WO2019026401A1 - シリコーンゴム組成物 - Google Patents

シリコーンゴム組成物 Download PDF

Info

Publication number
WO2019026401A1
WO2019026401A1 PCT/JP2018/020269 JP2018020269W WO2019026401A1 WO 2019026401 A1 WO2019026401 A1 WO 2019026401A1 JP 2018020269 W JP2018020269 W JP 2018020269W WO 2019026401 A1 WO2019026401 A1 WO 2019026401A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone rubber
mass
parts
rubber composition
group
Prior art date
Application number
PCT/JP2018/020269
Other languages
English (en)
French (fr)
Inventor
修 林田
小池 義明
敦人 鹿島
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2019026401A1 publication Critical patent/WO2019026401A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/08Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Definitions

  • the present invention relates to silicone rubber compositions.
  • Silicone rubber has excellent properties such as weather resistance, electrical properties, low compression set, heat resistance, cold resistance, etc., so it is widely used in various fields such as electric equipment, automobiles, construction, medicine, food and so on It is done.
  • rubber contacts used as rubber contacts for remote controllers, musical instruments, etc., gaskets for construction, fixing rolls, developing rolls, transfer rolls, charging rolls, rolls for office equipment such as paper feeding rolls, anti-vibration rubbers such as audio devices It is used for packing for compact disc, wire covering material, etc.
  • Patent Documents 1 to 5 In order to further improve the heat resistance of silicone rubber, it is known to blend additives such as cerium oxide, cerium hydroxide, iron oxide, carbon black and the like (Patent Documents 1 to 5). However, the demand for heat resistance of silicone rubber is increasing year by year, and these conventional techniques do not sufficiently meet the demand.
  • JP 2000-212444 A Japanese Patent Laid-Open No. 2002-179917 JP, 2013-035890, A Patent No. 5174270 gazette JP, 2016-030774, A
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a silicone rubber composition which gives a silicone rubber excellent in heat resistance and having little change in physical properties even when exposed to high temperatures. .
  • the polymerization degree is 100 or more, and organopolysiloxane having two or more alkenyl groups bonded to a silicon atom in one molecule: 100 parts by mass, (B 10) to 100 parts by mass of a reinforcing silica having a specific surface area of 50 m 2 / g or more according to BET method, (C) lanthanum oxide-cerium oxide solid solution: 0.01 to 10 parts by mass, and (D) curing catalyst:
  • the present invention provides a silicone rubber composition containing 1 to 10 parts by mass.
  • silicone rubber composition With such a silicone rubber composition, it becomes a silicone rubber composition which gives a silicone rubber excellent in heat resistance with little change in physical properties even when exposed to high temperatures.
  • the content of cerium oxide in the component (C) is preferably 60% by mass to 97% by mass.
  • the component (C) preferably has an average particle size of 5.0 ⁇ m or less.
  • the component (D) is preferably an organic peroxide.
  • silicone rubber composition of the present invention a silicone rubber excellent in heat resistance with little change in physical properties such as hardness, tensile strength and elongation at break, even when exposed to high temperatures.
  • silicone rubber composition a silicone rubber excellent in heat resistance with little change in physical properties such as hardness, tensile strength and elongation at break, even when exposed to high temperatures.
  • the present inventors (A) have an organopolysiloxane having a degree of polymerization of 100 or more and having two or more alkenyl groups bonded to a silicon atom in one molecule, B) Reinforcing silica having a specific surface area of 50 m 2 / g or more according to BET method, (C) a lanthanum oxide-cerium oxide solid solution, and (D) a curing catalyst in a predetermined mass ratio It has been found that the present invention provides a silicone rubber in which physical properties are not easily deteriorated (that is, excellent in heat resistance) even when exposed to high temperatures, and the present invention has been made.
  • the component (A) in the silicone rubber composition of the present invention is an organopolysiloxane having a degree of polymerization of 100 or more and having two or more alkenyl groups bonded to a silicon atom in one molecule.
  • the organopolysiloxane of the component (A) is not particularly limited, and examples thereof include those represented by the following average composition formula (1).
  • R a SiO (4-a) / 2 (1) (Wherein R is the same or different unsubstituted or substituted monovalent hydrocarbon group, and a is a positive number of 1.95 to 2.05, provided that two or more of R in one molecule are included. Is an alkenyl group)
  • R is the same or different non-substituted or substituted monovalent hydrocarbon group, and generally, those having 1 to 12 carbon atoms, particularly 1 to 8 carbon atoms are preferable, specifically, Alkyl groups such as methyl group, ethyl group, propyl group, butyl group, hexyl group and octyl group, cycloalkyl groups such as cyclopentyl group and cyclohexyl group, alkenyl groups such as vinyl group, allyl group and propenyl group, cycloalkenyl group, An aryl group such as phenyl group, tolyl group, an aralkyl group such as benzyl group, 2-phenylethyl group, etc., or a trifluoropropyl group wherein part or all of hydrogen atoms of these groups are substituted with a halogen atom or cyano group etc.
  • Alkyl groups such as methyl group, ethyl group, prop
  • the main chain of the organopolysiloxane is composed of dimethylsiloxane units, or a part of the main chain of this dimethylpolysiloxane has a phenyl group, a vinyl group, a 3,3,3-trifluoropropyl group, etc. It is preferable that a diphenyl siloxane unit, a methyl vinyl siloxane unit, a methyl-3,3,3-trifluoropropyl siloxane unit or the like is introduced.
  • the organopolysiloxane of component (A) has an alkenyl group (preferably a vinyl group) bonded to two or more silicon atoms in one molecule, and among the groups bonded to silicon atoms, 0.01 to It is preferred that 10 mol%, especially 0.02 to 5 mol% is an alkenyl group.
  • the alkenyl group may be bonded to a silicon atom at the molecular chain end, or may be bonded to a silicon atom of a side chain, or both, but it is bonded to at least a silicon atom at the molecular chain end Is preferred. That is, as the organopolysiloxane of the component (A), specifically, one having a molecular chain terminal blocked by a dimethylvinylsilyl group, a methyldivinylsilyl group, a trivinylsilyl group or the like is preferable.
  • A is a positive number of 1.95 to 2.05 and may be branched within a range which is basically linear but does not impair the rubber elasticity.
  • the degree of polymerization of the organopolysiloxane of component (A) is at least 100, preferably from 3,000 to 100,000, particularly preferably from 4,000 to 20,000. If the degree of polymerization is less than 100, sufficient rubber strength can not be obtained.
  • the organopolysiloxane of component (A) may be used alone or in combination of two or more different in molecular structure or polymerization degree.
  • Such organopolysiloxanes of component (A) can be prepared by known methods, for example, by (co) hydrolytic condensation of one or more of organohalogenosilanes, or cyclic polysiloxanes using an alkaline or acidic catalyst. It can be obtained by ring-opening polymerization.
