WO2019024361A1 - 显示设备及显示方法 - Google Patents

显示设备及显示方法 Download PDF

Info

Publication number
WO2019024361A1
WO2019024361A1 PCT/CN2017/114716 CN2017114716W WO2019024361A1 WO 2019024361 A1 WO2019024361 A1 WO 2019024361A1 CN 2017114716 W CN2017114716 W CN 2017114716W WO 2019024361 A1 WO2019024361 A1 WO 2019024361A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image
color
color gamut
image data
Prior art date
Application number
PCT/CN2017/114716
Other languages
English (en)
French (fr)
Inventor
郭祖强
杜鹏
李屹
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2019024361A1 publication Critical patent/WO2019024361A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a display device and a display method.
  • the gamut generally refers to the spectral trajectory of visible light that can be seen by the human eye in nature.
  • the area of the region formed by the visible spectral trajectory is the maximum gamut area that the human eye can see visible light.
  • projectors, displays, etc. which are composed of different display devices, use R, G, and B three primary color display systems to perform color reproduction and reproduction on images.
  • a specified chromaticity space such as CIE1931x, y chromaticity space
  • the triangle formed by the three primary colors of R, G, and B of the display device is called the color gamut that the device can display.
  • a wide color gamut source (such as R, G, B three-color pure laser source) can achieve the color gamut standard of Rec.2020, but wide color gamut light source is generally more expensive, such as red laser and green laser are expensive and electro-optic Conversion efficiency is low.
  • the present invention provides a display device and a display method capable of realizing a wider color gamut and having a lower light source cost.
  • a display device comprising:
  • a light source device for emitting first light and second light, the first light being used to modulate a narrow color gamut image, the second light being used to modulate a wide color gamut image; and all pixels of the narrow color gamut image All being within a first color gamut, all pixels of the wide color gamut image being within a second color gamut, and wherein at least a portion of the pixels are outside the first color gamut; wherein the second color gamut Covering the first color gamut range and having a portion that extends beyond the first color gamut;
  • An image data processing module configured to receive first image data, where the first image data includes three primary color luminance data based on the second light of each pixel of an image; the image data processing module is further configured to determine the image a color gamut range; when the image belongs to the narrow color gamut image, the image data processing module transmits the second image data to the light modulating device and transmits a signal emitting the first light to the light source device, wherein The second image data is obtained by converting the three primary color luminance data of each pixel of the image based on the second light; when the image belongs to the wide color gamut image, the image data processing module An image data is transmitted to the light modulating device, and a signal emitting the second light is transmitted to the light source device;
  • the light modulating device is configured to modulate the second light or the first light emitted by the light source according to the first image data or the second image data transmitted by the image data processing module.
  • a display method includes the following steps:
  • first light and second light Providing first light and second light, the first light being used to modulate a narrow color gamut image, the second light being used to modulate a wide color gamut image; all pixels of the narrow color gamut image are located in a first color Within the domain, all pixels of the wide color gamut image are located in the second color gamut, and at least some of the pixels are outside the first color gamut; wherein the second color gamut covers the first color gamut a range and having a portion that extends beyond the first color gamut;
  • the first image data comprising three primary color luminance data based on the second light of each pixel of an image
  • the second image data is based on three primary color luminance data of the second light, color coordinates of vertices of the second color gamut range, and the first color of each pixel of the image. Obtained from the color coordinate calculation of the vertex of the domain range.
  • the tristimulus value calculated based on the three primary color luminance data of the second light and the color coordinate of the vertex of the second color gamut range of each pixel of the image and each pixel according to the image The tristimulus values calculated based on the three primary color luminance data of the first light and the color coordinates of the vertices of the first color gamut range are equal.
  • the step of determining a color gamut of the image comprises:
  • the step of determining a color gamut of the image comprises:
  • the first light comprises three primary colors, the first primary color of the first light has a color coordinate of x r , y r , the brightness is Y r , and the second primary color of the first light
  • the color coordinates are x g , y g , and the brightness is Y g
  • the color coordinates of the third primary color of the first light are x b , y b , the brightness is Y b
  • the second light includes three primary colors
  • the first The color coordinates of the first primary color of the two lights are x R , y R , the brightness is Y R , the color coordinates of the second primary color of the second light are x G , y G , and the brightness is Y G
  • the color coordinates of the third primary color are x B , y B , and the brightness is Y B , and the color coordinates and brightness of the first light and the second light satisfy the following formula:
  • the first color gamut range is a DCI color gamut range
  • the second color gamut range is a REC color gamut range
  • the first light has fluorescence and the second light comprises a laser.
  • the display device and the display method of the present invention not only the display of image data of a wide color gamut can be realized, but also when the image belongs to the narrow color gamut image, the second image data is output and the first light is emitted. And modulating the first light-generating image light according to the second image data, wherein the first light is lighter than the second light in a narrower color gamut, thereby being in each pixel of the first image data
  • the second light source of a wider color gamut may not be used, thereby reducing the cost of the light source.
  • Figure 1 is a block diagram showing the structure of a display device of the present invention.
  • FIG. 2 is a schematic diagram of a color gamut range of the display device shown in FIG. 1.
  • FIG. 3 is a schematic flow chart of a display method of the display device shown in FIG. 1.
  • FIG. 4 is a detailed flow chart of the first embodiment of the method shown in FIG.
  • FIG. 5 is a detailed flow chart of the second embodiment of the method shown in FIG. 3.
  • FIG. 5 is a detailed flow chart of the second embodiment of the method shown in FIG. 3.
  • the present invention provides a display device and display method that can reduce the use of a wide color gamut light source.
  • a wide color gamut image data not every frame of the image has very vivid colors. In other words, only a part of the image has a special green or special red bright color.
  • a smaller gamut area can already cover all the colors in the image, and this period uses a relatively narrow color gamut instead of a wide gamut light source ( As a light source of a display device, it can save the loss of wide color gamut light (such as laser) and cost.
  • a fluorescent light source with a narrow color gamut is used as a light source of a display device, and the cost is low and the light effect is low. high.
  • FIG. 1 is a block diagram showing the structure of a display device 100 of the present invention.
  • the display device 100 is mainly used as a projection device as an example.
  • the display device 100 includes a light source device 110, an image data processing module 120, a light modulation device 130, and a projection lens 140.
  • the light source device 110 is configured to emit first light and second light, the first light is used to modulate a narrow color gamut image (such as a first color gamut range image), and the second light is used to modulate a wide color gamut image Like (like the second gamut range image).
  • a narrow color gamut image such as a first color gamut range image
  • the second light is used to modulate a wide color gamut image
  • FIG. 2 is a schematic diagram of a color gamut range of the display device 100 shown in FIG. 1. All pixels (color coordinates or color gamut values) of the narrow color gamut image are located in the first color gamut.
  • the first color gamut range F1 is outside; wherein the second color gamut range F2 covers the first color gamut range F1 and has a partial color gamut range F that exceeds the first color gamut range F1.
  • the first color gamut range F1 is a color gamut range that the first light can exhibit, which may be a DCI color gamut range, such as a color gamut range DCI-P3.
  • the second color gamut range F2 may be a REC color gamut range, such as a color gamut range REC.2020.
  • the second light has a different color gamut range from the first light, and the color gamut of the second light is significantly wider than the gamut of the first light.
  • the first light and the second light each include three primary colors, and the first light may just display the first color gamut range F1, and the second light may display the second color gamut Range F2.
  • the first light includes fluorescence
  • the second light includes a laser.
  • the light source device 110 includes a first light source 111, a second light source 112, a light source controller 113, and an optical and relay system 114.
  • the first light source 111 emits the first light
  • the second light source 112 emits the second light.
  • the first light source 111 may include an excitation light source and a color wheel, the excitation light source emits excitation light, the color wheel is provided with a fluorescent material, and the color wheel receives the excitation.
  • the light emits the first light, and the first light has fluorescence.
  • the excitation light source may be a blue laser light source for emitting blue excitation light
  • the color wheel may include at least two segmented regions, wherein at least one segmented region is provided with the fluorescent material, and each The segmented region emits a color of light, and the at least two segmented regions can emit at least two colors of light, such as blue and yellow or blue, red, and green.
  • the yellow light comprises a component of red light and green light, that is, the first light may include three primary colors of red, green and blue.
  • the first light source 111 may also include a light emitting diode, the light emitting diode emits the first light, and the first light has fluorescence.
  • the first light may include at least Two colors of light, such as blue and yellow or blue, Red light and green light.
  • the second light source 112 includes a laser that emits laser light as the second light.
  • the second light may include three primary colors, that is, the second light source may include three primary color lasers, such as a red laser, a green laser, and a blue laser, for emitting red laser, green laser, and blue laser.
  • the second light may include three primary color lasers, such as a red laser, a green laser, and a blue laser, for emitting red laser, green laser, and blue laser.
  • the first light and the second light may be further adjusted to the light modulating device 130 after being adjusted by the optical and relay system 114, such that the light modulating device 130 may be correspondingly
  • the image data modulates the first light and the second light to produce image light. It can be understood that in the modified embodiment, the first light and the second light may be directly used by the light modulation device 130 without being adjusted by the optical and relay system 114.
  • the light source controller 113 is further configured to receive a light source control signal (such as a signal that emits a first light or a signal that emits a second light), and control the first light source 111 and the second light source based on the light source control signal
  • a light source control signal such as a signal that emits a first light or a signal that emits a second light
  • the turning on and off of 112 causes the light modulating device 130 to modulate the corresponding light using the corresponding image data to obtain image light.
  • the image data processing module 120 is configured to receive image data DATA (hereinafter referred to as first image data) to be displayed.
  • image data DATA hereinafter referred to as first image data
  • the image to be displayed is at least one image
  • the first image data may include image data of the image, such as one frame of image data, specifically, the first image data includes pixels of the image.
