WO2022041512A1 - 一种四色低蓝光广色域显示的方法、装置和系统 - Google Patents

一种四色低蓝光广色域显示的方法、装置和系统 Download PDF

Info

Publication number
WO2022041512A1
WO2022041512A1 PCT/CN2020/130500 CN2020130500W WO2022041512A1 WO 2022041512 A1 WO2022041512 A1 WO 2022041512A1 CN 2020130500 W CN2020130500 W CN 2020130500W WO 2022041512 A1 WO2022041512 A1 WO 2022041512A1
Authority
WO
WIPO (PCT)
Prior art keywords
blue
red
green
color
cyan
Prior art date
Application number
PCT/CN2020/130500
Other languages
English (en)
French (fr)
Inventor
吴涵渠
Original Assignee
深圳市奥拓电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市奥拓电子股份有限公司 filed Critical 深圳市奥拓电子股份有限公司
Publication of WO2022041512A1 publication Critical patent/WO2022041512A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature

Definitions

  • the invention belongs to the technical field of ultra-high-definition display of LED display screens, and in particular relates to a method, device and system for displaying four-color low blue light and wide color gamut.
  • LED displays usually use red, green, and blue as the three primary colors of each pixel, and use the three primary colors mixed in different proportions to generate the different colors required.
  • a blue light source with a lower wavelength is selected for the blue among the three primary colors of red, green and blue.
  • lower wavelength blue light is harmful to the human eye.
  • the proportion of low-wavelength blue light in electronic displays is greater than that in natural light.
  • the prior art can be adjusted by using the software of the electronic display to select the low blue light mode.
  • the existing technology directly reduces the proportion of blue light through software, which will cause the color cast of the picture, which does not look natural, resulting in poor display quality of the LED display, which cannot be applied to the ultra-high-definition display field of high-definition LED display.
  • the purpose of the present invention is to provide a method, device and system for displaying four-color low blue light with wide color gamut, so as to solve the above technical problems.
  • An embodiment of the present invention provides a four-color low blue light wide color gamut display method, the method includes:
  • the target color space of the input video signal has 4 points of red, green, blue and white, wherein the red full-width XYZ tristimulus value is (X r , Y r , Z r ), and the green full-width XYZ tristimulus value is (X g , Y g , Z g ), the blue full-width XYZ tristimulus is (X b , Y b , Z b ), and the white full-width XYZ tristimulus values are (X w , Y w , Z w );
  • the tristimulus value of the light source calculate the intensity value of a group of red, green, blue and cyan light sources with the smallest intensity of the blue light source;
  • the red, green, and blue values of each pixel of the input video signal are combined with the red, green, blue, XYZ tristimulus values of the color space of the video signal to calculate the tristimulus values of each pixel of the input video signal, and then combined with the red, green, blue, and XYZ tristimulus values of the video signal.
  • the tristimulus values of the 4 light sources of green, blue and cyan are used to calculate the intensity values of a group of 4 light sources of red, green, blue and cyan with the smallest intensity of the blue light source, including specific steps:
  • the red full-width XYZ tristimulus value is (Xr, Yr, Zr)
  • the green full-width XYZ tristimulus value is (Xg, Yg, Zg)
  • the blue full-width XYZ tristimulus value is (Xb, Yb, Zb)
  • the full-width XYZ tristimulus value of white is (Xw, Yw, Zw)
  • R'G'B' is the linear value of the pixel red, green and blue space
  • XYZ rgb is the red, green and blue tristimulus value of the video color space
  • X'Y'Z' is the linear value of the pixel XYZ space;
  • x and y are the coordinates of the pixel CIE chromaticity diagram, and X'Y'Z' is the linear value of the pixel XYZ space;
  • the first set of values and the second set of values are calculated respectively; the first set of values: decomposed into red, green, and blue, Obtain red, green and blue light source intensity values R 10 'G 10 'B 10 '; the second group of values: decompose into red, cyan and blue, obtain red, green and blue light source intensity values R 11 'C l1 'B l1 ';
  • An embodiment of the present application further provides a device for displaying four-color low blue light in a wide color gamut, and the device for displaying four-color low blue light in a wide color gamut includes:
  • the input module is used to input 4 points of red, green, blue and white in the target color space of the video signal, wherein the red full-width XYZ tristimulus value is (Xr, Yr, Zr), and the green full-width XYZ tristimulus value is (Xg , Yg, Zg), the blue full-width XYZ tristimulus is (Xb, Yb, Zb), and the white full-width XYZ tristimulus is (Xw, Yw, Zw);
  • the setting module is used to set a single pixel to have 4 light sources of red, green, cyan and blue;
  • the conversion module is used to convert the pixel color of the input video signal into the CIE XYZ color space
  • the selection module is used to select the cyan light color coordinates
  • the calculation module is used to calculate the tristimulus value of each pixel of the input video signal by combining the red, green, and blue values of each pixel of the input video signal with the red, green, blue, and XYZ tristimulus values of the color space of the video signal;
  • the tristimulus values of the 4 light sources of green, blue and cyan are used to calculate the intensity values of a group of 4 color light sources of red, green, blue and cyan with the smallest intensity of the blue light source;
  • the control module 5 is used to control the driving circuit to output different ratios of red, green, blue and cyan mixed color output;
  • the transceiver module 6 is used for receiving and sending control data and calculation data.
  • An embodiment of the present application further provides a four-color low blue light wide color gamut display system, and the four-color low blue light wide color gamut display system includes the four-color low blue light wide color according to any embodiment of the present application The method by which the domain is displayed.
