WO2019027215A2 - 리튬 복합 산화물 전구체, 이의 제조 방법 및 이를 이용하여 제조된 리튬 복합 산화물 - Google Patents

리튬 복합 산화물 전구체, 이의 제조 방법 및 이를 이용하여 제조된 리튬 복합 산화물 Download PDF

Info

Publication number
WO2019027215A2
WO2019027215A2 PCT/KR2018/008652 KR2018008652W WO2019027215A2 WO 2019027215 A2 WO2019027215 A2 WO 2019027215A2 KR 2018008652 W KR2018008652 W KR 2018008652W WO 2019027215 A2 WO2019027215 A2 WO 2019027215A2
Authority
WO
WIPO (PCT)
Prior art keywords
active material
lithium
cathode active
secondary battery
oxide precursor
Prior art date
Application number
PCT/KR2018/008652
Other languages
English (en)
French (fr)
Other versions
WO2019027215A3 (ko
Inventor
최문호
박종환
허경재
유현종
이경준
공영선
최윤영
김선혜
이미선
김상미
Original Assignee
주식회사 에코프로비엠
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코프로비엠, 삼성에스디아이 주식회사 filed Critical 주식회사 에코프로비엠
Publication of WO2019027215A2 publication Critical patent/WO2019027215A2/ko
Publication of WO2019027215A3 publication Critical patent/WO2019027215A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium complex oxide precursor, a process for producing the same, and a lithium complex oxide produced thereby. More particularly, the present invention relates to a lithium complex oxide precursor, And a lithium composite oxide prepared by using the lithium complex oxide precursor, a method for producing the same, and a lithium composite oxide prepared by using the same.
  • a secondary battery satisfying such a demand is a lithium secondary battery.
  • the cathode active material plays the most important role in the battery performance and safety of the lithium secondary battery, and a chalcogenide compound is used. Examples thereof include LiCoO 2 , LiNiO 2 , LiNi 1 - x Co x O 2 (0 ⁇ x ⁇ 1), LiMnO 2 , LiMn 2 O 4 , LiFePO 4 and the like.
  • the positive electrode active material is mixed with a conductive material such as carbon black, a binder and a solvent to prepare a positive electrode active material slurry composition.
  • the positive electrode active material slurry composition is coated on a thin metal plate such as aluminum foil and used as a positive electrode of a lithium ion secondary battery.
  • the cathode active material for the secondary battery is subjected to a rolling process as one of manufacturing processes.
  • the rolling process refers to pressing the active material layer a plurality of times at a predetermined pressure in order to increase the density and increase the crystallinity.
  • the cathode active material precursor and the active material are difficult to maintain spherical shape when a plurality of seeds are aggregated in the process of preparing by coprecipitation process to form initial particles.
  • the production of the active material using the precursor particles which are difficult to maintain the shape as described above results in a failure of the cathode active material particles during the rolling process, resulting in breakage of the particles.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a lithium complex oxide precursor having improved sphericity and density by controlling the shape of lithium complex oxide precursor particles.
  • the present invention also aims to provide a lithium composite oxide as a cathode active material for a lithium secondary battery having excellent particle strength by using the lithium composite oxide precursor according to the present invention.
  • the cathode active material for a lithium secondary battery according to an embodiment of the present invention is a spherical shape grown from one seed and is represented by the following formula (2).
  • M1 is Mn or Al
  • M2 and M3 are at least one selected from the group consisting of Al, Ba, B, Co, Ce, Cr, F, Li, Mg, Mn, Mo, P, Sr, Ti and Zr.
  • the cathode active material for a lithium secondary battery according to an embodiment of the present invention may have a particle diameter retention ratio of 80% or more, which represents a ratio of particle diameters before and after application of a pressure expressed by the following formula.
  • Particle diameter retention rate (D10 after pressure application / D10 before pressure application) ⁇ 100
  • the particle diameter retention of 80% or more means that the particle diameter of D10 after pressure application is maintained at 80% or more of the particle diameter of D10 before application of pressure.
  • the rate of change of particle diameter Quot indicates a particle strength of less than 20%.
  • Particle diameter change rate (D10 before pressure application D10 after pressure application) / (D10 before pressure application) ⁇ 100
  • the pressure may be 3 tons or less.
  • the maintenance rate and rate of change of the particle diameter of the positive electrode active material for a lithium secondary battery according to the present invention depend on the pressure applied during the rolling process.
  • the electrode active material has high strength to increase the energy density and increase the proper electrical conductivity and mechanical performance And the strength of the particles which minimizes the differential control in the rolling process is required.
  • the cathode active material for a lithium secondary battery according to the present invention has a particle diameter retention of 80% or more, that is, a particle diameter change rate of less than 20% even when a pressure of 3 tons or less is applied.
  • the cathode active material for a lithium secondary battery according to an embodiment of the present invention may have a length ratio (s / l) of 0.85? (S / l)? 1 between the major axis 1 and the minor axis s of the particles.
  • the length ratio (s / l) between the long axis (1) and the short axis (s) of the particles indicates a sphericity, and thus it is expected that the improved density and strength of the active material particles are improved when the cathode active material having a high sphericity is manufactured .
  • the cathode active material for a lithium secondary battery according to an embodiment of the present invention may have an apparent density of 3.0 g / cc or more.
  • the cathode active material can obtain an improved density value by controlling the shape of the particles whose sphericity satisfies the range 0.85? S / l? 1, and as a result, the improved density improves the strength of the particles .
  • the cathode active material for a lithium secondary battery according to an embodiment of the present invention may have a specific surface area (BET) of 0.1 m 2 / g or more and 3.0 m 2 / g or less.
  • BET specific surface area
  • the cathode active material for a lithium secondary battery according to an embodiment of the present invention includes a coating layer on the surface of particles, and the thickness variation of the coating layer is 1% or less of the thickness of the coating layer.
  • the thickness of the coating layer may mean an average thickness of the coating layer.
  • the coating layer of the cathode active material for a lithium secondary battery according to an embodiment of the present invention may include at least one selected from the group consisting of Co, Al, Mn, P, B, Zr, Ce, Ba, Ti and Mg.
  • the cathode active material for a surface-coated lithium secondary battery according to the present invention can be obtained by washing the cathode active material with an aqueous solution containing the coating material, followed by drying or heat treatment.
  • the coating layer means a portion where the concentration of the metal constituting the coating layer is not constant but exhibits a concentration gradient.
  • the cathode active material obtained by the drying treatment had a thickness of 0.4 to 0.7 ⁇ in the thickness of the coating layer, And not more than 0.3%, which is not more than 1%.
  • the cathode active material for a lithium secondary battery coated on the surface of a particle not controlled by the conventional sphericity has a thickness of 1.5 to 2.2 ⁇ and is formed along a cathode active material whose sphericity is not controlled, It is relatively thick and a large variation in thickness is formed.
  • the reason why the difference in the thickness and the thickness of the coating layer is different is that the cause of the difference in the sphericity of the particle can be found. If the sphericity of the particle is low, however, when the sphericity of the particles is improved according to the present invention, the coating layer is uniformly diffused to enable coating with a thinner and uniform thickness. As a result, the particles having a coating layer of uniform thickness can improve the electrochemical characteristics of the battery including the same by improving the structural stability.
  • the cathode active material obtained by heat treatment of the cathode active material obtained by the present invention is characterized in that the metal constituting the coating layer is diffused but the thickness of the coating layer is 0.6 to 0.7 ⁇ and the variation in the thickness of the coating layer is 0.2 ⁇ or less.
  • the cathode active material for a lithium secondary battery coated on the surface of a particle whose control of the degree of sphericality was not controlled had a coating layer having a thickness of 1 to 1.3 ⁇ and a thicker coating layer than that of the present invention,
  • the coating layer formed by the sphericity of the particles uniformly diffuses into the inside to form a coating layer.
  • FIGS. 11 and 12 show TEM analysis results showing that the coating layer thickness difference of the cathode active material for a surface-coated lithium secondary battery according to the present invention is maintained within a certain range.
  • the cathode active material for a lithium secondary battery according to an embodiment of the present invention may have a total residual lithium of 1000 ppm or more and 20000 ppm or less.
  • the cathode active material is prepared by mixing lithium hydroxide with a precursor and then heat treating. LiOH and Li 2 CO 3 , which have not participated in the cathode active material production reaction after the heat treatment, remain on the surface of the cathode active material. Such residual lithium, that is, unreacted LiOH and Li 2 CO 3 react with an electrolyte or the like in the battery to cause gas generation and swelling phenomenon, thereby causing a problem that the high-temperature safety is seriously deteriorated. In addition, the unreacted LiOH may cause gelation due to high viscosity in slurry mixing before preparation of the electrode plate. That is, the positive electrode active material for a lithium secondary battery according to the present invention is characterized in that LiOH or Li 2 CO 3 is contained as residual lithium in an amount of 1000 ppm or more and 20000 ppm or less.
  • the measurement of the unreacted lithium is carried out by measuring the amount of 0.1 M HCl used until pH 4 by pH titration. First, 5 g of the cathode active material was added to 100 ml of DIW, stirred for 15 minutes, and filtered. 50 ml of the filtered solution was taken, and 0.1 M HCl was added thereto to determine the amounts of HCl consumed according to pH changes to determine Q1 and Q2 , Unreacted LiOH and Li 2 CO 3 .
  • LiOH (wt%) [(Q1-Q2) x C x M1 x 100] / (SPL Size x 1000)
  • Li 2 CO 3 (wt%) [2 x Q 2 x C x M2 / 2 x 100] / (SPL Size x 1000)
  • M is at least one element selected from the group consisting of Mn, Al, B, Ce, Cr, F, Li, Mo, P, Sr,
  • the lithium composite oxide precursor according to an embodiment of the present invention exhibits a sphericity through a ratio (s / l) of the long axis (1) to the short axis (s) of the particles.
  • the lithium complex oxide precursor according to an embodiment of the present invention may have a true density of 3.50 g / cc or more and 3.80 g / cc or less.
  • the lithium complex oxide precursor according to an embodiment of the present invention has an apparent density of 1.5 g / cc or more and 2.5 g / cc or less.
