CN112632790B - 多维度耦合-叠加复合混色模型与渐变色谱矩阵算法构建应用 - Google Patents

多维度耦合-叠加复合混色模型与渐变色谱矩阵算法构建应用 Download PDF

Info

Publication number
CN112632790B
CN112632790B CN202011591158.2A CN202011591158A CN112632790B CN 112632790 B CN112632790 B CN 112632790B CN 202011591158 A CN202011591158 A CN 202011591158A CN 112632790 B CN112632790 B CN 112632790B
Authority
CN
China
Prior art keywords
color
matrix
pigments
follows
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011591158.2A
Other languages
English (en)
Other versions
CN112632790A (zh
Inventor
刘曰兴
薛元
刘立霞
王立强
孙显强
赵义斌
陈志�
付矩祥
孟令胜
孙浦瑞
张玉兰
齐乐乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuyue Home Textile Co Ltd
Original Assignee
Yuyue Home Textile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuyue Home Textile Co Ltd filed Critical Yuyue Home Textile Co Ltd
Priority to CN202011591158.2A priority Critical patent/CN112632790B/zh
Publication of CN112632790A publication Critical patent/CN112632790A/zh
Application granted granted Critical
Publication of CN112632790B publication Critical patent/CN112632790B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

本发明涉及多维度耦合‑叠加复合混色模型与渐变色谱矩阵算法构建应用,采用全新数字配色逻辑设计,构建色料离散混色模型及其混色色谱的可视化算法,通过变化混纺比得到系列化的色谱,并以此作为彩色纺纱色彩设计的依据,实现彩色纱线的数字化虚拟配色,实现彩色纱线的数字化虚拟配色,实际应用中,可通过黄、青、品红、黑、白等五基色纤维组合混配构建标准混色色谱,可为彩色纱线的配色提供参考依据,具体构建了色料调配色的数字化模型;构建了基于色料调配的序列化混合色谱的算法及色谱大数据,包含基于色料配色的完整色相及不同明度与饱和度的全色谱体系;构建了基于色料调配的色彩渐变模式及渐变色谱大数据;相较于传统配色方案,获得色彩配比的直观化,混配色效率高、耗时短、相关信息便于远程传输,提高实际色谱构建的工作效率。