  • An embodiment of the present application further provides a storage medium on which a computer program is stored, wherein the computer program, when executed by a processor, realizes the four-color low blue light wide color gamut display of any embodiment of the present application. method.
  • the application of the present invention solves the problem that the blue light of the LED display screen at a lower wavelength is harmful to the human eye through the method, device and system for four-color low blue light wide color gamut display, especially when the LED display screen displays high-brightness white
  • the technical problem that the proportion of low-wavelength blue light in electronic displays is larger than that in natural light does not cause color casts on the screen.
  • the proportion of low-wavelength harmful blue light is guaranteed to be the lowest. Therefore, the LED display screen is more comfortable to watch, the LED display screen can achieve a more realistic and vivid high-definition display effect, and the beneficial effect of the display quality of the LED display screen is greatly improved.
  • the technical solution of the application of the present invention can be applied to the field of ultra-high-definition display of high-definition LED display screens.
  • FIG. 1 is a flowchart of a method for displaying four-color low blue light and wide color gamut according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of selecting cyan coordinates in the CIE XYZ color space for three colors of red, green and blue according to an embodiment of the present invention
  • FIG. 3 shows the red, green, and blue values of each pixel of the input video signal, combined with the red, green, blue, XYZ tristimulus values of the video signal’s color space, to calculate the value of each pixel of the input video signal in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a device for displaying four-color low blue light wide color gamut according to an embodiment of the present application.
  • FIG. 1 is a flowchart of a four-color low blue light wide color gamut display method according to an embodiment of the present application; the method includes:
  • Step S110 input the 4 points of red, green, blue and white in the target color space of the video signal, wherein the red full-width XYZ tristimulus value is ( Xr , Yr , Zr ), and the green full-width XYZ tristimulus value is ( X g , Y g , Z g ), the blue full frame XYZ tristimulus is (X b , Y b , Z b ), and the white full frame XYZ tristimulus values are (X w , Y w , Z w );
  • Step S120 setting a single pixel to have four light sources of red, green, cyan, and blue;
  • the triangle formed by the color coordinates of the red, green and blue light sources needs to cover the triangle formed by the color coordinates of the red, green and blue colors in the target color space of the input video.
  • the color coordinates should be located near the extension line connecting the red and white points in the target color space of the video signal; in this way, the red, green, and cyan light sources can be used instead of the blue light source, and mixed into white in the target color space of the video signal;
  • the full-frame XYZ tristimulus value of the red light source is (X rl , Y rl , Z rl )
  • the full-frame XYZ tri-stimulus value of the green light source is (X gl , Y gl , Z gl )
  • the full frame XYZ value of the blue light source
  • the three stimuli are (X bl , Y bl , Z bl )
  • the full-width XYZ tri-stimulus value of the cyan light source is (X cl , Y cl , Z cl );
  • the white point 12 is located at the red point 11, and the green point 14 and the blue point 15 are enclosed by a triangle. , select a point near the junction of the extension line connecting the red point 11 and the white point 12 and the horseshoe-shaped spectral line, as the cyan color 13 in the 4-color display.
  • Step S130 Calculate the tristimulus value of each pixel of the input video signal by combining the red, green, and blue values of each pixel of the input video signal with the red, green, blue, and XYZ tristimulus values of the color space of the video signal, and then combine the red, green, and blue values.
  • the tristimulus values of the 4 light sources of cyan are calculated, and the intensity values of the 4 color light sources of red, green, blue and cyan with the smallest intensity of the blue light source are calculated;
  • Step S140 controlling the driving circuit to output different ratios of red, green, blue and cyan mixed color outputs.
  • FIG. 3 shows the red, green, and blue values of each pixel of the input video signal in step S130 described in an embodiment of the present application, combined with the red, green, blue, XYZ tristimulus values of the color space of the video signal, to calculate Output the tristimulus value of each pixel of the input video signal, and then combine the tristimulus values of the four light sources of red, green, blue and cyan to calculate the intensity value of a group of red, green, blue and cyan light sources with the smallest intensity of the blue light source, including the specific steps of Flow chart, the steps include:
  • Step S13010 converting the nonlinear RGB color space of the input pixel into a linear R'G'B' color space after gamma transformation
  • Step S13020 then multiply the red, green and blue tristimulus value matrix of the video color space to obtain the XYZ color space value; the calculation formula is:
  • the red full-width XYZ tristimulus value is (Xr, Yr, Zr)
  • the green full-width XYZ tristimulus value is (Xg, Yg, Zg )
  • the blue full-width XYZ tristimulus is (Xb, Yb, Zb)
  • the white full-width XYZ tristimulus value is (Xw, Yw, Zw)
  • R'G'B' is the pixel red, green, and blue space linear value
  • XYZ rgb is the video color space red, green and blue tristimulus value
  • X'Y'Z' is the pixel XYZ space linear value.
  • Step S13030 calculate the coordinates x and y of the pixel CIE chromaticity diagram; the calculation formula is:
  • x and y are the coordinates of the pixel CIE chromaticity diagram, and X'Y'Z' is the linear value of the pixel XYZ space;
  • Step S13040 when the pixel color coordinates x and y fall within the red, green and cyan light source triangle RGC of the CIE chromaticity diagram (as shown in Figure 2), decompose the color into three colors of red, green and cyan for calculation to obtain red, green and cyan