  • the three primary color luminance data of the second light such as the red, green, and blue primary color luminance data of each pixel
  • the first image data is also Three primary color luminance data based on the second light of each pixel of the image may be considered.
  • the image data processing module 120 is further configured to determine a color gamut range of the image; when the image belongs to the narrow color gamut image, the image data processing module 120 transmits the second image data to the light modulating device 130. And transmitting, to the light source device 110, a signal that emits a first light, wherein the second image data is obtained by converting three primary color luminance data of each pixel of the image based on the second light; when the image belongs to In the wide color gamut image, the image data processing module 120 transmits the first image data to the light modulation device 130 and transmits a signal that emits the second light to the light source device 110.
  • the image data processing module 120 calculates each pixel according to the color of the three primary colors of the second light and the color coordinates of the vertices of the second color gamut F2 of each pixel of the image. a color coordinate, and determining a color gamut range of the image corresponding to the first image data according to color coordinates of each pixel.
  • the image data processing module 120 may determine, according to the three primary color luminance data of the second light, the color coordinates of the vertices of the second color gamut range, and the The color coordinates of the vertices of the first color gamut range F1 calculate the second image data based on the three primary color luminance data of the first light of each pixel of the image. Specifically, the image data processing module 120 may calculate a tristimulus value according to “the color of the three primary colors of the second light and the color coordinates of the vertices of the second color gamut F2 of each pixel of the image.
  • the principle that the tristimulus values calculated based on the three primary color luminance data of the first light and the color coordinates of the vertices of the first color gamut F1 are equal according to the pixels of the image, first according to each pixel of the image a tristimulus value calculated based on the three primary color luminance data of the second light and the color coordinate of the vertex of the second color gamut range F2, based on the tristimulus value of each pixel and the first color gamut range F1
  • the color coordinates of the vertices of the vertices calculate the second image data based on the three primary color luminance data of the first light of each pixel of the image.
  • the color coordinates of the first primary color of the first light are x r , y r , the brightness is Y r , the color coordinates of the second primary color of the first light are x g , y g , and the brightness is Y g ;
  • the color coordinates of the third primary color of the first light are x b , y b , and the luminance is Y b . It can be understood that the color coordinates of the three primary colors of the first light can be regarded as the color coordinates of the three vertices of the triangle of the first color gamut range F1 (ie, the color coordinates of the first color gamut range F1).
  • the brightness of the three primary colors of the first light can be considered as the maximum brightness of the primary colors that the color coordinates can achieve at the three vertices.
  • the color coordinates and the luminances x r , y r , and Y r of the first primary color of the first light may also be regarded as the lower right of the triangle of the first color gamut range F1 in the color gamut diagram shown in FIG. 2 .
  • the color coordinates of the vertices (such as 0.680, 0.320) and the maximum brightness that the first primary color of the first light can reach.
  • the color coordinates and the luminances x g , y g , and Y g of the second primary color of the first light may also be regarded as the color of the vertices above the triangle of the first color gamut range F1 in the color gamut diagram shown in FIG. 2 .
  • the color coordinates and the luminances x b , y b , and Y b of the third primary color of the first light may also be regarded as the lower left vertex of the triangle of the first color gamut range F1 in the color gamut diagram shown in FIG. 2 .
  • the color coordinates (such as 0.150, 0.060) and the maximum brightness that the third primary color of the first light can reach.
  • the color coordinates of the first primary color of the second light are x R , y R , the brightness is Y R , the color coordinates of the second primary color of the second light are x G , y G , and the brightness is Y G ;
  • the color coordinates of the third primary color of the second light are x B and y B , and the luminance is Y B . It can be understood that the color coordinates of the three primary colors of the second light can be regarded as the color coordinates of the three vertices of the triangle of the second color gamut range F2 (ie, the color coordinates of the second color gamut range F2).
  • the brightness of the three primary colors of the second light can be regarded as the maximum brightness of the primary colors that the color coordinates can achieve at the three vertices.
  • the color coordinates and the luminances x R , y R and Y R of the first primary color of the second light may also be regarded as the lower right of the triangle of the second color gamut range F2 in the color gamut diagram shown in FIG. 2 .
  • the color coordinates of the vertices (such as 0.708, 0.282) and the maximum brightness that the first primary color of the second light can reach.
  • the color coordinates and the luminances x G , y G and Y G of the second primary color of the second light may also be regarded as the color of the apex above the triangle of the second color gamut range F2 in the color gamut diagram shown in FIG. 2 .
  • the color coordinates and the luminances x B , y B , and Y B of the third primary color of the second light may also be regarded as the lower left vertex of the triangle of the second color gamut range F2 in the color gamut diagram shown in FIG. 2 .
  • the maximum color brightness that can be achieved by the color coordinates (such as 0.131, 0.046) and the third primary color of the second light.
  • the white balance of the two light sources 111 and 112 is required to have consistent color coordinates and brightness.
  • the color coordinates of the white balance are x w , y w , and the brightness is Y w .
  • the color coordinates x w , y w of the white balance may select D65 (ie, the color coordinates are 0.3127, 0.329), and the brightness Y w varies depending on the brightness.
  • Equation 2 at the time of white balance, the tristimulus values X W , Y W , Z W of the pixel satisfy the following formula 3.
  • the tristimulus value at the time of white balance can also be calculated by using the maximum brightness and color coordinates of the three primary colors of the first light; using the second light
  • the tristimulus value at the time of white balance can also be calculated using the maximum brightness and color coordinates of the three primary colors of the second light. Therefore, according to the above principle and the formula 1-3, it can be known that when the white balance is attained, the tristimulus values X W , Y W , Z W of the pixel satisfy the following formula 4.
  • the tristimulus values X W , Y W , Z W of the pixels at the time of white balance also satisfy the following formula 4.
  • Equation 7 can be known by bringing the color coordinates and luminance values of the known parameters into Equation 1.
  • the luminances Y r , Y g , Y b of the three primary colors of the first light and the luminances Y R , Y G , Y B of the three primary colors of the second light satisfy the following formula 8 and formula 9, in order to be able to mutually Matching, such that when the first light is switched with the second light, the color of the image displayed by the display device does not cause a difference in color and brightness.
  • the three primary color luminance data based on the second light of one of the first image data is R, G, and B, respectively, according to the three primary color luminance data R, G, B of the pixel and the first
  • the color coordinates of the two color gamut range F2 calculate the tristimulus values X, Y, and Z of the pixel as follows:
  • M represents the maximum luminance data of the three primary colors, such as 255 grayscale.
  • the tristimulus value of each pixel does not change.
  • the accurate restoration of the data can be ensured. Therefore, using the principle that the tristimulus value does not change, it is assumed that the luminance values of the three primary colors based on the second light of any one pixel of the first image data are R, G, and B, respectively.
  • the color coordinates of the range F1 calculate the tristimulus values X, Y, Z of the pixel, that is, the tristimulus values X, Y, Z also conform to the following formula:
  • Equation 10 and Equation 11 Further introducing the known parameters into Equation 10 and Equation 11 can be used to know Equation 12 and Equation 13:
  • the formula 8, the formula 9, the formula 12, and the formula 13 can be calculated.
  • the three primary color luminance data corresponding to the first light corresponding to the pixel is r, g, b, thereby obtaining the second image data.
  • the corresponding three-stimulus value (X, Y, Z) ) (0.4186Y W , 0.5569Y W , 0.5228Y W )
  • Yw can be obtained according to the selected white balance data
  • the corresponding tristimulus values (X, Y, Z) can be obtained, and then the above formula 8 is obtained.
  • the tristimulus value (X 0 , Y 0 , Z 0 ) of the pixel is obtained by calculation, and then according to the tristimulus value (X 0 , Y 0 , Z 0 ) and
  • the relationship formula of the color coordinates of the pixel (such as Formula 1 or Formula 2) can be calculated to obtain the color coordinates x, y of the pixel, so that the color can be determined according to the color coordinates x, y of each pixel of the first image data.
  • the gamut range of the image corresponding to an image data.
  • the image data processing module 120 may calculate the tristimulus values of the pixels of the first image data according to the above principle to learn the color coordinates of each pixel, and determine the corresponding corresponding to the first image data according to the color coordinates of each pixel.
  • the gamut of the image ie whether the image is a narrow gamut image or a wide gamut image. It can be understood that, as described above, if all the pixels of the image are in the first color gamut, the image is the narrow color gamut image; if all pixels of the image are in the second color gamut, and Where at least a portion of the pixels are outside the first color gamut, then the image is the wide color gamut image.
  • the image data processing module 120 may also determine a color gamut range of the first image data by using the image data processing module 120 based on each pixel of the image.
  • the three primary colors of the second light, the color coordinates of the vertices of the second color gamut F2, and the vertex color coordinates of the first color gamut F1 are calculated based on the first light of each pixel of the image.
  • the image data processing module 120 determines that the image is a narrow color gamut image and each pixel of the image is The three primary color luminance data based on the first light is transmitted to the light modulation device 130 as the second image data; if at least some of the three primary color luminance data of each pixel of the image is based on the first light The three primary color luminance data based on the first light is not in the predetermined numerical range, and the image data processing module 120 determines that the image is a wide color gamut image and transmits the first image data to the light modulation device. 130.
  • the predetermined value range is [0, M], as described above, M represents the maximum brightness data of the three primary colors, such as 255 gray scale, that is, the predetermined value range is a range of [0-255].
  • the tristimulus value of each pixel is calculated according to the color data of the three primary colors of the first image data (R, G, B) and the color coordinate of the second color gamut F2, and then based on the pixels.
  • the step of calculating the three primary color luminance data (r, g, b) of each pixel based on the first color gamut range F1 by the tristimulus value and the color coordinate of the first color gamut range F1 has been described in detail above. That is, the three primary color luminance data (r, g, b) of each pixel based on the first color gamut range F1 are calculated with reference to the above known parameters and formulas 8, 9, 12, and 13, and the details are not described herein again. Calculation steps and principles.
