WO2022110585A1 - 一种彩色纤维三维混色空间网格模型及网格点阵列颜色矩阵的构建方法及应用 - Google Patents

一种彩色纤维三维混色空间网格模型及网格点阵列颜色矩阵的构建方法及应用 Download PDF

Info

Publication number
WO2022110585A1
WO2022110585A1 PCT/CN2021/082625 CN2021082625W WO2022110585A1 WO 2022110585 A1 WO2022110585 A1 WO 2022110585A1 CN 2021082625 W CN2021082625 W CN 2021082625W WO 2022110585 A1 WO2022110585 A1 WO 2022110585A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
dimensional
axis
fiber
coordinate system
Prior art date
Application number
PCT/CN2021/082625
Other languages
English (en)
French (fr)
Inventor
薛元
崔鹏
孙显强
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2022110585A1 publication Critical patent/WO2022110585A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/50Information retrieval; Database structures therefor; File system structures therefor of still image data
    • G06F16/58Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
    • G06F16/583Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
    • G06F16/5838Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content using colour

Definitions

  • the invention relates to a construction method and application of a color fiber three-dimensional color mixing space grid model and a grid point array color matrix, and belongs to the technical field of color mixing space grid construction.
  • Colored fibers with different color effects can be obtained by technical means such as dyeing of textile fiber materials, dope dyeing, biological transgenic, and structural coloration.
  • Colored colored yarns in theory, the basic color, blending ratio, blending method, and the structure of the forming yarns of the blended fibers have a great influence on the hue, lightness and saturation of the colored yarns, but in the actual production process, usually Based on a certain color mixing method and yarn structure, the selection of the basic color of the colored fiber and the selection of the color mixing ratio are mainly considered.
  • the production of colored spun yarn requires the completion of color design, specification design and spinning process design of colored spun yarn.
  • color design of color spinning there are usually the following three workflows: (1) Innovate the color of the yarn based on the existing color system, and develop the colored yarn. At this time, it is necessary to make different combinations of several colored fibers in the library and select different proportions for mixed color spinning, and select several color schemes from the trial-spun serialized colored yarns as new products for market promotion; (2) Based on popular colors or Designers personally like to select color systems to innovate yarn colors and develop colored yarns.
  • the designer selects several groups of basic color systems for fiber dyeing according to his own understanding and imagination of colors, and combines several groups of color fibers selected by the designer in different combinations and selects different proportions for mixed color spinning.
  • determine which kinds of colored fibers are used for mixed color spinning in what proportion? Send the trial-spun colored yarn samples to the customer for confirmation, and determine the color-spun yarn color scheme after several rounds.
  • the core technology of producing colored yarns or colored yarns is to optimize the color scheme of colored yarns, whether it is based on the existing color system for yarn color innovation, or based on the designer's personal preference to select the color system for yarn color innovation, or based on the existing color system.
  • For color reproduction it is necessary to be familiar with the changing laws of color hue, lightness and saturation, to be sensitive to the subtle differences between colors, and to master the color matching skills of colored yarns.
  • the design of the color scheme mainly relies on the designer's personal experience and intuition.
  • the completion of the color matching process mainly relies on manual sample making, manual dyeing, and manual color matching.
  • the evaluation of the color matching results mainly relies on the observation of the physical samples on the spot and the subjective feeling. Evaluate.
  • the color mixing process of colored fibers is the color mixing process, which belongs to the space juxtaposition of colors.
  • the color mixing process of color fibers is the color mixing process of color materials.
  • the traditional color matching method does not establish a digital physical model to express the color mixing process of color fibers. It is necessary to build a physical model and digitally express the color mixing process of color fibers;
  • the color mixing process of colored fibers is to select several colored fibers as the basic colors, and obtain a serialized color spectrum by changing the blending ratio.
  • the traditional color matching method produces mixed color samples by hand proofing, and there is no digital method to obtain the color value of the mixed color body based on the color value of the base color and the change of the mixed color ratio.
  • Digital virtual color matching
  • Serialized chromatograms can be obtained through the color matching process of colored fibers.
  • the traditional color matching method is obtained by manual proofing, which is inefficient, time-consuming, and inconvenient for remote transmission. It is necessary to construct a standard color mixing chromatogram for the combination of eight primary color fibers such as red, green, blue, cyan, blue, magenta, black, and white to provide a reference for the color matching of colored yarns;
  • the technical problem to be solved by the present invention is to provide a color fiber three-dimensional color mixing space grid model and a method for constructing a grid point array color matrix.
  • a coordinate digital quantization process is introduced to realize the three-primary RGB color mixing space color. visualization.
  • the present invention designs a three-dimensional color mixing space grid model of color fibers and a method for constructing a grid point array color matrix.
  • the quality of the primary color fibers corresponds to each coordinate axis in the three-dimensional coordinate system, and the construction of the grid point array model of the three-dimensional color mixing space grid model includes the following steps:
  • Step A According to the preset maximum mass ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ corresponding to the three primary color fibers ⁇ , ⁇ and ⁇ respectively, determine the position of the coordinate axis corresponding to the maximum mass of each primary color fiber, and then enter step B ;
  • Step B For the line segment between the origin and the position of the coordinate axis corresponding to the maximum mass of the primary color fiber ⁇ in the three-dimensional coordinate system, perform m equal division, that is, obtain m+1 points including the vertices at both ends of the line segment, and the mass of each point on the line segment i represents the position direction of the coordinate axis and the serial number of each point on the line segment from the origin in the three-dimensional coordinate system to the maximum mass of the primary color fiber ⁇ ;
  • n For the line segment between the origin in the three-dimensional coordinate system and the position of the coordinate axis corresponding to the maximum mass of the primary color fiber ⁇ , perform n equal division, that is, obtain n+1 points including the vertices at both ends of the line segment, and the line segment Quality of the above points j represents the position direction of the coordinate axis and the serial number of each point on the line segment from the origin in the three-dimensional coordinate system to the maximum mass of the primary color fiber ⁇ ;
  • step C For the line segment between the origin in the three-dimensional coordinate system and the position of the coordinate axis corresponding to the maximum mass of the primary color fiber ⁇ , perform p equal division, that is, obtain p+1 points including the vertices at both ends of the line segment, and the line segment Quality of the above points ⁇ represents the position direction of the coordinate axis and the serial number of each point corresponding to the origin in the three-dimensional coordinate system to the maximum mass of the primary color fiber ⁇ on the line segment; then enter step C;
  • Step C Construct the mixing ratios ⁇ ⁇ (i, j, ⁇ ), ⁇ ⁇ (i, j, ⁇ ) and ⁇ ⁇ (i, j, ⁇ ) corresponding to the three primary color fibers ⁇ , ⁇ , and ⁇ , respectively, as follows, and then enter step D;
  • Step D The quality model of the grid points in the cubic space corresponding to the three-dimensional color mixing space grid model based on the preset maximum quality of the three primary color fibers ⁇ , ⁇ , and ⁇ is as follows, and then proceed to step E;
  • ⁇ ⁇ (i,j, ⁇ ) [ ⁇ *(i-1)/m+ ⁇ *(j-1)/n+ ⁇ *( ⁇ -1)/p];
  • Step E The quality model matrix of the grid points in the cubic space corresponding to the three-dimensional color mixing space grid model based on the preset maximum quality of the three primary color fibers ⁇ , ⁇ , and ⁇ is as follows, and then the step F is entered;
  • Step F The color value model of the grid points in the cubic space based on the preset maximum quality of the three primary color fibers ⁇ , ⁇ , and ⁇ corresponding to the three-dimensional color mixing space grid model is as follows:
  • R ⁇ , G ⁇ , B ⁇ represent the RGB values corresponding to the primary color fiber ⁇
  • R ⁇ , G ⁇ , B ⁇ represent the RGB values corresponding to the primary color fiber ⁇
  • R ⁇ , G ⁇ , B ⁇ represents the RGB value corresponding to the primary color fiber ⁇
  • ⁇ i, j, ⁇ represents the color value of the mixed yarn of the three primary color fibers ⁇ , ⁇ , ⁇ corresponding to the position of the coordinate (i, j, ⁇ ) in the three-dimensional coordinate system
  • R ⁇ (i, j, ⁇ ) represent the three primary color fibers ⁇ , ⁇ , ⁇ is the RGB value of the mixed yarn
  • Step G The color value matrix of the grid points in the cubic space based on the preset maximum quality of the three primary color fibers ⁇ , ⁇ , and ⁇ corresponding to the three-dimensional color mixing space grid model is as follows:
  • a (p A two-dimensional array of color lines with +1) (m+1) rows (n+1) columns is as follows:
  • the base color fiber ⁇ corresponding to the X axis in the three-dimensional coordinate system Based on the base color fiber ⁇ corresponding to the X axis in the three-dimensional coordinate system, the base color fiber ⁇ corresponding to the Y axis in the three-dimensional coordinate system, and the base color fiber ⁇ corresponding to the Z axis in the three-dimensional coordinate system, construct (m+1) rows (n+1) columns
  • the three-dimensional color line array of the (p+1) layer is as follows:
  • the present invention also designs an application for the construction method of a color fiber three-dimensional color mixing space grid model and a grid point array color matrix described in any one of claims 1 to 4, characterized in that : Store the color value of any point in the cubic space corresponding to the three-dimensional color mixing space grid model based on the preset maximum quality of the three primary color fibers ⁇ , ⁇ , and ⁇ in the database, and use the following methods to realize the target color analysis;
  • the preferred detection is to obtain the RGB color detection data corresponding to the target color, and find the grid point corresponding to the RGB color detection data in the database; In the method, the grid point corresponding to the target color is obtained; finally, the RGB color data corresponding to the target color is formed from the RGB color data corresponding to the grid point.
  • a color detector is used to detect the target color, and the RGB color detection data corresponding to the target color is obtained.
  • the construction method and application of the three-dimensional color mixing space grid model of the color fiber and the color matrix of the grid point array designed in the present invention for the designated three-primary color fibers, the coordinate digital quantization process is introduced, and the three-primary color fibers are respectively corresponding to the coordinates of the three-dimensional coordinate system.
  • Axis taking the quality of the primary color fibers involved in the mixing as the coordinate axis data, the mixed yarn object of the three primary color fibers is obtained from each grid point in the three-dimensional coordinate system space, thereby combining the mixing ratio of each primary color fiber and the RGB of each primary color fiber.
  • RGB color realize the RGB color modeling of the mixed yarn object, that is, form a three-dimensional color mixing space grid model grid point array model, and thus further realize the construction of line array model, area array model, and volume array model.
  • the RGB color mixing space under fiber mixing realizes digital quantization, and can call each group of models arbitrarily in practical applications to realize color visualization, which effectively improves the efficiency of color analysis and selection.
  • FIG. 1 is a schematic flowchart of a method for constructing a three-dimensional color mixing space grid model of color fibers and a grid point array color matrix designed by the present invention.
  • the invention designs a three-dimensional color mixing space grid model of color fibers and a method for constructing a color matrix of grid point arrays.
  • the quality of each primary color fiber corresponds to each root in the three-dimensional coordinate system.
  • Coordinate axis to realize the construction of the grid point array model of the three-dimensional color mixing space grid model, as shown in FIG. 1 , including the following steps A to G.
  • Step A According to the preset maximum mass ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ corresponding to the three primary color fibers ⁇ , ⁇ and ⁇ respectively, determine the position of the coordinate axis corresponding to the maximum mass of each primary color fiber, and then enter step B .
  • Step B For the line segment between the origin and the position of the coordinate axis corresponding to the maximum mass of the primary color fiber ⁇ in the three-dimensional coordinate system, perform m equal division, that is, obtain m+1 points including the vertices at both ends of the line segment, and the mass of each point on the line segment i represents the sequence number of each point on the line segment from the origin in the three-dimensional coordinate system to the position of the coordinate axis corresponding to the maximum mass of the primary color fiber ⁇ .
  • n equal division that is, obtain n+1 points including the vertices at both ends of the line segment
  • the line segment Quality of the above points j represents the sequence number of each point on the line segment from the origin in the three-dimensional coordinate system to the position of the coordinate axis corresponding to the maximum mass of the primary color fiber ⁇ .
  • step C For the line segment between the origin in the three-dimensional coordinate system and the position of the coordinate axis corresponding to the maximum mass of the primary color fiber ⁇ , perform p equal division, that is, obtain p+1 points including the vertices at both ends of the line segment, and the line segment Quality of the above points ⁇ represents the position direction of the coordinate axis and the serial number of each point on the line segment from the origin in the three-dimensional coordinate system to the maximum mass of the primary color fiber ⁇ ; then enter step C.
  • Step C Construct the mixing ratios ⁇ ⁇ (i, j, ⁇ ), ⁇ ⁇ (i, j, ⁇ ) and ⁇ ⁇ (i, j, ⁇ ) corresponding to the three primary color fibers ⁇ , ⁇ , and ⁇ , respectively, as follows, and then enter step D;
  • Step D The quality model of the grid points in the cubic space corresponding to the three-dimensional color mixing space grid model based on the preset maximum quality of the three primary color fibers ⁇ , ⁇ , and ⁇ is as follows, and then proceed to step E;
  • ⁇ (i,j, ⁇ ) [ ⁇ *(i-1)/m+ ⁇ *(j-1)/n+ ⁇ *( ⁇ -1)/p].
  • Step E The quality model matrix of the grid points in the cubic space corresponding to the three-dimensional color mixing space grid model based on the preset maximum quality of the three primary color fibers ⁇ , ⁇ , and ⁇ is as follows, and then the step F is entered;
  • Step F The color value model of the grid points in the cubic space based on the preset maximum quality of the three primary color fibers ⁇ , ⁇ , and ⁇ corresponding to the three-dimensional color mixing space grid model is as follows:
  • step G wherein, R ⁇ , G ⁇ , B ⁇ represent the RGB values corresponding to the primary color fiber ⁇ , R ⁇ , G ⁇ , B ⁇ represent the RGB values corresponding to the primary color fiber ⁇ , R ⁇ , G ⁇ , B ⁇ represents the RGB value corresponding to the primary color fiber ⁇ ; ⁇ i, j, ⁇ represents the color value of the mixed yarn of the three primary color fibers ⁇ , ⁇ , ⁇ corresponding to the position of the coordinate (i, j, ⁇ ) in the three-dimensional coordinate system, R ⁇ (i, j, ⁇ ), G ⁇ (i, j, ⁇ ), B ⁇ (i, j, ⁇ ) represent the three primary color fibers ⁇ , ⁇ , RGB value of the gamma blended yarn.
  • Step G The color value matrix of the grid points in the cubic space based on the preset maximum quality of the three primary color fibers ⁇ , ⁇ , and ⁇ corresponding to the three-dimensional color mixing space grid model is as follows:
  • the X axis and the primary color fiber ⁇ correspond to the Y axis in the three-dimensional coordinate system
  • the primary color fiber ⁇ corresponds to the Z axis in the three-dimensional coordinate system, and construct (m+1)*(p+1) perpendicular to the plane of the X axis and the Z axis.
  • the one-dimensional color line array of 1 row (n+1) column is as follows, in application, i, ⁇ are constants.
  • the color value model is based on the base color fiber ⁇ corresponding to the X axis in the three-dimensional coordinate system, the base color fiber ⁇ corresponding to the Y axis in the three-dimensional coordinate system, and the base color fiber ⁇ corresponding to the Z axis in the three-dimensional coordinate system.
  • the 3D color line array of the column (p+1) layer is as follows:
  • the present invention also designs an application for the construction method of a color fiber three-dimensional color mixing space grid model and a grid point array color matrix described in any one of claims 1 to 4, characterized in that : Store the color value of any point in the cubic space corresponding to the three-dimensional color mixing space grid model based on the preset maximum quality of the three primary color fibers ⁇ , ⁇ , and ⁇ in the database, and use the following methods to realize the target color analysis;
  • a color detector to detect the RGB color detection data corresponding to the target color, and find the grid point corresponding to the RGB color detection data in the database; then take the grid point as the origin and the surrounding preset radius, The grid point corresponding to the target color is obtained by means of comparison; finally, the RGB color data corresponding to the target color is formed from the RGB color data corresponding to the grid point.
  • the color comparison table of the color fiber three-dimensional grid color mixing matrix is shown in Table 1 below.
  • the color comparison table of the three-dimensional grid color mixing matrix of colored fibers is shown in Table 2 below.
  • the color comparison table of the three-dimensional grid color mixing matrix of colored fibers is shown in Table 3 below.
  • the color comparison table of the color fiber three-dimensional grid color mixing matrix is shown in Table 4 below.
  • the color comparison table of the three-dimensional grid color mixing matrix of colored fibers is shown in Table 5 below.
  • the color comparison table of the color fiber three-dimensional grid color mixing matrix is shown in Table 6 below.
  • the color comparison table of the three-dimensional grid color mixing matrix of colored fibers is shown in Table 7 below.
  • the color comparison table of the three-dimensional grid color mixing matrix of colored fibers is shown in Table 8 below.
  • the color comparison table of the three-dimensional grid color mixing matrix of colored fibers is shown in Table 9 below.
  • the color comparison table of the three-dimensional grid color mixing matrix of colored fibers is shown in Table 10 below.
  • the color comparison table of the color fiber three-dimensional grid color mixing matrix is shown in Table 11 below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Library & Information Science (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Coloring (AREA)