Description

多维度耦合-叠加复合混色模型与渐变色谱矩阵算法构建 应用
技术领域
本发明涉及多维度耦合-叠加复合混色模型与渐变色谱矩阵算法构建应用,属于纺织行业色料混色纺纱及染料混色染色技术领域。
背景技术
色料可通过纺织纤维材料的染色、原液着色、生物转基因、结构生色等技术手段获取。根据混合色彩调控原理,将若干种不同色彩纤维以某种比例进行混合,通过调节混合比例,可在一定色域范围内调控混色体的色相、明度及饱和度。
目前在色浆调和、染料调和及色纤维调和等方面,色彩设计师凭经验和主观感觉,以手工打样和容错性调色试验为手段进行色彩调和,存在打样试验周期长、试验结果不确定、工艺配方缺乏普适性等缺陷。
色彩设计的核心内容包括色彩调配、色彩复制和色彩创新,通过色浆、染料及色纤维的混合进行调色打样,一方面是优化设计不同色料的重量混合比例、一方面是优化设计不同色彩的搭配模式。当前通过计算机测配色技术结合手工打样,选择不同色相组合及其混合比例进行打样,对获得色彩进行判断和优选。传统配色方法主要存在以下问题:
1、未构建色料调配色的数字化模型,色料混和是不同颜色色料的混合过程,传统配色方法未建立物理模型对色料的混色过程进行数字化表达,需要构建物理模型对色料混和过程的质量混合比及颜色混合比变化规律进行数字化表达。
2、未构建基于色料调配的序列化混合色谱的算法及色谱大数据,色料的调配色过程,一是色料基础色组合模式的选择问题,二是基础色之间梯度混合模式的选择问题。基于色料的基础色组合模式及其网格化混合模式优化配置,可得到色料的系列化混色色谱,以此构建色料调配色的全色谱大数据,其中包含基于色料配色的完整色相及不同明度与饱和度的全色谱体系。
3、未构建基于色料调配的色彩渐变模式及渐变色谱大数据,渐变色是色相、明度、饱和度渐变的系列化色彩,通常以较小的梯度进行色相、明度及饱和度的渐变来获取系列化的渐变色彩,以此获得渐变色。通常需要以合理的梯度构建网格化的混色色谱,再基于混色色谱规划渐变路径,以此获得系列化渐变色谱。
发明内容
本发明所要解决的技术问题是提供多维度耦合-叠加复合混色模型与渐变色谱矩阵算法构建应用,采用全新数字配色逻辑设计,通过变化混纺比得到系列化的色谱,并以此作为彩色纺纱色彩设计的依据,实现彩色纱线的数字化虚拟配色,获得色彩配比的直观化,提高实际色谱构建的工作效率。
本发明为了解决上述技术问题采用以下技术方案:本发明设计了多维度耦合-叠加复合混色模型与渐变色谱矩阵算法构建应用,包括如下步骤:
步骤A.针对至少三种色料,根据各种色料质量分别所对应的预设比例,按照首先针对至少两种色料进行耦合处理,然后针对耦合所获色料,结合剩余至少一种色料进行叠加处理的方式,针对各种色料进行混合,获得混合体的质量,进而基于各种色料质量分别所对应预设比例的取值范围,构建混合体质量矩阵,然后进入步骤B;
步骤B.根据各种色料叠加所获混合体的质量,获得混合体中各种色料分别所对应的混合比,然后进入步骤C;
步骤C.根据各种色料分别所对应的RGB色,结合混合体中各种色料分别所对应的混合比,获得混合体所对应的RGB色,进而基于各种色料质量分别所对应预设比例的取值范围,构建混色色谱矩阵,然后进入步骤D;
步骤D.根据混色色谱矩阵,构建混合体所对应的色料渐变模式及渐变矩阵。
作为本发明的一种优选技术方案:若色料为三种,则所述步骤A至步骤C如下:
步骤A.针对三种色料,根据各种色料质量P、Q、S分别所对应的预设比例11-j、j-1、i-1,按照首先针对两种色料进行耦合处理,然后针对耦合所获色料,结合剩余一种色料进行叠加处理的方式,针对各种色料进行混合,获得混合体的质量Ai,j如下:
Ai,j=P(11-j)+Q(j-1)+S(i-1)
进而基于各种色料质量分别所对应预设比例的取值范围,即i、j取值范围均为1至11的整数,构建混合体质量矩阵如下:
Figure BDA0002868674070000031
然后进入步骤B;
步骤B.根据各种色料叠加所获混合体的质量Ai,j,获得混合体中各种色料分别所对应的混合比x、y、z如下:
x=P(11-j)/[P(11-j)+Q(j-1)+S(i-1)]
y=Q(j-1)/[P(11-j)+Q(j-1)+S(i-1)]
z=S(i-1)/[P(11-j)+Q(j-1)+S(i-1)]
然后进入步骤C;
步骤C.根据各种色料分别所对应的RGB色,结合混合体中各种色料分别所对应的混合比,获得混合体所对应的RGB色Ci,j如下:
Figure BDA0002868674070000032
进而基于各种色料质量分别所对应预设比例的取值范围,构建混色色谱矩阵如下:
Figure BDA0002868674070000041
然后进入步骤D。
作为本发明的一种优选技术方案:若色料为四种,则所述步骤A至步骤C如下:
步骤A.针对四种色料,根据各种色料质量P、Q、S、E分别所对应的预设比例11-j、j-1、i-1、k-1,按照首先针对两种色料进行耦合处理,然后针对耦合所获色料,结合剩余两种色料进行叠加处理的方式,针对各种色料进行混合,获得混合体的质量Ai,j,k如下:
Ai,j,k=P(11-j)+Q(j-1)+S(i-1)+E(k-1)
进而基于各种色料质量分别所对应预设比例的取值范围,即i、j、k取值范围均为1至11的整数,构建混合体质量矩阵如下:
Figure BDA0002868674070000042
k=1,2,...,9,10,11
然后进入步骤B;
步骤B.根据各种色料叠加所获混合体的质量Ai,j,k,获得混合体中各种色料分别所对应的混合比x、y、z、u如下:
x=P(11-j)/[P(11-j)+Q(j-1)+S(i-1)+E(k-1)]
y=Q(j-1)/[P(11-j)+Q(j-1)+S(i-1)+E(k-1)]
z=S(i-1)/[P(11-j)+Q(j-1)+S(i-1)+E(k-1)]
u=E(k-1)/[P(11-j)+Q(j-1)+S(i-1)+E(k-1)]
然后进入步骤C;
步骤C.根据各种色料分别所对应的RGB色,结合混合体中各种色料分别所对应的混合比,获得混合体所对应的RGB色Ci,j,k如下:
Figure BDA0002868674070000051
进而基于各种色料质量分别所对应预设比例的取值范围,构建混色色谱矩阵如下:
Figure BDA0002868674070000052
k=1,2,...,9,10,11
然后进入步骤D。
作为本发明的一种优选技术方案:若色料为四种,则所述步骤A至步骤C如下:
步骤A.针对四种色料,根据各种色料质量P、Q、S、E分别所对应的预设比例12-i-j、j-1、i-1、k-1,按照首先针对三种色料进行耦合处理,然后针对耦合所获色料,结合剩余一种色料进行叠加处理的方式,针对各种色料进行混合,获得混合体的质量Ai,j,k如下:
Ai,j,k=P(12-i-j)+Q(j-1)+S(i-1)+E(k-1)
进而基于各种色料质量分别所对应预设比例的取值范围,即i、j、k取值范围均为1至11的整数,构建混合体质量矩阵如下:
Figure BDA0002868674070000061