  • each pixel obtained according to the calculation determines whether the luminance data r, g, b are all at [0, M] based on the three primary color luminance data (r, g, b) of the first color gamut range F1 (eg [0, 255] ⁇ ) within the predetermined range of values. It can be understood that if the pixel is based on the three primary color luminance data of the first color gamut range F1 in the predetermined numerical range, it is indicated that the data (R, G, B) to be displayed by the pixel can be utilized based on the first color gamut.
  • the luminance data (r, g, b) of the range F1 modulates the first light for restoration, that is, the color gamut of the pixel is within the first color gamut, and the image is the narrow color gamut image. If the three primary color luminance data of the pixel based on the first color gamut range F1 is not within the predetermined numerical range, such as a negative number (eg, -1) or greater than the maximum luminance data M (eg, 256), The data (R, G, B) to be displayed by the pixel cannot modulate the first light reduction by using the luminance data (r, g, b) of the first color gamut range F1, that is, the color gamut of the pixel is determined.
  • a negative number eg, -1
  • M maximum luminance data
  • the image is the wide color gamut image.
  • the luminance data (r, g, b) based on the first color gamut range F1 of all pixels of the first image data of the second color gamut range of an image is calculated and determined to be within the predetermined numerical range Within [0, M]
  • the gamut range of the first image data can be known, that is, whether the image is a narrow gamut image or a wide gamut image. Further, it can be understood that if the pixels of the first image data are based on the three primary color luminance data of the first color gamut range F1, the image data processing module 120 determines the first image.
  • the color gamut of the data is in the first color gamut range F1, that is, the image is a narrow color gamut image, and the image data processing module 120 may directly calculate the first color gamut range of each pixel obtained in the above determining step.
  • the light source controller 113 is configured to receive the signal for emitting the first light and the signal for emitting the second light, and the light source controller 113 receives the signal for emitting the first light to control the first light source 111 to be turned on. And closing the second light source 112, so that the light source device 110 emits the first light; the light source controller 113 receives the signal for emitting the second light to control the second light source 112 to be turned on and the first A light source 111 is turned off, so that the light source device 110 emits the second light.
  • the light modulating device 130 is configured to obtain image light according to the second image data modulating the first light when the image corresponding to the first image data is the narrow color gamut image.
  • the light modulating device 130 is further configured to: when the image corresponding to the first image data is the wide color gamut image, modulate the second light according to the first image data to obtain image light.
  • the light modulating device 130 receives the second image data output by the image data processing module 120, and the light source controller 113 Controlling the light source device 110 to emit the first light to the light modulating device, such that the light modulating device 130 modulates the first light according to the second image data to obtain image light, thereby obtaining the first light Image light of the gamut range F1.
  • the light modulating device 130 receives the first image data output by the image data processing module 120, and the light source controller 113 controls the The light source device 110 emits the second light to the light modulating device 130, so that the light modulating device 130 further modulates the second light according to the first image data to obtain image light, thereby obtaining the first light.
  • the light modulation module 132 may include a spatial light modulator that modulates the first light according to the second image data during a first time period, the spatial light modulation The second light is modulated according to the first image data during a second time period. That is, the spatial light modulator is time-divisionally modulating the first light and the second light.
  • the spatial light modulator may be a DMD spatial light modulator, an LCOS spatial light modulator or an LCD spatial light modulator, but is not limited to the above.
  • the light modulation module 132 includes a first spatial light modulator and a second spatial light modulator, and the first spatial light modulator modulates the first light according to the second image data. And the second spatial light modulator modulates the second light according to the first image data. That is, the first image data and the corresponding second light and the second image data and the corresponding first light thereof are respectively image-modulated using different spatial light modulators.
  • the first and second spatial light modulators may be DMD spatial light modulators, LCOS spatial light modulators or LCD spatial light modulators, but are not limited to the above.
  • the projection lens 140 projects image light emitted by the light modulation device 130 to display an image.
  • FIG. 3 is a schematic flowchart of a display method of the display device 100 shown in FIG.
  • the display method of the display device 100 will be described below with reference to FIG. 3, and the display method includes the following steps S1-S4.
  • Step S1 providing first light and second light, the first light is used to modulate a narrow color gamut image, and the second light is used to modulate a wide color gamut image; all pixels of the narrow color gamut image are located In the first color gamut range F1, all pixels of the wide color gamut image are located in the second color gamut range F2, and at least some of the pixels are located outside the first color gamut; wherein the second color gamut range F2 is covered
  • the first color gamut range and has a portion that exceeds the first color gamut range F1.
  • the first light and the second light may be provided by the light source device 110.
  • the specific structure of the light source device 110, the specific requirements of the first light and the second light have been described above, and will not be described herein.
  • Step S2 Receive first image data, where the first image data includes three primary color luminance data based on the second light of each pixel of an image.
  • the first image data may be one image data, such as one frame of image data.
  • step S3 the color gamut range of the image is determined.
  • step S4 and step S6 are performed; when the image belongs to the wide color gamut image, step S5 and step S7 are performed.
  • step S4 the second image data and the signal for emitting the first light are output.
  • step S6, modulating the first light-generating image light according to the second image data.
  • step S5 the first image data and a signal for emitting the second light are output.
  • step S7 The second light-generated image light is modulated according to the first image data.
  • FIG. 4 is a detailed flow chart of the first embodiment of the method shown in FIG.
  • the step S3 may specifically include the following steps S31, S32.
  • Step S31 Calculate the tristimulus value of each pixel according to the three primary color luminance data of each pixel and the color coordinate of the second color gamut range, and calculate the color coordinate of each pixel according to the tristimulus value
  • step S32 according to the pixel
  • the color coordinate determines the color gamut range of the image corresponding to the first image data.
  • the step S3 can be performed by the image data processing module 120.
  • the step S4 may include the following steps:
  • step S4 can also be performed by the image data processing module 120.
  • step S6 the light source device 110 emits the first light according to the signal for emitting the first light, and the light modulation device 130 receives the second image data and the light source device 110 Decoding the first light and modulating the first light generating image light according to the second image data.
  • the projection lens 140 projects image light emitted by the light modulation device 130 to display an image.
  • step S5 the image data processing module 120 outputs the first image data to the light modulation device 130 and outputs a signal emitting the second light to the light source device. 110, wherein the step S5 is also performed by the image data processing module 120.
  • step S7 the light source device 110 emits the second light according to the signal for emitting the second light, and the light modulation device 130 receives the first image data and the light source device 110 The second light is modulated, and the second light-generated image light is modulated according to the first image data.
  • the projection lens 140 projects image light emitted by the light modulation device 130 to display an image.
  • FIG. 5 is a detailed flow chart of the second embodiment of the method shown in FIG.
  • the step S3 may specifically include the following steps S33, S34, and S35.
  • Step S33 calculating a tristimulus value of each pixel according to the three primary color luminance data of the second light and the color coordinate of the vertex of the second color gamut range of each pixel of the image;
  • Step S34 calculating, according to the tristimulus value and vertex color coordinates of the first color gamut range, three primary color luminance data based on the first light of each pixel of the image, and
  • Step S35 determining whether the three primary color luminance data of each pixel of the image based on the first light is within a predetermined numerical range to determine a color gamut range of the image.
  • the step S3 can be performed by the image data processing module 120.
  • step S4 the three primary color luminance data based on the first light of each pixel of the image is calculated and output as the second image data. Outputting a signal of the first light to the light source device 110. Further, in step S6, the light source device emits the first light according to the signal for emitting the first light, and the light modulation device receives the first light And generating, by the second image data, the first light emitted by the light source device, and modulating the first light generated image light according to the second image data.
  • the projection lens 140 projects image light emitted by the light modulation device 130 to display an image.
  • step S5 the image data processing module 120 outputs the first image data to the light modulation device 130 and outputs a signal emitting the second light to the light source device. 110, wherein the step S5 is also performed by the image data processing module 120.
  • step S7 the light source device 110 emits the second light according to the signal for emitting the second light, and the light modulation device 130 receives the first image data and the light source device 110 The second light is modulated, and the second light-generated image light is modulated according to the first image data.
  • the projection lens 140 The image light emitted by the light modulation device 130 is projected to display an image.
  • the display device 100 and the display method of the present invention not only display of image data of a wide color gamut can be realized, but also the first image data is image data based on a second color gamut range but the first When the color coordinates of each pixel of an image data are all within the first color gamut, the first light-generated image light is modulated according to the second image data obtained by the converted color gamut range, because the first optical phase Light of a narrower color gamut than the second light, so that the second color of the wider color gamut may not be used when the color coordinates of each pixel of the first image data are all within the first color gamut
  • the light source which in turn reduces the cost of the light source.
  • each pixel is obtained based on the first pixel according to the three primary color luminance data of each pixel, the color coordinate of the second color gamut range, and the color coordinate of the first color gamut range.
  • the light of the three primary colors of the light obtains the second image data, and further modulates the first light according to the second image data, so that the display device and the display method can accurately restore the image to be displayed, and the display effect is better.
  • the color coordinates and the brightness of the first light and the second light satisfy the following formula 6, the color of the overall picture of the first light and the second light during dynamic conversion can be ensured.
  • the brightness is uniform, so the display device 100 has a better display effect.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示设备(100)及显示方法。显示设备(100)包括光源装置(110)、图像数据处理模块(120)、及光调制装置(130)。光源装置(110)用于发出第一光与第二光,第一光相较于第二光为较窄色域的光,图像数据处理模块(120)接收第一图像数据,第一图像数据包含一图像的各像素的基于第二光的三基色亮度数据;当该图像属于窄色域图像时,图像数据处理模块(120)将第二图像数据传输给光调制装置(130),其中第二图像数据是对该图像的各像素的基于第二光的三基色亮度数据进行转换而获得;当该图像属于宽色域图像时,图像数据处理模块(120)将第一图像数据传输给光调制装置(130),光调制装置(130)依据第一图像数据调制第二光或依据第二图像数据调制第一光产生图像光。