  • the light source intensity value R l 'G l 'C l ', the blue light source intensity value B l ' is 0; the calculation formula is:
  • Step S13050 when the pixel color coordinates x and y fall within the red, cyan and blue light source triangle RCB in the CIE chromaticity diagram, calculate the first set of values and the second set of values respectively;
  • the first set of values decomposed into red, green, and blue to obtain red, green, and blue light source intensity values R 10 'G 10 'B 10 '
  • the second set of values decomposed into red, cyan, and blue , obtain the intensity value of red, green and blue light source R l1 'C l1 'B l1 '
  • R l1 'C l1 'B l1 ' the intensity value of red, green and blue light source
  • Step S13060 compare the intensity values of the blue light sources in the first group and the second group, and select a group of values with a smaller intensity value of the blue light sources to obtain a final linear red, green, blue, and cyan light source Intensity value R l 'G l 'B l 'C l ';
  • FIG. 4 is a schematic diagram of a device for displaying four-color low blue light wide color gamut according to an embodiment of the present application.
  • the device includes:
  • the control unit of the four-color low blue light wide color gamut display device includes:
  • the input module 7 is used to input 4 points of red, green, blue and white in the target color space of the video signal, wherein the red full-width XYZ tristimulus value is (Xr, Yr, Zr), and the green full-width XYZ tristimulus value is ( Xg, Yg, Zg), the blue full-width XYZ tristimulus is (Xb, Yb, Zb), and the white full-width XYZ tristimulus value is (Xw, Yw, Zw);
  • Setting module 1 is used to set a single pixel to have four light sources of red, green, cyan and blue;
  • the conversion module 2 is used to convert the pixel color of the input video signal into the CIE XYZ color space;
  • Selection module 3 used to select cyan light color coordinates
  • red, green and blue 3 colors are in the CIE XYZ color space coordinates as shown in Figure 2, and a point is selected near the junction of the extension line connecting the red point and the white point and the horseshoe-shaped spectral line as the 4-color display.
  • Calculation module 4 in order to combine the red, green and blue values of each pixel of the input video signal with the red, green, blue, XYZ tristimulus values of the color space of the video signal, calculate the tristimulus values of each pixel of the input video signal; then combine The tristimulus values of the 4 light sources of red, green, blue and cyan are calculated, and the intensity value of a group of 4 color light sources of red, green, blue and cyan with the smallest intensity of the blue light source is calculated;
  • the control module 5 is used to control the driving circuit to output different ratios of red, green, blue and cyan mixed color output;
  • the transceiver module 6 is used to receive and send control data and calculation data
  • the above-mentioned modules in this embodiment are placed in a processor, and the processor includes a local central processing unit or a cloud processor.
  • An embodiment of the present application further provides a four-color low blue light wide color gamut display system, the system for four-color low blue light wide color gamut display includes: Gamut display device.
  • Embodiments of the present application further provide an electronic device, including a processor and a machine-readable storage medium, where the machine-readable storage medium stores machine-executable instructions that can be executed by the processor, and when called by the processor and When executed, the processor can execute the instructions to prompt the processor to: implement the method for displaying four-color low blue light and wide color gamut according to any embodiment of the present application.
  • An embodiment of the present invention further provides a storage medium on which a computer program is stored, wherein when the computer program is executed by a processor, the method for displaying four-color low blue light and wide color gamut described in any of the foregoing embodiments is implemented.
  • the integrated components/modules/units of the system/computer device if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the present invention can implement all or part of the processes in the methods of the above embodiments, and can also be completed by instructing relevant hardware through a computer program, and the computer program can be stored in a computer-readable storage medium, and the When the computer program is executed by the processor, the steps of the above-mentioned various method embodiments can be implemented.
  • the computer program includes computer program code
  • the computer program code may be in the form of source code, object code, executable file or some intermediate form, and the like.
  • the computer-readable storage medium may include: any entity or device capable of carrying the computer program code, a recording medium, a U disk, a removable hard disk, a magnetic disk, an optical disk, a computer memory, a read-only memory (ROM, Read-Only Memory) ), random access memory (RAM, Random Access Memory), electrical carrier signals, telecommunication signals, and software distribution media, etc.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • electrical carrier signals telecommunication signals
  • software distribution media etc.
  • the content contained in the computer-readable media may be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction, for example, in some jurisdictions, according to legislation and patent practice, the computer-readable media Electric carrier signals and telecommunication signals are not included.
  • each functional module/component in each embodiment of the present invention may be integrated in the same processing module/component, or each module/component may exist physically alone, or two or more modules/components may be integrated in the same processing module/component. in the module/component.
  • the above-mentioned integrated modules/components may be implemented in the form of hardware, or may be implemented in the form of hardware plus software function modules/components.