k=1,2,...,9,10,11
然后进入步骤B;
步骤B.根据各种色料叠加所获混合体的质量Ai,j,k,获得混合体中各种色料分别所对应的混合比x、y、z、u如下:
x=P(12-i-j)/[P(12-i-j)+Q(j-1)+S(i-1)+E(k-1)]
y=Q(j-1)/[P(12-i-j)+Q(j-1)+S(i-1)+E(k-1)]]
z=S(i-1)/[P(12-i-j)+Q(j-1)+S(i-1)+E(k-1)]]
u=E(k-1)/[P(12-i-j)+Q(j-1)+S(i-1)+E(k-1)]
然后进入步骤C;
步骤C.根据各种色料分别所对应的RGB色,结合混合体中各种色料分别所对应的混合比,获得混合体所对应的RGB色Ci,j,k如下:
Figure BDA0002868674070000062
进而基于各种色料质量分别所对应预设比例的取值范围,构建混色色谱矩阵如下:
Figure BDA0002868674070000071
k=1,2,...,9,10,11
然后进入步骤D。
作为本发明的一种优选技术方案:基于三种色料,以及以i为行、j为列,则所述步骤D中,根据三种色料所对应混色色谱矩阵,构建混合体所对应的色料渐变模式及渐变矩阵如下:
基于i=1、2、3、...、9、10、11,构建三元耦合-叠加复合混色矩阵的行方向渐变路径及其节点组成如下:
Ci,1、Ci,2、…、Ci,(j-1)、Ci,j、…、Ci,10、Ci,11
进一步基于此行方向渐变路径的颜色,构建三元耦合-叠加复合混色矩阵的行方向渐变色谱矩阵如下:
Figure BDA0002868674070000072
μ1=1,2,3,...,9,10,11
其中,
Figure BDA0002868674070000073
且ξ1=1,2,3,...,9,10,11;
基于j=1、2、3、...、9、10、11,构建三元耦合-叠加复合混色矩阵的列方向渐变路径及其节点组成如下:
C1,j、C2,j、…、C(i-1),j、Ci,j、…、C10,j、C11,j
进一步基于此列方向渐变路径的颜色,构建三元耦合-叠加复合混色矩阵的列方向渐变色谱矩阵如下:
Figure BDA0002868674070000081
μ2=1,2,3,...,9,10,11
其中,
Figure BDA0002868674070000082
且ξ2=1,2,3,...,9,10,11;
基于2≤i+j=n1≤12,构建三元耦合-叠加复合混色矩阵45°左斜线方向渐变路径及其节点组成如下:
Figure BDA0002868674070000083
进一步基于此45°左斜线方向渐变路径的颜色,构建三元耦合-叠加复合混色矩阵45°左斜线方向渐变色谱矩阵如下:
Figure BDA0002868674070000084
μ3=1,2,3,...,9,10,11
ξ3=1,2,...,μ3-1,μ3
其中,
Figure BDA0002868674070000085
基于13≤i+j=n2≤22,构建三元耦合-叠加复合混色矩阵45°左斜线方向渐变路径及其节点组成如下:
Figure BDA0002868674070000086
且上述路径各个节点的下标变量n2-11、n2-10、...、10、11均小于12
进一步基于此45°左斜线方向渐变路径的颜色,构建三元耦合-叠加复合混色矩阵45°左斜线方向渐变色谱矩阵如下:
Figure BDA0002868674070000087
μ4=12、13、...、20、21
ξ4=1,2,...,21-μ4,22-μ4
其中,
Figure BDA0002868674070000091
基于0≤i-j=n3≤10,构建三元耦合-叠加复合混色矩阵45°右斜线方向渐变路径及其节点组成如下:
Figure BDA0002868674070000092
且上述路径各个节点的下标变量n3+1、n3+2、...、10、11均小于12
进一步基于此45°右斜线方向渐变路径的颜色,构建三元耦合-叠加复合混色矩阵45°右斜线方向渐变色谱矩阵如下:
Figure BDA0002868674070000093
μ5=1,2,3,...,9,10,11
ξ5=1,2,...,μ5-1,μ5
其中,
Figure BDA0002868674070000094
基于1≤j-i=n4≤10,构建三元耦合-叠加复合混色矩阵45°右斜线方向渐变路径及其节点组成如下:
Figure BDA0002868674070000095
且上述路径各个节点的下标变量n4+1、n4+2、...、10、11均小于12
进一步基于此45°右斜线方向渐变路径的颜色,构建三元耦合-叠加复合混色矩阵45°右斜线方向渐变色谱矩阵如下:
Figure BDA0002868674070000096
μ6=12、13、...、20、21
ξ6=1,2,...,21-μ6,22-μ6
其中,
Figure BDA0002868674070000097
本发明所述多维度耦合-叠加复合混色模型与渐变色谱矩阵算法构建应用,采用以上技术方案与现有技术相比,具有以下技术效果:
本发明所设计多维度耦合-叠加复合混色模型与渐变色谱矩阵算法构建应用,采用全新数字配色逻辑设计,构建色料离散混色模型及其混色色谱的可视化算法,通过变化混纺比得到系列化的色谱,并以此作为彩色纺纱色彩设计的依据,实现彩色纱线的数字化虚拟配色,实现彩色纱线的数字化虚拟配色,实际应用中,可通过黄、青、品红、黑、白等五基色纤维组合混配构建标准混色色谱,可为彩色纱线的配色提供参考依据,具体构建了色料调配色的数字化模型;构建了基于色料调配的序列化混合色谱的算法及色谱大数据,包含基于色料配色的完整色相及不同明度与饱和度的全色谱体系;构建了基于色料调配的色彩渐变模式及渐变色谱大数据;相较于传统配色方案,获得色彩配比的直观化,混配色效率高、耗时短、相关信息便于远程传输,提高实际色谱构建的工作效率。
附图说明
图1是本发明所设计多维度耦合-叠加复合混色模型与渐变色谱矩阵算法构建应用的流程示意图。
具体实施方式
下面结合说明书附图对本发明的具体实施方式作进一步详细的说明。
本发明设计了多维度耦合-叠加复合混色模型与渐变色谱矩阵算法构建应用,实际应用当中,如图1所示,包括如下步骤:
步骤A.针对至少三种色料,根据各种色料质量分别所对应的预设比例,按照首先针对至少两种色料进行耦合处理,然后针对耦合所获色料,结合剩余至少一种色料进行叠加处理的方式,针对各种色料进行混合,获得混合体的质量,进而基于各种色料质量分别所对应预设比例的取值范围,构建混合体质量矩阵,然后进入步骤B。
步骤B.根据各种色料叠加所获混合体的质量,获得混合体中各种色料分别所对应的混合比,然后进入步骤C。
步骤C.根据各种色料分别所对应的RGB色,结合混合体中各种色料分别所对应的混合比,获得混合体所对应的RGB色,进而基于各种色料质量分别所对应预设比例的取值范围,构建混色色谱矩阵,然后进入步骤D。
步骤D.根据混色色谱矩阵,构建混合体所对应的色料渐变模式及渐变矩阵。
实际应用当中,诸如设计分为三种色料与四种色料,其中,对于三种色料,则实际设计步骤A至步骤C如下:
步骤A.针对三种色料,根据各种色料质量P、Q、S分别所对应的预设比例11-j、j-1、i-1,按照首先针对两种色料进行耦合处理,然后针对耦合所获色料,结合剩余一种色料进行叠加处理的方式,针对各种色料进行混合,获得混合体的质量Ai,j如下:
Ai,j=P(11-j)+Q(j-1)+S(i-1)
进而基于各种色料质量分别所对应预设比例的取值范围,即i、j取值范围均为1至11的整数,构建混合体质量矩阵如下:
Figure BDA0002868674070000111
然后进入步骤B。
步骤B.根据各种色料叠加所获混合体的质量Ai,j,获得混合体中各种色料分别所对应的混合比x、y、z如下:
x=P(11-j)/[P(11-j)+Q(j-1)+S(i-1)]
y=Q(j-1)/[P(11-j)+Q(j-1)+S(i-1)]
z=S(i-1)/[P(11-j)+Q(j-1)+S(i-1)]
然后进入步骤C。
步骤C.根据各种色料分别所对应的RGB色,结合混合体中各种色料分别所对应的混合比,获得混合体所对应的RGB色Ci,j如下:
Figure BDA0002868674070000112
进一步当三种色料质量相等时,则Ci,j如下:
Figure BDA0002868674070000113
进而基于各种色料质量分别所对应预设比例的取值范围,构建混色色谱矩阵如下:
Figure BDA0002868674070000121
然后进入步骤D。
对于三种色料,以i为行、j为列,继续执行步骤D,其中,根据三种色料所对应混色色谱矩阵,构建混合体所对应的色料渐变模式及渐变矩阵如下:
基于i=1、2、3、...、9、10、11,构建三元耦合-叠加复合混色矩阵的行方向渐变路径及其节点组成如下:
Ci,1、Ci,2、…、Ci,(j-1)、Ci,j、…、Ci,10、Ci,11
该路径对应的11个1行11列不同配比的颜色,可作如下变换将其构建成11个1行11列的渐变色谱矩阵。为了将上述基于渐变路径构建的系列化色谱用渐变色谱矩阵进行统一表达,需将原有的混色色谱的下标序号统一转换成以渐变色谱矩阵的下标序号,并以此构建以渐变色谱下标序号为自变量的混色函数。
例如,将渐变路径的对应的颜色C1,1、C1,2、C1,3、C1,4、C1,5、C1,6、C1,7、C1,8、C1,9、C1,10、C1,11用D1,1、D1,2、D1,3、D1,4、D1,5、D1,6、D1,7、D1,8、D1,9、D1,10、D1,11置换,将C2,1、C2,2、C2,3、C2,4、C2,5、C2,6、C2,7、C2,8、C2,9、C2,10、C2,11用D2,1、D2,2、D2,3、D2,4、D2,5、D2,6、D2,7、D2,8、D2,9、D2,10、D2,11置换,以此类推,…,将C11,1、C11,2、C11,3、C11,4、C11,5、C11,6、C11,7、C11,8、C11,9、C11,10、C11,11用D11,1、D11,2、D11,3、D11,4、D11,5、D11,6、D11,7、D11,8、D11,9、D11,10、D11,11置换。
通过上述方法以路径序号表达的混色函数统一转换成以渐变色谱矩阵下标序号表达的混色函数。当μ1分别等于1,2,3,...,9,10,11时,各渐变矩阵元素Dμ1,ξ1的颜色值可用渐变矩阵的下标序号进行表达。
进一步基于此行方向渐变路径的颜色,构建三元耦合-叠加复合混色矩阵的行方向渐变色谱矩阵如下:
Figure BDA0002868674070000131
μ1=1,2,3,...,9,10,11
其中,
Figure BDA0002868674070000132
且ξ1=1,2,3,...,9,10,11。
当ξ1=1时,
Figure BDA0002868674070000133
当ξ1=2时,
Figure BDA0002868674070000134
当ξ1=3时,
Figure BDA0002868674070000135
当ξ1=6时,
Figure BDA0002868674070000136
当ξ1=10时,
Figure BDA0002868674070000137
当ξ1=11时,
Figure BDA0002868674070000141
其中,μ1=1,2,3,…,10,11时,可分别获得11个渐变色谱。
对于颜色值为(0,255,255)、(255,0,255)、(255,255,0)的三种色料,根据其渐变路径矩阵公式,则三元耦合-叠加复合混色矩阵行方向渐变色谱的RGB颜色值如下表1所示。
表1
Figure BDA0002868674070000142
基于j=1、2、3、...、9、10、11,构建三元耦合-叠加复合混色矩阵的列方向渐变路径及其节点组成如下:
C1,j、C2,j、…、C(i-1),j、Ci,j、…、C10,j、C11,j
对应该路径可得到11个1列11行不同配比的颜色,可作如下变换将其构建成11个1行11列的渐变色谱矩阵。为了将上述基于渐变路径构建的系列化色谱用渐变色谱矩阵进行统一表达,需将原有的混色色谱的下标序号统一转换成以渐变色谱矩阵的下标序号,并以此构建以渐变色谱下标序号为自变量的混色函数。
例如,将渐变路径的对应的颜色C1,1、C2,1、C3,1、C4,1、C5,1、C6,1、C7,1、C8,1、C9,1、C10,1、C11,1用D1,1、D2,1、D3,1、D4,1、D5,1、D6,1、D7,1、D8,1、D9,1、D10,1、D11,1置换,将C1,2、C2,2、C3,2、C4,2、C5,2、C6,2、C7,2、C8,2、C9,2、C10,2、C11,2用D1,2、D2,2、D3,2、D4,2、D5,2、D6,2、D7,2、D8,2、D9,2、D10,2、D11,2置换,以此类推,…,将C1,11、C2,11、C3,11、C4,11、C5,11、C6,11、C7,11、C8,11、C9,11、C10,11、C11,11用D1,11、D2,11、D3,11、D4,11、D5,11、D6,11、D7,11、D8,11、D9,11、D10,11、D11,11置换。
通过上述方法以路径序号表达的混色函数统一转换成以渐变色谱矩阵下标序号表达的混色函数。当μ2分别等于1,2,3,...,9,10,11时,各渐变矩阵元素
Figure BDA0002868674070000151
的颜色值可用渐变矩阵的下标序号进行表达。
进一步基于此列方向渐变路径的颜色,构建三元耦合-叠加复合混色矩阵的列方向渐变色谱矩阵如下:
Figure BDA0002868674070000152
μ2=1,2,3,...,9,10,11
其中,
Figure BDA0002868674070000153
且ξ2=1,2,3,...,9,10,11。
当ξ2=1时,
Figure BDA0002868674070000154
当ξ2=2时,
Figure BDA0002868674070000155
当ξ2=3时,
Figure BDA0002868674070000156