Description

显示设备及显示方法 技术领域
本发明涉及显示技术领域,尤其涉及一种显示设备及显示方法。
背景技术
色域通常指人眼在自然界能够看到的可见光的光谱轨迹,可见光谱轨迹所构成区域的面积即为人眼能够看到可见光的最大色域面积。目前,以不同显示器件构成的投影机、显示器等显示涉笔都是采用R、G、B三基色显示系统,对图像进行色彩还原再现。在一个指定的色度空间,如CIE1931x,y色度空间,显示设备的R、G、B三基色所形成三角形称为该设备能够显示的色域,色域空间面积越大,则人们感觉呈现的色彩画面越鲜艳、越逼真,但这要求显示设备的光源能够提供更大色域。例如,采用宽色域光源(如R、G、B三色纯激光光源)可以实现Rec.2020的色域标准,但宽色域光源一般成本较高,如红激光与绿激光价格昂贵而且电光转换效率较低。
发明内容
为解决现有宽色域显示设备的光源成本较高的技术问题,本发明提供一种可实现较宽色域且光源成本较低的显示设备与显示方法。
一种显示设备,其包括:
光源装置,用于发出第一光和第二光,所述第一光用于调制窄色域图像,所述第二光用于调制宽色域图像;所述窄色域图像的所有像素的都位于第一色域范围内,所述宽色域图像的所有像素都位于第二色域范围内、且其中至少部分像素位于所述第一色域范围外;其中所述第二色域范围覆盖所述第一色域范围且具有超出所述第一色域范围的部分;
图像数据处理模块,用于接收第一图像数据,所述第一图像数据包含一图像的各像素的基于所述第二光的三基色亮度数据;所述图像数据处理模块还用于判断该图像的色域范围;当该图像属于所述窄色域图像时,所述图像数据处理模块将第二图像数据传输给光调制装置以及向所述光源装置传送发出第一光的信号,其中所述第二图像数据是对该图像的各像素的基于所述第二光的三基色亮度数据进行转换而获得;当该图像属于所述宽色域图像时,所述图像数据处理模块将所述第一图像数据传输给光调制装置、以及向所述光源装置传送发出第二光的信号;
所述光调制装置用于根据所述图像数据处理模块传输的第一图像数据或第二图像数据,调制所述光源发出的第二光或第一光。
一种显示方法,其包括如下步骤:
提供第一光与第二光,所述第一光用于调制窄色域图像,所述第二光用于调制宽色域图像;所述窄色域图像的所有像素的都位于第一色域范围内,所述宽色域图像的所有像素都位于第二色域范围内、且其中至少部分像素位于第一色域范围外;其中所述第二色域范围覆盖所述第一色域范围且具有超出所述第一色域范围的部分;
接收第一图像数据,所述第一图像数据包含一图像的各像素的基于所述第二光的三基色亮度数据;
判断该图像的色域范围,当该图像属于所述窄色域图像时,输出第二图像数据及发出第一光的信号,其中所述第二图像数据是对该图像的各像素的基于所述第二光的三基色亮度数据进行转换而获得;当该图像属于所述宽色域图像时,输出所述第一图像数据及发出第二光的信号;及
根据所述第二图像数据调制所述第一光或依据所述第一图像数据调制所述第二光。
在一种实施方式中,所述第二图像数据依据该图像的各像素的基于所述第二光的三基色亮度数据、所述第二色域范围的顶点的色坐标及所述第一色域范围的顶点的色坐标计算而获得。
在一种实施方式中,依据该图像的各像素的基于所述第二光的三基色亮度数据及所述第二色域范围的顶点的色坐标计算的三刺激值与依据该图像的各像素的基于所述第一光的三基色亮度数据及所述第一色域范围的顶点的色坐标计算的三刺激值相等。
在一种实施方式中,所述判断该图像的色域范围的步骤包括:
依据该图像的各像素的基于所述第二光的三基色亮度数据及所述第二色域范围的顶点的色坐标计算各像素的色坐标,并依据所述各像素的色坐标判断所述第一图像数据对应的图像的色域范围。
在一种实施方式中,所述判断该图像的色域范围的步骤包括:
依据该图像的各像素的基于所述第二光的三基色亮度数据、所述第二色域范围的顶点的色坐标及所述第一色域范围的顶点色坐标计算该图像的各像素的基于所述第一光的三基色亮度数据,以及
判断该图像的各像素的基于所述第一光的三基色亮度数据是否均在预定数值范围内来判断该图像的色域范围,若该图像的各像素的基于所述第一光的三基色亮度数据均在所述预定数值范围,则判断该图像为窄色域图像且将所述图像的各像素的基于所述第一光的三基色亮度数据作为所述第二图像数据输出;若该图像的各像素的基于所述第一光的三基色亮度数据中至少部分像素的基于所述第一光的三基色亮度数据不在所述预定数值范围,则判断该图像为宽色域图像且将所述第一图像数据输出。
在一种实施方式中,所述第一光包括三基色,所述第一光的第一基色的色坐标为xr、yr,亮度为Yr,所述第一光的第二基色的色坐标为xg、yg,亮度为Yg;所述第一光的第三基色的色坐标为xb,yb,亮度为Yb,所述第二光包括三基色,所述第二光的第一基色的色坐标为xR、yR,亮度为YR,所述第二光的第二基色的色坐标为xG、yG,亮度为YG;所述第二光的第三基色的色坐标为xB,yB,亮度为YB,所述第一光与所述第二光的色坐标及亮度满足以下公式:
Figure PCTCN2017114716-appb-000001
在一种实施方式中,所述第一色域范围为DCI色域范围,所述第二色域范围为REC色域范围。
在一种实施方式中,所述第一光具有荧光,所述第二光包括激光。
与现有技术相比较,本发明显示设备与显示方法中不仅可以实现宽色域的图像数据的显示,并且当该图像属于所述窄色域图像时,输出第二图像数据及发出第一光的信号,依据所述第二图像数据调制所述第一光产生图像光,由于第一光相较于第二光为较窄色域的光,从而在所述第一图像数据的各像素的色坐标均位于所述第一色域范围之内时可以不使用较宽色域范围的第二光源,进而降低光源成本。
附图说明
图1是本发明显示设备的方框结构示意图。
图2是图1所示显示设备的色域范围示意图。
图3是图1所示显示设备的显示方法的流程示意图。
图4是图3显示方法第一种实施例的详细流程示意图。
图5是图3显示方法第二种实施例的详细流程示意图。
主要元件符号说明
显示设备          100
光源装置          110
图像数据处理模块  120
光调制装置        130
投影镜头          140
第一光源          111
第二光源          112
光源控制器        113
光学及中继系统    114
第一色域范围      F1
第二色域范围      F2
部分色域范围      F
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
基于以上采用宽色域光源(如R、G、B三色纯激光光源)可以实现Rec.2020的色域标准,但成本较高等技术问题(如红激光与绿激光价格昂贵而且电光转换效率较低),本发明提供可以减少使用宽色域光源的显示设备与显示方法。通常情况下,在一部宽色域图像数据中,并非每一帧图像都有十分鲜艳的色彩,换句话说,只有一部分的图像中有特别绿或特别红的鲜艳色彩,这时候需要光源提供较大的色域面积,而当显示其他画面时,一个较小的色域面积已经可以覆盖该图像中的所有色彩,而这个时段使用其他色域相对较窄的光源来代替宽色域光源(如纯激光光源)作为显示设备的光源,可以起到节省宽色域光(如激光)损耗以及成本的作用,例如,采用较窄色域的荧光光源作为显示设备的光源,成本低、光效高。
然而,当使用宽色域与窄色域的两种光源动态调节色域时,就需要结合视频信号对每一帧图像进行判断,选择哪一种光源作为激发光,并且使用不同光源时,图像的信号是不同的,因此实现动态色域的过程需要对图像信号进行同步处理。以下结合附图对本发明显示设备与显示方法的具体结构及原理进行详细说明。
请参阅图1,图1是本发明显示设备100的方框结构示意图。本实施方式中,主要以所述显示设备100为投影设备为例进行说明。具体地,所述显示设备100包括光源装置110、图像数据处理模块120、光调制装置130及投影镜头140。
所述光源装置110用于发出第一光和第二光,所述第一光用于调制窄色域图像(如第一色域范围图像),所述第二光用于调制宽色域图 像(如第二色域范围图像)。具体地,请参阅图2,图2是图1所示显示设备100的色域范围示意图,所述窄色域图像的所有像素(的色坐标或者说色域值)都位于第一色域范围F1内,所述宽色域图像的所有像素(的色坐标或者说色域值)都位于第二色域范围F2内、且其中至少部分像素(的色坐标或者说色域值)位于所述第一色域范围F1外;其中所述第二色域范围F2覆盖所述第一色域范围F1且具有超出所述第一色域范围F1的部分色域范围F。具体地,所述第一色域范围F1为所述第一光可以展示的色域范围,其可以是DCI色域范围,如色域范围DCI-P3。其中,所述第二色域范围F2可以为REC色域范围,如色域范围REC.2020。可见,所述第二光与所述第一光具有不同的色域范围,所述第二光的色域范围明显宽于所述第一光的色域范围。具体地,所述第一光与所述第二光均包括三基色,且所述第一光刚好可以展示所述第一色域范围F1,所述第二光可以展示所述第二色域范围F2,本实施方式中,所述第一光包括荧光,所述第二光包括激光。
本实施方式中,所述光源装置110包括第一光源111、第二光源112、光源控制器113及光学及中继系统114。所述第一光源111发出所述第一光,所述第二光源112发出所述第二光。
具体地,在一种实施例中,所述第一光源111可以包括激发光源及色轮,所述激发光源发出激发光,所述色轮上设置有荧光材料,所述色轮接收所述激发光并发出所述第一光,进而所述第一光具有荧光。所述激发光源可以为蓝色激光光源,用于发出蓝色激发光,所述色轮上可以包括至少两个分段区域,其中至少一个分段区域上设置有所述荧光材料,且每个分段区域射出一种颜色光,进而所述至少两个分段区域可以射出至少两种颜色光,如蓝色光与黄色光或者蓝色光、红色光与绿色光。其中所述黄色光包含红色光与绿色光的成分,即所述第一光可以包括红绿蓝三种基色。
在一种变更实施例中,所述第一光源111也可以包括发光二极管,所述发光二极管发出所述第一光,所述第一光具有荧光,具体地,所述第一光可以包括至少两种颜色光,如蓝色光与黄色光或者蓝色光、 红色光与绿色光。
本实施方式中,所述第二光源112包括激光器,所述激光器发出激光作为所述第二光。具体地,所述第二光可以包含三基色,即所述第二光源可以包括三基色的激光器,如红色激光器、绿色激光器及蓝色激光器,用于发出红色激光、绿色激光及蓝色激光作为所述第二光。
所述第一光及所述第二光可以进一步经由所述光学及中继系统114经匀光、整形等调整后被提供至所述光调制装置130,使得所述光调制装置130可以依据相应的图像数据调制所述第一光及所述第二光产生图像光。可以理解,在变更实施方式中,所述第一光及所述第二光也可以不经由所述光学及中继系统114调整而直接被所述光调制装置130。
所述光源控制器113还用于接收光源控制信号(如发出第一光的信号或发出第二光的信号),并基于所述光源控制信号控制所述第一光源111与所述第二光源112的开启与关闭,以使得所述光调制装置130使用对应的图像数据调制对应的光来获得图像光。