Abstract

一种四色低蓝光广色域显示的方法、装置(10)和系统,不会引发画面偏色,在保证显示颜色正确的情况下,保证低波长的有害蓝光比例最低,从而使LED显示屏观看起来更加舒适,使LED显示屏实现更加逼真、生动的高清晰显示效果,极大的提升了LED显示屏显示质量,能够适用在高清晰度LED显示屏的超高清显示领域。其中,方法包括:设置单个像素具有红、绿、青、蓝4个光源(S120);选取青色光色坐标;将输入视频信号的每个像素的红绿蓝值,结合视频信号的颜色空间红绿蓝XYZ三刺激值,计算出输入视频信号的每个像素的三刺激值,然后结合红绿蓝青4种光源的三刺激值,计算蓝色光源强度最小的一组红绿蓝青4色光源强度值(S130);控制驱动电路输出不同比例的红绿蓝青混色输出(S140)。

Description

一种四色低蓝光广色域显示的方法、装置和系统
本申请要求于2020年8月25日在中国专利局提交的、申请号为202010860392.4的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于LED显示屏超高清显示的技术领域,具体涉及一种四色低蓝光广色域显示的方法、装置和系统。
背景技术
现有LED显示屏通常采用红、绿、蓝作为每个像素的3基色,并运用混合不同比例的3基色产生所需的不同颜色。现有技术有红绿蓝黄4色显示器,用以产生更好的金黄色,还有红、绿、蓝、白4色显示器,用以降低白色时的功耗,及获得更明亮的显示内容。通常为获取更大的显示色域,得到更纯净的蓝色,对红、绿、蓝3基色中的蓝色会选取较低波长的蓝光源。但是,较低波长的蓝光对人眼具有危害性。特别是当LED显示屏显示高亮度白色时,电子显示器的低波长蓝光占比大于自然光中的低波长蓝光的占比。现有技术可以通过使用电子显示器的软件选用低蓝光模式进行调整。但是,现有技术是通过软件直接减少蓝光占比,这样会导致画面偏色,看起来并不自然,导致LED显示屏显示质量差,不能适用在高清晰度LED显示屏的超高清显示领域。
技术问题
本发明的目的在于提供一种四色低蓝光广色域显示的方法、装置和系统,以解决上述技术问题。
技术解决方案
为了实现上述目的,本发明采用如下技术方案:
本发明一实施例提供了一种四色低蓝光广色域显示的方法,所述方法包括:
输入视频信号的目标颜色空间的红绿蓝白4个点,其中红色的满幅XYZ三刺激值为(X r,Y r,Z r),绿色的满幅XYZ三刺激值为(X g,Y g,Z g),蓝色的满幅XYZ三刺激为(X b,Y b,Z b),白色的满幅XYZ三刺激值为(X w,Y w,Z w);
设置单个像素具有红、绿、青、蓝4个光源;
将输入视频信号的每个像素的红绿蓝值,结合视频信号的颜色空间红绿蓝XYZ三刺激值,计算出输入视频信号的每个像素的三刺激值,然后结合红绿蓝青4种光源的三刺激值,计算蓝色光源强度最小的一组红绿蓝青4色光源强度值;
控制驱动电路输出不同比例的红绿蓝青混色输出。
优选地,所述将输入视频信号的每个像素的红绿蓝值,结合视频信号的颜色空间红绿蓝XYZ三刺激值,计算出输入视频信号的每个像素的三刺激值,然后结合红绿蓝青4种光源的三刺激值,计算蓝色光源强度最小的一组红绿蓝青4色光源强度值,包括具体步骤:
将输入的像素的非线性RGB颜色空间,经过伽马变换后,转换为线性的R’G’B’颜色空间;
然后乘以视频颜色空间红绿蓝三色三刺激值矩阵,得到XYZ颜色空间值;计算公式是:
Figure PCTCN2020130500-appb-000001
上述公式中,红色的满幅XYZ三刺激值为(Xr,Yr,Zr),绿色的满幅XYZ三刺激值为(Xg,Yg,Zg),蓝色的满幅XYZ三刺激为(Xb,Yb,Zb),白色的满幅XYZ三刺激值为(Xw,Yw,Zw),R’G’B’是像素红绿蓝空间线性值,XYZ rgb是视频颜色空间红绿蓝三刺激值,X’Y’Z’是像素XYZ空间线性值;
计算像素CIE色度图坐标x、y;计算公式是:
Figure PCTCN2020130500-appb-000002
Figure PCTCN2020130500-appb-000003
上述英文字母的含义上面都有描述,具体而言,x、y是像素CIE色度图坐标,X’Y’Z’是像素XYZ空间线性值;
当像素色坐标x、y落在CIE色度图中(如图2所示)红绿青光源三角形RGC内时,将颜色分解为红绿青三种颜色进行计算,得到红绿青光源强度值R l’G l’C l’,蓝色光源强度值B l’为0;
计算公式是:
Figure PCTCN2020130500-appb-000004
B l′=0
英文字母含义同上述解释;
当像素色坐标x、y落在CIE色度图中红青蓝光源三角形RCB内时,分别计算第一组值和第二组值;所述第一组值:分解为红、绿、蓝,得到红绿蓝光源强度值R l0’G l0’B l0’;所述第二组值:分解为红、青、蓝,得到红绿蓝光源强度值R l1’C l1’B l1’;
比较所述第一组和所述第二组中所述蓝色光源强度值,并选取所述蓝色光源强度值较小的一组值,得到最后的线性红绿蓝青光源强度值R l’G l’B l’C l’;
计算公式如下:
Figure PCTCN2020130500-appb-000005
Figure PCTCN2020130500-appb-000006
若B 0’<B 1’,则
(R′ G′ B′ C′)=(R l0′ G l0′ B l0′ 0)
否则
(R′ G′ B′ C′)=(R l1′ 0 B l1′ C l1′)。
本发明申请一实施例还提供了一种四色低蓝光广色域显示的装置,所述四色低蓝光广色域显示的装置包括:
输入模块,用以输入视频信号的目标颜色空间的红绿蓝白4个点,其中红色的满幅XYZ三刺激值为(Xr,Yr,Zr),绿色的满幅XYZ三刺激值为(Xg,Yg,Zg),蓝色的满幅XYZ三刺激为(Xb,Yb,Zb),白色的满幅XYZ三刺激值为(Xw,Yw,Zw);
设置模块,用以设置单个像素具有红、绿、青、蓝4个光源;
转换模块,用以将输入视频信号像素颜色转换为CIE XYZ颜色空间;
选择模块,用以选取青色光色坐标;
计算模块,用以将输入视频信号的每个像素的红绿蓝值,结合视频信号的颜色空间红绿蓝XYZ三刺激值,计算出输入视频信号的每个像素的三刺激值;然后结合红绿蓝青4种光源的三刺激值,计算蓝色光源强度最小的一组红绿蓝青4色光源强度值;
控制模块5,用以控制驱动电路输出不同比例的红绿蓝青混色输出;
所述收发模块6,用以接受发送控制数据和计算数据。
本发明申请一实施例还提供了一种四色低蓝光广色域显示的系统,所述四色低蓝光广色域显示的系统,包括本发明申请任一实施例的四色低蓝光广色域显示的方法。
本发明申请一实施例还提供了一种存储介质,其上存储有计算机程序,其中所述计算机程序在由处理器执行时实现本发明申请任一实施例的四色低蓝光广色域显示的方法。
有益效果
本发明申请通过所述一种四色低蓝光广色域显示的方法、装置和系统解决了LED显示屏在较低波长的蓝光对人眼具有危害性,特别是当LED显示屏显示高亮度白色时,电子显示器的低波长蓝光占比大于自然光中的低波长蓝光的占比的技术问题,具有不会引发画面偏色,在保证显示颜色正确的情况下,保证低波长的有害蓝光比例最低,从而使LED显示屏观看起来更加舒适,使LED显示屏实现更加逼真、生动的高清晰显示效果,极大的提升了LED显示屏显示质量的有益效果。本发明申请的技术方案能够适用在高清晰度LED显示屏的超高清显示领域。
附图说明
图1为本发明申请一实施例的一种四色低蓝光广色域显示的方法的流程图;
图2为本发明申请一实施例的红绿蓝3色在CIE XYZ色空间选取青色坐标的示意图;
图3为本发明申请一实施例中所述将输入视频信号的每个像素的红绿蓝值,结合视频信号的颜色空间红绿蓝XYZ三刺激值,计算出输入视频信号的每个像素的三刺激值的步骤流程图:
图4为本发明申请一实施例的一种四色低蓝光广色域显示的装置示意图。
图2中标号:白色点12,红色点11,绿色点14,蓝色点15,青色点13。
本发明的实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施方式及实施方式中的特征可以相互组合。除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在限制本发明。
请参阅图1,请参阅图1,图1为本发明申请一实施例的四色低蓝光广色 域显示方法的流程图;所述方法包括:
步骤S110、输入视频信号的目标颜色空间的红绿蓝白4个点,其中红色的满幅XYZ三刺激值为(X r,Y r,Z r),绿色的满幅XYZ三刺激值为(X g,Y g,Z g),蓝色的满幅XYZ三刺激为(X b,Y b,Z b),白色的满幅XYZ三刺激值为(X w,Y w,Z w);
步骤S120、设置单个像素具有红、绿、青、蓝4个光源;
如图2所示,在CIE xy色度图中,红绿蓝三色光源的色坐标构成的三角形需覆盖输入视频的目标色空间中红绿蓝三色的色坐标构成的三角形,青色光源的色坐标需位于视频信号目标色空间中红色与白色点连线延长线下方附近;如此,可使用红绿青三色光源,而不使用蓝色光源,混合成视频信号目标色空间中的白色;其中红色光源的满幅XYZ三刺激值为(X rl,Y rl,Z rl),绿色光源的满幅XYZ三刺激值为(X gl,Y gl,Z gl),蓝色光源的满幅XYZ三刺激为(X bl,Y bl,Z bl),青色光源的满幅XYZ三刺激值为(X cl,Y cl,Z cl);
具体而言,如图2所示,假设红绿蓝3色在CIE XYZ色空间坐标如图2所示,白色点12位于红色点11,绿色点14和蓝色点15围合而成的三角形中;在红色点11与白色点12连线延长线与马蹄形光谱线的交界处下方附近,选取一点,作为4色显示中的青色13。
步骤S130、将输入视频信号的每个像素的红绿蓝值,结合视频信号的颜色空间红绿蓝XYZ三刺激值,计算出输入视频信号的每个像素的三刺激值,然后结合红绿蓝青4种光源的三刺激值,计算蓝色光源强度最小的一组红绿蓝青4色光源强度值;
步骤S140、控制驱动电路输出不同比例的红绿蓝青混色输出。
请参阅图3,图3为本发明申请一实施例中所述步骤S130所述将输入视频信号的每个像素的红绿蓝值,结合视频信号的颜色空间红绿蓝XYZ三刺激 值,计算出输入视频信号的每个像素的三刺激值,然后结合红绿蓝青4种光源的三刺激值,计算蓝色光源强度最小的一组红绿蓝青4色光源强度值,包括具体步骤的流程图,所述步骤包括:
步骤S13010、将输入的像素的非线性RGB颜色空间,经过伽马变换后,转换为线性的R’G’B’颜色空间;
步骤S13020、然后乘以视频颜色空间红绿蓝三色三刺激值矩阵,得到XYZ颜色空间值;计算公式是:
Figure PCTCN2020130500-appb-000007
上述英文字母的含义上面都有描述,具体而言,上述公式中,红色的满幅XYZ三刺激值为(Xr,Yr,Zr),绿色的满幅XYZ三刺激值为(Xg,Yg,Zg),蓝色的满幅XYZ三刺激为(Xb,Yb,Zb),白色的满幅XYZ三刺激值为(Xw,Yw,Zw),R’G’B’是像素红绿蓝空间线性值,XYZ rgb是视频颜色空间红绿蓝三刺激值,X’Y’Z’是像素XYZ空间线性值。
步骤S13030、计算像素CIE色度图坐标x、y;计算公式是:
Figure PCTCN2020130500-appb-000008
