WO2019174270A1 - 显示设备 - Google Patents

显示设备 Download PDF

Info

Publication number
WO2019174270A1
WO2019174270A1 PCT/CN2018/113874 CN2018113874W WO2019174270A1 WO 2019174270 A1 WO2019174270 A1 WO 2019174270A1 CN 2018113874 W CN2018113874 W CN 2018113874W WO 2019174270 A1 WO2019174270 A1 WO 2019174270A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
color
control signal
laser
image
Prior art date
Application number
PCT/CN2018/113874
Other languages
English (en)
French (fr)
Inventor
余新
胡飞
郭祖强
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Priority to US16/981,386 priority Critical patent/US11343476B2/en
Publication of WO2019174270A1 publication Critical patent/WO2019174270A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • G02B27/1046Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with transmissive spatial light modulators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/06Colour photography, other than mere exposure or projection of a colour film by additive-colour projection apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3158Modulator illumination systems for controlling the spectrum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3182Colour adjustment, e.g. white balance, shading or gamut
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a display device.
  • the gamut generally refers to the spectral trajectory of visible light that can be seen by the human eye in nature.
  • the area of the region formed by the visible spectral trajectory is the maximum gamut area that the human eye can see visible light.
  • projectors, displays, etc. which are composed of different display devices, use R, G, and B three primary color display devices to perform color reproduction and reproduction on images.
  • the triangle formed by the three primary colors R, G, and B of the display device is called the color gamut that the device can display.
  • the present invention provides a display device that can realize a wider color gamut.
  • a display device comprising:
  • a light source device for emitting first light and second light, wherein the first light is used to modulate an image of a first color gamut, and the second light is used to modulate the first color together with the first light
  • the first light includes m color lights
  • the second light includes n color lights of m color lights, wherein m is greater than or equal to n, n is a natural number greater than or equal to 1, m is a natural number greater than or equal to 2;
  • An image data processing module configured to receive original image data of an image to be displayed, the original image data of the image to be displayed is image data based on a second color gamut range and includes original control signal values of m colors of each pixel,
  • the second color gamut range covers the first color gamut range and has a portion exceeding the first color gamut range
  • the image data processing module is further configured to use each pixel of the original image data of the image to be displayed
  • the original control signal values of the m colors are mapped to the correction control signal values of the m+n colors to obtain corrected image data of the image to be displayed, in which the m+n colors of the pixels are corrected.
  • the control signal value includes m+n correction control signal values respectively corresponding to the m color lights of the first light and the n color lights corresponding to the second light;
  • a light modulating device comprising: a first spatial light modulator, a second spatial light modulator, and a third spatial light modulator, wherein the m color lights of the first light and the n color lights of the second light are divided a light of a first wavelength range having a different wavelength range, light of a second wavelength range, and light of a third wavelength range, wherein the first spatial light modulator modulates according to a correction control signal value corresponding to the light of the first wavelength range
  • the light of the first wavelength range generates first image light
  • the second spatial light modulator modulates light of the second wavelength range according to a value of a correction control signal corresponding to light of the second wavelength range to generate a second image Light
  • the third spatial light modulator modulates the light of the third wavelength range according to a correction control signal value corresponding to the light of the third wavelength range to generate a third image light.
  • the display device of the present invention since the second light is added, and the original image data of the image is also converted into m correction control signals respectively corresponding to the first light and the second light a value and n correction control signal values, and then modulating the first light and the second light according to the m+n correction control signal values to obtain image light, thereby realizing display of image data of a wide color gamut Moreover, the accurate restoration of the displayed image can be ensured, and the color gamut of the display device is wider and the display effect is better.
  • three spatial light modulators can modulate light of different wavelength ranges, and three spatial light modulators can work simultaneously, thereby reducing image modulation time, and can be realized by wavelength splitting, which also makes the display device more practical. .
  • Figure 1 is a gamut range comparison diagram of several display devices employing different light sources.