当ξ2=6时,
Figure BDA0002868674070000157
当ξ2=10时,
Figure BDA0002868674070000161
当ξ2=11时,
Figure BDA0002868674070000162
其中,μ2=1,2,3,…,10,11时,可分别获得11个渐变色谱。
对于颜色值为(0,255,255)、(255,0,255)、(255,255,0)的三种色料,根据其渐变路径矩阵公式,则三元耦合-叠加复合混色矩阵列方向渐变色谱的RGB颜色值如下表2所示。
表2
Figure BDA0002868674070000163
基于三元耦合-叠加复合混色矩阵的以45°左斜线作为渐变方向,可得到21条渐变路径。
C1,1
C2,1、C1,2
C3,1、C2,2、C1,3
C4,1、C3,2、C2,3、C1,4
C11,1、C10,2、C9,3、C8,4、C7,5、C6,6、C5,7、C4,8、C3,9、C2,10、C1,11
C11,8、C10,9、C9,10、C8,11
C11,9、C10,10、C9,11
C11,10、C10,11
C11,11
上述21条渐变路径的下标是以混色矩阵的下标变量进行表达的。为了将上述基于渐变路径构建的系列化色谱用渐变色谱矩阵进行统一表达,需将原有的混色色谱的下标序号统一转换成以渐变色谱矩阵的下标序号,并以此构建以渐变色谱下标序号为自变量的混色函数。下标转换方式如下:
将渐变路径的对应的颜色C1,1用D1,1置换,将C2,1、C1,2用D2,1、D2,2置换,将C3,1、C2,2、C1,3用D3,1、D3,2、D3,3置换,将C4,1、C3,2、C2,3、C1,4用D4,1、D4,2、D4,3、D4,4替换,以此类推,…,将C11,1、C10,2、C9,3、C8,4、C7,5、C6,6、C5,7、C4,8、C3,9、C2,10、C1,11用D11,1、D11,2、D11,3、D11,4、D11,5、D11,6、D11,7、D11,8、D11,9、D11,10、D11,11,以此类推,…,将C11,8、C10,9、C9,10、C8,11用D18,1、D18,2、D18,3、D18,4替换,将C11,9、C10,10、C9,11用D19,1、D19,2、D19,3替换,将C11,10、C10,11用D20,1、D20,2替换,将C11,11用D21,1置换。
基于2≤i+j=n1≤12,构建三元耦合-叠加复合混色矩阵45°左斜线方向渐变路径及其节点组成如下:
Figure BDA0002868674070000171
进一步基于此45°左斜线方向渐变路径的颜色,构建三元耦合-叠加复合混色矩阵45°左斜线方向渐变色谱矩阵如下:
Figure BDA0002868674070000172
μ3=1,2,3,...,9,10,11
ξ3=1,2,...,μ3-1,μ3
其中,
Figure BDA0002868674070000173
基于13≤i+j=n2≤22,构建三元耦合-叠加复合混色矩阵45°左斜线方向渐变路径及其节点组成如下:
Figure BDA0002868674070000181
且上述路径各个节点的下标变量n2-11、n2-10、...、10、11均小于12
进一步基于此45°左斜线方向渐变路径的颜色,构建三元耦合-叠加复合混色矩阵45°左斜线方向渐变色谱矩阵如下:
Figure BDA0002868674070000182
μ4=12、13、...、20、21
ξ4=1,2,...,21-μ4,22-μ4
其中,
Figure BDA0002868674070000183
对于颜色值为(0,255,255)、(255,0,255)、(255,255,0)的三种色料,根据其渐变路径矩阵公式,则三元耦合-叠加复合混色矩阵45°左斜线方向渐变色谱的RGB颜色值如下表3所示。
表3
Figure BDA0002868674070000184
基于三元耦合-叠加复合混色矩阵的以45°右斜线作为渐变方向,可得到21条渐变路径。
C11,1
C10,1、C11,2
C9,1、C10,2、C11,3
C8,1、C9,2、C10,3、C11,4
C1,1、C2,2、C3,3、C4,4、C5,5、C6,6、C7,7、C8,8、C9,9、C10,10、C11,11
C1,8、C2,9、C3,10、C4,11
C1,9、C2,10、C3,11
C1,10、C2,11
C1,11
上述21条渐变路径的下标是以混色矩阵的下标变量进行表达的。为了将上述基于渐变路径构建的系列化色谱用渐变色谱矩阵进行统一表达,需将原有的混色色谱的下标序号统一转换成以渐变色谱矩阵的下标序号,并以此构建以渐变色谱下标序号为自变量的混色函数。下标转换方式如下:
将渐变路径的对应的颜色C11,1用D1,1置换,将C10,1、C11,2用D2,1、D2,2置换,将C9,1、C10,2、C11,3用D3,1、D3,2、D3,3置换,将C8,1、C9,2、C10,3、C11,4用D4,1、D4,2、D4,3、D4,4替换,以此类推,…,将C1,1、C2,2、C3,3、C4,4、C5,5、C6,6、C7,7、C8,8、C9,9、C10,10、C11,11用D11,1、D11,2、D11,3、D11,4、D11,5、D11,6、D11,7、D11,8、D11,9、D11,10、D11,11,以此类推,…,将C1,8、C2,9、C3,10、C4,11用D18,1、D18,2、D18,3、D18,4替换,将C1,9、C2,10、C3,11用D19,1、D19,2、D19,3替换,将C1,10、C2,11用D20,1、D20,2替换,将C1,11用D21,1置换。
基于0≤i-j=n3≤10,构建三元耦合-叠加复合混色矩阵45°右斜线方向渐变路径及其节点组成如下:
Figure BDA0002868674070000191
且上述路径各个节点的下标变量n3+1、n3+2、...、10、11均小于12
进一步基于此45°右斜线方向渐变路径的颜色,构建三元耦合-叠加复合混色矩阵45°右斜线方向渐变色谱矩阵如下:
Figure BDA0002868674070000201
μ5=1,2,3,...,9,10,11
ξ5=1,2,...,μ5-1,μ5
其中,
Figure BDA0002868674070000202
基于1≤j-i=n4≤10,构建三元耦合-叠加复合混色矩阵45°右斜线方向渐变路径及其节点组成如下:
Figure BDA0002868674070000203
且上述路径各个节点的下标变量n4+1、n4+2、...、10、11均小于12
进一步基于此45°右斜线方向渐变路径的颜色,构建三元耦合-叠加复合混色矩阵45°右斜线方向渐变色谱矩阵如下:
Figure BDA0002868674070000204
μ6=12、13、...、20、21
ξ6=1,2,...,21-μ6,22-μ6
其中,
Figure BDA0002868674070000205