  • the lithium complex oxide precursor according to the embodiment of the present invention can secure an improved density value compared to the precursor particles not controlled in the conventional shape due to the high spherical shape of the particles.
  • the lithium composite oxide precursor according to an embodiment of the present invention may have a porosity of 20% or less.
  • the lithium composite oxide precursor exhibits an effect of improving the particle strength by adjusting the porosity of the particles to less than 20% by controlling the time of the production process.
  • FIG. 1 shows the fractured cross-sectional shapes of the initial particles, the final particles, and the cathode active material particles prepared using the lithium composite oxide precursor according to the present invention.
  • the lithium composite oxide precursor according to an embodiment of the present invention may be prepared by first dispersing a seed in a reactor and preventing initial particles formed from a dispersed seed from entangling and consequently improving the particle sphericity of the final precursor particles .
  • a method for preparing a lithium composite oxide precursor according to an embodiment of the present invention includes: a first step of charging a chelating agent aqueous solution for forming a seed into a reactor and stirring at 200 to 1000 rpm;
  • a third step of drying or heat-treating the precipitate to produce a lithium composite oxide precursor is a third step of drying or heat-treating the precipitate to produce a lithium composite oxide precursor; .
  • the concentration of the chelating agent aqueous solution in the first step is 2 to 3 mol / L, the chelating agent aqueous solution is mixed with 25 to 35% Can be input.
  • the particle growth rate of the precursor particles may be 0.10 ⁇ / Hr or more and 1.01 ⁇ / Hr or less.
  • the time for performing the first to third steps may be 500 minutes or more and 800 minutes or less.
  • the time from the first step to the second step may be 50 minutes or more and 200 minutes or less, and the size of the resulting precursor particles may be 5 ⁇ ⁇ or less.
  • the method of preparing a lithium complex oxide precursor according to an embodiment of the present invention can form precursor particles while maintaining the growth rate of the precursor particles within a certain range to increase the particle density while maintaining the sphericality of the particles without entangling the precursor particles .
  • the lithium composite oxide precursor according to the present invention may be prepared by first dispersing a seed in an aqueous solution of a chelate for forming a seed in a reactor and stirring the seed to form an initial particle So that the particle sphericality of the final precursor particles is improved as a result.
  • the lithium composite oxide prepared from the precursor particles of the present invention has greatly improved particle strength, and even if pressure is applied during the lithium composite oxide manufacturing process and the battery manufacturing process, And as a result, the stability of the battery is improved.
  • FIG. 1 shows the preparation of precursor particles and the production of active material particles according to the present invention.
  • FIG. 2 is a SEM photograph for analyzing the sphericity of the precursor particles prepared in one embodiment of the present invention.
  • FIG. 3 is a SEM photograph for analyzing the spherical shape of the active material particles prepared in the embodiment of the present invention.
  • Figs. 4 and 5 show the results of measuring the strength of the active material particles produced in one embodiment of the present invention.
  • FIGS. 6 to 10 show the results of characteristics evaluation of a battery including the active material produced in an embodiment of the present invention.
  • Figs. 11 to 14 show measurement results regarding the thickness of the coating layer of the surface-coated active material prepared in one embodiment of the present invention.
  • a precursor aqueous solution having a concentration of 2.5 M was fed at a rate of 2.2 L / hr and a 28% aqueous ammonia solution was fed at a rate of 0.15 L / hr to the reactor continuously at a molar ratio of 98: 2 of nickel sulfate and cobalt sulfate. To thereby form precursor particles.
  • a 25% aqueous solution of sodium hydroxide was added to maintain the pH at 11.3 to 11.4.
  • the impeller speed was controlled at 300 ⁇ 1000 rpm.
  • the precipitated composite metal hydroxide was filtered, washed with pure water, and dried in a hot air dryer at 100 ° C. for 12 hours to obtain a precursor powder of a metal complex hydroxide represented by (Ni 0.98 Co 0.02 ) (OH) 2 .
  • Example 2 The cathode active materials prepared in Example 2 and Comparative Example 2 were washed with distilled water or heat-treated to obtain cathode active material powders of Examples 3 and 3.
  • Example 3-1 The cathode active material prepared by washing with water and dried was used as Example 3-1 and Comparative Example 3-1. After washing with water, the cathode active material prepared by heat treatment at 700 to 750 ° C for 20 hours was evaluated as Example 3-2 and Comparative Example 3 -2.
  • Remarks Precursor Remarks Cathode active material (plastic) Unit Long axis (l) ⁇ m Shortening (s) ⁇ m s / l Unit Long axis (l) ⁇ m Shortening (s) ⁇ m s / l Comparative Example 1 19.75 15.61 0.79 Comparative Example 2 20.25 14.92 0.74 Example 1 17.32 16.75 0.97 Example 2 17.34 16.59 0.96
  • the precursor particles prepared in Example 1 of the present invention are spherical in shape from one seed, whereas the precursor particles prepared in Comparative Example 1 have several seeds bonded And the spherical shape can not be maintained.
  • the length ratio of the major axis and the minor axis of the precursor prepared in Example 1 of the present invention was 0.97, whereas the length ratio of the major axis and minor axis in Comparative Example 1 was 0.79, .
  • the active material particles formed from the spherical precursor are spherical in accordance with the embodiment of the present invention, whereas the active material particles of the comparative example are not spherical due to the combination of several seeds Able to know.
  • the rate of change of the particle diameter and the rate of retention were evaluated by measuring the rate of change and the rate of retention of the particle diameter D10 while increasing the pressure applied to the active material particles.
  • Particle diameter retention rate (D10 after pressure application / D10 before pressure application) ⁇ 100
  • Particle diameter change rate (D10 before pressure application D10 after pressure application) / (D10 before pressure application) ⁇ 100
  • Example 1 and Comparative Example 1 The density, specific surface area, and porosity of the precursor prepared in Example 1 and Comparative Example 1 were analyzed and compared with those of Example 3-2 and Comparative Example 3-2 prepared using the precursors of Example 1 and Comparative Example 1
  • the characteristics of the cathode active material were analyzed. The results are shown in Table 3 below.
  • Precursor Cathode active material (heat-treated product) True density Apparent density Specific surface area Porosity Pellet Density Press 2.5 ton, after D10 maintenance rate Charge (discharge) capacity Lifetime maintenance rate Before storage (after) Imp. Unit / g % Unit g / cc % mAh / g % ⁇ Comparative Example 1 3.63 1.78 8.01 36.43 Comparative Example 3-2 3.50 44 240.9 (211.8) 88 3.0 (21.8) Example 1 3.70 1.89 5.21 19.58 Example 3-2 3.53 89 241.5 (211.7) 91 2.4 (15.2)
  • the apparent density represents the density measured in the state including the inner voids and the voids inside the particle, and the true density refers to the density excluding the empty space inside. Therefore, in general, the apparent density is measured to be lower than the true density minus the void.
  • the apparent density was measured as the mass of the powder per unit volume when the powder was contained in a given container, and the true density was calculated by dividing the entire material- The density of the dry particles per particle volume as the particle density.
  • Example 3 As shown in Table 3, in the case of the precursor prepared in Example 1 of the present invention, the true density and the apparent density were increased and the porosity was decreased compared with the precursor of Comparative Example 1, and the lithium It can be seen that the density of the composite oxide precursor particles is improved.
  • the positive electrode active material exhibits an improved pellet density, which indicates that the particle diameter D10 retention ratio is 89% which is more than 2 times improved.
  • the battery including the cathode active material of Example 3 improved the charging / discharging capacity and life span characteristics and resistance characteristics.
  • the coating layer is a layer in which the concentration of the metal salt contained in the coating layer is not constant but exhibits a gradient.
  • the thickness of the surface coating layer of the cathode active material particles prepared in Example 3-1 and Comparative Example 3-1 following the washing with water was 0.4 to 0.7 ⁇ m, As a result of measurement of the surface, it can be seen that the thickness deviation is 0.3 ⁇ or less.
  • the thickness of the surface coating layer of the cathode active material particles prepared in Comparative Example 3-1 was 1.5 to 2.2 ⁇ ⁇ , which is relatively thick compared to Example 3-1 and has a coating layer having a large thickness deviation.
  • the thickness of the surface coating layer of the cathode active material particles prepared in Examples 3-2 and 3-2 according to the heat treatment after the water rinsing was 0.5 to 0.7 ⁇ , It was found that the thickness deviation was 0.2 ⁇ ⁇ or less.
  • the thickness of the surface coating layer of the cathode active material particles prepared in Comparative Example 3-2 was in the range of 1 to 1.3 ⁇ ⁇ , and similarly, it was confirmed that the coating layer was about twice as thick as that in Example 3-2.
  • the difference in thickness and thickness of the coating layer is high, and the difference in thickness of the coated coating layer is maintained within a certain range. And the coating layer is thickly formed near the inflection point, resulting in nonuniform and thick coating.
  • Super-P as a conductive agent and polyvinylidene fluoride (PVdF) as a binder were mixed at a weight ratio of 92: 5: 3 to prepare a slurry.
  • the slurry was uniformly applied to an aluminum foil having a thickness of 15 ⁇ ⁇ , and vacuum dried at 135 ⁇ ⁇ to prepare a positive electrode for a lithium secondary battery.
  • a coin cell was prepared according to a conventionally known production process using a liquid electrolyte in which LiPF6 was dissolved in a solvent at a concentration of 1.15 M.
  • the battery manufactured according to the embodiment of the present invention has excellent particle strength according to a high sphering retention ratio of the active material, and even if pressure is applied during the battery manufacturing process, the fine powder is controlled, .
  • the initial capacity and rate characteristics of the battery manufactured according to the embodiment of the present invention are not lagging behind the battery manufactured according to the comparative example, and show somewhat similar characteristics or slightly improved characteristics.
  • the lifetime characteristics of the battery manufactured according to the embodiment of the present invention show a lifetime maintenance rate of 91% or more and an improvement of about 5% over a cycle of 50 times as compared with the battery manufactured by the comparative example .
  • the high-temperature storage characteristics of the battery manufactured according to the embodiment of the present invention are improved in resistance characteristics before and after high-temperature storage, compared with the battery manufactured by the comparative example, .