Abstract

一种彩色纤维三维混色空间网格模型及网格点阵列颜色矩阵的构建方法及应用,针对指定三基色纤维数字化混色效应的表达问题,以三基色纤维的质量ω α、ω β、ω γ为载体,将其分别对应于三维坐标系的各坐标轴,通过对ω α、ω β、ω γ轴的网格化划分,实现对三基色混色空间网格模型内一维直线、二维平面、三维立体的网格划分,以此构建彩色纤维三维混色空间的网格模型,并通过对三维混色空间内各点、线、面、体的网格点阵列矩阵与阵列颜色矩阵的构建实现对应色谱的数字化表达。在实际应用中,上述模型及算法可自行设定网格化精度,调用各组模型算法实现网格化色谱的可视化,有效提高了颜色的分析与选择效率。

Description

一种彩色纤维三维混色空间网格模型及网格点阵列颜色矩阵的构建方法及应用 技术领域
本发明涉及一种彩色纤维三维混色空间网格模型及网格点阵列颜色矩阵的构建方法及应用,属于混色空间网格构建技术领域。
背景技术
通过对纺织纤维材料的染色、原液着色、生物转基因、结构生色等技术手段可获取具有不同色彩效应的彩色纤维,将三种不同色彩的纤维按照某种比例进行混色纺纱可得到具有某种色彩的色纺纱,理论上混纺纤维的基色、混和比例、混和方式、成型纱线的结构等因素对色纺纱色相、明度及饱和度都有较大影响,但在实际生产过程中,通常以某种混色方式和成纱结构为基础,重点考虑彩色纤维基色的选择及其混色比例的选择。利用多元基色的染色纤维或者原液着色纤维混色纺制色纺纱,并通过变动基色纤维的比例调控色纺纱的色相、明度及饱和度,是设计并实现色纺纱的必要手段。
生产色纺纱需要完成色纺纱的色彩设计、规格设计、纺纱工艺设计。在进行色纺纱色彩设计时,通常有以下三种工作流程:(1)基于现有色系进行纱线色彩创新,开发彩色纱线。此时需要将在库的若干彩色纤维进行不同组合并选用不同比例进行混色纺纱,从试纺的系列化彩色纱线中选择几个配色方案作为新品进行市场推广;(2)基于流行色或设计师个人喜好选定色系进行纱线色彩创新,开发彩色纱线。此时由设计师根据自己对色彩的理解和想象选择几组基础色系进行纤维染色,将设计师选定的几组彩纤维进行不同组合并选用不同比例进行混色纺纱,从试纺的系列化彩色纱线中选择几个配色方案作为新品进行市场推广;(3)基于来样进行色彩复制,开发彩色纱线。在分析来样的基础上,确定采用哪几种彩色纤维按照何种比例进行混色纺纱?将试纺色纺纱样交客户确认,经若干回合后确定色纺纱配色方案。
生产色纺纱或彩色纱的核心技术是优选彩色纱的配色方案,无论是基于现有色系进行纱线色彩创新,还是基于设计师个人喜好选定色系进行纱线色彩创新,或是基于来样进行色彩复制,都需要熟悉色彩色相、明度及饱和度的变化规律,敏感察觉色彩之间的微妙差异,掌握彩色纱线的配色技巧。
当前,配色方案的设计主要依靠设计师个人的经验和直觉进行,配色过程的完成主要依靠手工制样、手工染色、手工配色,配色结果的评价主要依靠在现场对实物样的观察,依托主观感受进行评价。彩色纤维的混色过程是色料混色过程,属于色彩的空间并置混色。
现有色彩体系中的颜色可通过混色空间中的R、G、B值进行标定,因此任一颜色都可用混色空间的某个向量表示。如果将颜色a(R a、G a、B a)、b(R b、G b、B b)、b(R b、G b、B b)混色可得到混色样的颜色值m(R m、G m、B m),则混色样的颜色值R m=R a+R b+R c、G m=G a+G b+G c、B m=B a+B b+B c,相当 于混色空间中求向量之和的运算。既然色彩及色彩的混色均可数字化表达,所以也可对彩色纤维的混色过程进行数字化表达。基于上述分析,我们认为传统配色方法主要存在以下问题:
1、彩色纤维的混色过程是色料混色过程,传统配色方法未建立数字化的物理模型对彩色纤维的混色过程进行表达,需要构建物理模型并对彩色纤维的混色过程进行数字化表达;
2、彩色纤维的混配色过程,就是选择几种彩色纤维作为基础颜色,通过变化混纺比得到系列化的色谱。传统配色方法通过手工打样制作混色样品,未建立基于基色颜色值以及混色比例变化求取混色体颜色值的数字化方法,需要构建彩色纤维离散混色模型及其混色色谱的可视化算法,实现彩色纱线的数字化虚拟配色;
3、通过彩色纤维的配色过程可以得到系列化色谱。传统配色方法采用手工打样获取,获取配色色谱效率低、耗时长、不便于远程传输。需要构建红、绿、蓝、青、蓝、品红、黑、白等八基色纤维组合混配的标准混色色谱,为彩色纱线的配色提供参考依据;
发明内容
本发明所要解决的技术问题是提供一种彩色纤维三维混色空间网格模型及网格点阵列颜色矩阵的构建方法,针对指定三基色纤维,引入坐标数字量化过程,实现三基色RGB混色空间颜色的可视化。
本发明为了解决上述技术问题采用以下技术方案:本发明设计了一种彩色纤维三维混色空间网格模型及网格点阵列颜色矩阵的构建方法,针对指定三基色纤维α、β、γ,以各基色纤维质量分别对应三维坐标系中的各根坐标轴,实现三维混色空间网格模型网格点阵列模型的构建,包括如下步骤:
步骤A.根据三基色纤维α、β、γ分别所对应的预设最大质量ω α、ω β、ω γ,确定各基色纤维最大质量分别所对应其所设坐标轴的位置,然后进入步骤B;
步骤B.针对三维坐标系中原点与基色纤维α最大质量所对应其所设坐标轴位置之间的线段,执行m等分,即获得包含该线段两端顶点在内的m+1个点,且该线段上各点的质量
Figure PCTCN2021082625-appb-000001
Figure PCTCN2021082625-appb-000002
i表示该线段上由三维坐标系中原点至基色纤维α最大质量所对应其所设坐标轴位置方向、各点的序号;
针对三维坐标系中原点与基色纤维β最大质量所对应其所设坐标轴位置之间的线段,执行n等分,即获得包含该线段两端顶点在内的n+1个点,且该线段上各点的质量
Figure PCTCN2021082625-appb-000003
j表示该线段上由三维坐标系中原点至基色纤维β最大质量所对应其所设坐标轴位置方向、各点的序号;
针对三维坐标系中原点与基色纤维γ最大质量所对应其所设坐标轴位置之间的线段,执行p等分,即 获得包含该线段两端顶点在内的p+1个点,且该线段上各点的质量
Figure PCTCN2021082625-appb-000004
τ表示该线段上由三维坐标系中原点至基色纤维γ最大质量所对应其所设坐标轴位置方向、各点的序号;然后进入步骤C;
步骤C.构建三基色纤维α、β、γ分别所对应混合比λ α(i,j,τ)、λ β(i,j,τ)、λ γ(i,j,τ)如下,然后进入步骤D;
Figure PCTCN2021082625-appb-000005
Figure PCTCN2021082625-appb-000006
Figure PCTCN2021082625-appb-000007
步骤D.构建三维混色空间网格模型所对应基于三基色纤维α、β、γ预设最大质量的立方体空间中网格点的质量模型如下,然后进入步骤E;
ω ξ(i,j,τ)=[ω α*(i-1)/m+ω β*(j-1)/n+ω γ*(τ-1)/p];
步骤E.构建三维混色空间网格模型所对应基于三基色纤维α、β、γ预设最大质量的立方体空间中网格点的质量模型矩阵如下,然后进入步骤F;
Figure PCTCN2021082625-appb-000008
且i=1,2,3,...,m+1;j=1,2,3,...,n+1;τ=1,2,3,...,p+1;
步骤F.构建三维混色空间网格模型所对应基于三基色纤维α、β、γ预设最大质量的立方体空间中网格点的颜色值模型如下:
Figure PCTCN2021082625-appb-000009
即:
Figure PCTCN2021082625-appb-000010
然后进入步骤G;其中,R α、G α、B α表示基色纤维α所对应的RGB值,R β、G β、B β表示基色纤维β所对应的RGB值,R γ、G γ、B γ表示基色纤维γ所对应的RGB值;ξ i,j,τ表示三维坐标系中坐标(i,j,τ)位置所对应三基色纤维α、β、γ混合纱线的颜色值,R ξ(i,j,τ)、G ξ(i,j,τ)、B ξ(i,j,τ)表示三维坐标系中坐标(i,j,τ)位置所对应三基色纤维α、β、γ混合纱线的RGB值;
步骤G.构建三维混色空间网格模型所对应基于三基色纤维α、β、γ预设最大质量的立方体空间中网格点的颜色值矩阵如下:
Figure PCTCN2021082625-appb-000011
且i=1,2,3,...,m+1;j=1,2,3,...,n+1;τ=1,2,3,...,p+1。
作为本发明的一种优选技术方案:基于步骤A至步骤G所获三维混色空间网格模型所对应基于三基色纤维α、β、γ预设最大质量的立方体空间中任意点的颜色值模型,基于基色纤维α对应三维坐标系中的X轴、基色纤维β对应三维坐标系中的Y轴、基色纤维γ对应三维坐标系中的Z轴,构建与X轴、Z轴所在面相垂直的(m+1)*(p+1)个1行(n+1)列的一维颜色线阵列如下:
Figure PCTCN2021082625-appb-000012
构建与Y轴、Z轴所在面相垂直的(n+1)*(p+1)个1行(m+1)列的一维颜色线阵列如下:
Figure PCTCN2021082625-appb-000013
构建与X轴、Y轴所在面相垂直的(m+1)*(n+1)个1行(p+1)列的一维颜色线阵列如下:
Figure PCTCN2021082625-appb-000014
作为本发明的一种优选技术方案:基于步骤A至步骤G所获三维混色空间网格模型所对应基于三基色纤维α、β、γ预设最大质量的立方体空间中任意点的颜色值模型,基于基色纤维α对应三维坐标系中的X轴、基色纤维β对应三维坐标系中的Y轴、基色纤维γ对应三维坐标系中的Z轴,构建与X轴、Y轴所在面相平行的(p+1)个(m+1)行(n+1)列的二维颜色线阵列如下:
Figure PCTCN2021082625-appb-000015
构建与X轴、Z轴所在面相平行的(n+1)个(m+1)行(p+1)列的二维颜色线阵列如下:
Figure PCTCN2021082625-appb-000016
构建与Y轴、Z轴所在面相平行的(m+1)个(n+1)行(p+1)列的二维颜色线阵列如下:
Figure PCTCN2021082625-appb-000017
作为本发明的一种优选技术方案:基于步骤A至步骤G所获三维混色空间网格模型所对应基于三基色纤维α、β、γ预设最大质量的立方体空间中任意点的颜色值模型,基于基色纤维α对应三维坐标系中的X轴、基色纤维β对应三维坐标系中的Y轴、基色纤维γ对应三维坐标系中的Z轴,构建(m+1)行(n+1)列(p+1)层的三维颜色线阵列如下:
Figure PCTCN2021082625-appb-000018
与上述相对应,本发明还设计了一种针对权利要求1至4中任意一项所述一种彩色纤维三维混色空间网格模型及网格点阵列颜色矩阵的构建方法的应用,其特征在于:将所述三维混色空间网格模型所对应基于三基色纤维α、β、γ预设最大质量的立方体空间中任意点的颜色值,存储于数据库中,按如下方式,用于实现对目标颜色的分析;
首选检测获得目标颜色所对应的RGB颜色检测数据,并在数据库中查找该RGB颜色检测数据所对应的网格点;然后在以该网格点为原点、周围预设半径范围,通过比对的方式,获得目标颜色所对应的网格点;最后由该网格点所对应的RGB颜色数据,构成目标颜色所对应的RGB颜色数据。
作为本发明的一种优选技术方案:采用检色仪针对目标颜色进行检测,获得目标颜色所对应的RGB颜色检测数据。
本发明所述一种彩色纤维三维混色空间网格模型及网格点阵列颜色矩阵的构建方法及应用,采用以上技术方案与现有技术相比,具有以下技术效果:
本发明所设计彩色纤维三维混色空间网格模型及网格点阵列颜色矩阵的构建方法及应用,针对指定三基色纤维,引入坐标数字量化过程,将三基色纤维分别对应于三维坐标系的各坐标轴,以基色纤维参与混合的质量作为坐标轴数据,由三维坐标系空间的各个网格点获得三基色纤维的混合纱线对象,由此结合各基色纤维的混合比,以及各基色纤维的RGB颜色,实现对混合纱线对象的RGB颜色建模,即构成三维混色空间网格模型网格点阵列模型,并由此进一步实现线阵列模型、面阵列模型、体阵列模型的构建,针对三基色纤维混合下的RGB混色空间实现了数字量化,能够在实际应用中任意调用各组模型实现颜色的可视化,有效提高了颜色分析、选择的效率。
附图说明
图1是本发明所设计彩色纤维三维混色空间网格模型及网格点阵列颜色矩阵的构建方法流程示意图。
具体实施方式
下面结合说明书附图对本发明的具体实施方式作进一步详细的说明。
本发明设计了一种彩色纤维三维混色空间网格模型及网格点阵列颜色矩阵的构建方法,针对指定三基色纤维α、β、γ,以各基色纤维质量分别对应三维坐标系中的各根坐标轴,实现三维混色空间网格模型网格点阵列模型的构建,如图1所示,包括如下步骤A至步骤G。
步骤A.根据三基色纤维α、β、γ分别所对应的预设最大质量ω α、ω β、ω γ,确定各基色纤维最大质量分别所对应其所设坐标轴的位置,然后进入步骤B。
步骤B.针对三维坐标系中原点与基色纤维α最大质量所对应其所设坐标轴位置之间的线段,执行m等分,即获得包含该线段两端顶点在内的m+1个点,且该线段上各点的质量
Figure PCTCN2021082625-appb-000019
Figure PCTCN2021082625-appb-000020
i表示该线段上由三维坐标系中原点至基色纤维α最大质量所对应其所设坐标轴位置方向、各点的序号。
针对三维坐标系中原点与基色纤维β最大质量所对应其所设坐标轴位置之间的线段,执行n等分,即 获得包含该线段两端顶点在内的n+1个点,且该线段上各点的质量
Figure PCTCN2021082625-appb-000021
j表示该线段上由三维坐标系中原点至基色纤维β最大质量所对应其所设坐标轴位置方向、各点的序号。
针对三维坐标系中原点与基色纤维γ最大质量所对应其所设坐标轴位置之间的线段,执行p等分,即获得包含该线段两端顶点在内的p+1个点,且该线段上各点的质量
Figure PCTCN2021082625-appb-000022
τ表示该线段上由三维坐标系中原点至基色纤维γ最大质量所对应其所设坐标轴位置方向、各点的序号;然后进入步骤C。
步骤C.构建三基色纤维α、β、γ分别所对应混合比λ α(i,j,τ)、λ β(i,j,τ)、λ γ(i,j,τ)如下,然后进入步骤D;
Figure PCTCN2021082625-appb-000023
Figure PCTCN2021082625-appb-000024
Figure PCTCN2021082625-appb-000025
步骤D.构建三维混色空间网格模型所对应基于三基色纤维α、β、γ预设最大质量的立方体空间中网格点的质量模型如下,然后进入步骤E;
ω ξ(i,j,τ)=[ω α*(i-1)/m+ω β*(j-1)/n+ω γ*(τ-1)/p]。
步骤E.构建三维混色空间网格模型所对应基于三基色纤维α、β、γ预设最大质量的立方体空间中网格点的质量模型矩阵如下,然后进入步骤F;
Figure PCTCN2021082625-appb-000026
且i=1,2,3,...,m+1;j=1,2,3,...,n+1;τ=1,2,3,...,p+1;
步骤F.构建三维混色空间网格模型所对应基于三基色纤维α、β、γ预设最大质量的立方体空间中 网格点的颜色值模型如下:
Figure PCTCN2021082625-appb-000027
即:
Figure PCTCN2021082625-appb-000028