对于颜色值为(0,255,255)、(255,0,255)、(255,255,0)的三种色料,根据其渐变路径矩阵公式,则三元耦合-叠加复合混色矩阵45°右斜线方向渐变色谱的RGB颜色值如下表4所示。
表4
Figure BDA0002868674070000206
Figure BDA0002868674070000211
对于四种色料来说,其中关于步骤A中的混合处理,就分为两种,第一种是首先针对两种色料进行耦合处理,然后针对耦合所获色料,结合剩余两种色料进行叠加处理的方式;第二种是首先针对三种色料进行耦合处理,然后针对耦合所获色料,结合剩余一种色料进行叠加处理的方式。
实际应用中,对于第一种混合处理方式,实际设计执行步骤A至步骤C如下:
步骤A.针对四种色料,根据各种色料质量P、Q、S、E分别所对应的预设比例11-j、j-1、i-1、k-1,按照首先针对两种色料进行耦合处理,然后针对耦合所获色料,结合剩余两种色料进行叠加处理的方式,针对各种色料进行混合,获得混合体的质量Ai,j,k如下:
Ai,j,k=P(11-j)+Q(j-1)+S(i-1)+E(k-1)
进而基于各种色料质量分别所对应预设比例的取值范围,即i、j、k取值范围均为1至11的整数,构建混合体质量矩阵如下:
Figure BDA0002868674070000212
k=1,2,...,9,10,11
然后进入步骤B。
步骤B.根据各种色料叠加所获混合体的质量Ai,j,k,获得混合体中各种色料分别所对应的混合比x、y、z、u如下:
x=P(11-j)/[P(11-j)+Q(j-1)+S(i-1)+E(k-1)]
y=Q(j-1)/[P(11-j)+Q(j-1)+S(i-1)+E(k-1)]
z=S(i-1)/[P(11-j)+Q(j-1)+S(i-1)+E(k-1)]
u=E(k-1)/[P(11-j)+Q(j-1)+S(i-1)+E(k-1)]
然后进入步骤C。
步骤C.根据各种色料分别所对应的RGB色,结合混合体中各种色料分别所对应的混合比,获得混合体所对应的RGB色Ci,j,k如下:
Figure BDA0002868674070000221
进一步当四种色料质量相等时,则Ci,j,k如下:
Figure BDA0002868674070000222
进而基于各种色料质量分别所对应预设比例的取值范围,构建混色色谱矩阵如下:
Figure BDA0002868674070000223
k=1,2,...,9,10,11
然后进入步骤D。
对于四种色料的第二种混合处理方式,则实际设计执行步骤A至步骤C如下:
步骤A.针对四种色料,根据各种色料质量P、Q、S、E分别所对应的预设比例12-i-j、j-1、i-1、k-1,按照首先针对三种色料进行耦合处理,然后针对耦合所获色料,结合剩余一种色料进行叠加处理的方式,针对各种色料进行混合,获得混合体的质量Ai,j,k如下:
Ai,j,k=P(12-i-j)+Q(j-1)+S(i-1)+E(k-1)
进而基于各种色料质量分别所对应预设比例的取值范围,即i、j、k取值范围均为1至11的整数,构建混合体质量矩阵如下:
Figure BDA0002868674070000231
k=1,2,...,9,10,11
然后进入步骤B。
步骤B.根据各种色料叠加所获混合体的质量Ai,j,k,获得混合体中各种色料分别所对应的混合比x、y、z、u如下:
x=P(12-i-j)/[P(12-i-j)+Q(j-1)+S(i-1)+E(k-1)]
y=Q(j-1)/[P(12-i-j)+Q(j-1)+S(i-1)+E(k-1)]]
z=S(i-1)/[P(12-i-j)+Q(j-1)+S(i-1)+E(k-1)]]
u=E(k-1)/[P(12-i-j)+Q(j-1)+S(i-1)+E(k-1)]
然后进入步骤C。
步骤C.根据各种色料分别所对应的RGB色,结合混合体中各种色料分别所对应的混合比,获得混合体所对应的RGB色Ci,j,k如下:
Figure BDA0002868674070000241
进一步当四种色料质量相等时,则Ci,j,k如下:
Figure BDA0002868674070000242
进而基于各种色料质量分别所对应预设比例的取值范围,构建混色色谱矩阵如下:
Figure BDA0002868674070000243
k=1,2,...,9,10,11
然后进入步骤D。
将本发明所设计多维度耦合-叠加复合混色模型与渐变色谱矩阵算法构建应用,应用于实际当中,以五基色混色模式为例,色料的混配色通常基于三基色、四基色进行混色,也可以选择主色+辅色的方式进行混色。如果选择青、品红、黄、黑、白五基色作为粗纱的颜色,可以有5种基色、10种二元色组合、10种三元色组合、5种四元色组合、1种五元色组合的混色配色模式。如果以10%为混配梯度,如果选择耦合-叠加复合混色模式可分别得到121-161051个颜色,组成了五基色数字化混色色谱。
(1)五基色颜色值
根据上述构建的适用于两种颜色均匀混合的二元耦合-叠加复合数字化混色模型和适用于三种颜色均匀混合的三元耦合-叠加复合混色数字化可视模型和四元耦合-叠加复合混色数字化可视模型,基于五种基色品红(M)、青(C)、黄(Y)、黑(K)、白(W)运用Photoshop及混配色软件,分别将这五基色根据以10%为混合梯度的混合比与调控组合模式进行数字化配置完成混色色谱的构建。五基色的颜色RGB值如下表5所示。
表5五基色颜色RGB值
Figure BDA0002868674070000251
(2)五基色二元耦合-叠加复合混色模式
二元耦合-叠加复合混色根据组合模式不存在,故无混色模式。
(3)五基色三元耦合-叠加复合混色模式
三元耦合-叠加复合混色是两种颜色耦合再叠加的混色模式,其组合模式具体如下表6所示。
表6三元耦合-叠加复合混合组合模式
组合模式 CMY、CMW、MYW、CYW、CMK、MYK、CYK、CKW、MKW、YKW
(4)五基色四元耦合-叠加复合混色模式
四元耦合-叠加复合混色是两种颜色耦合,两种颜色叠加或三种颜色耦合,一种颜色叠加混色模式。其组合模式具体如表7所示。
表7四元耦合-叠加复合混色组合模式
组合模式 MYKW、CYKW、CMKW、CMYW、CMYK
上述技术方案所设计多维度耦合-叠加复合混色模型与渐变色谱矩阵算法构建应用,采用全新数字配色逻辑设计,构建色料离散混色模型及其混色色谱的可视化算法,通过变化混纺比得到系列化的色谱,并以此作为彩色纺纱色彩设计的依据,实现彩色纱线的数字化虚拟配色,实现彩色纱线的数字化虚拟配色,实际应用中,可通过黄、青、品红、黑、白等五基色纤维组合混配构建标准混色色谱,可为彩色纱线的配色提供参考依据,具体构建了色料调配色的数字化模型;构建了基于色料调配的序列化混合色谱的算法及色谱大数据,包含基于色料配色的完整色相及不同明度与饱和度的全色谱体系;构建了基于色料调配的色彩渐变模式及渐变色谱大数据;相较于传统配色方案,获得色彩配比的直观化,混配色效率高、耗时短、相关信息便于远程传输,提高实际色谱构建的工作效率。
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。