  • the component (B) in the silicone rubber composition of the present invention is a reinforcing silica having a specific surface area of 50 m 2 / g or more according to the BET method.
  • the reinforcing silica of the component (B) is not particularly limited, and exemplified by fumed silica, calcined silica, precipitated silica and the like, and fumed silica is preferable from the viewpoint of heat resistance.
  • the specific surface area of the reinforcing silica of component (B) according to the BET method is 50 m 2 / g or more, preferably 100 m 2 / g or more, and particularly preferably 100 to 400 m 2 / g.
  • the specific surface area by BET method is less than 50 m 2 / g, the mechanical strength is not sufficiently imparted.
  • the reinforcing silica of the component (B) may, if necessary, be selected from the group consisting of trimethylchlorosilane, chlorosilanes such as dimethyldichlorosilane and methyltrichlorosilane, or hexamethyldisilazane, 1,3-divinyl-1,1,3,3, and the like.
  • the material may be subjected to a hydrophobization treatment with a known treatment agent such as silazanes such as tetramethyldisilazane.
  • the amount of the reinforcing silica of component (B) added is 10 to 100 parts by mass, preferably 20 to 70 parts by mass, particularly preferably 30 to 60 parts by mass, per 100 parts by mass of component (A) organopolysiloxane. It is. If the amount is less than 10 parts by mass, the amount of addition is too small to obtain a sufficient reinforcing effect, and if it exceeds 100 parts by mass, the processability is deteriorated and the mechanical strength is reduced.
  • the component (C) in the silicone rubber composition of the present invention is a lanthanum oxide-cerium oxide solid solution, and is a component that significantly improves the heat resistance of the silicone rubber.
  • Cerium oxide is known as a heat resistance improver for silicone rubber, but in the present invention, it has been found that forming a solid solution with lanthanum oxide can impart heat resistance equal to or higher than that of cerium oxide alone to silicone rubber.
  • the content of cerium oxide in the lanthanum oxide-cerium oxide solid solution of the component (C) is desirably 60% by mass to 97% by mass. If the content is 97 mass% or less, the content of cerium oxide is not too large, so that the occurrence of the softening and deterioration of the silicone rubber at 200 ° C. or more can be suppressed, and the silicone rubber can be provided with better heat resistance. Moreover, if it is 60 mass% or more, generation
  • the lanthanum oxide-cerium oxide solid solution of the component (C) preferably has an average particle size of 5.0 ⁇ m or less.
  • the average particle diameter referred to herein refers to the volume average particle diameter, and is a value measured using a microtrack model number MT-3300 (manufactured by Microtrack Bell Inc.) using water as a measurement solvent. If the average particle size is 5.0 ⁇ m or less, the contact area with the siloxane is increased, so that the silicone rubber is given more excellent heat resistance.
  • the addition amount of the lanthanum oxide-cerium oxide solid solution of the component (C) is 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A). If the amount is less than 0.01 parts by mass, the effect of improving the heat resistance is insufficient. If the amount is more than 10 parts by mass, physical properties such as strength and elongation of the silicone rubber are reduced.
  • Component (D) in the silicone rubber composition of the present invention is a curing catalyst.
  • the curing catalyst for the component (D) is not particularly limited as long as it can cure the silicone rubber composition of the present invention. Therefore, it is possible to use an organic peroxide which is a known vulcanizing agent for silicone rubber, an addition curing type curing catalyst in which a hydrosilyl group-containing organopolysiloxane and a hydrosilylation catalyst are combined. Among them, organic peroxides are preferable in terms of handling and the like because the curing inhibition factor is less than addition curing catalysts.
  • organic peroxide examples include benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, p-methylbenzoyl peroxide, o-methylbenzoyl peroxide, 2,4-dicumyl peroxide, and 2,5-dimethyl- Examples thereof include bis (2,5-t-butylperoxy) hexane, di-t-butylperoxide, t-butylperbenzoate, 1,6-hexanediol-bis-t-butylperoxycarbonate and the like. One of these may be used alone, or two or more may be used in combination.
  • the addition amount of the curing catalyst of the component (D) is an amount sufficient to cure the silicone rubber composition, and specifically, it is 0.1 to 100 parts by mass of the organopolysiloxane of the component (A).
  • the amount is 10 parts by mass, preferably 0.2 to 5 parts by mass.
  • the silicone rubber composition of the present invention preferably contains an organosilane or a siloxane represented by the following general formula (2) as the component (E) in addition to the above components.
  • an organosilane or a siloxane represented by the following general formula (2) as the component (E) in addition to the above components.
  • R 1 is the same or different alkyl group or hydrogen atom, and the organosilane or siloxane represented by the above general formula (2) has an alkoxy group or a hydroxyl group at the molecular chain terminal.
  • R 1 include a hydrogen atom or an alkyl group having 1 to 4 carbon atoms such as methyl, ethyl, propyl and butyl, with a methyl group, an ethyl group and a hydrogen atom being preferred.
  • R 2 usually, those having 1 to 12 carbon atoms, particularly 1 to 8 carbon atoms are preferable, and specifically, alkyl groups such as methyl group, ethyl group, propyl group and butyl group, and cycloalkyl groups such as cyclohexyl group And alkenyl groups such as vinyl, allyl, butenyl and hexenyl, aryl groups such as phenyl and tolyl, aralkyl groups such as ⁇ -phenylpropyl, or hydrogen atoms bonded to carbon atoms of these groups
  • chloromethyl group, trifluoropropyl group, cyanoethyl group and the like in which a part or all is substituted with a halogen atom, cyano group and the like are mentioned
  • methyl group, vinyl group, phenyl group and trifluoropropyl group are preferable
  • methyl group, Vinyl and trifluoropropyl are particularly preferred.
  • M is a positive number of 1 to 50, preferably a positive number of 1 to 30, particularly preferably a positive number of 1 to 20. If m is 50 or less, a sufficient addition effect can be obtained even if it is not blended in a large amount, and therefore there is no risk that a decrease in rubber physical properties will occur due to a large amount of blending.
  • the addition amount of the organosilane / siloxane of the component (E) is preferably 0.1 to 50 parts by mass, and particularly preferably 0.5 to 30 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A). If it is 0.1 parts by mass or more, the addition effect can be sufficiently obtained, and if it is 50 parts by mass or less, there is no possibility that the obtained silicone rubber composition has adhesiveness, so that the processability is lowered, There is no fear that the physical properties of the obtained rubber will deteriorate.
  • a flame retardancy imparting agent such as a platinum compound, iron oxide or a halogen compound or a heat resistance improver other than the component (C)
  • a flame retardancy imparting agent such as a platinum compound, iron oxide or a halogen compound or a heat resistance improver other than the component (C)
  • the well-known additive in silicone rubber compositions such as an antiaging agent, an ultraviolet absorber, a coloring agent, and a mold release agent, can be added.