Abstract

본 발명은 리튬 복합 산화물 전구체, 이의 제조 방법 및 이에 의하여 제조된 리튬 복합 산화물에 관한 것으로서, 본 발명의 실시예를 따르는 리튬 이차전지용 양극활물질은 한 개의 씨드(seed)로부터 성장한 구형이고, Li xNi 1 -a-b-cCo aM1 bM2 cM3 dO w 로 표시된다. (상기 화학식 2에서 0.95≤x≤1.05, 1.50≤w≤2.1, 0.02≤a≤0.25, 0.01≤b≤0.20, 0≤c≤0.20, 0≤d≤0.20, M1은 Mn 또는 Al 이고, M2 및 M3 는 Al, Ba, B, Co,Ce,Cr, F, Li, Mg, Mn, Mo, P, Sr, Ti 및 Zr 로 이루어진 그룹에서 선택되는 적어도 하나 이상임).

Description

리튬 복합 산화물 전구체, 이의 제조 방법 및 이를 이용하여 제조된 리튬 복합 산화물
본 발명은 리튬 복합 산화물 전구체, 이의 제조 방법 및 이에 의하여 제조된 리튬 복합 산화물에 관한 것으로서, 더욱 상세하게는 리튬 복합 산화물 전구체 초기 입자의 형상을 제어함으로써, 이를 이용한 리튬 복합 산화물의 입자 제조 시 입자 강도가 개선되고, 이를 적용한 전지의 특성을 크게 개선할 수 있는 리튬 복합 산화물 전구체, 이의 제조 방법 및 이를 이용하여 제조된 리튬 복합 산화물에 관한 것이다.
최근 전자 제품, 전자 기기, 통신 기기의 소형화, 경량화 및 고성능화가 급속히 진전됨에 따라 이들 제품의 전원으로 사용될 이차 전지의 성능 개선이 크게 요구되고 있다. 이러한 요구를 만족시키는 이차 전지로 리튬 이차 전지가 있다.
양극 활물질은 리튬 이차 전지의 전지 성능 및 안전성에 가장 중요한 역할을 하는 물질로서, 칼코게나이드(chalcogenide) 화합물이 사용되고 있으며, 그 예로 LiCoO 2, LiNiO 2, LiNi 1 - xCo xO 2(0<x<1), LiMnO 2, LiMn 2O 4, LiFePO 4 등의 복합 금속 산화물들이 연구되고 있다. 이와 같은 양극 활물질을 카본 블랙과 같은 도전재, 바인더 및 용매를 혼합하여 양극 활물질 슬러리 조성물을 제조한 후, 알루미늄 호일 등의 얇은 금속판에 코팅하여 리튬 이온 이차 전지의 양극으로 사용한다.
이러한 이차전지용 양극 활물질은 제조 공정 중 하나로서 압연 공정을 거치게 된다. 압연 공정이란 밀도를 증가시키고 결정성을 높이기 위해 소정의 압력으로 활물질 층을 수회 프레싱하는 것을 의미한다.
종래 양극 활물질 전구체 및 활물질은 공침 공정으로 제조되는 과정에서 복수개의 씨드(seed)가 응집되어 초기 입자를 형성시 구형이 유지되기 어렵다. 이와 같이 형상 유지가 어려운 전구체 입자를 이용한 활물질의 제조는 결과적으로 상기 압연 공정 동안 양극 활물질 입자가 받게 되는 압축 응력을 이기지 못하고 일부는 깨어져 입자가 파괴되는 문제점이 있다.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 리튬 복합 산화물 전구체 입자의 형상을 제어함으로써, 구형도 및 밀도가 개선된 리튬 복합 산화물 전구체, 이의 제조 방법을 제공하는 것을 목적으로 한다.
본 발명은 또한, 본 발명에 의한 리튬 복합 산화물 전구체를 이용함으로써 우수한 입자 강도를 갖는 리튬 이차전지용 양극활물질로서 리튬 복합 산화물을 제공하는 것을 목적으로 한다.
본 발명의 실시예를 따르는 리튬 이차전지용 양극활물질은 한 개의 씨드(seed)로부터 성장한 구형이고, 아래 화학식 2로 표시된다.
<화학식 2> Li xNi 1 -a-b- cCo aM1 bM2 cM3 dO w
(상기 화학식 2에서 0.95≤x≤1.05, 1.50≤w≤2.1, 0.02≤a≤0.25, 0.01≤b≤0.20, 0≤c≤0.20, 0≤d≤0.20,
M1은 Mn 또는 Al 이고,
M2 및 M3 는 Al, Ba, B, Co,Ce ,Cr, F, Li, Mg, Mn, Mo, P, Sr, Ti 및 Zr 로 이루어진 그룹에서 선택되는 적어도 하나 이상임).
본 발명의 실시예를 따르는 리튬 이차전지용 양극활물질은 아래 식으로 표시되는 압력을 인가하기 전후의 입자 직경의 비를 나타내는 입자 직경 유지율이 80% 이상일 수 있다.
입자 직경 유지율 = (압력 인가 후 D10 / 압력 인가 전 D10)×100
입자 직경 유지율이 80% 이상인 것은 압력 인가 후 D10 의 입자 직경이, 압력 인가 전 D10 의 입자 직경에 비해 80% 이상을 유지하는 것을 의미하며, 결과적으로 아래 식으로 나타내어지는 압력에 따른 입자 직경의 변화율이 20% 미만의 입자 강도를 나타내는 것을 의미한다.
입자 직경 변화율 = (압력 인가 전 D10-압력 인가 후 D10) / (압력 인가 전 D10)×100
본 발명의 실시예를 따르는 리튬 이차전지용 양극활물질에서 상기 압력은 3톤 이하의 압력일 수 있다.
본 발명에 의한 리튬 이차전지용 양극활물질의 상기 압력에 따른 입자 직경의 유지율 및 변화율은 압연 공정 시 인가되는 압력에 따른 것으로, 전극 활물질은 에너지 밀도를 높이고 적절한 전기전도도 및 기계적 성능을 높여주기 위하여 높은 강도의 압연 공정을 거치게 되며, 이러한 압연 공정에서 미분 제어를 최소로 하는 입자의 강도가 요구된다.
이에 따라, 본 발명에 의한 리튬 이차전지용 양극활물질은 3톤 이하의 압력을 인가 시에도 입자 직경 유지율이 80% 이상인 것, 즉 입자 직경 변화율이 20% 미만인 것을 특징으로 한다.
본 발명의 실시예를 따르는 리튬 이차전지용 양극활물질은 입자의 장축(l)과 단축(s)의 길이비(s/l)가 0.85 ≤(s/l)≤ 1 일 수 있다. 상기 입자의 장축(l)과 단축(s)의 길이비(s/l)는 구형도를 나타내는 것으로써, 구형도가 높은 양극활물질 제조시 활물질 입자의 개선된 밀도 및 강도 향상 효과를 기대할 수 있다. 0.85 이하에서는 입자의 강도 특성이 저하되어 압력에 따른 미분 제어가 어려워 결국 양극활물질의 특성의 감소를 초래한다. 또한, 보다 바람직하게는 0.87 ≤(s/l)≤ 1, 보다 바람직하게는 0.90 ≤(s/l)≤ 1, 보다 바람직하게는 0.93 ≤(s/l)≤ 1, 보다 바람직하게는 0.95 ≤(s/l)≤ 1, 보다 바람직하게는 0.97 ≤(s/l)≤ 1일 수 있다. 구형도가 0.9 이상일 때 입자의 강도 특성이 특히 우수하다.
본 발명의 실시예를 따르는 리튬 이차전지용 양극활물질은 겉보기 밀도가 3.0 g/cc 이상일 수 있다. 상기 양극활물질은 입자의 구형도가 상기 범위 0.85 ≤ (s/l)≤ 1 를 만족하는 입자의 형상 제어를 통해 보다 개선된 밀도 값을 얻을 수 있으며 결과적으로 상기 개선된 밀도는 입자의 강도를 향상시키는 효과가 있다.
본 발명의 실시예를 따르는 리튬 이차전지용 양극활물질은 비표면적(BET)이 0.1 m 2/g 이상, 3.0 m 2/g 이하일 수 있다.
본 발명의 실시예를 따르는 리튬 이차전지용 양극활물질은 입자 표면에 코팅층을 포함하고, 상기 코팅층의 두께 편차가 코팅층의 두께 대비 1% 이하이다. 이 때, 상기 코팅층의 두께는 코팅층의 평균 두께를 의미할 수 있다.
본 발명의 실시예를 따르는 리튬 이차전지용 양극활물질의 상기 코팅층은 Co, Al, Mn, P, B, Zr, Ce, Ba, Ti 및 Mg 로 이루어진 그룹에서 선택되는 어느 하나 이상을 포함할 수 있다.
본 발명에 의한 표면이 코팅된 리튬 이차전지용 양극활물질은 상기 코팅물질을 포함하는 수용액으로 양극활물질을 수세하고 건조 또는 열처리에 의하여 얻을 수 있다. 구체적으로 본 발명에 의한 리튬 이차전지용 양극활물질에 있어서, 상기 코팅층은 코팅층을 구성하는 금속의 농도가 일정하지 않고 농도구배를 나타내는 부분을 의미한다.