然后进入步骤G;其中,R α、G α、B α表示基色纤维α所对应的RGB值,R β、G β、B β表示基色纤维β所对应的RGB值,R γ、G γ、B γ表示基色纤维γ所对应的RGB值;ξ i,j,τ表示三维坐标系中坐标(i,j,τ)位置所对应三基色纤维α、β、γ混合纱线的颜色值,R ξ(i,j,τ)、G ξ(i,j,τ)、B ξ(i,j,τ)表示三维坐标系中坐标(i,j,τ)位置所对应三基色纤维α、β、γ混合纱线的RGB值。
步骤G.构建三维混色空间网格模型所对应基于三基色纤维α、β、γ预设最大质量的立方体空间中网格点的颜色值矩阵如下:
Figure PCTCN2021082625-appb-000029
且i=1,2,3,...,m+1;j=1,2,3,...,n+1;τ=1,2,3,...,p+1。
基于步骤A至步骤G所获三维混色空间网格模型所对应基于三基色纤维α、β、γ预设最大质量的立方体空间中任意点的颜色值模型,基于基色纤维α对应三维坐标系中的X轴、基色纤维β对应三维坐标系中的Y轴、基色纤维γ对应三维坐标系中的Z轴,构建与X轴、Z轴所在面相垂直的(m+1)*(p+1)个1行(n+1)列的一维颜色线阵列如下,应用中,即i、τ为常数。
Figure PCTCN2021082625-appb-000030
对上述模型进行展开,主要如下:
即当i=1、τ=1时,对(m+1)*(p+1)个1行(n+1)列的一维颜色线阵列进行展开,展开后的矩阵如下:
Figure PCTCN2021082625-appb-000031
当i=i、τ=τ时,对(m+1)*(p+1)个1行(n+1)列的一维颜色线阵列进行展开,展开后的矩阵如下:
Figure PCTCN2021082625-appb-000032
当i=m+1、τ=p+1时,对(m+1)*(p+1)个1行(n+1)列的一维颜色线阵列进行展开,展开后的矩阵如下:
Figure PCTCN2021082625-appb-000033
构建与Y轴、Z轴所在面相垂直的(n+1)*(p+1)个1行(m+1)列的一维颜色线阵列如下,应用中,即j、τ为常数。
Figure PCTCN2021082625-appb-000034
对上述模型进行展开,主要如下:
当j=1、τ=1时,对(n+1)*(p+1)个1行(m+1)列的一维颜色线阵列进行展开,展开后的矩阵如下:
Figure PCTCN2021082625-appb-000035
当j=j、τ=τ时,对(n+1)*(p+1)个1行(m+1)列的一维颜色线阵列进行展开,展开后的矩阵如下:
Figure PCTCN2021082625-appb-000036
当j=n+1、τ=p+1时,对(n+1)*(p+1)个1行(m+1)列的一维颜色线阵列进行展开,展开后的矩阵如下:
Figure PCTCN2021082625-appb-000037
构建与X轴、Y轴所在面相垂直的(m+1)*(n+1)个1行(p+1)列的一维颜色线阵列如下,应用中,即i、j为常数。
Figure PCTCN2021082625-appb-000038
对上述模型进行展开,主要如下:
当i=1、j=1时,对(m+1)*(n+1)个1行(p+1)列的一维颜色线阵列进行展开,展开后的矩阵如下:
Figure PCTCN2021082625-appb-000039
当i=i、j=j时,对(m+1)*(n+1)个1行(p+1)列的一维颜色线阵列进行展开,展开后的矩阵如下:
Figure PCTCN2021082625-appb-000040
当i=m+1、j=n+1时,对(m+1)*(n+1)个1行(p+1)列的一维颜色线阵列进行展开,展开后的矩阵如下:
Figure PCTCN2021082625-appb-000041
实际应用中,进一步基于步骤A至步骤G所获三维混色空间网格模型所对应基于三基色纤维α、β、γ预设最大质量的立方体空间中任意点的颜色值模型,基于基色纤维α对应三维坐标系中的X轴、基色纤维β对应三维坐标系中的Y轴、基色纤维γ对应三维坐标系中的Z轴,构建与X轴、Y轴所在面相平行的(p+1)个(m+1)行(n+1)列的二维颜色线阵列如下,应用中,即τ为常数。
Figure PCTCN2021082625-appb-000042
对上述模型进行展开,主要如下:
当τ=1时,对(m+1)行(n+1)列的二维颜色线阵列进行展开,展开后的矩阵如下:
Figure PCTCN2021082625-appb-000043
当τ=τ时,对(m+1)行(n+1)列的二维颜色线阵列进行展开,展开后的矩阵如下:
Figure PCTCN2021082625-appb-000044
当τ=p+1时,对(m+1)行(n+1)列的二维颜色线阵列进行展开,展开后的矩阵如下:
Figure PCTCN2021082625-appb-000045
构建与X轴、Z轴所在面相平行的(n+1)个(m+1)行(p+1)列的二维颜色线阵列如下,应用中,即j为 常数。
Figure PCTCN2021082625-appb-000046
对上述模型进行展开,主要如下:
当j=1时,对(m+1)行(p+1)列的二维颜色线阵列进行展开,展开后的矩阵如下:
Figure PCTCN2021082625-appb-000047
当j=j时,对(m+1)行(p+1)列的二维颜色线阵列进行展开,展开后的矩阵如下:
Figure PCTCN2021082625-appb-000048
当j=n+1时,对(m+1)行(p+1)列的二维颜色线阵列进行展开,展开后的矩阵如下:
Figure PCTCN2021082625-appb-000049
构建与Y轴、Z轴所在面相平行的(m+1)个(n+1)行(p+1)列的二维颜色线阵列如下,应用中,即i为 常数。
Figure PCTCN2021082625-appb-000050
对上述模型进行展开,主要如下:
当i=1时,对(n+1)行(p+1)列的二维颜色线阵列进行展开,展开后的矩阵如下:
Figure PCTCN2021082625-appb-000051
当i=i时,对(n+1)行(p+1)列的二维颜色线阵列进行展开,展开后的矩阵如下:
Figure PCTCN2021082625-appb-000052
当i=m+1时,对(n+1)行(p+1)列的二维颜色线阵列进行展开,展开后的矩阵如下:
Figure PCTCN2021082625-appb-000053
基于上述所构建点阵列、线阵列、面阵列,进一步基于步骤A至步骤G所获三维混色空间网格模型 所对应基于三基色纤维α、β、γ预设最大质量的立方体空间中任意点的颜色值模型,基于基色纤维α对应三维坐标系中的X轴、基色纤维β对应三维坐标系中的Y轴、基色纤维γ对应三维坐标系中的Z轴,构建(m+1)行(n+1)列(p+1)层的三维颜色线阵列如下:
Figure PCTCN2021082625-appb-000054
对上述模型进行展开,主要如下:
Figure PCTCN2021082625-appb-000055
与上述相对应,本发明还设计了一种针对权利要求1至4中任意一项所述一种彩色纤维三维混色空间网格模型及网格点阵列颜色矩阵的构建方法的应用,其特征在于:将所述三维混色空间网格模型所对应基于三基色纤维α、β、γ预设最大质量的立方体空间中任意点的颜色值,存储于数据库中,按如下方式,用于实现对目标颜色的分析;
首选采用检色仪检测获得目标颜色所对应的RGB颜色检测数据,并在数据库中查找该RGB颜色检测数据所对应的网格点;然后在以该网格点为原点、周围预设半径范围,通过比对的方式,获得目标颜色所对应的网格点;最后由该网格点所对应的RGB颜色数据,构成目标颜色所对应的RGB颜色数据。
基于上述所设计彩色纤维三维混色空间网格模型及网格点阵列颜色矩阵的构建方法,在具体的实际应 用当中,假设三元彩纤α、β、γ的质量分别为ω α=10、ω β=10、ω γ=10,颜色值为α(0,255,255)、β(255,0,255)、γ(255,255,0),分别将彩纤α的质量分成10等分,彩纤β的质量分成10等分,彩纤γ的质量分成10等分,并按等差数列进行配重,得到混合体ω ξ。将混合体ω ξ沿着点γ所在的轴展开,可得11个11*11的面矩阵,其对应的RGB值见颜色对照表。
如下表1所示彩色纤维三维网格混色矩阵的颜色对照表。
p=1 1 2 3 4 5 6 7 8 9 10 11
1 0,255,255 23,232,255 43,213,255 59,196,255 73,182,255 85,170,255 96,159,255 105,150,255 113,142,255 121,134,255 128,128,255
2 0,255,255 26,230,255 46,209,255 64,191,255 78,177,255 91,164,255 102,153,255 112,143,255 120,135,255 128,128,255 134,121,255
3 0,255,255 28,227,255 51,204,255 70,185,255 85,170,255 98,157,255 109,146,255 119,136,255 128,128,255 135,120,255 142,113,255
4 0,255,255 32,223,255 57,198,255 77,179,255 93,162,255 106,149,255 118,137,255 128,128,255 136,119,255 143,112,255 150,105,255
5 0,255,255 36,219,255 64,191,255 85,170,255 102,153,255 116,139,255 128,128,255 137,118,255 146,109,255 153,102,255 159,96,255
6 0,255,255 43,213,255 73,182,255 96,159,255 113,142,255 128,128,255 139,116,255 149,106,255 157,98,255 164,91,255 170,85,255
7 0,255,255 51,204,255 85,170,255 109,146,255 128,128,255 142,113,255 153,102,255 162,93,255 170,85,255 177,78,255 182,73,255
8 0,255,255 64,191,255 102,153,255 128,128,255 146,109,255 159,96,255 170,85,255 179,77,255 185,70,255 191,64,255 196,59,255
9 0,255,255 85,170,255 128,128,255 153,102,255 170,85,255 182,73,255 191,64,255 198,57,255 204,51,255 209,46,255 213,43,255
10 0,255,255 128,128,255 170,85,255 191,64,255 204,51,255 213,43,255 219,36,255 223,32,255 227,28,255 230,26,255 232,23,255
11 255,255,255 255,0,255 255,0,255 255,0,255 255,0,255 255,0,255 255,0,255 255,0,255 255,0,255 255,0,255 255,0,255
如下表2所示彩色纤维三维网格混色矩阵的颜色对照表。
p=2 1 2 3 4 5 6 7 8 9 10 11
1 23,255,232 43,234,234 59,216,235 73,200,237 85,187,238 96,175,239 105,165,240 113,156,241 121,148,242 128,140,242 134,134,243
2 26,255,230 46,232,232 64,213,234 78,196,235 91,182,237 102,170,238 112,159,239 120,150,240 128,142,241 134,134,242 140,128,242
3 28,255,227 51,230,230 70,209,232 85,191,234 98,177,235 109,164,237 119,153,238 128,143,239 135,135,240 142,128,241 148,121,242
4 32,255,223 57,227,227 77,204,230 93,185,232 106,170,234 118,157,235 128,146,237 136,136,238 143,128,239 150,120,240 156,113,241
5 36,255,219 64,223,223 85,198,227 102,179,230 116,162,232 128,149,234 137,137,235 146,128,237 153,119,238 159,112,239 165,105,240
6 43,255,213 73,219,219 96,191,223 113,170,227 128,153,230 139,139,232 149,128,234 157,118,235 164,109,237 170,102,238 175,96,239
7 51,255,204 85,213,213 109,182,219 128,159,223 142,142,227 153,128,230 162,116,232 170,106,234 177,98,235 182,91,237 187,85,238
8 64,255,191 102,204,204 128,170,213 146,146,219 159,128,223 170,113,227 179,102,230 185,93,232 191,85,234 196,78,235 200,73,237
9 85,255,170 128,191,191 153,153,204 170,128,213 182,109,219 191,96,223 198,85,227 204,77,230 209,70,232 213,64,234 216,59,235
10 128,255,128 170,170,170 191,128,191 204,102,204 213,85,213 219,73,219 223,64,223 227,57,227 230,51,230 232,46,232 234,43,234
11 255,255,0 255,128,128 255,85,170 255,64,191 255,51,204 255,43,213 255,36,219 255,32,223 255,28,227 255,26,230 255,23,232
如下表3所示彩色纤维三维网格混色矩阵的颜色对照表。
p=3 1 2 3 4 5 6 7 8 9 10 11
1 43,255,213 59,235,216 73,219,219 85,204,221 96,191,223 105,180,225 113,170,227 121,161,228 128,153,230 134,146,231 139,139,232
2 46,255,209 64,234,213 78,216,216 91,200,219 102,187,221 112,175,223 120,165,225 128,156,227 134,148,228 140,140,230 146,134,231