  • the method for producing the silicone rubber composition of the present invention is not particularly limited, but it can be obtained by kneading predetermined amounts of the above-mentioned components with a known kneader such as a two-roll, kneader or Banbury mixer. Further, if necessary, heat treatment (kneading under heating) may be performed. Specifically, it is preferable to knead the components (A) and (B), heat-treat them if necessary, and then add the component (D) at room temperature. In this case, the component (C) may be blended before or after the heat treatment.
  • the heat treatment temperature and time are not particularly limited, but it is preferable to carry out at 100 to 250 ° C., particularly 140 to 180 ° C. for about 30 minutes to 5 hours.
  • a molding method may be appropriately selected according to the required application (molded product). Specifically, compression molding, injection molding, transfer molding, atmospheric pressure hot air vulcanization, steam vulcanization and the like can be mentioned.
  • the curing conditions are not particularly limited, and may be appropriately selected depending on the curing method and the molded article, and generally, it is performed at 80 to 600 ° C., particularly at 100 to 450 ° C. for several seconds to several days, especially 5 seconds to 1 hour. Can.
  • secondary vulcanization may be performed if necessary. Secondary vulcanization can be carried out usually at 180 to 250 ° C. for about 1 to 10 hours.
  • silicone rubber composition of the present invention a silicone rubber excellent in heat resistance with little change in physical properties such as hardness, tensile strength and elongation at break, even when exposed to high temperatures.
  • silicone rubber composition a silicone rubber excellent in heat resistance with little change in physical properties such as hardness, tensile strength and elongation at break, even when exposed to high temperatures.
  • Example 1 100 parts by weight of organopolysiloxane comprising 99.750 mol% of trifluoropropyl methyl siloxane units, 0.20 mol% of methyl vinyl siloxane units, 0.050 mol% of dimethyl vinyl siloxane units and having an average degree of polymerization of about 4,000 45 parts by mass of fumed silica (Aerosil 130 (manufactured by Nippon Aerosil Co., Ltd.)) having a specific surface area of 130 m 2 / g as measured by BET method, trifluoropropyl methyl poly having a silanol group at both ends and having a polymerization degree of 10
  • fumed silica Aerosil 130 (manufactured by Nippon Aerosil Co., Ltd.)
  • BET method trifluoropropyl methyl poly having a silanol group at both ends and having a polymerization degree of 10
  • a silicone rubber compound for 2 hours to prepare a silicone rubber compound.
  • This composition is press-molded under conditions of primary vulcanization 170 ° C./10 minutes and secondary vulcanization 200 ° C./2 hours to prepare a silicone rubber of 2 mm thickness, and the hardness (JIS K 6249: 2003) Durometer A), tensile strength, elongation at break (that is, initial rubber physical properties) were measured. Further, the physical properties of the rubber after the heat resistance test which was placed in a drier at 225 ° C. for 7 days were also measured to calculate the rate of change. The results are shown in Table 1.
  • Comparative Example 1 Example except that commercially available cerium oxide (manufactured by Anan Kasei Co., Ltd., trade name: cerium oxide S, purity 99.9% or more, average particle diameter 0.18 ⁇ m) is added instead of lanthanum oxide-cerium oxide solid solution A
  • cerium oxide S purity 99.9% or more, average particle diameter 0.18 ⁇ m
  • lanthanum oxide-cerium oxide solid solution A The same operation as in 1 was performed to obtain a silicone rubber composition.
  • the rubber physical properties after the initial test and after the heat resistance test were measured, and the rate of change was calculated. The results are shown in Table 1.
  • Comparative Example 2 A silicone rubber composition was obtained in the same manner as in Example 1 except that the lanthanum oxide-cerium oxide solid solution A was not added at all. Using the obtained silicone rubber composition, in the same manner as in Example 1, the rubber physical properties after the initial test and after the heat resistance test were measured, and the rate of change was calculated. The results are shown in Table 1.
  • Example 1 in which a lanthanum oxide-cerium oxide solid solution was used as a heat resistance improver, rubber physical properties after a heat resistance test as compared with Comparative Example 1 in which cerium oxide was used as a heat resistance improver. The rate of change was small and the heat resistance was good.
  • Comparative Example 2 in which the heat resistance improver was not added, the curing deterioration of the silicone rubber was severe after the heat resistance test, and the measurement of the rubber physical properties was impossible.
  • Example 2 100 mass parts of methyl vinyl polysiloxane green rubber consisting of 99.85 mol% of dimethylsiloxane units and 0.15 mol% of methyl-vinyl siloxane units and having a molecular chain end blocked by dimethyl vinyl siloxane units and having a degree of polymerization of about 7,000 Part, 45 parts by mass of fumed silica (Aerosil 300 (manufactured by Nippon Aerosil Co., Ltd.)) having a specific surface area of 300 m 2 / g according to BET method and 8 parts by mass of hexamethyldisilazane are mixed in a kneader mixer The mixture was further heated and mixed at 150 ° C.
  • fumed silica Aerosil 300 (manufactured by Nippon Aerosil Co., Ltd.)
  • This composition is press-molded under conditions of primary vulcanization 170 ° C./10 minutes and secondary vulcanization 200 ° C./2 hours to prepare a silicone rubber of 2 mm thickness, and the hardness (JIS K 6249: 2003) Durometer A), tensile strength, elongation at break (that is, initial rubber physical properties) were measured. Further, the physical properties of the rubber after the heat resistance test which was placed in a dryer at 250 ° C. for 3 days were also measured, and the rate of change was calculated. The results are shown in Table 2.
  • Comparative Example 3 A silicone rubber composition was obtained in the same manner as in Example 2 except that the addition amount of lanthanum oxide-cerium oxide solid solution B was changed to 0.001 part by mass. Using the obtained silicone rubber composition, in the same manner as in Example 2, the rubber physical properties after the initial test and after the heat resistance test were measured, and the rate of change was calculated. The results are shown in Table 2.
  • Example 2 in which an appropriate amount of lanthanum oxide-cerium oxide solid solution was blended, the heat resistance was higher compared to Comparative Example 3 in which the blending amount of lanthanum oxide-cerium oxide solid solution was 0.001 parts by mass. The rate of change in physical properties of rubber after the test was small, and the heat resistance was good.
  • silicone rubber composition of the present invention a silicone rubber excellent in heat resistance with little change in physical properties such as hardness, tensile strength and elongation at break even when exposed to high temperatures. It became clear that it became a silicone rubber composition which gives
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has the substantially same constitution as the technical idea described in the claims of the present invention, and the same effects can be exhibited by any invention. It is included in the technical scope of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