Claims (4)

1.基于多维度耦合-叠加复合混色模型的渐变色谱矩阵构建方法,其特征在于:针对三种色料,执行步骤A至步骤D如下:
步骤A.针对三种色料,根据各种色料质量P、Q、S分别所对应的预设比例11-j、j-1、i-1,按照首先针对两种色料进行耦合处理,然后针对耦合所获色料,结合剩余一种色料进行叠加处理的方式,针对各种色料进行混合,获得混合体的质量Ai,j如下:
Ai,j=P(11-j)+Q(j-1)+S(i-1)
进而基于各种色料质量分别所对应预设比例的取值范围,即i、j取值范围均为1至11的整数,构建混合体质量矩阵如下:
Figure FDA0003307684230000011
然后进入步骤B;
步骤B.根据各种色料叠加所获混合体的质量Ai,j,获得混合体中各种色料分别所对应的混合比x、y、z如下:
x=P(11-j)/[P(11-j)+Q(j-1)+S(i-1)]
y=Q(j-1)/[P(11-j)+Q(j-1)+S(i-1)]
z=S(i-1)/[P(11-j)+Q(j-1)+S(i-1)]
然后进入步骤C;
步骤C.根据各种色料分别所对应的RGB色,结合混合体中各种色料分别所对应的混合比,获得混合体所对应的RGB色Ci,j如下:
Figure FDA0003307684230000012
进而基于各种色料质量分别所对应预设比例的取值范围,构建混色色谱矩阵如下:
Figure FDA0003307684230000021
然后进入步骤D;
步骤D.根据混色色谱矩阵,构建混合体所对应的色料渐变模式及渐变矩阵。
2.根据权利要求1所述基于多维度耦合-叠加复合混色模型的渐变色谱矩阵构建方法,其特征在于:基于三种色料,以及以i为行、j为列,则所述步骤D中,根据三种色料所对应混色色谱矩阵,构建混合体所对应的色料渐变模式及渐变矩阵如下:
基于i=1、2、3、...、9、10、11,构建三元耦合-叠加复合混色矩阵的行方向渐变路径及其节点组成如下:
Ci,1、Ci,2、…、Ci,(j-1)、Ci,j、…、Ci,10、Ci,11
进一步基于此行方向渐变路径的颜色,构建三元耦合-叠加复合混色矩阵的行方向渐变色谱矩阵如下:
Figure FDA0003307684230000022
μ1=1,2,3,...,9,10,11
其中,
Figure FDA0003307684230000023
且ξ1=1,2,3,...,9,10,11;
基于j=1、2、3、...、9、10、11,构建三元耦合-叠加复合混色矩阵的列方向渐变路径及其节点组成如下:
C1,j、C2,j、…、C(i-1),j、Ci,j、…、C10,j、C11,j
进一步基于此列方向渐变路径的颜色,构建三元耦合-叠加复合混色矩阵的列方向渐变色谱矩阵如下:
Figure FDA0003307684230000024
μ2=1,2,3,...,9,10,11
其中,
Figure FDA0003307684230000031
且ξ2=1,2,3,...,9,10,11;
基于2≤i+j=n1≤12,构建三元耦合-叠加复合混色矩阵45°左斜线方向渐变路径及其节点组成如下:
Figure FDA0003307684230000032
进一步基于此45°左斜线方向渐变路径的颜色,构建三元耦合-叠加复合混色矩阵45°左斜线方向渐变色谱矩阵如下:
Figure FDA0003307684230000033
μ3=1,2,3,...,9,10,11
ξ3=1,2,...,μ3-1,μ3
其中,
Figure FDA0003307684230000034
基于13≤i+j=n2≤22,构建三元耦合-叠加复合混色矩阵45°左斜线方向渐变路径及其节点组成如下:
Figure FDA0003307684230000035
且上述路径各个节点的下标变量n2-11、n2-10、...、10、11均小于12
进一步基于此45°左斜线方向渐变路径的颜色,构建三元耦合-叠加复合混色矩阵45°左斜线方向渐变色谱矩阵如下:
Figure FDA0003307684230000036
μ4=12、13、...、20、21
ξ4=1,2,...,21-μ4,22-μ4
其中,
Figure FDA0003307684230000037
基于0≤i-j=n3≤10,构建三元耦合-叠加复合混色矩阵45°右斜线方向渐变路径及其节点组成如下:
Figure FDA0003307684230000041
且上述路径各个节点的下标变量n3+1、n3+2、...、10、11均小于12
进一步基于此45°右斜线方向渐变路径的颜色,构建三元耦合-叠加复合混色矩阵45°右斜线方向渐变色谱矩阵如下:
Figure FDA0003307684230000042
μ5=1,2,3,...,9,10,11
ξ5=1,2,...,μ5-1,μ5
其中,
Figure FDA0003307684230000043
基于1≤j-i=n4≤10,构建三元耦合-叠加复合混色矩阵45°右斜线方向渐变路径及其节点组成如下:
Figure FDA0003307684230000044
且上述路径各个节点的下标变量n4+1、n4+2、...、10、11均小于12
进一步基于此45°右斜线方向渐变路径的颜色,构建三元耦合-叠加复合混色矩阵45°右斜线方向渐变色谱矩阵如下:
Figure FDA0003307684230000045
μ6=12、13、...、20、21
ξ6=1,2,...,21-μ6,22-μ6
其中,
Figure FDA0003307684230000046
3.基于多维度耦合-叠加复合混色模型的渐变色谱矩阵构建方法,其特征在于:针对四种色料,执行步骤A至步骤D如下:
步骤A.针对四种色料,根据各种色料质量P、Q、S、E分别所对应的预设比例11-j、j-1、i-1、k-1,按照首先针对两种色料进行耦合处理,然后针对耦合所获色料,结合剩余两种色料进行叠加处理的方式,针对各种色料进行混合,获得混合体的质量Ai,j,k如下:
Ai,j,k=P(11-j)+Q(j-1)+S(i-1)+E(k-1)
进而基于各种色料质量分别所对应预设比例的取值范围,即i、j、k取值范围均为1至11的整数,构建混合体质量矩阵如下:
Figure FDA0003307684230000051
k=1,2,...,9,10,11
然后进入步骤B;
步骤B.根据各种色料叠加所获混合体的质量Ai,j,k,获得混合体中各种色料分别所对应的混合比x、y、z、u如下:
x=P(11-j)/[P(11-j)+Q(j-1)+S(i-1)+E(k-1)]
y=Q(j-1)/[P(11-j)+Q(j-1)+S(i-1)+E(k-1)]
z=S(i-1)/[P(11-j)+Q(j-1)+S(i-1)+E(k-1)]
u=E(k-1)/[P(11-j)+Q(j-1)+S(i-1)+E(k-1)]
然后进入步骤C;
步骤C.根据各种色料分别所对应的RGB色,结合混合体中各种色料分别所对应的混合比,获得混合体所对应的RGB色Ci,j,k如下:
Figure FDA0003307684230000052
进而基于各种色料质量分别所对应预设比例的取值范围,构建混色色谱矩阵如下:
Figure FDA0003307684230000061
k=1,2,...,9,10,11
然后进入步骤D;
步骤D.根据混色色谱矩阵,构建混合体所对应的色料渐变模式及渐变矩阵。
4.基于多维度耦合-叠加复合混色模型的渐变色谱矩阵构建方法,其特征在于:针对四种色料,执行步骤A至步骤D如下:
步骤A.针对四种色料,根据各种色料质量P、Q、S、E分别所对应的预设比例12-i-j、j-1、i-1、k-1,按照首先针对三种色料进行耦合处理,然后针对耦合所获色料,结合剩余一种色料进行叠加处理的方式,针对各种色料进行混合,获得混合体的质量Ai,j,k如下:
Ai,j,k=P(12-i-j)+Q(j-1)+S(i-1)+E(k-1)
进而基于各种色料质量分别所对应预设比例的取值范围,即i、j、k取值范围均为1至11的整数,构建混合体质量矩阵如下:
Figure FDA0003307684230000062
k=1,2,...,9,10,11
然后进入步骤B;
步骤B.根据各种色料叠加所获混合体的质量Ai,j,k,获得混合体中各种色料分别所对应的混合比x、y、z、u如下:
x=P(12-i-j)/[P(12-i-j)+Q(j-1)+S(i-1)+E(k-1)]
y=Q(j-1)/[P(12-i-j)+Q(j-1)+S(i-1)+E(k-1)]]
z=S(i-1)/[P(12-i-j)+Q(j-1)+S(i-1)+E(k-1)]]
u=E(k-1)/[P(12-i-j)+Q(j-1)+S(i-1)+E(k-1)]
然后进入步骤C;
步骤C.根据各种色料分别所对应的RGB色,结合混合体中各种色料分别所对应的混合比,获得混合体所对应的RGB色Ci,j,k如下:
Figure FDA0003307684230000071
进而基于各种色料质量分别所对应预设比例的取值范围,构建混色色谱矩阵如下:
Figure FDA0003307684230000072
k=1,2,...,9,10,11
然后进入步骤D;
步骤D.根据混色色谱矩阵,构建混合体所对应的色料渐变模式及渐变矩阵。
CN202011591158.2A 2020-12-29 2020-12-29 多维度耦合-叠加复合混色模型与渐变色谱矩阵算法构建应用 Active CN112632790B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011591158.2A CN112632790B (zh) 2020-12-29 2020-12-29 多维度耦合-叠加复合混色模型与渐变色谱矩阵算法构建应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011591158.2A CN112632790B (zh) 2020-12-29 2020-12-29 多维度耦合-叠加复合混色模型与渐变色谱矩阵算法构建应用