이 때, 수세 이후 단계의 처리에 따라 상기 코팅층의 두께 및 두께 편차를 분석한 결과, 건조 처리함으로써 얻어진 양극활물질은 코팅층의 두께가 0.4 내지 0.7 ㎛ 이며, 상기 코팅층의 두께 편차가 코팅층의 평균 두께의 1% 이하인 0.3 ㎛ 이하인 것을 특징으로 한다.
종래 구형도가 제어되지 않은 입자 표면에 코팅된 리튬 이차전지용 양극활물질은 그 코팅층의 두께가 1.5 내지 2.2 ㎛ 로서, 구형도가 제어되지 않은 양극활물질을 따라 형성되면서 본 발명의 구형도가 대비된 코팅층에 비하여 비교적 두껍고 두께의 편차가 크게 형성된다.
본원 발명과 인용 발명이 동일한 코팅량에도 불구하고 이와 같이 코팅층의 두께 및 두께의 편차에 차이가 발생하는 이유는 입자의 구형도에서 그 원인을 찾을 수 있으며, 입자의 구형도가 낮을 경우 내부로 인입되는 변곡점 부근에 코팅층이 두껍게 형성되나 본 발명에 의하여 입자의 구형도를 개선할 경우, 코팅층의 확산이 균일하게 이루어져 보다 얇고 균일한 두께의 코팅이 가능하다. 결과적으로 균일한 두께의 코팅층을 갖는 입자는 구조적 안정성을 향상시킴으로써, 이를 포함하는 전지의 전기화학적 특성을 향상시킬 수 있다.
본 발명에 의하여 얻어진 양극활물질을 열처리함으로써 얻어진 양극활물질은 코팅층을 구성하는 금속이 확산되지만, 코팅층의 두께가 0.6 내지 0.7 ㎛이며, 상기 코팅층 두께의 편차가 0.2 ㎛ 이하인 것을 특징으로 한다.
종래 구형도가 제어되지 않은 입자 표면에 코팅된 리튬 이차전지용 양극활물질은 그 코팅층의 두께가 1 내지 1.3 ㎛ 로서, 본 발명 대비 보다 두꺼운 코팅층을 갖는 것으로 확인되는 바, 이 역시도 본 발명에 의한 양극활물질을 열처리하는 경우에도 입자의 구형도에 의하여 형성된 코팅층이 내부로 균일하게 확산되어 코팅층을 형성한다.
본 발명에 의한 표면이 코팅된 리튬 이차전지용 양극활물질의 코팅층 두께 차이가 일정 범위로 유지되고 있는 것을 나타내는 TEM 분석결과를 도 11 및 도 12 에 나타내었다.
본 발명의 실시예를 따르는 리튬 이차전지용 양극활물질은 총 잔류 리튬이 1000 ppm 이상, 20000 ppm 이하일 수 있다.
양극활물질은 전구체에 수산화리튬을 혼합하여 열처리하여 제조하게 되는데, 이러한 열처리 과정 후, 양극활물질 제조 반응에 참여하지 못한 LiOH, Li 2CO 3 은 양극활물질 표면에 잔류하는 문제점이 있다. 이러한 잔류 리튬 즉, 미반응 LiOH 및 Li 2CO 3는 전지 내에서 전해액 등과 반응하여 가스 발생 및 스웰링(swelling) 현상을 유발함으로써, 고온 안전성이 심각하게 저하되는 문제를 야기시킨다. 또한, 미반응 LiOH는 극판 제조 전 슬러리 믹싱 시 점도가 높아 겔화를 야기시키기도 한다. 즉, 본 발명에 의한 리튬 이차전지용 양극활물질은 상기 잔류 리튬으로서 LiOH 또는 Li 2CO 3 를 1000 ppm 이상, 20000 ppm 이하로 포함하는 것을 특징으로 한다.
상기 미반응 리튬의 측정은 pH 적정에 의해 pH 4 가 될 때까지 사용된 0.1 M HCl의 양으로 측정한다. 먼저, 양극 활물질 5 g을 DIW 100 ml에 넣고 15 분간 교반한 후 필터링하고, 필터링 된 용액 50 ml를 취한 후 여기에 0.1 M HCl을 가하여 pH 변화에 따른 HCl 소모량을 측정하여 Q1, Q2를 결정하고, 아래 계산식에 따라 미반응 LiOH 및 Li 2CO 3 을 계산하여 측정한다.
M1 = 23.94 (LiOH Molecular weight)
M2 = 73.89 (Li 2CO 3 Molecular weight)
SPL Size = (Sample weight × Solution Weight) / Water Weight
LiOH(wt%) = [(Q1-Q2)×C×M1×100]/(SPL Size ×1000)
Li 2CO 3(wt%) = [2×Q2×C×M2/2×100]/(SPL Size×1000)
본 발명은 또한, 본 발명의 리튬 이차전지용 양극활물질 제조에 이용되는 한 개의 씨드(seed)로부터 성장한 구형이고, 입자의 장축(l)과 단축(s)의 길이비(s/l)가 0.85 ≤(s/l)≤ 1 이고, 아래 화학식 1로 표시되는 리튬 복합 산화물 전구체를 제공한다.
<화학식 1> Ni 1 -a- bCo aM b(OH) 2
(상기 화학식 1에서 a+b≤0.5, a≤0.2, b≤0.3,
M은 Mn, Al, B, Ba, Ce, Cr, F, Li, Mo, P, Sr, Ti 및 Zr 로 이루어진 그룹에서 선택되는 적어도 하나 이상의 원소임)
본 발명의 실시예에 따른 리튬 복합 산화물 전구체는 상기 입자의 장축(l)과 단축(s)의 길이비(s/l)를 통하여 구형도를 나타내는 것으로써, 상기 전구체 초기 입자의 형상 제어를 통해 보다 개선된 밀도를 갖는 전구체 입자 및 이를 이용하여 제조되는 양극활물질의 형상 제어를 통한 입자의 강도 향상 효과를 기대한다. 또한, 보다 바람직하게는 0.87 ≤(s/l)≤ 1, 보다 바람직하게는 0.90 ≤(s/l)≤ 1, 보다 바람직하게는 0.93 ≤(s/l)≤ 1, 보다 바람직하게는 0.95 ≤(s/l)≤ 1, 보다 바람직하게는 0.97 ≤(s/l)≤ 1일 수 있다.
본 발명의 실시예에 따른 리튬 복합 산화물 전구체는 입자의 진밀도가 3.50 g/cc 이상 3.80 g/cc이하일 수 있다.
본 발명의 실시예에 따른 리튬 복합 산화물 전구체는 입자의 겉보기밀도가 1.5 g/cc 이상 2.5 g/cc이하인 것을 특징으로 한다.
본 발명의 실시예에 따른 리튬 복합 산화물 전구체는 입자의 높은 구형도로 인하여 종래 형상을 제어하지 않은 전구체 입자 대비 개선된 밀도 값을 확보할 수 있다.
본 발명의 실시예에 따른 리튬 복합 산화물 전구체는 입자의 기공률이 20% 이하일 수 있다. 상기 리튬 복합 산화물 전구체는 제조 공정 시간을 조절하여 입자 내의 기공률을 20% 미만으로 조절함으로써 입자 강도를 개선하는 효과를 나타낸다.
본 발명의 실시예에 따른 리튬 복합 산화물 전구체의 초기 입자, 최종 입자 및 이와 같은 본 발명에 의한 리튬 복합 산화물 전구체를 이용하여 제조되는 양극활물질 입자의 파단면 형상에 대하여 도 1에 도시하였다.
본 발명의 실시예에 따른 리튬 복합 산화물 전구체는 반응기에 씨드(seed) 를 먼저 분산시키고, 분산된 씨드(seed) 로부터 형성되는 초기 입자가 엉기지 않도록 하여 결과적으로 최종 전구체 입자의 입자 구형도를 개선하는 효과를 나타낸다.
본 발명의 실시예에 따른 리튬 복합 산화물 전구체 제조 방법은 씨드(seed) 형성을 위한 킬레이팅제 수용액을 반응기에 투입하고 200 내지 1000 rpm 으로 교반하는 제 1 단계;
전구체 수용액, 킬레이팅제 수용액 및 염기성 수용액을 반응기에 동시에 연속적으로 투입하여 구형의 침전물을 얻는 제 2 단계; 및
상기 침전물을 건조시키거나 열처리하여 리튬 복합 산화물 전구체를 제조하는 제 3 단계; 를 포함한다.
본 발명의 실시예에 따른 리튬 복합 산화물 전구체 제조 방법에서, 상기 제 1 단계에서 킬레이팅제 수용액의 농도는 2 내지 3 mol/L 이며, 상기 킬레이팅제 수용액을 전체 반응기 부피의 25 내지 35% 까지 투입할 수 있다.