本発明は、(A)重合度が100以上であって、1分子中にケイ素原子に結合したアルケニル基を2個以上有するオルガノポリシロキサン:100質量部、(B)BET法による比表面積が50m/g以上である補強性シリカ:10~100質量部、(C)酸化ランタン-酸化セリウム固溶体:0.01~10質量部、及び(D)硬化触媒:0.1~10質量部、を含有することを特徴とするシリコーンゴム組成物である。これにより、高温に暴露されても物理的特性の変化の少ない、耐熱性に優れたシリコーンゴムを与えるシリコーンゴム組成物が提供される。

Description

シリコーンゴム組成物
 本発明は、シリコーンゴム組成物に関する。
 シリコーンゴムは、優れた耐候性、電気特性、低圧縮永久歪性、耐熱性、耐寒性等の特性を有しているため、電気機器、自動車、建築、医療、食品等様々な分野で広く使用されている。例えば、リモートコントローラ、楽器等のゴム接点として使用されるラバーコンタクト、建築用ガスケット、定着ロール、現像ロール、転写ロール、帯電ロール、給紙ロール等の事務器用ロール、オーディオ装置等の防振ゴム、コンパクトディスク用パッキン、電線被覆材等に使用されている。
 シリコーンゴムの耐熱性を更に向上させるため、酸化セリウム、水酸化セリウム、酸化鉄、カーボンブラック等の添加剤を配合することが知られている(特許文献1~5)。しかしながら、シリコーンゴムの耐熱性に対する要求は年々高くなってきており、これらの従来技術では、その要求に対しては十分に応えられていない。
特開2000-212444号公報 特開2002-179917号公報 特開2013-035890号公報 特許第5174270号公報 特開2016-030774号公報
 本発明は、上記事情に鑑みてなされたものであり、高温に暴露されても物理的特性の変化の少ない、耐熱性に優れたシリコーンゴムを与えるシリコーンゴム組成物を提供することを目的とする。
 上記課題を達成するために、本発明では、(A)重合度が100以上であって、1分子中にケイ素原子に結合したアルケニル基を2個以上有するオルガノポリシロキサン:100質量部、(B)BET法による比表面積が50m/g以上である補強性シリカ:10~100質量部、(C)酸化ランタン-酸化セリウム固溶体:0.01~10質量部、及び(D)硬化触媒:0.1~10質量部、を含有するものであるシリコーンゴム組成物を提供する。
 このようなシリコーンゴム組成物であれば、高温に暴露されても物理的特性の変化の少ない、耐熱性に優れたシリコーンゴムを与えるシリコーンゴム組成物となる。
 また、前記(C)成分中の酸化セリウムの含有率が、60質量%~97質量%であることが好ましい。
 このような(C)成分であれば、シリコーンゴムの軟化劣化や硬化劣化の発生を抑えることができるため、シリコーンゴムに更に良好な耐熱性を与えるものとなる。
 また、前記(C)成分が、平均粒径5.0μm以下のものであることが好ましい。
 このような(C)成分であれば、シロキサンとの接触面積が増えるため、シリコーンゴムに更に良好な耐熱性を与えるものとなる。
 また、前記(D)成分が、有機過酸化物であることが好ましい。
 このような(D)成分であれば、硬化阻害要因が少ないため、取扱い性が良好である。
 以上のように、本発明のシリコーンゴム組成物であれば、高温に暴露されても、硬さ、引張強さ、切断時伸び等の物理的特性の変化の少ない、耐熱性に優れたシリコーンゴムを与えるシリコーンゴム組成物となる。
 上述のように、高温に暴露されても物理的特性の変化の少ない、耐熱性に優れたシリコーンゴムを与えるシリコーンゴム組成物の開発が求められていた。
 本発明者らは、上記目的を達成するため鋭意検討した結果、(A)重合度が100以上であって、1分子中にケイ素原子に結合したアルケニル基を2個以上有するオルガノポリシロキサン、(B)BET法による比表面積が50m/g以上である補強性シリカ、(C)酸化ランタン-酸化セリウム固溶体、及び(D)硬化触媒を所定の質量比で配合したシリコーンゴム組成物であれば、高温に暴露されても物理的特性が低下しにくい(即ち、耐熱性に優れた)シリコーンゴムを与えるものとなることを知見し、本発明をなすに至った。
 即ち、本発明は、(A)重合度が100以上であって、1分子中にケイ素原子に結合したアルケニル基を2個以上有するオルガノポリシロキサン:100質量部、(B)BET法による比表面積が50m/g以上である補強性シリカ:10~100質量部、(C)酸化ランタン-酸化セリウム固溶体:0.01~10質量部、及び(D)硬化触媒:0.1~10質量部、を含有するものであるシリコーンゴム組成物である。
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
[(A)アルケニル基含有オルガノポリシロキサン]
 本発明のシリコーンゴム組成物における(A)成分は、重合度が100以上であって、1分子中にケイ素原子に結合したアルケニル基を2個以上有するオルガノポリシロキサンである。(A)成分のオルガノポリシロキサンとしては、特に限定されないが、例えば、下記平均組成式(1)で表されるものが挙げられる。
  RSiO(4-a)/2     (1)
(式中、Rは同一又は異種の非置換又は置換の1価炭化水素基であり、aは1.95~2.05の正数である。ただし、1分子中のRのうち2個以上はアルケニル基である。)