Figure PCTCN2020130500-appb-000009
上述英文字母的含义上面都有描述,具体而言,x、y是像素CIE色度图坐标,X’Y’Z’是像素XYZ空间线性值;
步骤S13040、当像素色坐标x、y落在CIE色度图中(如图2所示)红绿青光源三角形RGC内时,将颜色分解为红绿青三种颜色进行计算,得到红绿青光源强度值R l’G l’C l’,蓝色光源强度值B l’为0;计算公式是:
Figure PCTCN2020130500-appb-000010
V l′=0
英文字母含义同上述解释;
步骤S13050、当像素色坐标x、y落在CIE色度图中红青蓝光源三角形RCB内时,分别计算第一组值和第二组值;
具体而言,所述第一组值:分解为红、绿、蓝,得到红绿蓝光源强度值R l0’G l0’B l0’;所述第二组值:分解为红、青、蓝,得到红绿蓝光源强度值R l1’C l1’B l1’;
步骤S13060、再比较所述第一组和所述第二组中所述蓝色光源强度值,并选取所述蓝色光源强度值较小的一组值,得到最后的线性红绿蓝青光源强度值R l’G l’B l’C l’;
所述计算公式如下:
Figure PCTCN2020130500-appb-000011
Figure PCTCN2020130500-appb-000012
若B 0’<B 1’,则
(R′ G′ B′ C′(=(R l0′ G l0′ B l0′ 0)
否则
(R′ G′ B′ C′)=(R l1′ 0 B l1′ C l1′)。
请参阅图4,图4为本发明申请一实施例的一种四色低蓝光广色域显示的装置示意图,所述装置包括:
所述四色低蓝光广色域显示的装置的所述控制单元包括:
输入模块7,用以输入视频信号的目标颜色空间的红绿蓝白4个点,其中红色的满幅XYZ三刺激值为(Xr,Yr,Zr),绿色的满幅XYZ三刺激值为(Xg,Yg,Zg),蓝色的满幅XYZ三刺激为(Xb,Yb,Zb),白色的满幅XYZ三刺激值为(Xw,Yw,Zw);
设置模块1,用以设置单个像素具有红、绿、青、蓝4个光源;
转换模块2,用以将输入视频信号像素颜色转换为CIE XYZ颜色空间;
选择模块3,用以选取青色光色坐标;
具体而言,假设红绿蓝3色在CIE XYZ色空间坐标如图2所示,在红色点与白色点连线延长线与马蹄形光谱线的交界处下方附近,选取一点,作为4色显示中的青色;
计算模块4,用以将输入视频信号的每个像素的红绿蓝值,结合视频信号的颜色空间红绿蓝XYZ三刺激值,计算出输入视频信号的每个像素的三刺激值;然后结合红绿蓝青4种光源的三刺激值,计算蓝色光源强度最小的一组红绿蓝青4色光源强度值;
控制模块5,用以控制驱动电路输出不同比例的红绿蓝青混色输出;
所述收发模块6,用以接受发送控制数据和计算数据;
该实施例的上述模块放置在处理器中,所述处理器包括本地中央处理器,或云端处理器。
本发明申请一实施例还提供一种四色低蓝光广色域显示的系统,所述四色低蓝光广色域显示的系统包括:本发明申请任一实施例所述的四色低蓝光广色域显示的装置。
本发明申请实施例还提供一种电子设备,包括处理器和机器可读存储介 质,所述机器可读存储介质存储有能够被所述处理器执行的机器可执行指令,在被处理器调用和执行时,所述处理器可执行指令促使所述处理器:实现本发明申请任一实施例所述的四色低蓝光广色域显示的方法。
本发明一实施例还提供一种存储介质,其上存储有计算机程序,其中所述计算机程序在由处理器执行时实现上述任一实施例所述的四色低蓝光广色域显示的方法。
所述系统/计算机装置集成的部件/模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施方式方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储在一个计算机可读存储介质中,所述计算机程序在被处理器执行时,可实现上述各个方法实施方式的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读存储介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
本发明未尽事宜为公知技术。
在本发明所提供的几个具体实施方式中,应该理解到,所揭露的系统和方法,可以通过其它的方式实现。例如,以上所描述的系统实施方式仅仅是示意 性的,例如,所述部件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
另外,在本发明各个实施例中的各功能模块/部件可以集成在相同处理模块/部件中,也可以是各个模块/部件单独物理存在,也可以两个或两个以上模块/部件集成在相同模块/部件中。上述集成的模块/部件既可以采用硬件的形式实现,也可以采用硬件加软件功能模块/部件的形式实现。
对于本领域技术人员而言,显然本发明实施例不限于上述示范性实施例的细节,而且在不背离本发明实施例的精神或基本特征的情况下,能够以其他的具体形式实现本发明实施例。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明实施例的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本发明实施例内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。系统、装置或终端权利要求中陈述的多个单元、模块或装置也可以由同一个单元、模块或装置通过软件或者硬件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (5)