본 발명의 실시예에 따른 리튬 복합 산화물 전구체 제조 방법에서, 상기 제 2 단계의 상기 전구체 수용액은 Ni: Co: Me1 = a:b:1-(a+b) (0.7≤a≤1.0, 0≤b≤0.2)이고, 상기 킬레이팅제와 상기 전구체 수용액 중의 금속염의 몰 비는 0.1 내지 0.5 이며, 상기 전구체 수용액, 상기 킬레이팅제 수용액 및 상기 염기성 수용액을 전체 반응기 부피의 30 ~ 60% 까지 반응기에 동시에 연속적으로 투입하여 구형의 침전물을 얻는 것일 수 있다.
본 발명의 실시예에 따른 리튬 복합 산화물 전구체 제조 방법에서, 상기 전구체 입자의 입자 성장 속도가 0.10 ㎛/Hr 이상 1.01 ㎛/Hr 이하일 수 있다.
본 발명의 실시예에 따른 리튬 복합 산화물 전구체 제조 방법에서, 상기 제 1 단계부터 제 3 단계까지의 수행 시간은 500 분 이상 800 분 이하일 수 있다.
본 발명의 실시예에 따른 리튬 복합 산화물 전구체 제조 방법에서, 상기 제 1 단계부터 제 2 단계까지의 수행 시간이 50 분 이상 200 분 이하이고, 생성되는 전구체 입자의 크기가 5 ㎛ 이하일 수 있다.
본 발명의 실시예에 따른 리튬 복합 산화물 전구체 제조 방법은 전구체 입자의 성장 속도를 일정 범위로 유지하여 전구체 입자가 얽히지 않고 입자의 구형도를 유지하면서 입자 밀도를 증가시키면서 전구체 입자를 형성할 수 있다.
본 발명에 의한 리튬 복합 산화물 전구체는 반응기에 씨드(seed) 형성을 위한 킬레이트 수용액을 투입하여 교반함으로써 씨드(seed)를 먼저 분산시키고, 분산된 씨드(seed)로부터 초기 입자 형성시 형성되는 초기 입자가 엉기지 않도록 하여 결과적으로 최종 전구체 입자의 입자 구형도를 개선하는 효과를 나타낸다.
또한, 이와 같은 본원 발명의 전구체 입자로부터 제조되는 리튬 복합 산화물은 입자 강도가 크게 개선되어, 리튬 복합 산화물 제조 공정 및 전지 제조 공정에서의 압연, 코팅 공정에서 압력이 인가되더라도 이에 의한 미분 발생을 감소시켜 결과적으로는 전지의 안정성을 개선하는 효과를 나타낸다.
도 1 은 본 발명에 의한 전구체 입자의 제조 및 활물질 입자의 제조 과정을 나타낸다.
도 2는 본 발명의 일 실시예에서 제조된 전구체 입자의 구형도 분석을 위한 SEM 사진을 나타낸다.
도 3은 본 발명의 일 실시예에서 제조된 활물질 입자의 구형도 분석을 위한 SEM 사진을 나타낸다.
도 4 및 도 5는 본 발명의 일 실시예에서 제조된 활물질 입자의 강도 측정 결과를 나타낸다.
도 6 내지 도 10은 본 발명의 일 실시예에서 제조된 활물질을 포함하는 전지의 특성 평가 결과를 나타낸다.
도 11 내지 도 14는 본 발명의 일 실시예에서 제조된 표면이 코팅된 활물질의 코팅층 두께에 관한 측정 결과를 나타낸다.
이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.
<실시예>
(실시예 1) 전구체 제조
내용적 100 L의 용량을 가지는 공침 반응기(co-precipitation reactor, 회전모터의 출력 80 W이상)에 증류수 20 L와 킬레이팅제로서 암모니아를 1000 g을 넣은 뒤, 반응기 내의 온도를 45 ℃로 유지하면서 1000 rpm으로 반응기 내부의 임펠러를 교반하여 생성되는 씨드(seed) 가 얽히지 않고 분산되도록 하였다.
황산니켈, 황산코발트의 몰 비(mole ratio)가 98 : 2 의 비율로 혼합된 2.5 M 농도의 전구체 수용액을 2.2 L/hr으로, 28% 농도의 암모니아 수용액을 0.15 L/hr으로 반응기에 연속적으로 투입하여 전구체 입자를 형성하였다.
또한, pH 조정을 위해 25% 농도의 수산화나트륨 수용액을 공급하여 pH가 11.3~11.4 로 유지되도록 하였다. 임펠러 속도는 300~1000 rpm 으로 조절하였다.
반응이 종결되고 난 후, 반응기(reactor)로부터 구형의 니켈망간코발트 복합수산화물 침전물을 얻었다.
상기 침전된 복합금속수산화물을 여과하고, 순수로 세척한 후에 100 ℃ 온풍건조기에서 12시간 건조시켜 (Ni 0.98Co 0.02)(OH) 2 로 표시되는 금속 복합 수산화물 형태의 전구체 분말을 얻었다.
(비교예 1) 전구체 제조
내용적 100 L의 용량을 가지는 공침 반응기(co-precipitation reactor, 회전모터의 출력 80 W이상)에 증류수 20 L와 킬레이팅제로서 암모니아를 1000 g 및 황산니켈, 황산코발트의 몰 비가 98 : 2 의 비율로 혼합된 2.5 M 농도의 전구체 수용액을 2.2 L/hr으로, 28% 농도의 암모니아 수용액을 0.15 L/hr으로 반응기에 연속적으로 투입하여 전구체 입자를 형성하였다.
(실시예 2~3, 비교예 2~3) 양극활물질의 제조
상기 실시예 1 및 비교예 1에서 제조된 전구체인 금속 복합 수산화물과 수산화리튬(LiOH.H 2O) 및 Al, Mg, Ti 를 1 : 1.00~1.10 몰 비로 혼합한 후에 2 ℃/min의 승온 속도로 가열하여 550 ℃에서 10시간 열처리를 진행한 후, 하기 표 1에서와 같은 조성을 갖는 실시예 2 및 비교예 2의 양극 활물질 분말을 얻었다.
또한, 상기 실시예 2 및 비교예 2에서 제조된 양극활물질을 증류수로 수세 또는 열처리하여 실시예 3 및 비교예 3의 양극 활물질 분말을 얻었다.
수세 후 건조에 의하여 제조된 양극 활물질을 실시예 3-1 및 비교예 3-1 로 하였고, 수세 후 700 내지 750 ℃ 에서 20 시간 동안 열처리하여 제조된 양극 활물질을 실시예 3-2 및 비교예 3-2 로 하였다.
No 전구체 양극활물질 잔류리튬 조성식
Ni Co - - Ni Co Al Mg Ti LiOH Total
mol mol ppm
비교예1
비교예2
비교예3
실시예1
실시예2
실시예3-13-2
<실험예> 전구체 입자 및 활물질 입자의 구형도 분석(SEM 측정)
상기 실시예 1 및 비교예 1 에서 제조된 전구체 입자와, 실시예 2 및 비교예 2 에서 제조된 활물질 입자의 구형도를 분석하기 위하여, SEM 측정을 실시하고 그 결과를 도 2 및 도 3에 나타내었다.
상기 SEM 측정 사진을 통하여, 전구체 입자 및 활물질 입자 장축과 단축의 길이를 측정하고 그 결과를 하기 표 2에 나타내었다.
비고 전구체 비고 양극 활물질 (소성품)
Unit 장축(l)μm 단축(s) μm s/l Unit 장축(l)μm 단축(s) μm s/l
비교예 1 19.75 15.61 0.79 비교예 2 20.25 14.92 0.74
실시예 1 17.32 16.75 0.97 실시예 2 17.34 16.59 0.96
도 2에서 보는 바와 같이, 본 발명의 실시예 1에서 제조된 전구체 입자는 1개의 씨드(seed) 로부터 성장되어 구형을 나타내는데 비해, 비교예 1에서 제조된 전구체 입자는 여러 개의 씨드(seed) 가 결합되어 구형이 유지되지 못하는 것을 볼 수 있다.
표 2에서 보는 바와 같이, 본 발명의 실시예 1에 의하여 제조된 전구체의 장축과 단축의 길이비는 0.97 인데 비해, 비교예 1의 경우 장축과 단축의 길이비가 0.79로 구형도에 대한 차이를 알 수 있다.
또한, 도 3에서 보는 바와 같이, 본 발명의 실시예에 의하여 구형 전구체로부터 형성되는 활물질 입자는 구형이 유지되는데 비해, 비교예의 활물질 입자는 여러 개의 씨드(seed) 가 결합되어 구형이 유지되지 못하는 것을 알 수 있다.
상기 표 2에서 보는 바와 같이, 본 발명의 실시예 2 및 비교예 2의 활물질 입자의 장축과 단축의 길이비는 0.74 인데 비해, 비교예 1의 경우 장축과 단축의 길이비가 0.96 으로 구형도가 크게 개선되었음을 알 수 있다.
<실험예> 활물질 입자 직경 변화율 및 유지율 평가(압축 파괴 강도 분석)