 上記平均組成式(1)中、Rは同一又は異種の非置換又は置換の1価炭化水素基であり、通常、炭素数1~12、特に1~8のものが好ましく、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基、プロペニル基等のアルケニル基、シクロアルケニル基、フェニル基、トリル基等のアリール基、ベンジル基、2-フェニルエチル基等のアラルキル基、あるいはこれらの基の水素原子の一部又は全部をハロゲン原子又はシアノ基等で置換したトリフルオロプロピル基等が挙げられ、特にメチル基、ビニル基、フェニル基、トリフルオロプロピル基が好ましい。具体的には、オルガノポリシロキサンの主鎖がジメチルシロキサン単位からなるもの、又はこのジメチルポリシロキサンの主鎖の一部にフェニル基、ビニル基、3,3,3-トリフルオロプロピル基等を有するジフェニルシロキサン単位、メチルビニルシロキサン単位、メチル-3,3,3-トリフルオロプロピルシロキサン単位等を導入したもの等が好適である。
 (A)成分のオルガノポリシロキサンは、1分子中に2個以上のケイ素原子に結合したアルケニル基(好ましくはビニル基)を有するものであり、ケイ素原子に結合する基のうち、0.01~10モル%、特に0.02~5モル%がアルケニル基であることが好ましい。
 なお、このアルケニル基は、分子鎖末端でケイ素原子に結合していても、側鎖のケイ素原子に結合していても、その両方であってもよいが、少なくとも分子鎖末端のケイ素原子に結合していることが好ましい。つまり、(A)成分のオルガノポリシロキサンとしては、具体的には、分子鎖末端がジメチルビニルシリル基、メチルジビニルシリル基、トリビニルシリル基等で封鎖されたものが好ましい。
 aは1.95~2.05の正数であり、基本的には直鎖状であるがゴム弾性を損なわない範囲において分岐していてもよい。
 (A)成分のオルガノポリシロキサンの重合度は100以上であり、好ましくは3,000~100,000、特に好ましくは4,000~20,000である。重合度が100未満であると、十分なゴム強度が得られない。
 また、(A)成分のオルガノポリシロキサンは、1種を単独で使用してもよいし、分子構造や重合度の異なる2種以上を併用してもよい。
 このような(A)成分のオルガノポリシロキサンは、公知の方法、例えばオルガノハロゲノシランの1種又は2種以上を(共)加水分解縮合することにより、あるいは環状ポリシロキサンをアルカリ性又は酸性触媒を用いて開環重合することによって得ることができる。
[(B)補強性シリカ]
 本発明のシリコーンゴム組成物における(B)成分は、BET法による比表面積が50m/g以上である補強性シリカである。
 (B)成分の補強性シリカとしては、特に限定されないが、煙霧質シリカ、焼成シリカ、沈降性シリカ等が例示され、耐熱性の観点から煙霧質シリカが好ましい。
 (B)成分の補強性シリカのBET法による比表面積は、50m/g以上であり、好ましくは100m/g以上、特に好ましくは100~400m/gである。BET法による比表面積が50m/g未満では、機械的強度の付与が不十分となる。
 (B)成分の補強性シリカは、必要に応じ、表面をトリメチルクロロシラン、ジメチルジクロロシランやメチルトリクロロシランなどのクロロシラン類、あるいはヘキサメチルジシラザン、1,3-ジビニル-1,1,3,3-テトラメチルジシラザンのようなシラザン類等の公知の処理剤で疎水化処理したものであってもよい。
 (B)成分の補強性シリカの添加量は、(A)成分のオルガノポリシロキサン100質量部に対して、10~100質量部、好ましくは20~70質量部、特に好ましくは30~60質量部である。10質量部未満だと、添加量が少なすぎて十分な補強効果が得られず、100質量部を超えると加工性が悪くなり、また機械的強度が低下してしまう。
[(C)酸化ランタン-酸化セリウム固溶体]
 本発明のシリコーンゴム組成物における(C)成分は、酸化ランタン-酸化セリウム固溶体であり、シリコーンゴムの耐熱性を著しく向上させる成分である。酸化セリウムはシリコーンゴムの耐熱性向上剤として公知であるが、本発明では、酸化ランタンと固溶体をなすことで、酸化セリウム単独の場合と同等以上の耐熱性をシリコーンゴムに与えることができることを見出した。
 (C)成分の酸化ランタン-酸化セリウム固溶体中の酸化セリウムの含有率は、60質量%~97質量%であることが望ましい。97質量%以下であれば、酸化セリウムの含有量が多過ぎないため、シリコーンゴムの200℃以上での軟化劣化の発生を抑制し、シリコーンゴムに更に良好な耐熱性を与えることができる。また、60質量%以上であれば、シリコーンゴムの硬化劣化の発生を抑制し、シリコーンゴムに更に良好な耐熱性を与えることができる。
 (C)成分の酸化ランタン-酸化セリウム固溶体は、平均粒径が5.0μm以下のものであることが好ましい。ここで言う平均粒径は、体積平均粒径のことを指し、測定溶媒として水を使用し、マイクロトラック型番MT-3300(マイクロトラック・ベル株式会社製品)により測定した値である。平均粒径5.0μm以下であれば、シロキサンとの接触面積が増えるため、シリコーンゴムに更に良好な耐熱性を与えるものとなる。