3 51,255,204 70,232,209 85,213,213 98,196,216 109,182,219 119,170,221 128,159,223 135,150,225 142,142,227 148,134,228 153,128,230
4 57,255,198 77,230,204 93,209,209 106,191,213 118,177,216 128,164,219 136,153,221 143,143,223 150,135,225 156,128,227 161,121,228
5 64,255,191 85,227,198 102,204,204 116,185,209 128,170,213 137,157,216 146,146,219 153,136,221 159,128,223 165,120,225 170,113,227
6 73,255,182 96,223,191 113,198,198 128,179,204 139,162,209 149,149,213 157,137,216 164,128,219 170,119,221 175,112,223 180,105,225
7 85,255,170 109,219,182 128,191,191 142,170,198 153,153,204 162,139,209 170,128,213 177,118,216 182,109,219 187,102,221 191,96,223
8 102,255,153 128,213,170 146,182,182 159,159,191 170,142,198 179,128,204 185,116,209 191,106,213 196,98,216 200,91,219 204,85,221
9 128,255,128 153,204,153 170,170,170 182,146,182 191,128,191 198,113,198 204,102,204 209,93,209 213,85,213 216,78,216 219,73,219
10 170,255,85 191,191,128 204,153,153 213,128,170 219,109,182 223,96,191 227,85,198 230,77,204 232,70,209 234,64,213 235,59,216
11 255,255,0 255,170,85 255,128,128 255,102,153 255,85,170 255,73,182 255,64,191 255,57,198 255,51,204 255,46,209 255,43,213
如下表4所示彩色纤维三维网格混色矩阵的颜色对照表。
p=4 1 2 3 4 5 6 7 8 9 10 11
1 59,255,196 73,237,200 85,221,204 96,207,207 105,195,210 113,184,213 121,174,215 128,166,217 134,158,219 139,151,220 144,144,222
2 64,255,191 78,235,196 91,219,200 102,204,204 112,191,207 120,180,210 128,170,213 134,161,215 140,153,217 146,146,219 151,139,220
3 70,255,185 85,234,191 98,216,196 109,200,200 119,187,204 128,175,207 135,165,210 142,156,213 148,148,215 153,140,217 158,134,219
4 77,255,179 93,232,185 106,213,191 118,196,196 128,182,200 136,170,204 143,159,207 150,150,210 156,142,213 161,134,215 166,128,217
5 85,255,170 102,230,179 116,209,185 128,191,191 137,177,196 146,164,200 153,153,204 159,143,207 165,135,210 170,128,213 174,121,215
6 96,255,159 113,227,170 128,204,179 139,185,185 149,170,191 157,157,196 164,146,200 170,136,204 175,128,207 180,120,210 184,113,213
7 109,255,146 128,223,159 142,198,170 153,179,179 162,162,185 170,149,191 177,137,196 182,128,200 187,119,204 191,112,207 195,105,210
8 128,255,128 146,219,146 159,191,159 170,170,170 179,153,179 185,139,185 191,128,191 196,118,196 200,109,200 204,102,204 207,96,207
9 153,255,102 170,213,128 182,182,146 191,159,159 198,142,170 204,128,179 209,116,185 213,106,191 216,98,196 219,91,200 221,85,204
10 191,255,64 204,204,102 213,170,128 219,146,146 223,128,159 227,113,170 230,102,179 232,93,185 234,85,191 235,78,196 237,73,200
11 255,255,0 255,191,64 255,153,102 255,128,128 255,109,146 255,96,159 255,85,170 255,77,179 255,70,185 255,64,191 255,59,196
如下表5所示彩色纤维三维网格混色矩阵的颜色对照表。
p=5 1 2 3 4 5 6 7 8 9 10 11
1 73,255,182 85,238,187 96,223,191 105,210,195 113,198,198 121,188,201 128,179,204 134,170,206 139,162,209 144,155,211 149,149,213
2 78,255,177 91,237,182 102,221,187 112,207,191 120,195,195 128,184,198 134,174,201 140,166,204 146,158,206 151,151,209 155,144,211
3 85,255,170 98,235,177 109,219,182 119,204,187 128,191,191 135,180,195 142,170,198 148,161,201 153,153,204 158,146,206 162,139,209
4 93,255,162 106,234,170 118,216,177 128,200,182 136,187,187 143,175,191 150,165,195 156,156,198 161,148,201 166,140,204 170,134,206
5 102,255,153 116,232,162 128,213,170 137,196,177 146,182,182 153,170,187 159,159,191 165,150,195 170,142,198 174,134,201 179,128,204
6 113,255,142 128,230,153 139,209,162 149,191,170 157,177,177 164,164,182 170,153,187 175,143,191 180,135,195 184,128,198 188,121,201
7 128,255,128 142,227,142 153,204,153 162,185,162 170,170,170 177,157,177 182,146,182 187,136,187 191,128,191 195,120,195 198,113,198
8 146,255,109 159,223,128 170,198,142 179,179,153 185,162,162 191,149,170 196,137,177 200,128,182 204,119,187 207,112,191 210,105,195
9 170,255,85 182,219,109 191,191,128 198,170,142 204,153,153 209,139,162 213,128,170 216,118,177 219,109,182 221,102,187 223,96,191
10 204,255,51 213,213,85 219,182,109 223,159,128 227,142,142 230,128,153 232,116,162 234,106,170 235,98,177 237,91,182 238,85,187
11 255,255,0 255,204,51 255,170,85 255,146,109 255,128,128 255,113,142 255,102,153 255,93,162 255,85,170 255,78,177 255,73,182
如下表6所示彩色纤维三维网格混色矩阵的颜色对照表。
p=6 1 2 3 4 5 6 7 8 9 10 11
1 85,255,170 96,239,175 105,225,180 113,213,184 121,201,188 128,191,191 134,182,194 139,174,197 144,166,200 149,159,202 153,153,204
2 91,255,164 102,238,170 112,223,175 120,210,180 128,198,184 134,188,188 140,179,191 146,170,194 151,162,197 155,155,200 159,149,202
3 98,255,157 109,237,164 119,221,170 128,207,175 135,195,180 142,184,184 148,174,188 153,166,191 158,158,194 162,151,197 166,144,200
4 106,255,149 118,235,157 128,219,164 136,204,170 143,191,175 150,180,180 156,170,184 161,161,188 166,153,191 170,146,194 174,139,197
5 116,255,139 128,234,149 137,216,157 146,200,164 153,187,170 159,175,175 165,165,180 170,156,184 174,148,188 179,140,191 182,134,194
6 128,255,128 139,232,139 149,213,149 157,196,157 164,182,164 170,170,170 175,159,175 180,150,180 184,142,184 188,134,188 191,128,191
7 142,255,113 153,230,128 162,209,139 170,191,149 177,177,157 182,164,164 187,153,170 191,143,175 195,135,180 198,128,184 201,121,188
8 159,255,96 170,227,113 179,204,128 185,185,139 191,170,149 196,157,157 200,146,164 204,136,170 207,128,175 210,120,180 213,113,184
9 182,255,73 191,223,96 198,198,113 204,179,128 209,162,139 213,149,149 216,137,157 219,128,164 221,119,170 223,112,175 225,105,180
10 213,255,43 219,219,73 223,191,96 227,170,113 230,153,128 232,139,139 234,128,149 235,118,157 237,109,164 238,102,170 239,96,175
11 255,255,0 255,213,43 255,182,73 255,159,96 255,142,113 255,128,128 255,116,139 255,106,149 255,98,157 255,91,164 255,85,170
如下表7所示彩色纤维三维网格混色矩阵的颜色对照表。
p=7 1 2 3 4 5 6 7 8 9 10 11
1 96,255,159 105,240,165 113,227,170 121,215,174 128,204,179 134,194,182 139,185,185 144,177,188 149,170,191 153,163,194 157,157,196
2 102,255,153 112,239,159 120,225,165 128,213,170 134,201,174 140,191,179 146,182,182 151,174,185 155,166,188 159,159,191 163,153,194
3 109,255,146 119,238,153 128,223,159 135,210,165 142,198,170 148,188,174 153,179,179 158,170,182 162,162,185 166,155,188 170,149,191
4 118,255,137 128,237,146 136,221,153 143,207,159 150,195,165 156,184,170 161,174,174 166,166,179 170,158,182 174,151,185 177,144,188
5 128,255,128 137,235,137 146,219,146 153,204,153 159,191,159 165,180,165 170,170,170 174,161,174 179,153,179 182,146,182 185,139,185
6 139,255,116 149,234,128 157,216,137 164,200,146 170,187,153 175,175,159 180,165,165 184,156,170 188,148,174 191,140,179 194,134,182
7 153,255,102 162,232,116 170,213,128 177,196,137 182,182,146 187,170,153 191,159,159 195,150,165 198,142,170 201,134,174 204,128,179