所述图像数据处理模块120用于接收待显示的图像数据DATA(下称第一图像数据)。可以理解,所述待显示图像至少为一幅图像,所述第一图像数据可以包括该幅图像的图像数据,如一帧图像数据,具体地,所述第一图像数据包括该图像的各像素的基于所述第二光的三基色亮度数据(如各像素红绿蓝三基色亮度数据),可以理解,由于所述第二光调制第二色域范围图像,因此,所述第一图像数据也可以视为包括该图像的各像素的基于所述第二光的三基色亮度数据。
所述图像数据处理模块120还用于判断该图像的色域范围;当该图像属于所述窄色域图像时,所述图像数据处理模块120将第二图像数据传输给所述光调制装置130以及向所述光源装置110传送发出第一光的信号,其中所述第二图像数据是对该图像的各像素的基于所述第二光的三基色亮度数据进行转换而获得;当该图像属于所述宽色域图像时,所述图像数据处理模块120将所述第一图像数据传输给光调制装置130、以及向所述光源装置110传送发出第二光的信号。
具体地,本实施方式中,所述图像数据处理模块120依据该图像的各像素的基于所述第二光的三基色亮度数据及所述第二色域范围F2的顶点的色坐标计算各像素的色坐标,并依据所述各像素的色坐标判断所述第一图像数据对应的该图像的色域范围。
进一步地,本实施方式中,所述图像数据处理模块120可以依据该图像的各像素的基于所述第二光的三基色亮度数据、所述第二色域范围的顶点的色坐标及所述第一色域范围F1的顶点的色坐标计算该图像的各像素的基于所述第一光的三基色亮度数据而获得所述第二图像数据。具体地,所述图像数据处理模块120可以依据“该图像的各像素的基于所述第二光的三基色亮度数据及所述第二色域范围F2的顶点的色坐标计算的三刺激值与依据该图像的各像素的基于所述第一光的三基色亮度数据及所述第一色域范围F1的顶点的色坐标计算的三刺激值相等”的原理,先依据该图像的各像素的基于所述第二光的三基色亮度数据及所述第二色域范围F2的顶点的色坐标计算的三刺激值,再基于所述各像素的三刺激值及所述第一色域范围F1的顶点的色坐标计算该图像的各像素的基于所述第一光的三基色亮度数据获得所述第二图像数据。
设所述第一光的第一基色的色坐标为xr、yr,亮度为Yr,所述第一光的第二基色的色坐标为xg、yg,亮度为Yg;所述第一光的第三基色的色坐标为xb、yb,亮度为Yb。可以理解,所述第一光的三基色的色坐标可以视为所述第一色域范围F1的三角形的三个顶点的色坐标(即所述第一色域范围F1的色坐标),所述第一光的三基色的亮度可以视为色坐标在所述三个顶点时可以达到的所述基色的最大亮度。具体地,所述第一光的第一基色的色坐标及亮度xr、yr及Yr也可以视为图2所示色域图中所述第一色域范围F1的三角形的右下方的顶点的色坐标(如0.680、0.320)及所述第一光的第一基色可以达到的最大亮度。所述第一光的第二基色的色坐标及亮度xg、yg及Yg也可以视为图2所示色域图中所述第一色域范围F1的三角形的上方的顶点的色坐标(如0.265、0.690)及所述第一光的第二基色可以达到的最大 亮度。所述第一光的第三基色的色坐标及亮度xb、yb,及Yb也可以视为图2所示色域图中所述第一色域范围F1的三角形的左下方的顶点的色坐标(如0.150、0.060)及所述第一光的第三基色可以达到的最大亮度。
设所述第二光的第一基色的色坐标为xR、yR,亮度为YR,所述第二光的第二基色的色坐标为xG、yG,亮度为YG;所述第二光的第三基色的色坐标为xB、yB,亮度为YB。可以理解,所述第二光的三基色的色坐标可以视为所述第二色域范围F2的三角形的三个顶点的色坐标(即所述第二色域范围F2的色坐标),所述第二光的三基色的亮度可以视为色坐标在所述三个顶点时可以达到的所述基色的最大亮度。具体地,所述第二光的第一基色的色坐标及亮度xR、yR及YR也可以视为图2所示色域图中所述第二色域范围F2的三角形的右下方的顶点的色坐标(如0.708、0.282)及所述第二光的第一基色可以达到的最大亮度。所述第二光的第二基色的色坐标及亮度xG、yG及YG也可以视为图2所示色域图中所述第二色域范围F2的三角形的上方的顶点的色坐标(如0.170、0.797)及所述第二光的第二基色可以达到的最大亮度。所述第二光的第三基色的色坐标及亮度xB、yB,及YB也可以视为图2所示色域图中所述第二色域范围F2的三角形的左下方的顶点的色坐标(如0.131、0.046)及所述第二光的第三基色可以达到的最大亮度。
为了使得所述第一光源111与所述第二光源112在动态转换的时候保持整体画面的颜色及亮度一致性,要求上述两个光源111、112的白平衡要有一致的色坐标及亮度,例如,假设白平衡的色坐标为xw、yw、亮度为Yw,具体地,所述白平衡的色坐标xw、yw可以选择D65(即色坐标为0.3127、0.329),而亮度Yw则依据亮度的不同而不同。
首先,任意一像素的三刺激值X0、Y0、Z0与对应的色坐标x、y的关系满足如下公式1,所述公式1用矩阵表示为公式2。
Figure PCTCN2017114716-appb-000002
Figure PCTCN2017114716-appb-000003
按照公式2,处于白平衡时,像素的三刺激值XW、YW、ZW满足如下公式3。
Figure PCTCN2017114716-appb-000004
进一步地,可以理解,在使用所述第一光还原画面时,利用所述第一光的三基色的最大亮度及色坐标也可以计算处于白平衡时的三刺激值;使用所述第二光调制图像时,利用所述第二光的三基色的最大亮度及色坐标也可以计算处于白平衡时的三刺激值。因此,依据上述原理及公式1-3,可以获知:处于白平衡时,像素的三刺激值XW、YW、ZW满足如下公式4。
Figure PCTCN2017114716-appb-000005
Figure PCTCN2017114716-appb-000006
而处于白平衡时所述像素的三刺激值XW、YW、ZW还满足如下公式4。
Figure PCTCN2017114716-appb-000007
为了使得所述第一光源111与所述第二光源112在动态转换的时候保持整体画面的颜色及亮度一致性,依据公式4,所述第一光与所述第二光的色坐标及亮度需满足以下公式6,才能保证所述第一光与所述第二光在动态转换的时候整体画面的颜色及亮度一致性。
Figure PCTCN2017114716-appb-000008
进一步地,将已知的各参数的色坐标及亮度值带入公式1可以获知以下公式7。
Figure PCTCN2017114716-appb-000009
因此,所述第一光的三基色的亮度Yr、Yg、Yb与所述第二光的三基色的亮度YR、YG、YB满足以下公式8与公式9,才能够相互匹配,使得所述第一光与所述第二光切换时,所述显示设备显示的图像颜色不发生颜色和亮度的差异。
Figure PCTCN2017114716-appb-000010
Figure PCTCN2017114716-appb-000011
,设所述第一图像数据的其中一个像素的基于所述第二光的三基色亮度数据分别为R、G、B,依据所述像素的三基色亮度数据R、G、B及所述第二色域范围F2的色坐标计算所述像素的三刺激值X、Y、Z的公式如下:
Figure PCTCN2017114716-appb-000012
其中M代表三基色的最大亮度数据,如255灰阶。
由于将该图像的各像素的基于第二光的三基色亮度数据转换为基于第一光的三基色亮度数据的过程中,每个像素的三刺激值不变才 能确保数据的准确还原,因此,利用所述三刺激值不变的原理,假设所述第一图像数据的任意一个像素的基于所述第二光的三基色亮度数据分别为R、G、B,其对应的转换为基于所述第一光的三基色亮度数据分别为r、g、b,则利用所述转换后的像素的三基色亮度数据r、g、b及所述第一色域范围F1的色坐标计算所述像素的三刺激值X、Y、Z,即所述三刺激值X、Y、Z还符合如下公式:
Figure PCTCN2017114716-appb-000013
进一步将已知参数带入公式10与公式11可以获知公式12与公式13:
Figure PCTCN2017114716-appb-000014
Figure PCTCN2017114716-appb-000015
当所述第一图像数据的任意一个像素的基于所述第二光的三基色亮度数据R、G、B已知时,结合所述公式8、公式9、公式12与公式13可以计算得到该像素对应的基于所述第一光的三基色亮度数据为r、g、b,从而获得所述第二图像数据。
举例来说,当所述像素基于所述第二光的三基色亮度数据(R,G,B)=(100,160,120),则所述像素对应的三刺激值(X,Y,Z)=(0.4186YW,0.5569YW,0.5228YW),而Yw依据选定的白平衡数据可以获得,进而可以获知对应的三刺激值(X,Y,Z),再通过上述公式8、9、 12、13计算即可得到所述像素对应的基于所述第一光的三基色亮度数据(r,g,b)=(80,165,120)。
可以理解,对于任意一个像素来说,通过计算获知所述像素的三刺激值(X0,Y0,Z0),再依据所述三刺激值(X0,Y0,Z0)与所述像素的色坐标的关系公式(如公式1或公式2)即可计算获知所述像素的色坐标x,y,从而依据第一图像数据各像素的色坐标x,y即可判断所述第一图像数据对应的该图像的色域范围。所述图像数据处理模块120可以依据上述原理计算所述第一图像数据的各像素的三刺激值来获知各像素的色坐标,进而依据各像素的色坐标判断所述第一图像数据对应的该图像的色域范围,即该图像是窄色域图像还是宽色域图像。可以理解,如前所述,若该图像的所有像素都位于第一色域范围内,则该图像是所述窄色域图像;若该图像的所有像素都位于第二色域范围内、且其中至少部分像素位于所述第一色域范围外,则该图像是所述宽色域图像。
可以理解,在一种变更实施方式中,所述图像数据处理模块120也可以采用如下方式判断所述第一图像数据的色域范围:所述图像数据处理模块120依据该图像的各像素的基于所述第二光的三基色亮度数据、所述第二色域范围F2的顶点的色坐标及所述第一色域范围F1的顶点色坐标计算该图像的各像素的基于所述第一光的三基色亮度数据,以及判断该图像的各像素的基于所述第一光的三基色亮度数据是否均在预定数值范围内来判断该图像的色域范围。若该图像的各像素的基于所述第一光的三基色亮度数据均在所述预定数值范围,则所述图像数据处理模块120判断该图像为窄色域图像且将所述图像的各像素的基于所述第一光的三基色亮度数据作为所述第二图像数据传输至所述光调制装置130;若该图像的各像素的基于所述第一光的三基色亮度数据中至少部分像素的基于所述第一光的三基色亮度数据不在所述预定数值范围,则所述图像数据处理模块120判断该图像为宽色域图像且将所述第一图像数据传输至所述光调制装置130。其中所述预定数值范围为【0,M】,如上所述,M代表三基色的最大亮度数据,如 255灰阶,即所述预定数值范围为【0-255】的范围。