 (C)成分の酸化ランタン-酸化セリウム固溶体の添加量は、(A)成分のオルガノポリシロキサン100質量部に対して0.01~10質量部、好ましくは0.05~5質量部である。0.01質量部未満では耐熱性を向上させる効果が不十分であり、10質量部を超えるとシリコーンゴムの強度や伸び等の物理的特性が低下する。
[(D)硬化触媒]
 本発明のシリコーンゴム組成物における(D)成分は、硬化触媒である。(D)成分の硬化触媒は、本発明のシリコーンゴム組成物を硬化させ得るものであれば、特に限定されるものではない。したがって、公知のシリコーンゴム用加硫剤である有機過酸化物やヒドロシリル基含有オルガノポリシロキサンとヒドロシリル化触媒を組み合わせた付加硬化系硬化触媒等が使用可能である。中でも、有機過酸化物は硬化阻害要因が付加硬化系触媒に比べて少ないため、取扱いの面などで好ましい。
 有機過酸化物としては、例えばベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、p-メチルベンゾイルパーオキサイド、o-メチルベンゾイルパーオキサイド、2,4-ジクミルパーオキサイド、2,5-ジメチル-ビス(2,5-t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキサイド、t-ブチルパーベンゾエート、1,6-ヘキサンジオール-ビス-t-ブチルパーオキシカーボネート等が挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
 (D)成分の硬化触媒の添加量は、シリコーンゴム組成物を硬化させるのに十分な量であり、具体的には、(A)成分のオルガノポリシロキサン100質量部に対して0.1~10質量部、好ましくは0.2~5質量部である。
[(E)オルガノシラン/シロキサン]
 本発明のシリコーンゴム組成物には、上記成分に加え、更に(E)成分として、下記一般式(2)で表されるオルガノシラン又はシロキサンを含有することが好ましい。(E)成分を配合することにより、本発明のシリコーンゴム組成物の作業性、押出特性等が向上する。
  RO(Si(RO)     (2)
(式中、Rは同一又は異種のアルキル基又は水素原子であり、Rは同一又は異種の非置換又は置換の1価炭化水素基であり、mは1~50の正数である。)
 ここで、Rは同一又は異種のアルキル基又は水素原子であり、上記一般式(2)で表されるオルガノシラン又はシロキサンは、分子鎖末端にアルコキシ基又は水酸基を有している。Rとしては水素原子又はメチル基、エチル基、プロピル基、ブチル基等の炭素数1~4のアルキル基が例示され、メチル基、エチル基、水素原子が好ましい。Rとしては、通常、炭素数1~12、特に1~8のものが好ましく、具体的には、メチル基、エチル基、プロピル基、ブチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基、ブテニル基、ヘキセニル基等のアルケニル基、フェニル基、トリル基等のアリール基、β-フェニルプロピル基等のアラルキル基、又はこれらの基の炭素原子に結合した水素原子の一部又は全部をハロゲン原子、シアノ基等で置換した例えばクロロメチル基、トリフルオロプロピル基、シアノエチル基等が挙げられ、メチル基、ビニル基、フェニル基、トリフルオロプロピル基が好ましく、メチル基、ビニル基、トリフルオロプロピル基が特に好ましい。
 mは1~50の正数であり、好ましくは1~30の正数、特に好ましくは1~20の正数である。mが50以下であれば、大量に配合しなくとも十分な添加効果が得られるため、大量配合によるゴム物性の低下が発生する恐れがない。
 (E)成分のオルガノシラン/シロキサンの添加量は、(A)成分のオルガノポリシロキサン100質量部に対して0.1~50質量部が好ましく、0.5~30質量部が特に好ましい。0.1質量部以上であれば、添加効果が十分に得られ、50質量部以下であれば、得られるシリコーンゴム組成物に粘着性が発生する恐れがないため、加工性が低下したり、得られるゴム物性が低下したりする恐れがない。
[その他の成分]
 本発明のシリコーンゴム組成物には、上記成分に加え、任意成分として、必要に応じ、白金化合物、酸化鉄やハロゲン化合物のような難燃性付与剤や(C)成分以外の耐熱性向上剤、老化防止剤、紫外線吸収剤、着色剤、離型剤等のシリコーンゴム組成物における公知の添加剤を添加することができる。
 本発明のシリコーンゴム組成物の製造方法は、特に限定されないが、上述した成分の所定量を2本ロール、ニーダー、バンバリーミキサー等公知の混練機で混練りすることによって得ることができる。また、必要により熱処理(加熱下での混練り)をしてもよい。具体的には、(A)、(B)成分を混練し、必要に応じて熱処理してから室温において(D)成分を添加する方法が好ましい。この場合(C)成分は熱処理前に配合しても熱処理後に配合してもよい。熱処理する場合、熱処理温度、時間は特に制限されないが、100~250℃、特に140~180℃で30分~5時間程度行うことが好ましい。
 本発明のシリコーンゴム組成物を成形する際は、必要とされる用途(成形品)に応じて、適宜成形方法を選択すればよい。具体的には、コンプレッション成形、インジェクション成形、トランスファー成形、常圧熱気加硫、スチーム加硫等が挙げられる。硬化条件は特に限定されず、硬化方法や成形品により適宜選択すればよく、一般的には80~600℃、特に100~450℃で数秒~数日、特に5秒~1時間程度で行うことができる。また、必要に応じて2次加硫してもよい。2次加硫は通常180~250℃で1~10時間程度で行うことができる。