8 170,255,85 179,230,102 185,209,116 191,191,128 196,177,137 200,164,146 204,153,153 207,143,159 210,135,165 213,128,170 215,121,174
9 191,255,64 198,227,85 204,204,102 209,185,116 213,170,128 216,157,137 219,146,146 221,136,153 223,128,159 225,120,165 227,113,170
10 219,255,36 223,223,64 227,198,85 230,179,102 232,162,116 234,149,128 235,137,137 237,128,146 238,119,153 239,112,159 240,105,165
11 255,255,0 255,219,36 255,191,64 255,170,85 255,153,102 255,139,116 255,128,128 255,118,137 255,109,146 255,102,153 255,96,159
如下表8所示彩色纤维三维网格混色矩阵的颜色对照表。
p=8 1 2 3 4 5 6 7 8 9 10 11
1 105,255,150 113,241,156 121,228,161 128,217,166 134,206,170 139,197,174 144,188,177 149,181,181 153,173,184 157,167,186 161,161,189
2 112,255,143 120,240,150 128,227,156 134,215,161 140,204,166 146,194,170 151,185,174 155,177,177 159,170,181 163,163,184 167,157,186
3 119,255,136 128,239,143 135,225,150 142,213,156 148,201,161 153,191,166 158,182,170 162,174,174 166,166,177 170,159,181 173,153,184
4 128,255,128 136,238,136 143,223,143 150,210,150 156,198,156 161,188,161 166,179,166 170,170,170 174,162,174 177,155,177 181,149,181
5 137,255,118 146,237,128 153,221,136 159,207,143 165,195,150 170,184,156 174,174,161 179,166,166 182,158,170 185,151,174 188,144,177
6 149,255,106 157,235,118 164,219,128 170,204,136 175,191,143 180,180,150 184,170,156 188,161,161 191,153,166 194,146,170 197,139,174
7 162,255,93 170,234,106 177,216,118 182,200,128 187,187,136 191,175,143 195,165,150 198,156,156 201,148,161 204,140,166 206,134,170
8 179,255,77 185,232,93 191,213,106 196,196,118 200,182,128 204,170,136 207,159,143 210,150,150 213,142,156 215,134,161 217,128,166
9 198,255,57 204,230,77 209,209,93 213,191,106 216,177,118 219,164,128 221,153,136 223,143,143 225,135,150 227,128,156 228,121,161
10 223,255,32 227,227,57 230,204,77 232,185,93 234,170,106 235,157,118 237,146,128 238,136,136 239,128,143 240,120,150 241,113,156
11 255,255,0 255,223,32 255,198,57 255,179,77 255,162,93 255,149,106 255,137,118 255,128,128 255,119,136 255,112,143 255,105,150
如下表9所示彩色纤维三维网格混色矩阵的颜色对照表。
p=9 1 2 3 4 5 6 7 8 9 10 11
1 113,255,142 121,242,148 128,230,153 134,219,158 139,209,162 144,200,166 149,191,170 153,184,173 157,177,177 161,170,179 164,164,182
2 120,255,135 128,241,142 134,228,148 140,217,153 146,206,158 151,197,162 155,188,166 159,181,170 163,173,173 167,167,177 170,161,179
3 128,255,128 135,240,135 142,227,142 148,215,148 153,204,153 158,194,158 162,185,162 166,177,166 170,170,170 173,163,173 177,157,177
4 136,255,119 143,239,128 150,225,135 156,213,142 161,201,148 166,191,153 170,182,158 174,174,162 177,166,166 181,159,170 184,153,173
5 146,255,109 153,238,119 159,223,128 165,210,135 170,198,142 174,188,148 179,179,153 182,170,158 185,162,162 188,155,166 191,149,170
6 157,255,98 164,237,109 170,221,119 175,207,128 180,195,135 184,184,142 188,174,148 191,166,153 194,158,158 197,151,162 200,144,166
7 170,255,85 177,235,98 182,219,109 187,204,119 191,191,128 195,180,135 198,170,142 201,161,148 204,153,153 206,146,158 209,139,162
8 185,255,70 191,234,85 196,216,98 200,200,109 204,187,119 207,175,128 210,165,135 213,156,142 215,148,148 217,140,153 219,134,158
9 204,255,51 209,232,70 213,213,85 216,196,98 219,182,109 221,170,119 223,159,128 225,150,135 227,142,142 228,134,148 230,128,153
10 227,255,28 230,230,51 232,209,70 234,191,85 235,177,98 237,164,109 238,153,119 239,143,128 240,135,135 241,128,142 242,121,148
11 255,255,0 255,227,28 255,204,51 255,185,70 255,170,85 255,157,98 255,146,109 255,136,119 255,128,128 255,120,135 255,113,142
如下表10所示彩色纤维三维网格混色矩阵的颜色对照表。
p=10 1 2 3 4 5 6 7 8 9 10 11
1 121,255,134 128,242,140 134,231,146 139,220,151 144,211,155 149,202,159 153,194,163 157,186,167 161,179,170 164,173,173 167,167,176
2 128,255,128 134,242,134 140,230,140 146,219,146 151,209,151 155,200,155 159,191,159 163,184,163 167,177,167 170,170,170 173,164,173
3 135,255,120 142,241,128 148,228,134 153,217,140 158,206,146 162,197,151 166,188,155 170,181,159 173,173,163 177,167,167 179,161,170
4 143,255,112 150,240,120 156,227,128 161,215,134 166,204,140 170,194,146 174,185,151 177,177,155 181,170,159 184,163,163 186,157,167
5 153,255,102 159,239,112 165,225,120 170,213,128 174,201,134 179,191,140 182,182,146 185,174,151 188,166,155 191,159,159 194,153,163
6 164,255,91 170,238,102 175,223,112 180,210,120 184,198,128 188,188,134 191,179,140 194,170,146 197,162,151 200,155,155 202,149,159
7 177,255,78 182,237,91 187,221,102 191,207,112 195,195,120 198,184,128 201,174,134 204,166,140 206,158,146 209,151,151 211,144,155
8 191,255,64 196,235,78 200,219,91 204,204,102 207,191,112 210,180,120 213,170,128 215,161,134 217,153,140 219,146,146 220,139,151
9 209,255,46 213,234,64 216,216,78 219,200,91 221,187,102 223,175,112 225,165,120 227,156,128 228,148,134 230,140,140 231,134,146
10 230,255,26 232,232,46 234,213,64 235,196,78 237,182,91 238,170,102 239,159,112 240,150,120 241,142,128 242,134,134 242,128,140
11 255,255,0 255,230,26 255,209,46 255,191,64 255,177,78 255,164,91 255,153,102 255,143,112 255,135,120 255,128,128 255,121,134
如下表11所示彩色纤维三维网格混色矩阵的颜色对照表。
p=11 1 2 3 4 5 6 7 8 9 10 11
1 128,255,128 134,243,134 139,232,139 144,222,144 149,213,149 153,204,153 157,196,157 161,189,161 164,182,164 167,176,167 170,170,170
2 134,255,121 140,242,128 146,231,134 151,220,139 155,211,144 159,202,149 163,194,153 167,186,157 170,179,161 173,173,164 176,167,167
3 142,255,113 148,242,121 153,230,128 158,219,134 162,209,139 166,200,144 170,191,149 173,184,153 177,177,157 179,170,161 182,164,164
4 150,255,105 156,241,113 161,228,121 166,217,128 170,206,134 174,197,139 177,188,144 181,181,149 184,173,153 186,167,157 189,161,161
5 159,255,96 165,240,105 170,227,113 174,215,121 179,204,128 182,194,134 185,185,139 188,177,144 191,170,149 194,163,153 196,157,157
6 170,255,85 175,239,96 180,225,105 184,213,113 188,201,121 191,191,128 194,182,134 197,174,139 200,166,144 202,159,149 204,153,153
7 182,255,73 187,238,85 191,223,96 195,210,105 198,198,113 201,188,121 204,179,128 206,170,134 209,162,139 211,155,144 213,149,149
8 196,255,59 200,237,73 204,221,85 207,207,96 210,195,105 213,184,113 215,174,121 217,166,128 219,158,134 220,151,139 222,144,144
9 213,255,43 216,235,59 219,219,73 221,204,85 223,191,96 225,180,105 227,170,113 228,161,121 230,153,128 231,146,134 232,139,139
10 232,255,23 234,234,43 235,216,59 237,200,73 238,187,85 239,175,96 240,165,105 241,156,113 242,148,121 242,140,128 243,134,134
11 255,255,0 255,232,23 255,213,43 255,196,59 255,182,73 255,170,85 255,159,96 255,150,105 255,142,113 255,134,121 255,128,128
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。