其中,依据所述第一图像数据的各像素三基色亮度数据(R,G,B)及所述第二色域范围F2的色坐标计算各像素的三刺激值值,再基于所述各像素的三刺激值及所述第一色域范围F1的色坐标计算所述各像素基于所述第一色域范围F1的三基色亮度数据(r,g,b)的步骤已在上面详述,即参照上述已知参数及公式式8、9、12、13计算所述各像素基于所述第一色域范围F1的三基色亮度数据(r,g,b),此处就不再赘述具体计算步骤及原理。
进一步地,依据计算获得的各像素基于所述第一色域范围F1的三基色亮度数据(r,g,b)判断亮度数据r、g、b是否都在【0,M】(如【0,255】)的预定数值范围内。可以理解,若所述像素基于所述第一色域范围F1的三基色亮度数据在所述预定数值范围,说明所述像素所要显示的数据(R,G,B)可以利用基于第一色域范围F1的亮度数据(r,g,b)调制所述第一光进行还原,即所述像素的色域在所述第一色域范围内,该图像为所述窄色域图像。若所述像素基于所述第一色域范围F1的三基色亮度数据不在所述预定数值范围,如为负数(如为-1)或者大于所述最大亮度数据M(如为256),说明所述像素所要显示的数据(R,G,B)不能利用基于第一色域范围F1的亮度数据(r,g,b)调制所述第一光还原,即判断所述像素的色域在所述第一色域范围F1之外,该图像为所述宽色域图像。通过计算并判断一幅图像的基于所述第二色域范围的第一图像数据的所有的像素的基于第一色域范围F1的亮度数据(r,g,b)是否在所述预定数值范围内【0,M】,可以获知所述第一图像数据的色域范围,即该图像是窄色域图像还是宽色域图像。进一步地,可以理解,若第一图像数据的各像素基于所述第一色域范围F1的三基色亮度数据均在所述预定数值范围,即所述图像数据处理模块120判断所述第一图像数据的色域范围在所述第一色域范围F1,即该图像为窄色域图像,所述图像数据处理模块120可以直接将上述判断步骤中计算获得的各像素的基于第一色域范围F1的亮度数据(r,g,b)作为所述第二图像数据,并进一步将所述第二图像数 据提供至所述光调制装置130,而无需重新转换与计算。
所述光源控制器113用于接收所述发出第一光的信号及所述发出第二光的信号,所述光源控制器113接收所述发出第一光的信号控制所述第一光源111开启及所述第二光源112的关闭,从而所述光源装置110发出所述第一光;所述光源控制器113接收所述发出第二光的信号控制所述第二光源112开启及所述第一光源111的关闭,从而所述光源装置110发出所述第二光。
所述光调制装置130用于在所述第一图像数据对应的图像为所述窄色域图像时,依据所述第二图像数据调制所述第一光而获得图像光。所述光调制装置130还用于在所述第一图像数据对应的图像为所述宽色域图像时,依据所述第一图像数据调制所述第二光而获得图像光。
具体来说,当所述第一图像数据对应的图像为所述窄色域图像时,所述光调制装置130接收所述图像数据处理模块120输出的第二图像数据,所述光源控制器113控制所述光源装置110发出所述第一光至所述光调制装置,从而所述光调制装置130依据所述第二图像数据调制所述第一光而获得图像光,从而获得所述第一色域范围F1的图像光。
当所述第一图像数据对应的图像为所述宽色域图像时,所述光调制装置130接收所述图像数据处理模块120输出的所述第一图像数据,所述光源控制器113控制所述光源装置110发出所述第二光至所述光调制装置130,从而所述光调制装置130进一步依据所述第一图像数据调制所述第二光而获得图像光,从而获得所述第一色域范围F1以外的第二色域范围F2的图像光。
在一种实施方式中,所述光调制模块132可以包括一空间光调制器,所述空间光调制器在第一时段依据所述第二图像数据调制所述第一光,所述空间光调制器在第二时段依据所述第一图像数据调制所述第二光。即,所述空间光调制器分时依据调制所述第一光及所述第二光。所述空间光调制器可以为DMD空间光调制器、LCOS空间光调制器或LCD空间光调制器,但并不以上述为限。
在另一种实施方式中,所述光调制模块132包括第一空间光调制器与第二空间光调制器,所述第一空间光调制器依据所述第二图像数据调制所述第一光,所述第二空间光调制器依据所述第一图像数据调制所述第二光。即,所述第一图像数据及其对应的所述第二光与所述第二图像数据及其对应的所述第一光分别使用不同的空间光调制器进行图像调制。所述第一与第二空间光调制器可以为DMD空间光调制器、LCOS空间光调制器或LCD空间光调制器,但并不以上述为限。
所述投影镜头140对所述光调制装置130发出的图像光进行投影以显示图像。
进一步地,请参阅图3,图3是图1所示显示设备100的显示方法的流程示意图。以下结合图3对所述显示设备100的显示方法进行说明,所述显示方法包括如下步骤S1-S4。
步骤S1,提供第一光与第二光,所述第一光用于调制窄色域图像,所述第二光用于调制宽色域图像;所述窄色域图像的所有像素的都位于第一色域范围F1内,所述宽色域图像的所有像素都位于第二色域范围F2内、且其中至少部分像素位于第一色域范围外;其中所述第二色域范围F2覆盖所述第一色域范围且具有超出所述第一色域范围F1的部分。具体地,其中可以通过所述光源装置110提供所述第一光及所述第二光。关于所述光源装置110的具体结构、所述第一光及所述第二光的具体要求已在上面说明,此处就不再赘述。
步骤S2,接收第一图像数据,所述第一图像数据包含一图像的各像素的基于所述第二光的三基色亮度数据。其中,所述第一图像数据可以为一幅图像数据,如一帧图像数据。
步骤S3,判断该图像的色域范围,当该图像属于所述窄色域图像时,执行步骤S4及步骤S6;当该图像属于所述宽色域图像时,执行步骤S5及步骤S7。
步骤S4,输出第二图像数据及发出第一光的信号。步骤S6,依据所述第二图像数据调制所述第一光产生图像光。
步骤S5,输出所述第一图像数据及发出第二光的信号。步骤S7, 依据所述第一图像数据调制所述第二光产生图像光。
具体地,请参阅图4,图4是图3显示方法第一种实施例的详细流程示意图。在第一种实施例中,所述步骤S3可以具体包括如下步骤S31、S32。步骤S31:依据所述各像素三基色亮度数据及所述第二色域范围的色坐标计算各像素三刺激值,再依据三刺激值计算各像素的色坐标,步骤S32:依据所述各像素的色坐标判断所述第一图像数据对应的该图像的色域范围。其中,所述步骤S3可以由所述图像数据处理模块120执行。
当该图像属于所述窄色域图像时,所述步骤S4可以包括如下步骤:
依据所述各像素三基色亮度数据及所述第二色域范围的色坐标计算各像素三刺激值,再依据该图像的各像素的三刺激值及所述第一色域范围的顶点色坐标计算该图像的各像素的基于所述第一光的三基色亮度数据从而获得所述第二图像数据;及
输出所述第二图像数据至所述光调制装置130及输出所述发出第一光的信号至所述光源装置110。其中,所述步骤S4也可以由所述图像数据处理模块120执行。进一步地,步骤S6中,所述光源装置110依据所述发出第一光的信号发出所述第一光,所述光调制装置130接收所述第二图像数据及所述光源装置110发出的所述第一光、并依据所述第二图像数据调制所述第一光产生图像光。所述投影镜头140对所述光调制装置130发出的图像光进行投影以显示图像。
当该图像属于所述宽色域图像时,步骤S5中,所述图像数据处理模块120输出所述第一图像数据至所述光调制装置130及输出发出第二光的信号至所述光源装置110,其中,所述步骤S5也可以由所述图像数据处理模块120执行。进一步地,步骤S7中,所述光源装置110依据所述发出第二光的信号发出所述第二光,所述光调制装置130接收所述第一图像数据及所述光源装置110发出的所述第二光、并依据所述第一图像数据调制所述第二光产生图像光。所述投影镜头140对所述光调制装置130发出的图像光进行投影以显示图像。
具体地,请参阅图5,图5是图3显示方法第二种实施例的详细流程示意图。在第二种实施例中,所述步骤S3中可以具体包括如下步骤S33、S34及S35。
步骤S33,依据该图像的各像素的基于所述第二光的三基色亮度数据、所述第二色域范围的顶点的色坐标计算各像素的三刺激值;
步骤S34,依据所述三刺激值及所述第一色域范围的顶点色坐标计算该图像的各像素的基于所述第一光的三基色亮度数据,及
步骤S35,判断该图像的各像素的基于所述第一光的三基色亮度数据是否均在预定数值范围内来判断该图像的色域范围。
若该图像的各像素的基于所述第一光的三基色亮度数据均在所述预定数值范围,则判断该图像为窄色域图像;若该图像的各像素的基于所述第一光的三基色亮度数据中至少部分像素的基于所述第一光的三基色亮度数据不在所述预定数值范围,则判断该图像为宽色域图像。其中,所述步骤S3可以由所述图像数据处理模块120执行。
当该图像属于所述窄色域图像时,所述步骤S4中,在将上述计算得到所述图像的各像素的基于所述第一光的三基色亮度数据作为所述第二图像数据输出以及输出发出第一光的信号至所述光源装置110,进一步地,步骤S6中,所述光源装置依据所述发出第一光的信号发出所述第一光,所述光调制装置接收所述第二图像数据及所述光源装置发出的所述第一光、并依据所述第二图像数据调制所述第一光产生图像光。所述投影镜头140对所述光调制装置130发出的图像光进行投影以显示图像。
当该图像属于所述宽色域图像时,步骤S5中,所述图像数据处理模块120输出所述第一图像数据至所述光调制装置130及输出发出第二光的信号至所述光源装置110,其中,所述步骤S5也可以由所述图像数据处理模块120执行。进一步地,步骤S7中,所述光源装置110依据所述发出第二光的信号发出所述第二光,所述光调制装置130接收所述第一图像数据及所述光源装置110发出的所述第二光、并依据所述第一图像数据调制所述第二光产生图像光。所述投影镜头140 对所述光调制装置130发出的图像光进行投影以显示图像。
与现有技术相比较,本发明显示设备100与显示方法中不仅可以实现宽色域的图像数据的显示,并且在所述第一图像数据是基于第二色域范围的图像数据但是所述第一图像数据的各像素的色坐标均位于所述第一色域范围之内时,依据所述转换色域范围获得的第二图像数据调制所述第一光产生图像光,由于第一光相较于第二光为较窄色域的光,从而在所述第一图像数据的各像素的色坐标均位于所述第一色域范围之内时可以不使用较宽色域范围的第二光源,进而降低光源成本。此外,本发明显示设备与显示方法中,依据所述各像素三基色亮度数据、所述第二色域范围的色坐标及所述第一色域范围的色坐标获得各像素基于所述第一光的三基色亮度数据获得所述第二图像数据,进而依据所述第二图像数据调制所述第一光,使得所述显示设备与显示方法可以准确还原待显示图像,显示效果较好。
进一步地,通过使所述第一光与所述第二光的色坐标及亮度需满足以下公式6,可以保证所述第一光与所述第二光在动态转换的时候整体画面的颜色及亮度一致性,因此所述显示设备100的显示效果较好。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (12)