상기 실시예 2 및 실시예 3에서 제조된 활물질 입자의 입자 직경 변화율 및 유지율을 평가하기 위하여, 입자의 압축 파괴 강도를 측정하고, 그 결과를 도 4 및 도 5에 나타내었다.
입자 직경 변화율 및 유지율은 활물질 입자에 인가하는 압력을 증가시키면서 입자 직경 D10 의 변화율 및 유지율을 측정하고, 하기 식에 따라 평가하였다.
입자 직경 유지율 = (압력 인가 후 D10 / 압력 인가 전 D10)×100
입자 직경 변화율 = (압력 인가 전 D10-압력 인가 후 D10) / (압력 인가 전 D10 )×100
도 4 및 도 5에서 보는 바와 같이, 본 발명의 실시예 2 및 실시예 3에서 제조된 활물질의 경우, 인가하는 압력이 3톤으로 증가함에도 D10 의 입자 직경 유지율은 80% 인데 비하여, 비교예 2 및 비교예 3에서 제조된 활물질의 경우 D10 의 입자 직경 유지율이 40% 까지 감소한 것을 알 수 있다. 따라서, 본 발명의 실시예에 의하여 제조된 활물질 입자의 압축 강도가 크게 개선되었다는 것을 입증한다.
<실험예> 전구체 물성 및 양극활물질 특성 분석
상기 실시예 1 및 비교예 1에서 제조된 전구체의 밀도, 비표면적, 기공률을 분석하였고, 각각 실시예 1 및 비교예 1의 전구체를 이용하여 제조된 실시예 3-2 및 비교예 3-2의 양극활물질 특성을 분석하였다. 그 결과를 하기 표 3에 나타내었다.
전구체 양극 활물질 (열처리품)
진밀도 겉보기밀도 비표면적 기공률 Pellet Density Press2.5ton, 후D10 유지율 충전(방전)용량 수명유지율 저장 전(후)Imp.
Unit /g % Unit g/cc % mAh/g %
비교예 1 3.63 1.78 8.01 36.43 비교예 3-2 3.50 44 240.9(211.8) 88 3.0(21.8)
실시예1 3.70 1.89 5.21 19.58 실시예3-2 3.53 89 241.5(211.7) 91 2.4(15.2)
상기 표에서 겉보기 밀도는 입자 내부의 내부 공공, 빈 공간을 포함하는 상태에서 측정한 밀도를 나타내며, 진밀도는 내부의 빈공간을 제외한 밀도를 의미한다. 따라서 일반적으로 겉보기 밀도는 공극을 뺀 진밀도보다 낮게 측정된다.
본 발명의 실시예에서 제조된 전구체의 경우, 겉보기 밀도는 분말을 일정용기에 담았을 때의 단위 용적당 분말의 질량으로 측정하였고, 진밀도는 입자와 입자사이의 간극을 제외한 완전히 재료로 채워진 부분만의 밀도, 즉 입자 밀도로서 입자 부피당 건조 입자의 질량을 측정하여 구하였다.
표 3에서 보는 바와 같이, 본 발명의 실시예 1에서 제조된 전구체의 경우, 비교예 1의 전구체에 비하여 진밀도 및 겉보기 밀도가 증가하는 동시에 기공률은 감소하는 것을 통해, 본 발명에 의하여 제조된 리튬 복합 산화물 전구체 입자의 밀도가 향상된 것을 알 수 있다.
또한, 상기 실시예 1 및 비교예 1의 전구체를 각각 이용하여 제조된 실시예 3-2 및 비교예 3-2의 양극활물질의 특성 측정 결과, 비교예 3-2에 비하여 실시예 3-2의 양극활물질은 개선된 펠렛 밀도를 나타내며, 이에 따라 입자 직경 D10 유지율이 2배 이상 향상된 89% 를 나타내는 것을 알 수 있다.
결과적으로, 상기 실시예 3의 양극활물질을 포함한 전지의 경우, 충방전 용량 및 수명 유지율 특성의 증가와 저항 특성이 개선된 것을 확인할 수 있다.
<실험예> 활물질 입자 표면 코팅층 측정(TEM 분석)
상기 실시예 3 및 비교예 3에서 제조된 양극활물질 입자의 표면의 코팅층 두께를 분석하기 위하여 TEM 분석 및 깊이에 따른 농도 분석을 실시하고, 그 결과를 도 11 내지 도 14에 나타내었다. 본 발명에 의한 리튬 이차전지용 양극활물질에 있어서, 코팅층은 코팅층에 포함되는 금속염이 농도가 일정하지 않고 구배를 나타내는 층으로 하였다.
상기 수세 이후 건조 처리에 따른 실시예 3-1 및 비교예 3-1에서 제조된 양극활물질 입자의 표면 코팅층 두께는, 도 11 및 도 12에서 보는 바와 같이, 0.4 내지 0.7 ㎛ 이고, 각 다른 부위의 표면을 측정한 결과 그 두께 편차는 0.3 ㎛ 이하인 것을 알 수 있다. 비교예 3-1에서 제조된 양극활물질 입자의 표면 코팅층의 두께는 1.5 내지 2.2 ㎛ 로서, 상기 실시예 3-1 대비 비교적 두껍고 두께의 편차가 큰 코팅층을 갖는 것을 확인할 수 있다.
또한, 상기 수세 이후 열처리에 따른 실시예 3-2 및 비교예 3-2에서 제조된 양극활물질 입자의 표면 코팅층 두께는, 도 13 및 도 14에서 보는 바와 같이, 0.5 내지 0.7 ㎛ 이고, 각 다른 부위의 표면을 측정한 결과 그 두께 편차는 0.2 ㎛ 이하인 것을 알 수 있다. 비교예 3-2에서 제조된 양극활물질 입자의 표면 코팅층의 두께는 1 내지 1.3 ㎛ 인 것으로, 마찬가지로 상기 실시예 3-2 대비 약 2배 가까이 두꺼운 코팅층을 갖는 것을 확인할 수 있다.
이와 같은 코팅층의 두께 및 두께 편차의 차이는 본 발명의 일 실시예에 따른 활물질 입자의 경우 구형도가 높아 코팅되는 코팅층의 두께 차이도 일정 범위로 유지되는데 비해, 비교예의 활물질의 경우 내부로 인입되는 변곡점 부근에서 코팅층이 두껍게 형성됨으로써 불균일하고 두껍게 코팅된다는 것을 보여준다.
<제조예> 전지 제조
상기 실시예 1 내지 3 및 비교예에서 제조된 양극 활물질과 도전제로 super-P, 결합제로는 폴리비닐리덴플루오라이드(PVdF)를 92:5:3의 중량비로 혼합하여 슬러리를 제조하였다.
상기 슬러리를 15 ㎛ 두께의 알루미늄박에 균일하게 도포하고, 135 ℃에서 진공 건조하여 리튬 이차 전지용 양극을 제조하였다.
상기 양극과, 리튬 호일을 상대 전극으로 하며, 다공성폴리에틸렌막 (셀가르드엘엘씨 제, Celgard 2300, 두께: 25㎛)을 세퍼레이터로 하고, 에틸렌 카보네이트와 에틸메틸카보네이트가 부피비로 3:7로 혼합된 용매에 LiPF6가 1.15 M 농도로 녹아 있는 액체 전해액을 사용하여 통상적으로 알려져 있는 제조공정에 따라 코인 전지를 제조하였다.
<실험예> 전지 특성 평가(열안정성)
상기 실시예 및 비교예에서 제조된 활물질로 제조된 전지의 열안정성을 평가하기 위하여, DSC(differential scanning colorimetry) 분석을 실시하고 그 결과를 도 6 에 나타내었다.
도 6에서 보는 바와 같이, 본 발명의 실시예에 의하여 제조된 전지는 활물질의 높은 구형화 유지율에 따라 입자 강도가 우수하여, 전지 제조 과정에서 압력이 인가되더라도 미분이 제어됨으로써 열안정성이 크게 향상되는 것을 확인할 수 있다.
<실험예> 전지 특성 평가
상기 실시예 및 비교예에서 제조된 활물질로 제조된 전지의 초기 용량, 초기 효율, 율특성, 수명 특성 및 고온 저장 특성을 측정하고 그 결과를 아래 도 7 내지 도 10 에 나타내었다
본 발명의 실시예에 의하여 제조된 전지의 초기 용량 및 율특성은, 도 7 내지 도 8을 참조하면, 비교예에 의하여 제조된 전지에 뒤쳐지지 않으며 어느 정도 유사한 특성 내지 소폭 개선된 특성을 나타낸다.
본 발명의 실시예에 의하여 제조된 전지의 수명 특성은, 도 9를 참조하면, 비교예에 의하여 제조된 전지에 비하여 50회 사이클에도 91% 이상의 수명 유지율을 보이며, 약 5% 가까이 향상된 특성을 나타낸다.
본 발명의 실시예에 의하여 제조된 전지의 고온 저장 특성은, 도 10을 참조하면, 비교예에 의하여 제조된 전지에 비하여 고온 저장 전, 후에서 모두 저항 특성이 개선되며, 특히 고온 저장 후 크게 개선된 것을 알 수 있다.