Claims (6)

  1. 一种彩色纤维三维混色空间网格模型及网格点阵列颜色矩阵的构建方法,其特征在于:针对指定三基色纤维α、β、γ,以各基色纤维质量分别对应三维坐标系中的各根坐标轴,实现三维混色空间网格模型网格点阵列模型的构建,包括如下步骤:
    步骤A.根据三基色纤维α、β、γ分别所对应的预设最大质量ω α、ω β、ω γ,确定各基色纤维最大质量分别所对应其所设坐标轴的位置,然后进入步骤B;
    步骤B.针对三维坐标系中原点与基色纤维α最大质量所对应其所设坐标轴位置之间的线段,执行m等分,即获得包含该线段两端顶点在内的m+1个点,且该线段上各点的质量
    Figure PCTCN2021082625-appb-100001
    i表示该线段上由三维坐标系中原点至基色纤维α最大质量所对应其所设坐标轴位置方向、各点的序号;针对三维坐标系中原点与基色纤维β最大质量所对应其所设坐标轴位置之间的线段,执行n等分,即获得包含该线段两端顶点在内的n+1个点,且该线段上各点的质量
    Figure PCTCN2021082625-appb-100002
    j表示该线段上由三维坐标系中原点至基色纤维β最大质量所对应其所设坐标轴位置方向、各点的序号;
    针对三维坐标系中原点与基色纤维γ最大质量所对应其所设坐标轴位置之间的线段,执行p等分,即获得包含该线段两端顶点在内的p+1个点,且该线段上各点的质量
    Figure PCTCN2021082625-appb-100003
    τ表示该线段上由三维坐标系中原点至基色纤维γ最大质量所对应其所设坐标轴位置方向、各点的序号;然后进入步骤C;
    步骤C.构建三基色纤维α、β、γ分别所对应混合比λ α(i,j,τ)、λ β(i,j,τ)、λ γ(i,j,τ)如下,然后进入步骤D;
    Figure PCTCN2021082625-appb-100004
    Figure PCTCN2021082625-appb-100005
    Figure PCTCN2021082625-appb-100006
    步骤D.构建三维混色空间网格模型所对应基于三基色纤维α、β、γ预设最大质量的立方体空间中网格点的质量模型如下,然后进入步骤E;
    ω ξ(i,j,τ)=[ω α*(i-1)/m+ω β*(j-1)/n+ω γ*(τ-1)/p];
    步骤E.构建三维混色空间网格模型所对应基于三基色纤维α、β、γ预设最大质量的立方体空间中网格点的质量模型矩阵如下,然后进入步骤F;
    Figure PCTCN2021082625-appb-100007
    且i=1,2,3,...,m+1;j=1,2,3,...,n+1;τ=1,2,3,...,p+1;
    步骤F.构建三维混色空间网格模型所对应基于三基色纤维α、β、γ预设最大质量的立方体空间中网格点的颜色值模型如下:
    Figure PCTCN2021082625-appb-100008
    即:
    Figure PCTCN2021082625-appb-100009
    然后进入步骤G;其中,R α、G α、B α表示基色纤维α所对应的RGB值,R β、G β、B β表示基色纤维β所对应的RGB值,R γ、G γ、B γ表示基色纤维γ所对应的RGB值;ξ i,j,τ表示三维坐标系中坐标(i,j,τ)位置所对应三基色纤维α、β、γ混合纱线的颜色值,R ξ(i,j,τ)、G ξ(i,j,τ)、B ξ(i,j,τ)表示三维坐标系中坐标(i,j,τ)位置所对应三基色纤维α、β、γ混合纱线的RGB值;
    步骤G.构建三维混色空间网格模型所对应基于三基色纤维α、β、γ预设最大质量的立方体空间中网格点的颜色值矩阵如下:
    Figure PCTCN2021082625-appb-100010
    且i=1,2,3,...,m+1;j=1,2,3,...,n+1;τ=1,2,3,...,p+1。
  2. 根据权利要求1所述一种彩色纤维三维混色空间网格模型及网格点阵列颜色矩阵的构建方法,其特征在于:基于步骤A至步骤G所获三维混色空间网格模型所对应基于三基色纤维α、β、γ预设最大质量的立方体空间中任意点的颜色值模型,基于基色纤维α对应三维坐标系中的X轴、基色纤维β对应三维坐标系中的Y轴、基色纤维γ对应三维坐标系中的Z轴,构建与X轴、Z轴所在面相垂直的(m+1)*(p+1)个1行(n+1)列的一维颜色线阵列如下:
    Figure PCTCN2021082625-appb-100011
    构建与Y轴、Z轴所在面相垂直的(n+1)*(p+1)个1行(m+1)列的一维颜色线阵列如下:
    Figure PCTCN2021082625-appb-100012
    构建与X轴、Y轴所在面相垂直的(m+1)*(n+1)个1行(p+1)列的一维颜色线阵列如下:
    Figure PCTCN2021082625-appb-100013
  3. 根据权利要求1所述一种彩色纤维三维混色空间网格模型及网格点阵列颜色矩阵的构建方法,其特征在于:基于步骤A至步骤G所获三维混色空间网格模型所对应基于三基色纤维α、β、γ预设最大质量的立方体空间中任意点的颜色值模型,基于基色纤维α对应三维坐标系中的X轴、基色纤维β对应三维坐标系中的Y轴、基色纤维γ对应三维坐标系中的Z轴,构建与X轴、Y轴所在面相平行的(p+1)个(m+1)行(n+1)列的二维颜色线阵列如下:
    Figure PCTCN2021082625-appb-100014
    构建与X轴、Z轴所在面相平行的(n+1)个(m+1)行(p+1)列的二维颜色线阵列如下:
    Figure PCTCN2021082625-appb-100015
    构建与Y轴、Z轴所在面相平行的(m+1)个(n+1)行(p+1)列的二维颜色线阵列如下:
    Figure PCTCN2021082625-appb-100016
  4. 根据权利要求1所述一种彩色纤维三维混色空间网格模型及网格点阵列颜色矩阵的构建方法,其特征在于:基于步骤A至步骤G所获三维混色空间网格模型所对应基于三基色纤维α、β、γ预设最大质量的立方体空间中任意点的颜色值模型,基于基色纤维α对应三维坐标系中的X轴、基色纤维β对应三维坐标系中的Y轴、基色纤维γ对应三维坐标系中的Z轴,构建(m+1)行(n+1)列(p+1)层的三维颜色线阵列如下:
    Figure PCTCN2021082625-appb-100017
  5. 一种针对权利要求1至4中任意一项所述一种彩色纤维三维混色空间网格模型及网格点阵列颜色矩阵的构建方法的应用,其特征在于:将所述三维混色空间网格模型所对应基于三基色纤维α、β、γ预设最大质量的立方体空间中任意点的颜色值,存储于数据库中,按如下方式,用于实现对目标颜色的分析;首选检测获得目标颜色所对应的RGB颜色检测数据,并在数据库中查找该RGB颜色检测数据所对应的网格点;然后在以该网格点为原点、周围预设半径范围,通过比对的方式,获得目标颜色所对应的网格点;最后由该网格点所对应的RGB颜色数据,构成目标颜色所对应的RGB颜色数据。
  6. 根据权利要求5所述一种针对彩色纤维三维混色空间网格模型及网格点阵列颜色矩阵的构建方法的应用,其特征在于:采用检色仪针对目标颜色进行检测,获得目标颜色所对应的RGB颜色检测数据。
PCT/CN2021/082625 2020-11-30 2021-03-24 一种彩色纤维三维混色空间网格模型及网格点阵列颜色矩阵的构建方法及应用 WO2022110585A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011373563.7A CN112348961B (zh) 2020-11-30 2020-11-30 彩纤三维混色空间网格模型与网格点阵列色谱构建及应用
CN202011373563.7 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022110585A1 true WO2022110585A1 (zh) 2022-06-02