  • FIG. 2 is a schematic view showing the structure of a light source of a display device.
  • FIG 3 is a schematic view showing the structure of a light source of another display device.
  • 4a and 4b are schematic diagrams showing the color gamut range achieved by the display device shown in FIG. 2 and FIG. 3 by adding different ratios of pure color lasers.
  • 5a and 5b are schematic diagrams of color gamut ranges achieved by a display device employing dynamic color gamut.
  • FIG. 6 is a block schematic diagram of a display device in accordance with a preferred embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a color gamut range of the display device shown in FIG. 6.
  • Figure 8 is a timing diagram of modulation of three spatial light modulators of the display device of Figure 6.
  • FIG. 9 is a partial schematic structural view of the display device shown in FIG. 6.
  • FIG. 9 is a partial schematic structural view of the display device shown in FIG. 6.
  • Fig. 10 is a plan view showing the planar structure of the light combining and combining element shown in Fig. 9.
  • Fig. 11 is a view showing the optical path of the optical splitting unit shown in Fig. 9 during operation.
  • Fig. 12 is a view showing the configuration of the wavelength conversion device shown in Fig. 9.
  • Figure 13 is a schematic diagram showing the technical color gamut and color volume expansion of the display device shown in Figure 6.
  • the light sources of display devices such as laser projectors are generally classified into three categories, one is to excite phosphors of different colors by a short-wavelength laser to generate primary colors of red, green and blue primary colors.
  • the other type directly uses red, green and blue three-color lasers as the three primary color light sources.
  • the third type is a combination of the first two types.
  • the blue laser light source excites the phosphor as a short-wavelength excitation source to generate red-green primary light, and itself acts as a blue primary light.
  • the gallium nitride-based semiconductor blue laser has the characteristics of high efficiency, long life, and stable operation
  • the scheme of exciting the fluorescent pink wheel by using the blue semiconductor laser has long life and high efficiency. Stable equipment and low cost.
  • the color gamut of this scheme is relatively narrow.
  • the display device generally using this technology can cover the complete sRGB color gamut, and can enhance the color gamut to reach the DCI-P3 color gamut by some enhancement processing, such as adding a narrowband optical filter to remove the yellow light spectrum in the green and red light. .
  • a display device using a pure RGB laser has a very wide color gamut because of its excellent monochromaticity.
  • the display device using RGB laser (such as projection system) can easily reach the REC2020 color gamut standard. See Figure 1 for the color gamut comparison of the above several display devices.
  • RGB laser display devices such as projectors
  • RGB laser display devices also have a number of disadvantages.
  • the first is speckle.
  • the speckle is due to the coherence of the laser, causing the light reflected on the display plane to interfere due to the phase difference caused by the undulation of the plane, resulting in unevenness in the luminance distribution of the display screen.
  • many inventions have attempted to solve the problem of laser speckle, the results are not satisfactory.
  • the second is the high cost of RGB laser display devices. This is because the red and green lasers in RGB laser display devices are still immature under current technology. The efficiency of the semiconductor green laser can only be achieved below 20%, which is much lower than the blue laser of the gallium nitride substrate and the red laser of the ternary substrate, and the cost is high.
  • the efficiency of the red laser is similar to that of the blue laser, the temperature stability of the red laser is poor, and the efficiency is significantly reduced not only with the increase of temperature, but also the center wavelength is also drifted. These two points make the RGB laser display device appear color cast with temperature changes. This requires adding a thermostat to the red laser to stabilize the operating state of the red laser, which also means that a high-power cooling device is required to ensure the stable operating temperature of the red laser, thereby greatly increasing the cost of the RGB laser display device.
  • a basic laser-excited phosphor wheel source 200 is shown in FIG. 2, and the short-wavelength visible light emitted by the light source 210 excites the phosphor on the color wheel 220 to produce a time-sequential primary or white light. Due to the wide spectrum of fluorescence, the gamut coverage based on this system is relatively narrow.