Claims (18)

  1. 한 개의 씨드(seed)로부터 성장한 구형이고,
    아래 화학식 2로 표시되는
    리튬 이차전지용 양극활물질:
    <화학식 2> Li xNi 1-a-b-cCo aM1 bM2 cM3 dO w
    (상기 화학식 2에서 0.95≤x≤1.05, 1.50≤w≤2.1, 0.02≤a≤0.25, 0.01≤b≤0.20, 0≤c≤0.20, 0≤d≤0.20,
    M1은 Mn 또는 Al 이고,
    M2 및 M3 는 Al, Ba, B, Co,Ce ,Cr, F, Li, Mg, Mn, Mo, P, Sr, Ti 및 Zr 로 이루어진 그룹에서 선택되는 적어도 하나 이상임).
  2. 제 1 항에 있어서,
    아래 식으로 표시되는 압력을 인가하기 전후의 입자 직경 유지율이 80% 이상인
    리튬 이차전지용 양극활물질:
    입자 직경 유지율 = (압력 인가 후 D10 / 압력 인가 전 D10)×100.
  3. 제 2 항에 있어서,
    상기 압력은 3톤 이하의 압력인
    리튬 이차전지용 양극활물질.
  4. 제 1 항에 있어서,
    상기 입자의 장축(l)과 단축(s)의 길이비(s/l)가 0.85 ≤(s/l)≤ 1 인
    리튬 이차전지용 양극활물질.
  5. 제 1 항에 있어서,
    겉보기 밀도가 3.0 g/cc 이상인
    리튬 이차전지용 양극활물질.
  6. 제 1 항에 있어서,
    비표면적(BET)이 0.1 m 2/g 이상, 3.0 m 2/g 이하인
    리튬 이차전지용 양극활물질.
  7. 제 1 항에 있어서,
    입자 표면에 코팅층을 포함하고, 상기 코팅층의 두께 편차가 코팅층의 두께 대비 1% 이하인
    리튬 이차전지용 양극활물질.
  8. 제 7 항에 있어서,
    상기 코팅층은 Co, Al, Mn, P, B, Zr, Ce, Ba, Ti 및 Mg 로 이루어진 그룹에서 선택되는 어느 하나 이상을 포함하는
    리튬 이차전지용 양극활물질.
  9. 제 7 항에 있어서,
    총 잔류 리튬이 1000 ppm 이상, 20000 ppm 이하인
    리튬이차전지 양극활물질.
  10. 제 1 항의 리튬 이차전지용 양극활물질 제조에 이용되는
    한 개의 씨드(seed)로부터 성장한 구형이고,
    입자의 장축(l)과 단축(s)의 길이비(s/l)가 0.85 ≤ (s/l) ≤ 1 이고,
    아래 화학식 1로 표시되는
    리튬 복합 산화물 전구체:
    <화학식 1> Ni 1 -a- bCo aM b(OH) 2
    (상기 화학식 1에서 a+b≤0.5, a≤0.2, b≤0.3,
    M은 Mn, Al, B, Ba, Ce, Cr, F, Li, Mo, P, Sr, Ti 및 Zr 로 이루어진 그룹에서 선택되는 적어도 하나 이상임).
  11. 제 10 항에 있어서,
    진밀도가 3.50 g/cc 이상 3.80 g/cc이하인
    리튬 복합 산화물 전구체.
  12. 제 10 항에 있어서,
    겉보기 밀도가 1.5 g/cc 이상, 2.5 g/cc이하인
    리튬 복합 산화물 전구체.
  13. 제 10 항에 있어서,
    상기 입자의 기공률이 20% 이하인
    리튬 복합 산화물 전구체.
  14. 씨드(seed) 형성을 위한 킬레이팅제 수용액을 반응기에 투입하고 200 내지 1000 rpm 으로 교반하는 제 1 단계;
    전구체 수용액, 킬레이팅제 수용액 및 염기성 수용액을 반응기에 동시에 연속적으로 투입하여 구형의 침전물을 얻는 제 2 단계; 및
    상기 침전물을 건조시키거나 열처리하여 리튬 복합 산화물 전구체를 제조하는 제 3 단계; 를 포함하는
    제 10 항의 리튬 복합 산화물 전구체의 제조방법.
  15. 제 14항에 있어서,
    상기 제 1 단계에서 킬레이팅제 수용액의 농도는 2 내지 3 mol/L 이며,
    상기 킬레이팅제 수용액을 전체 반응기 부피의 25 내지 35 % 까지 투입하는
    제 10 항의 리튬 복합 산화물 전구체의 제조방법.
  16. 제 14 항에 있어서,
    상기 전구체 입자의 성장 속도는 0.10 ㎛/Hr 이상, 1.01 ㎛/Hr 이하인
    제 10 항의 리튬 복합 산화물 전구체의 제조방법.
  17. 제 14 항에 있어서,
    상기 제 1 단계부터 제 3 단계까지의 수행 시간은 500 분 이상 800 분 이하인
    리튬 복합 산화물 전구체의 제조방법.
  18. 제 14 항에 있어서,
    상기 제 1 단계부터 제 2 단계까지의 수행 시간은 50 분 이상 200 분 이하이고,
    생성되는 전구체 입자의 크기가 5 ㎛ 이하인
    리튬 복합 산화물 전구체의 제조방법.
PCT/KR2018/008652 2017-08-01 2018-07-30 리튬 복합 산화물 전구체, 이의 제조 방법 및 이를 이용하여 제조된 리튬 복합 산화물 WO2019027215A2 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0097607 2017-08-01
KR1020170097606 2017-08-01
KR10-2017-0097606 2017-08-01
KR1020170097607 2017-08-01