  1. 一种四色低蓝光广色域显示的方法,其特征在于,包括:
    输入视频信号的目标颜色空间的红绿蓝白4个点,其中红色的满幅XYZ三刺激值为(X r,Y r,Z r),绿色的满幅XYZ三刺激值为(X g,Y g,Z g),蓝色的满幅XYZ三刺激为(X b,Y b,Z b),白色的满幅XYZ三刺激值为(X w,Y w,Z w);
    设置单个像素具有红、绿、青、蓝4个光源;
    将输入视频信号的每个像素的红绿蓝值,结合视频信号的颜色空间红绿蓝XYZ三刺激值,计算出输入视频信号的每个像素的三刺激值,然后结合红绿蓝青4种光源的三刺激值,计算蓝色光源强度最小的一组红绿蓝青4色光源强度值;
    控制驱动电路输出不同比例的红绿蓝青混色输出。
  2. 根据权利要求1所述的四色低蓝光广色域显示的方法,其特征在于,所述将输入视频信号的每个像素的红绿蓝值,结合视频信号的颜色空间红绿蓝XYZ三刺激值,计算出输入视频信号的每个像素的三刺激值,然后结合红绿蓝青4种光源的三刺激值,计算蓝色光源强度最小的一组红绿蓝青4色光源强度值,包括具体步骤:
    将输入的像素的非线性RGB颜色空间,经过伽马变换后,转换为线性的R’G’B’颜色空间;
    然后乘以视频颜色空间红绿蓝三色三刺激值矩阵,得到XYZ颜色空间值;计算公式是:
    Figure PCTCN2020130500-appb-100001
    上述公式中,红色的满幅XYZ三刺激值为(Xr,Yr,Zr),绿色的满幅XYZ三 刺激值为(Xg,Yg,Zg),蓝色的满幅XYZ三刺激为(Xb,Yb,Zb),白色的满幅XYZ三刺激值为(Xw,Yw,Zw),R’G’B’是像素红绿蓝空间线性值,XYZ rgb是视频颜色空间红绿蓝三刺激值,X’Y’Z’是像素XYZ空间线性值;
    计算像素CIE色度图坐标x、y;计算公式是:
    Figure PCTCN2020130500-appb-100002
    Figure PCTCN2020130500-appb-100003
    上述公式中,x、y是像素CIE色度图坐标,X’Y’Z’是像素XYZ空间线性值;
    当像素色坐标x、y落在CIE色度图中,红绿青光源三角形RGC内时,将颜色分解为红绿青三种颜色进行计算,得到红绿青光源强度值R l’G l’C l’,蓝色光源强度值B l’为0;
    计算公式是:
    Figure PCTCN2020130500-appb-100004
    B l′=0
    当像素色坐标x、y落在CIE色度图中红青蓝光源三角形RCB内时,分别计算第一组值和第二组值;所述第一组值:分解为红、绿、蓝,得到红绿蓝光源强度值R l0’G l0’B l0’;所述第二组值:分解为红、青、蓝,得到红绿蓝光源强度值R l1’C l1’B l1’;
    比较所述第一组和所述第二组中所述蓝色光源强度值,并选取所述蓝色光源强度值较小的一组值,得到最后的线性红绿蓝青光源强度值R l’G l’B l’C l’;
    计算公式如下:
    Figure PCTCN2020130500-appb-100005
    Figure PCTCN2020130500-appb-100006
    若B 0’<B 1’,则
    (R′ G′ B′ C′)=(R l0′ G l0′ B l0′ 0)
    否则
    (R′ G′ B′ C′)=(R l1′ 0 B l1′ C l1′)。
  3. 一种四色低蓝光广色域显示的装置,其特征在于,所述四色低蓝光广色域显示的装置包括:
    输入模块,用以输入视频信号的目标颜色空间的红绿蓝白4个点,其中红色的满幅XYZ三刺激值为(Xr,Yr,Zr),绿色的满幅XYZ三刺激值为(Xg,Yg,Zg),蓝色的满幅XYZ三刺激为(Xb,Yb,Zb),白色的满幅XYZ三刺激值为(Xw,Yw,Zw);
    设置模块,用以设置单个像素具有红、绿、青、蓝4个光源;
    转换模块,用以将输入视频信号像素颜色转换为CIE XYZ颜色空间;
    选择模块,用以选取青色光色坐标;
    计算模块,用以将输入视频信号的每个像素的红绿蓝值,结合视频信号的颜色空间红绿蓝XYZ三刺激值,计算出输入视频信号的每个像素的三刺激值;然后结合红绿蓝青4种光源的三刺激值,计算蓝色光源强度最小的一组红绿蓝青4色光源强度值;
    控制模块5,用以控制驱动电路输出不同比例的红绿蓝青混色输出;
    所述收发模块6,用以接受发送控制数据和计算数据。
  4. 一种四色低蓝光广色域显示的系统,其特征在于,所述四色低蓝光广色域显示的系统,包括本发明申请权利要求1-2的四色低蓝光广色域显示的方法。
  5. 一种存储介质,其特征在于,其上存储有计算机程序,其中所述计算机程序在由处理器执行时实现本发明申请权利要求1-2的四色低蓝光广色域显示的方法。
PCT/CN2020/130500 2020-08-25 2020-11-20 一种四色低蓝光广色域显示的方法、装置和系统 WO2022041512A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010860392.4A CN111862888B (zh) 2020-08-25 2020-08-25 一种四色低蓝光广色域显示的方法、装置、系统及存储介质
CN202010860392.4 2020-08-25