 以上のように、本発明のシリコーンゴム組成物であれば、高温に暴露されても、硬さ、引張強さ、切断時伸び等の物理的特性の変化の少ない、耐熱性に優れたシリコーンゴムを与えるシリコーンゴム組成物となる。
 以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
[実施例1]
 トリフルオロプロピル・メチルシロキサン単位99.750モル%、メチルビニルシロキサン単位0.20モル%、ジメチルビニルシロキサン単位0.050モル%からなり、平均重合度約4,000であるオルガノポリシロキサン100質量部、BET法による比表面積130m/gの煙霧質シリカ(アエロジル130(日本アエロジル(株)製))45質量部、両末端にシラノール基を有し、重合度が10のトリフルオロプロピル・メチルポリシロキサン10質量部をニーダーで配合し、150℃で2時間熱処理を行い、シリコーンゴムコンパウンドを作製した。得られたゴムコンパウンドに酸化ランタン-酸化セリウム固溶体A(平均粒径0.8μm、酸化ランタン/酸化セリウム比率=40/60)を2本ロールで0.8質量部添加し、次いで2,5-ジメチル-ビス(2,5-t-ブチルパーオキシ)ヘキサン0.5質量部を添加しシリコーンゴム組成物を得た。この組成物を1次加硫170℃/10分、2次加硫200℃/2時間の条件でプレス成形して2mm厚のシリコーンゴムを作製し、JIS K 6249:2003を基に硬さ(デュロメータA)、引張強さ、切断時伸び(即ち、初期のゴム物性)を測定した。また、225℃の乾燥機に7日間入れた耐熱性試験後のゴム物性も測定し、変化率を算出した。結果を表1に示す。
[比較例1]
 酸化ランタン-酸化セリウム固溶体Aの代わりに市販の酸化セリウム(阿南化成(株)製、商品名:酸化セリウムS、純度99.9%以上、平均粒径0.18μm)を添加する以外は実施例1と同様の操作を行い、シリコーンゴム組成物を得た。得られたシリコーンゴム組成物を用いて、実施例1と同様にして、初期及び耐熱性試験後のゴム物性を測定し、変化率を算出した。結果を表1に示す。
[比較例2]
 酸化ランタン-酸化セリウム固溶体Aを全く添加しない以外は実施例1と同様の操作を行い、シリコーンゴム組成物を得た。得られたシリコーンゴム組成物を用いて、実施例1と同様にして、初期及び耐熱性試験後のゴム物性を測定し、変化率を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、酸化ランタン-酸化セリウム固溶体を耐熱性向上剤として用いた実施例1では、酸化セリウムを耐熱性向上剤として用いた比較例1に比べて耐熱性試験後のゴム物性の変化率が小さく、耐熱性が良好であった。なお、耐熱性向上剤を添加しなかった比較例2では、耐熱性試験後はシリコーンゴムの硬化劣化が激しく、ゴム物性の測定が不能であった。
[実施例2]
 ジメチルシロキサン単位99.85モル%、メチル-ビニルシロキサン単位0.15モル%からなり、分子鎖末端がジメチルビニルシロキサン単位で封鎖された重合度が約7,000のメチルビニルポリシロキサン生ゴムを100質量部、BET法による比表面積300m/gの煙霧質シリカ(アエロジル300(日本アエロジル(株)製))45質量部、ヘキサメチルジシラザン8質量部をニーダミキサーに配合し均一に混合した後、更に150℃で1時間加熱混合してシリコーンゴムベースを得た。得られたゴムコンパウンドに酸化ランタン-酸化セリウム固溶体B(平均粒径0.8μm、酸化ランタン/酸化セリウム比率=30/70)を2本ロールで1.0質量部添加し、次いで2,5-ジメチル-ビス(2,5-t-ブチルパーオキシ)ヘキサン0.5質量部を添加しシリコーンゴム組成物を得た。この組成物を1次加硫170℃/10分、2次加硫200℃/2時間の条件でプレス成形して2mm厚のシリコーンゴムを作製し、JIS K 6249:2003を基に硬さ(デュロメータA)、引張強さ、切断時伸び(即ち、初期のゴム物性)を測定した。また、250℃の乾燥機に3日間入れた耐熱性試験後のゴム物性も測定し、変化率を算出した。結果を表2に示す。
[比較例3]
 酸化ランタン-酸化セリウム固溶体Bの添加量を0.001質量部とする以外は実施例2と同様の操作を行い、シリコーンゴム組成物を得た。得られたシリコーンゴム組成物を用いて、実施例2と同様にして、初期及び耐熱性試験後のゴム物性を測定し、変化率を算出した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、酸化ランタン-酸化セリウム固溶体を適切な量配合した実施例2では、酸化ランタン-酸化セリウム固溶体の配合量を0.001質量部とした比較例3に比べて耐熱性試験後のゴム物性の変化率が小さく、耐熱性が良好であった。
 以上のことから、本発明のシリコーンゴム組成物であれば、高温に暴露されても、硬さ、引張強さ、切断時伸び等の物理的特性の変化の少ない、耐熱性に優れたシリコーンゴムを与えるシリコーンゴム組成物となることが明らかとなった。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (4)

