその製造方法
WO2021171761A1 (ja) 強化ガラス板及び強化用ガラス板
JP2019031428A (ja) 強化ガラス板及び強化ガラス球
JPWO2018124084A1 (ja) 化学強化用ガラス板及び化学強化ガラス板の製造方法
WO2019131528A1 (ja) カバーガラス
JP7365004B2 (ja) 強化ガラス板及び強化用ガラス板
JP7019941B2 (ja) 強化用ガラスの製造方法及び強化ガラスの製造方法
JP7303482B2 (ja) カバーガラス
WO2022097416A1 (ja) 強化ガラス板、強化ガラス板の製造方法及び強化用ガラス板
TW202419415A (zh) 蓋玻璃

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844578

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535064

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18844578

Country of ref document: EP

Kind code of ref document: A1