Publications (1)

Publication Number Publication Date
WO2022041512A1 true WO2022041512A1 (zh) 2022-03-03

Family

ID=72967047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130500 WO2022041512A1 (zh) 2020-08-25 2020-11-20 一种四色低蓝光广色域显示的方法、装置和系统

Country Status (2)

Country Link
CN (1) CN111862888B (zh)
WO (1) WO2022041512A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111862888B (zh) * 2020-08-25 2021-10-26 深圳市奥拓电子股份有限公司 一种四色低蓝光广色域显示的方法、装置、系统及存储介质
CN112632790B (zh) * 2020-12-29 2021-12-21 愉悦家纺有限公司 多维度耦合-叠加复合混色模型与渐变色谱矩阵算法构建应用
CN115691404A (zh) * 2022-10-31 2023-02-03 东莞阿尔泰显示技术有限公司 一种多色域模式led显示屏的显示方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123050A (zh) * 2007-09-26 2008-02-13 友达光电股份有限公司 多原色显示装置及彩色滤光片
CN101136150A (zh) * 2007-10-12 2008-03-05 友达光电股份有限公司 多原色的显示装置及其制造方法
CN102770906A (zh) * 2010-02-26 2012-11-07 夏普株式会社 图像显示装置和图像显示方法
US20150235615A1 (en) * 2012-09-07 2015-08-20 Sharp Kabushiki Kaisha Multi-primary color display device
CN109387972A (zh) * 2017-08-04 2019-02-26 Soraa有限公司 低蓝光显示器
CN109982478A (zh) * 2019-01-31 2019-07-05 北京大学 白光发光二极管的调光方法
CN111862888A (zh) * 2020-08-25 2020-10-30 深圳市奥拓电子股份有限公司 一种四色低蓝光广色域显示的方法、装置和系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040085470A (ko) * 2003-03-31 2004-10-08 삼성전자주식회사 색변환장치 및 색변환방법
US7598961B2 (en) * 2003-10-21 2009-10-06 Samsung Electronics Co., Ltd. method and apparatus for converting from a source color space to a target color space
WO2005050296A1 (en) * 2003-11-20 2005-06-02 Samsung Electronics Co., Ltd. Apparatus and method of converting image signal for six color display device, and six color display device having optimum subpixel arrangement
CN101350171B (zh) * 2008-09-12 2012-01-25 友达光电股份有限公司 一种四色显示器显示颜色的方法
WO2011061954A1 (ja) * 2009-11-20 2011-05-26 シャープ株式会社 画像処理装置および画像処理方法
KR101097325B1 (ko) * 2009-12-31 2011-12-23 삼성모바일디스플레이주식회사 화소 회로 및 유기 전계 발광 표시 장치
JP5663063B2 (ja) * 2012-07-20 2015-02-04 シャープ株式会社 表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123050A (zh) * 2007-09-26 2008-02-13 友达光电股份有限公司 多原色显示装置及彩色滤光片
CN101136150A (zh) * 2007-10-12 2008-03-05 友达光电股份有限公司 多原色的显示装置及其制造方法
CN102770906A (zh) * 2010-02-26 2012-11-07 夏普株式会社 图像显示装置和图像显示方法
US20150235615A1 (en) * 2012-09-07 2015-08-20 Sharp Kabushiki Kaisha Multi-primary color display device
CN109387972A (zh) * 2017-08-04 2019-02-26 Soraa有限公司 低蓝光显示器
CN109982478A (zh) * 2019-01-31 2019-07-05 北京大学 白光发光二极管的调光方法
CN111862888A (zh) * 2020-08-25 2020-10-30 深圳市奥拓电子股份有限公司 一种四色低蓝光广色域显示的方法、装置和系统

Also Published As

Publication number Publication date
CN111862888B (zh) 2021-10-26
CN111862888A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2022041512A1 (zh) 一种四色低蓝光广色域显示的方法、装置和系统
CN1910901B (zh) 用于移动显示器的智能限幅器
CN1713736B (zh) 色彩信号处理装置和方法
WO2017059732A1 (zh) 调整显示色域的显示设备及其调整显示色域的方法
CN107680556B (zh) 一种显示器节能方法、装置及显示器
US10347198B2 (en) Image displaying methods and display devices
WO2012137819A1 (ja) 表示装置、及び表示方法
US10755650B2 (en) Display driving method and display apparatus
WO2018113051A1 (zh) 一种显示面板的驱动方法及驱动装置
TW201106326A (en) Timing controller utilized in display device and method thereof
CN110459176A (zh) 一种amoled显示器的色域转换方法
JP2012252317A (ja) 画像信号処理方法及びこれを実行する表示装置
CN107728377A (zh) 背光模组及显示器的控制方法
CN102655594A (zh) 用于提高投影图像的亮度的方法
WO2019080446A1 (zh) 显示装置的驱动方法及显示装置
CN109377966B (zh) 一种显示方法、系统及显示装置
CN109410874B (zh) 三色数据到四色数据的转换方法及装置
CN110874002B (zh) 动态调节显示系统色域的系统、方法及显示系统
JP2007334223A (ja) 液晶表示装置
Liu et al. Color calibration for a surrounding true-color LED display system by PWM controls
TWI460712B (zh) 顯示器之色域補償方法
CN101833927B (zh) 一种led背光源自适应控制系统
KR101862608B1 (ko) 표시장치
CN109377962B (zh) 三色数据到四色数据的转换方法及装置
CN101552926B (zh) 一种彩色图像信号处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951180

Country of ref document: EP

Kind code of ref document: A1