Family

ID=74365191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082625 WO2022110585A1 (zh) 2020-11-30 2021-03-24 一种彩色纤维三维混色空间网格模型及网格点阵列颜色矩阵的构建方法及应用

Country Status (2)

Country Link
CN (1) CN112348961B (zh)
WO (1) WO2022110585A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112348961B (zh) * 2020-11-30 2021-08-10 江南大学 彩纤三维混色空间网格模型与网格点阵列色谱构建及应用
CN113536540A (zh) * 2021-06-16 2021-10-22 江南大学 多元混色纤维体系构建高维离散色谱及可视化方法
CN114792363B (zh) * 2022-04-19 2023-07-11 江南大学 三原色纤维构建的全色域网格化混色模型构建方法及彩色纺纱方法
CN114820848B (zh) * 2022-04-19 2023-07-11 江南大学 七基色纤维全色域混色模式及圆环状网格化配色模型构建方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10336467A (ja) * 1997-05-29 1998-12-18 Fuji Photo Film Co Ltd 色空間の中間表現方法
US6236406B1 (en) * 1998-10-21 2001-05-22 Sony Corporation Three-dimensional color space display
CN102496166A (zh) * 2011-11-28 2012-06-13 江南大学 基于图像处理的彩色纤维分色的方法
CN107277294A (zh) * 2017-06-20 2017-10-20 杭州宏华数码科技股份有限公司 纺织数码印花基于分区的多基色颜色混色模型及应用方法
CN110490981A (zh) * 2019-08-14 2019-11-22 愉悦家纺有限公司 一种八元基色hsb全色域颜色空间网格化模型及其离散色谱构建方法
CN112348961A (zh) * 2020-11-30 2021-02-09 江南大学 一种彩色纤维三维混色空间网格模型及网格点阵列颜色矩阵的构建方法及应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042912A (ja) * 2009-08-19 2011-03-03 Matsui Shikiso Chem Co Ltd 着色繊維の製造方法
CN101853484A (zh) * 2010-05-21 2010-10-06 天津大学 一种三维网格非嵌入式健壮水印的构造方法和检测方法
CN103729472A (zh) * 2014-01-21 2014-04-16 成都齐力丝绸有限公司 一种织锦颜色组织库的创建方法及其应用
CN106407524B (zh) * 2016-09-05 2019-11-08 东华大学 一种纺纱质量的定量预测方法
CN107576738A (zh) * 2017-09-08 2018-01-12 华南理工大学 一种顶空气相色谱法检测纳米纤维素中羧基含量的方法
CN108034780B (zh) * 2017-12-29 2020-03-13 齐鲁工业大学 助鞣助染剂、其制备方法及其应用
CN109615666A (zh) * 2018-11-12 2019-04-12 北京中科慧眼科技有限公司 一种三维颜色空间数据转换方法与装置
CN110055647B (zh) * 2019-05-06 2024-04-16 江南大学 一种反向双层包缠结构负泊松比复合纱线及其四通道空心锭纺纱装置和控制方法
CN110349225B (zh) * 2019-07-12 2023-02-28 四川易利数字城市科技有限公司 一种bim模型外部轮廓快速提取方法
CN111948096A (zh) * 2020-08-14 2020-11-17 宁波升一检测技术服务有限公司 一种涂层织物成分检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10336467A (ja) * 1997-05-29 1998-12-18 Fuji Photo Film Co Ltd 色空間の中間表現方法
US6236406B1 (en) * 1998-10-21 2001-05-22 Sony Corporation Three-dimensional color space display
CN102496166A (zh) * 2011-11-28 2012-06-13 江南大学 基于图像处理的彩色纤维分色的方法
CN107277294A (zh) * 2017-06-20 2017-10-20 杭州宏华数码科技股份有限公司 纺织数码印花基于分区的多基色颜色混色模型及应用方法
CN110490981A (zh) * 2019-08-14 2019-11-22 愉悦家纺有限公司 一种八元基色hsb全色域颜色空间网格化模型及其离散色谱构建方法
CN112348961A (zh) * 2020-11-30 2021-02-09 江南大学 一种彩色纤维三维混色空间网格模型及网格点阵列颜色矩阵的构建方法及应用

Also Published As

Publication number Publication date
CN112348961A (zh) 2021-02-09
CN112348961B (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2022110583A1 (zh) 一种彩色纤维多维混色空间网格模型及网格点阵列颜色矩阵构建方法及应用
WO2022110585A1 (zh) 一种彩色纤维三维混色空间网格模型及网格点阵列颜色矩阵的构建方法及应用
WO2022110588A1 (zh) 一种彩色纤维四维混色空间网格模型及网格点阵列颜色矩阵的构建方法及应用
WO2022110587A1 (zh) 一种彩色纤维六维混色空间网格模型及其网格点阵列颜色矩阵构建方法及应用
WO2022110589A1 (zh) 一种彩色纤维二维混色空间网格模型及其网格点阵列颜色矩阵构建方法及应用
WO2022110584A1 (zh) 一种彩色纤维五维混色空间网格模型及其网格点阵列颜色矩阵构建方法及应用
CN110490981B (zh) 八基色hsb颜色空间的网格化模型及其离散色谱构建方法
US7136074B2 (en) Method and system of improved color selection
CN112733079B (zh) 一种构建多维度叠加混色模型与渐变色谱矩阵的方法
CN113538691B (zh) Hsi网格化模型构建及其等明度等彩度等色相色谱的可视化方法
CN114792363B (zh) 三原色纤维构建的全色域网格化混色模型构建方法及彩色纺纱方法
US6717674B2 (en) Color chart, chart image data recording medium, profile producing apparatus, profile producing method, and profile producing program storage medium
CN113536540A (zh) 多元混色纤维体系构建高维离散色谱及可视化方法
CN107146241A (zh) 一种基于差分进化算法和TrimmedICP算法的点云配准方法
CN115115717B (zh) 基于梯度化灰度值构建的七基色聚酯三维网格化混配三维色立体及全色域调配色方法
CN112785664B (zh) 多维度耦合混色模型与渐变色谱矩阵算法构建应用
CN107067444A (zh) 一种优化的光谱色域映射方法
US6417852B2 (en) Method of visualization and graphical analysis for multidimensional functions
JPH0844883A (ja) 自動レイアウト装置
CN115491909B (zh) 基于九基色染液网格化混配的色立体及其等明度色谱构建
CN113538690B (zh) Hsv网格化模型构建及色谱可视化方法
CN113112555B (zh) 一种网格化cmy颜色空间的网格点阵列模型构建方法及应用
CN115115716B (zh) 四基色聚酯网格化混配构建的色立体及其全色域数字化方法
CN113112604A (zh) 一种网格化rgb颜色空间的网格点阵列模型构建方法及应用
CN115146489A (zh) 七基色染液网格化混配构建hsi色立体及其色谱获取方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896103

Country of ref document: EP

Kind code of ref document: A1