Publications (2)

Publication Number Publication Date
WO2019027215A2 true WO2019027215A2 (ko) 2019-02-07
WO2019027215A3 WO2019027215A3 (ko) 2019-05-16

Family

ID=65232969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008652 WO2019027215A2 (ko) 2017-08-01 2018-07-30 리튬 복합 산화물 전구체, 이의 제조 방법 및 이를 이용하여 제조된 리튬 복합 산화물

Country Status (1)

Country Link
WO (1) WO2019027215A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114105156A (zh) * 2022-01-27 2022-03-01 浙江帕瓦新能源股份有限公司 镍钴硼前驱体材料以及制备方法、镍钴硼正极材料

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5010067B2 (ja) * 2001-01-09 2012-08-29 東芝電子エンジニアリング株式会社 正極活物質および非水電解液二次電池
KR100765970B1 (ko) * 2006-09-29 2007-10-10 대정화금주식회사 공침법을 이용한 망간 복합산화물 및 그 제조방법, 이를이용한 리튬이차전지용 스피넬형 양극활물질과 그 제조방법
JP4211865B2 (ja) * 2006-12-06 2009-01-21 戸田工業株式会社 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
KR101013938B1 (ko) * 2008-07-31 2011-02-14 한양대학교 산학협력단 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를포함하는 리튬 이차 전지
US20120258358A1 (en) * 2011-04-07 2012-10-11 Ngk Insulators, Ltd. Cathode active material for a lithium ion secondary battery and a lithium ion secondary battery
KR101785265B1 (ko) * 2013-12-17 2017-10-16 삼성에스디아이 주식회사 복합 양극 활물질, 이를 포함하는 양극, 리튬 전지, 및 이의 제조방법
JP6241349B2 (ja) * 2014-03-28 2017-12-06 住友金属鉱山株式会社 非水電解質二次電池用正極活物質の前駆体とその製造方法、及び非水電解質二次電池用正極活物質とその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114105156A (zh) * 2022-01-27 2022-03-01 浙江帕瓦新能源股份有限公司 镍钴硼前驱体材料以及制备方法、镍钴硼正极材料
CN114105156B (zh) * 2022-01-27 2022-05-27 浙江帕瓦新能源股份有限公司 镍钴硼前驱体材料以及制备方法、镍钴硼正极材料

Also Published As

Publication number Publication date
WO2019027215A3 (ko) 2019-05-16

Similar Documents

Publication Publication Date Title
WO2019112279A2 (ko) 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2016108384A1 (ko) 리튬이온 이차전지용 양극 활물질, 그의 제조방법 및 이것을 포함하는 리튬이온 이차전지
WO2010058990A2 (ko) 이차 전지용 전극활물질 및 그 제조방법
WO2011087309A2 (ko) 회분식 반응기(batch reactor)를 사용하여 농도구배층을 가지는 리튬 이차 전지용 양극활물질 전구체, 양극활물질을 제조하는 방법, 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질 전구체, 양극활물질.
WO2013002457A1 (ko) 양극활물질, 상기 양극활물질을 포함하는 전극, 및 리튬 전기 화학 전지
WO2012093798A2 (ko) 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2014084679A1 (ko) 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법
WO2012011785A2 (ko) 리튬 이차전지용 양극활물질의 제조방법, 그에 의하여 제조된 리튬 이차전지용 양극활물질 및 그를 이용한 리튬 이차전지
WO2016175597A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2017069410A1 (ko) 다층 구조의 리튬 금속 산화물들을 포함하는 리튬 이차전지용 양극 활물질 및 그것을 포함하는 양극
WO2014109581A1 (ko) 탄소 코팅 리튬 인산철 나노분말 제조방법
WO2011081422A9 (ko) 리튬 복합 산화물 및 그 제조 방법.
WO2017069405A1 (ko) 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질
WO2017119681A1 (ko) 코발트 코팅 전구체의 제조 방법, 이에 의하여 제조된 코발트 코팅 전구체 및 이를 이용하여 제조된 양극활물질
WO2019074306A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2015053580A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2012064053A2 (ko) 리튬 망간 복합 산화물 및 이의 제조 방법
WO2016108385A1 (ko) 리튬이차전지용 양극 활물질의 전구체, 그 제조방법, 리튬이차전지용 양극 활물질, 그 제조방법, 및 상기 양극 활물질을 포함하는 리튬이차전지
WO2015005551A1 (ko) 탄소 코팅 리튬 인산철 나노분말의 제조방법
WO2020004882A1 (en) Lithium ion battery and cathode active material therefor
WO2014077662A1 (ko) 공침법을 이용한 나트륨 이차전지용 양극활물질 전구체의 제조 방법 및 이에 의하여 제조된 나트륨 이차전지용 양극활물질 전구체
WO2019203432A1 (ko) 양극활물질용 금속 복합체, 이를 포함하는 양극활물질 및 이의 제조 방법
WO2010143805A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2016108375A1 (ko) 농도 구배를 나타내는 리튬 이차전지용 양극활물질 전구체 및 양극활물질을 제조하는 방법, 및 이에 의하여 제조된 농도 구배를 나타내는 리튬 이차전지용 양극활물질 전구체 및 양극활물질
WO2022014736A1 (ko) 저온 소결공정을 위한 산화물계 고체전해질을 포함하는 전고체전지 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840246

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18840246

Country of ref document: EP

Kind code of ref document: A2