  1. 一种显示设备,其特征在于,所述显示设备包括:
    光源装置,用于发出第一光和第二光,所述第一光用于调制窄色域图像,所述第二光用于调制宽色域图像;所述窄色域图像的所有像素都位于第一色域范围内,所述宽色域图像的所有像素都位于第二色域范围内、且其中至少部分像素位于所述第一色域范围外;其中所述第二色域范围覆盖所述第一色域范围且具有超出所述第一色域范围的部分;
    图像数据处理模块,用于接收第一图像数据,所述第一图像数据包含一图像的各像素的基于所述第二光的三基色亮度数据;所述图像数据处理模块还用于判断该图像的色域范围;当该图像属于所述窄色域图像时,所述图像数据处理模块将第二图像数据传输给光调制装置以及向所述光源装置传送发出第一光的信号,其中所述第二图像数据是对该图像的各像素的基于所述第二光的三基色亮度数据进行转换而获得;当该图像属于所述宽色域图像时,所述图像数据处理模块将所述第一图像数据传输给光调制装置、以及向所述光源装置传送发出第二光的信号;
    所述光调制装置用于根据所述图像数据处理模块传输的第一图像数据或第二图像数据,调制所述光源发出的第二光或第一光。
  2. 如权利要求1所述的显示设备,其特征在于:所述图像数据处理模块依据该图像的各像素的基于所述第二光的三基色亮度数据、所述第二色域范围的顶点的色坐标及所述第一色域范围的顶点的色坐标计算该图像的各像素的基于所述第一光的三基色亮度数据而获得所述第二图像数据。
  3. 如权利要求2所述的显示设备,其特征在于:依据该图像的各像素的基于所述第二光的三基色亮度数据及所述第二色域范围的顶点的色坐标计算的三刺激值与依据该图像的各像素的基于所述第一光的三基色亮度数据及所述第一色域范围的顶点的色坐标计算的三刺激值相等。
  4. 如权利要求3所述的显示设备,其特征在于:所述图像数据处理模块该图像的各像素的基于所述第二光的三基色亮度数据及所述第二色域范围的顶点的色坐标计算的三刺激值,再基于所述各像素的三刺激值及所述第一色域范围的顶点的色坐标计算该图像的各像素的基于所述第一光的三基色亮度数据获得所述第二图像数据。
  5. 如权利要求1所述的显示设备,其特征在于,所述图像数据处理模块依据该图像的各像素的基于所述第二光的三基色亮度数据及所述第二色域范围的顶点的色坐标计算各像素的色坐标,并依据所述各像素的色坐标判断所述第一图像数据对应的图像的色域范围。
  6. 如权利要求1所述的显示设备,其特征在于,所述图像数据处理模块依据该图像的各像素的基于所述第二光的三基色亮度数据、所述第二色域范围的顶点的色坐标及所述第一色域范围的顶点色坐标计算该图像的各像素的基于所述第一光的三基色亮度数据,以及判断该图像的各像素的基于所述第一光的三基色亮度数据是否均在预定数值范围内来判断该图像的色域范围,若该图像的各像素的基于所述第一光的三基色亮度数据均在所述预定数值范围,则所述图像数据处理模块判断该图像为窄色域图像且将所述图像的各像素的基于所述第一光的三基色亮度数据作为所述第二图像数据传输至所述光调制装置;若该图像的各像素的基于所述第一光的三基色亮度数据中至少部分像素的基于所述第一光的三基色亮度数据不在所述预定数值范围,则所述图像数据处理模块判断该图像为宽色域图像且将所述第一图像数据传输至所述光调制装置。
  7. 如权利要求1所述的显示设备,其特征在于,所述第一光包括三基色,所述第一光的第一基色的色坐标为xr、yr,亮度为Yr,所述第一光的第二基色的色坐标为xg、yg,亮度为Yg;所述第一光的第三基色的色坐标为xb,yb,亮度为Yb,所述第二光包括三基色,所述第二光的第一基色的色坐标为xR、yR,亮度为YR,所述第二光的第二基色的色坐标为xG、yG,亮度为YG;所述第二光的第三基色的色坐标为xB,yB,亮度为YB,所述第一光与所述第二光的色坐标及亮度 满足以下公式:
    Figure PCTCN2017114716-appb-100001
  8. 如权利要求1所述的显示设备,其特征在于,所述第一色域范围为DCI色域范围,所述第二色域范围为REC色域范围。
  9. 如权利要求1所述的显示设备,其特征在于,所述光源装置包括光源控制器、第一光源与第二光源,所述光源控制器用于接收所述发出第一光的信号及所述发出第二光的信号,所述光源控制器接收所述发出第一光的信号控制所述第一光源开启及所述第二光源的关闭,所述光源控制器接收所述发出第二光的信号控制所述第二光源开启及所述第一光源的关闭。
  10. 如权利要求1所述的显示设备,其特征在于,所述光源装置包括第一光源与第二光源,所述第一光源包括激发光源及色轮,所述激发光源发出激发光,所述色轮上设置有荧光材料,所述色轮接收所述激发光并发出所述第一光,所述第一光具有荧光,所述第二光源包括激光器,所述激光器发出激光作为所述第二光。
  11. 如权利要求1所述的显示设备,其特征在于,所述光源装置包括第一光源与第二光源,所述第一光源包括发光二极管,所述发光二极管发出所述第一光,所述第一光具有荧光,所述第二光源包括激光器,所述激光器发出激光作为所述第二光。
  12. 一种显示方法,其特征在于,所述显示方法包括如下步骤:
    提供第一光与第二光,所述第一光用于调制窄色域图像,所述第二光用于调制宽色域图像;所述窄色域图像的所有像素的都位于第一色域范围内,所述宽色域图像的所有像素都位于第二色域范围内、且其中至少部分像素位于第一色域范围外;其中所述第二色域范围覆盖所述第一色域范围且具有超出所述第一色域范围的部分;
    接收第一图像数据,所述第一图像数据包含一图像的各像素的基于所述第二光的三基色亮度数据;
    判断该图像的色域范围,当该图像属于所述窄色域图像时,输出第二图像数据及发出第一光的信号,其中所述第二图像数据是对该图像的各像素的基于所述第二光的三基色亮度数据进行转换而获得;当该图像属于所述宽色域图像时,输出所述第一图像数据及发出第二光的信号;及
    根据所述第二图像数据调制所述第一光或依据所述第一图像数据调制所述第二光。
PCT/CN2017/114716 2017-07-31 2017-12-06 显示设备及显示方法 WO2019024361A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710643551.3 2017-07-31
CN201710643551.3A CN109324465B (zh) 2017-07-31 2017-07-31 显示设备及显示方法