  1. (A)重合度が100以上であって、1分子中にケイ素原子に結合したアルケニル基を2個以上有するオルガノポリシロキサン:100質量部、
    (B)BET法による比表面積が50m/g以上である補強性シリカ:10~100質量部、
    (C)酸化ランタン-酸化セリウム固溶体:0.01~10質量部、及び
    (D)硬化触媒:0.1~10質量部、
    を含有するものであることを特徴とするシリコーンゴム組成物。
  2.  前記(C)成分中の酸化セリウムの含有率が、60質量%~97質量%であることを特徴とする請求項1に記載のシリコーンゴム組成物。
  3.  前記(C)成分が、平均粒径5.0μm以下のものであることを特徴とする請求項1又は請求項2に記載のシリコーンゴム組成物。
  4.  前記(D)成分が、有機過酸化物であることを特徴とする請求項1から請求項3のいずれか一項に記載のシリコーンゴム組成物。
PCT/JP2018/020269 2017-08-01 2018-05-28 シリコーンゴム組成物 WO2019026401A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017149185A JP6738776B2 (ja) 2017-08-01 2017-08-01 シリコーンゴム組成物
JP2017-149185 2017-08-01

Publications (1)

Publication Number Publication Date
WO2019026401A1 true WO2019026401A1 (ja) 2019-02-07

Family

ID=65233662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020269 WO2019026401A1 (ja) 2017-08-01 2018-05-28 シリコーンゴム組成物

Country Status (2)

Country Link
JP (1) JP6738776B2 (ja)
WO (1) WO2019026401A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024075472A1 (ja) * 2022-10-07 2024-04-11 信越化学工業株式会社 液状付加硬化型フルオロシリコーン組成物、フルオロシリコーンゴム及び成形品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358557A (en) * 1976-11-08 1978-05-26 Toshiba Silicone Heat resistant polyorganosiloxane composition
JP2000212444A (ja) * 1998-11-20 2000-08-02 Dow Corning Toray Silicone Co Ltd シリコ―ンゴム組成物
WO2005070832A1 (ja) * 2004-01-21 2005-08-04 Mitsui Mining & Smelting Co., Ltd. 酸化物固溶体粉末
WO2008082001A1 (ja) * 2006-12-28 2008-07-10 Dow Corning Toray Co., Ltd. 加熱硬化性シリコーンゴム組成物
JP2010156206A (ja) * 2008-12-26 2010-07-15 Sumitomo Osaka Cement Co Ltd 排ガス浄化フィルタ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358557A (en) * 1976-11-08 1978-05-26 Toshiba Silicone Heat resistant polyorganosiloxane composition
JP2000212444A (ja) * 1998-11-20 2000-08-02 Dow Corning Toray Silicone Co Ltd シリコ―ンゴム組成物
WO2005070832A1 (ja) * 2004-01-21 2005-08-04 Mitsui Mining & Smelting Co., Ltd. 酸化物固溶体粉末
WO2008082001A1 (ja) * 2006-12-28 2008-07-10 Dow Corning Toray Co., Ltd. 加熱硬化性シリコーンゴム組成物
JP2010156206A (ja) * 2008-12-26 2010-07-15 Sumitomo Osaka Cement Co Ltd 排ガス浄化フィルタ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024075472A1 (ja) * 2022-10-07 2024-04-11 信越化学工業株式会社 液状付加硬化型フルオロシリコーン組成物、フルオロシリコーンゴム及び成形品

Also Published As

Publication number Publication date
JP2019026772A (ja) 2019-02-21
JP6738776B2 (ja) 2020-08-12

Similar Documents

Publication Publication Date Title
EP3533838B1 (en) Heat-resistant millable silicone rubber composition
JP6344333B2 (ja) 付加硬化性シリコーンゴム組成物
KR20160043184A (ko) 실리콘 고무 조성물 및 이의 제조방법
EP2554585B1 (en) Silicone Rubber Composition Having Excellent Heat Resistance
KR20050076755A (ko) 실리콘 고무 조성물
CN105440683B (zh) 抗静电性硅橡胶组合物、其固化物和其制造方法
JP2017165931A (ja) 付加硬化性シリコーンゴム組成物及び硬化物
JP2013241532A (ja) 帯電防止性シリコーンゴム組成物及び帯電防止性シリコーンゴム硬化物の黄変を抑制する方法
JP2018053237A (ja) シリコーンゴム系硬化性組成物および成形体
JP5338380B2 (ja) オルガノポリシロキサン及びその製造方法並びにフルオロシリコーンゴム組成物
JPH06329909A (ja) シリコーンゴムロール
JP7156216B2 (ja) ミラブル型シリコーンゴム組成物及びその硬化物、並びにミラブル型シリコーンゴム組成物用シリコーンゴムコンパウンド
JP6500843B2 (ja) キーパッド作製用シリコーンゴム組成物及びキーパッド
JP2018184534A (ja) シリコーンゴム組成物及びその硬化物
JP6184091B2 (ja) ミラブル型シリコーンゴム組成物及びその硬化物
JP6380466B2 (ja) 動摩擦係数を低減する方法
JP2016094514A (ja) 付加硬化性シリコーンゴム組成物
WO2019026401A1 (ja) シリコーンゴム組成物
JP2011016977A (ja) シリコーンゴム組成物及びその製造方法
WO2021100535A1 (ja) キーパッド作製用シリコーンゴム組成物及びキーパッド
WO2022234770A1 (ja) フロロシリコーンゴム組成物及び硬化成型物
JP7526115B2 (ja) 耐熱性ミラブル型シリコーンゴム組成物
KR101099174B1 (ko) 실리콘 고무 조성물
JP3611025B2 (ja) シリコーンゴム組成物
JP2019203090A (ja) シリコーンゴム組成物及びシリコーンゴム部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18841946

Country of ref document: EP

Kind code of ref document: A1