Publications (2)

Publication Number Publication Date
CN112632790A CN112632790A (zh) 2021-04-09
CN112632790B true CN112632790B (zh) 2021-12-21

Family

ID=75285952

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011591158.2A Active CN112632790B (zh) 2020-12-29 2020-12-29 多维度耦合-叠加复合混色模型与渐变色谱矩阵算法构建应用

Country Status (1)

Country Link
CN (1) CN112632790B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115146490B (zh) * 2022-09-05 2022-12-13 愉悦家纺有限公司 一种多维度网格化染液混配的全色域颜色模型及其色谱构建方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5621467B2 (ja) * 2010-09-27 2014-11-12 富士ゼロックス株式会社 オレンジトナー及びそれを収容するトナー収容容器、オレンジ現像剤及びそれを収容するプロセスカートリッジ、カラートナーセット、並びに、画像形成装置
CN104241309B (zh) * 2014-09-19 2018-01-02 上海集成电路研发中心有限公司 一种模拟随机像素效果的cmos图像像素阵列
CN107277294A (zh) * 2017-06-20 2017-10-20 杭州宏华数码科技股份有限公司 纺织数码印花基于分区的多基色颜色混色模型及应用方法
CN107643267B (zh) * 2017-09-01 2019-06-25 武汉大学 一种基于可见光谱成像的古代壁画颜料无损全面识别方法
WO2019179981A1 (en) * 2018-03-20 2019-09-26 Basf Se Yellow light emitting device
CN110485019B (zh) * 2019-08-14 2021-11-02 愉悦家纺有限公司 基于离散渐变色谱的双基色纤维耦合混配纺制渐变纱的方法
CN110424082B (zh) * 2019-08-14 2021-11-02 愉悦家纺有限公司 基于离散渐变色谱的三基色纤维耦合混配纺制渐变纱的方法
CN110485018B (zh) * 2019-08-14 2020-06-26 愉悦家纺有限公司 基于离散渐变色谱的四基色纤维耦合混配纺制渐变纱的方法
CN111862888B (zh) * 2020-08-25 2021-10-26 深圳市奥拓电子股份有限公司 一种四色低蓝光广色域显示的方法、装置、系统及存储介质

Also Published As

Publication number Publication date
CN112632790A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
CN112733079B (zh) 一种构建多维度叠加混色模型与渐变色谱矩阵的方法
CN112562016B (zh) 彩纤多维混色空间网格模型与网格点阵列色谱构建及应用
CN110424082B (zh) 基于离散渐变色谱的三基色纤维耦合混配纺制渐变纱的方法
CN110485018B (zh) 基于离散渐变色谱的四基色纤维耦合混配纺制渐变纱的方法
CN110490981A (zh) 一种八元基色hsb全色域颜色空间网格化模型及其离散色谱构建方法
CN114820848B (zh) 七基色纤维全色域混色模式及圆环状网格化配色模型构建方法
CN112347685B (zh) 彩纤二维混色空间网格模型与网格点阵列色谱构建及应用
CN114792363B (zh) 三原色纤维构建的全色域网格化混色模型构建方法及彩色纺纱方法
CN112634387B (zh) 一种彩色纤维四维混色空间网格模型及网格点阵列颜色矩阵的构建方法及应用
CN112347683B (zh) 彩纤六维混色空间网格模型与网格点阵列色谱构建及应用
CN112632790B (zh) 多维度耦合-叠加复合混色模型与渐变色谱矩阵算法构建应用
WO2022110584A1 (zh) 一种彩色纤维五维混色空间网格模型及其网格点阵列颜色矩阵构建方法及应用
WO2022110585A1 (zh) 一种彩色纤维三维混色空间网格模型及网格点阵列颜色矩阵的构建方法及应用
CN113536540A (zh) 多元混色纤维体系构建高维离散色谱及可视化方法
CN112785664B (zh) 多维度耦合混色模型与渐变色谱矩阵算法构建应用
CN113096072B (zh) 一种色织纱线色彩体系构建方法
CN110485019B (zh) 基于离散渐变色谱的双基色纤维耦合混配纺制渐变纱的方法
CN112907721B (zh) 一种色纺纱线原色体系构建方法
CN115146489B (zh) 七基色染液网格化混配构建hsi色立体及其色谱获取方法
Souper et al. Improving Color Mixture Predictions in Ceramics using Data-centric Deep Learning
CN1252337C (zh) 使用有限种加工色的图案生成系统
CN115491909B (zh) 基于九基色染液网格化混配的色立体及其等明度色谱构建
US11015976B2 (en) Method for constructing meshed model and discrete chromatography of eight-element primary color HSB full color gamut color space
KR100880588B1 (ko) 칼라 색좌표 구현방법
CN115146490B (zh) 一种多维度网格化染液混配的全色域颜色模型及其色谱构建方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Application of multi-dimensional coupling superposition composite color mixing model and gradient chromatography matrix algorithm

Effective date of registration: 20221108

Granted publication date: 20211221

Pledgee: Qilu bank Limited by Share Ltd. Binzhou branch

Pledgor: YUYUE HOME TEXTILE Co.,Ltd.

Registration number: Y2022980021231