Publications (1)

Publication Number Publication Date
WO2019024361A1 true WO2019024361A1 (zh) 2019-02-07

Family

ID=65232296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114716 WO2019024361A1 (zh) 2017-07-31 2017-12-06 显示设备及显示方法

Country Status (2)

Country Link
CN (1) CN109324465B (zh)
WO (1) WO2019024361A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113848677A (zh) * 2019-06-20 2021-12-28 青岛海信激光显示股份有限公司 激光投影设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101206848A (zh) * 2006-12-22 2008-06-25 财团法人工业技术研究院 多色域控制显示器
US20100328614A1 (en) * 2009-06-24 2010-12-30 Sanyo Electric Co., Ltd Illumination apparatus and projection display apparatus
CN104091571A (zh) * 2014-06-30 2014-10-08 京东方科技集团股份有限公司 一种显示系统
CN105957497A (zh) * 2016-04-28 2016-09-21 苏州佳世达电通有限公司 电子设备及其控制方法
CN106154711A (zh) * 2015-04-09 2016-11-23 深圳市光峰光电技术有限公司 一种投影系统及其色域控制方法
CN106292142A (zh) * 2015-05-14 2017-01-04 深圳市绎立锐光科技开发有限公司 一种发光装置及其发光控制方法、投影设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7268757B2 (en) * 2001-06-11 2007-09-11 Genoa Color Technologies Ltd Device, system and method for color display
KR100416231B1 (ko) * 2001-11-08 2004-01-31 한국전자통신연구원 칼라 디바이스의 선형 색역폭 확장장치 및 그 방법
WO2005076252A1 (ja) * 2004-02-10 2005-08-18 National University Corporation Shizuoka University 多原色ディスプレイおよび多原色ディスプレイ用色変換方式
JP2005348053A (ja) * 2004-06-02 2005-12-15 Seiko Epson Corp 色変換を行う装置、印刷制御装置、方法およびプログラム、色変換データを作成する装置、方法およびプログラム、並びに、色変換データを記録した記録媒体
JP4995733B2 (ja) * 2004-12-23 2012-08-08 ドルビー ラボラトリーズ ライセンシング コーポレイション 広色域ディスプレイ
CN101430492B (zh) * 2007-11-08 2011-05-18 北京中视中科光电技术有限公司 一种用于投影系统的光源装置及投影显示装置
JP2009180907A (ja) * 2008-01-30 2009-08-13 21 Aomori Sangyo Sogo Shien Center フィールドシーケンシャルカラー表示装置用色光源
CN101720045B (zh) * 2009-12-22 2011-07-13 中国科学院长春光学精密机械与物理研究所 激光显示色域扩展中色调与亮度转换的方法
CN101790100B (zh) * 2010-03-16 2012-06-06 山东大学 基于1931cie-xyz系统的激光电视色域虚拟扩展方法
CN101945292A (zh) * 2010-09-16 2011-01-12 青岛海信电器股份有限公司 色域调整方法和装置
JP2015154459A (ja) * 2014-02-19 2015-08-24 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 画像処理装置および画像処理方法
CN105022212B (zh) * 2014-04-23 2018-11-06 深圳市光峰光电技术有限公司 光源系统、投影系统及方法
CN104155829A (zh) * 2014-07-31 2014-11-19 广东威创视讯科技股份有限公司 一种激光光机的色彩调整方法及系统
CN104809994B (zh) * 2015-04-24 2017-09-29 青岛海信电器股份有限公司 一种rgbw类型四基色显示器灰阶组合转换方法
CN106200229B (zh) * 2015-05-04 2019-01-08 深圳市光峰光电技术有限公司 拼接显示装置和拼接显示控制方法
TWI581047B (zh) * 2015-12-11 2017-05-01 深圳市繹立銳光科技開發有限公司 投影系統
CN106507082B (zh) * 2016-12-27 2019-10-01 深圳Tcl数字技术有限公司 白平衡的调试方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101206848A (zh) * 2006-12-22 2008-06-25 财团法人工业技术研究院 多色域控制显示器
US20100328614A1 (en) * 2009-06-24 2010-12-30 Sanyo Electric Co., Ltd Illumination apparatus and projection display apparatus
CN104091571A (zh) * 2014-06-30 2014-10-08 京东方科技集团股份有限公司 一种显示系统
CN106154711A (zh) * 2015-04-09 2016-11-23 深圳市光峰光电技术有限公司 一种投影系统及其色域控制方法
CN106292142A (zh) * 2015-05-14 2017-01-04 深圳市绎立锐光科技开发有限公司 一种发光装置及其发光控制方法、投影设备
CN105957497A (zh) * 2016-04-28 2016-09-21 苏州佳世达电通有限公司 电子设备及其控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113848677A (zh) * 2019-06-20 2021-12-28 青岛海信激光显示股份有限公司 激光投影设备
CN113848677B (zh) * 2019-06-20 2023-06-09 青岛海信激光显示股份有限公司 激光投影设备

Also Published As

Publication number Publication date
CN109324465A (zh) 2019-02-12
CN109324465B (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
JP3719411B2 (ja) 画像表示システム、プロジェクタ、プログラム、情報記憶媒体および画像処理方法
US10440337B2 (en) Projection apparatus, information processing apparatus, and control methods thereof
JP4110408B2 (ja) 画像表示システム、プロジェクタ、画像処理方法および情報記憶媒体
JP3781743B2 (ja) 映像表示装置
US7926950B2 (en) Laser image display device and color image display method utilizing control of the power of plural laser beams to display a pixel
JP6019859B2 (ja) プロジェクター、及び、プロジェクターにおける発光制御方法
JP2011107703A (ja) カラー管理方法および装置
WO2020057152A1 (zh) 动态色域调节系统、方法及显示系统
WO2022041512A1 (zh) 一种四色低蓝光广色域显示的方法、装置和系统
WO2019174271A1 (zh) 显示设备
JP2021036664A (ja) 三次元(3d)対応ディスプレイ上への広色域二次元(2d)画像の描画
WO2020042566A1 (zh) 动态调节显示系统色域的系统、方法及显示系统
WO2019174274A1 (zh) 显示设备及显示方法
WO2019174270A1 (zh) 显示设备
JP6057397B2 (ja) プロジェクタ、色補正装置および投写方法
WO2019024363A1 (zh) 显示设备及显示方法
CN109324465B (zh) 显示设备及显示方法
JP5150183B2 (ja) 投写型映像表示装置
JP2014066805A (ja) プロジェクター、及び、プロジェクターにおける発光制御方法
JP2017010057A (ja) プロジェクター、及び、プロジェクターにおける発光制御方法
WO2019174273A1 (zh) 图像处理装置、显示设备、图像处理与显示装置及方法
WO2019174272A1 (zh) 显示设备及显示方法
JP2011150111A (ja) 画像処理装置、画像表示システム及び画像処理方法
JP2007121841A (ja) 光学表示装置及びその方法
WO2019109505A1 (zh) 投影设备及投影显示方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17919780

Country of ref document: EP

Kind code of ref document: A1