  • An improved method of enhancing the color gamut is shown in FIG.
  • the short-wavelength visible light emitted by the excitation light source 310 is converted into primary color light by the color wheel 320 and filtered by the sync filter device 330 to obtain a narrow-band color pure higher primary color light to expand the color gamut of the laser fluorescence.
  • the filter device introduces additional optical power loss, which reduces the efficiency of the display device.
  • the color gamut of the light source can also be extended by incorporating a solid red and green laser into the laser fluorescence.
  • the incorporation of a solid color laser can extend the color gamut of the laser fluorescence, there is no modulation for the ratio of the display content to the light source, and the enhanced color gamut range is limited.
  • a display device using a dynamic color gamut that dynamically adjusts the brightness of laser light and fluorescence by analyzing an image can also increase system efficiency. Since the picture always has a certain brightness, and the fluorescence and laser are combined in front of the spatial light modulator to form a three-primary system, the blue primary color is from the blue laser, and the green primary color is from the green fluorescent and green laser. The ratio of the dynamic control signal to the combined light, the red primary color comes from the proportional combination of the red and red lasers. Since the maximum brightness of the picture is usually not zero, and the intensity of the fluorescence is set according to the maximum brightness of the picture, and the bright field information of the picture usually has a large amount of white light components, the method of dynamic color gamut cannot be fluorescent.
  • FIG. 5 is a schematic diagram of the color gamut range that can be achieved by a display device using dynamic color gamut.
  • 5a is a schematic diagram of the color gamut range that can be achieved by fluorescence incorporation of 20% red laser and green laser.
  • Figure 5b is a schematic diagram of the color gamut range that can be achieved by fluorescence incorporation of 40% red laser and green laser. See Figure 5a and Figure 5b is more difficult to fully meet the gamut range of the Rec.2020 standard.
  • FIG. 6 is a block diagram of a display device 600 according to a preferred embodiment of the present invention.
  • the display device 600 includes a light source device 610, an image data processing module 620, a light modulation device 630, and an image synthesis device 640.
  • the light source device 610 is configured to emit first light and second light, the first light is used to modulate an image of a first color gamut range F1, and the second light is used to co-modulate the first light An image other than the first color gamut range F1, the first light includes m color lights, and the second light includes n color lights of m color lights, and m is greater than or equal to n.
  • the first light may also include fluorescence
  • m may be 3
  • the first light includes three primary colors of light, such as red, green, and blue light, wherein the first light, the blue light It may be a laser, and the green light and the red light are both fluorescent, and the fluorescence may be generated by a blue laser excitation fluorescent material such as a red fluorescent material and a green fluorescent material; or a yellow fluorescent material.
  • the second light may include red light and green light, and the red light and the green light may both be lasers, that is, n may be 2, and the two colors of the second light may be red laser and Green laser.
  • the gamut of the first light can be displayed in the first gamut range F1.
  • the first gamut range F1 can be a DCI gamut range, such as a color.
  • the domain range is DCI-P3. Therefore, if the image to be displayed is an image of the first color gamut range F1, the second light may be 0, and only the first light is modulated to display the image of the first color gamut range F1. .
  • the laser of the second light can exhibit a wide color gamut
  • the red laser in the first light and the red-green laser in the second light may display an image in which the color gamut is located on the boundary line of the second color gamut F2 (the red and green fluorescence in the first light may be 0 at this time)
  • the second color gamut range F2 covers the first color gamut range F1 and has a portion that exceeds the first color gamut range F1
  • the second color gamut range F2 may be a REC gamut range, such as a color gamut range REC.2020; further, an image of a boundary line of the color gamut of the first color gamut range F1 and the second color gamut range F2 may be
  • the image data processing module 620 is configured to receive original image data of an image to be displayed, the original image data of the image to be displayed is based on the image data of the second color gamut range F2 and includes m colors of each pixel.
  • the original control signal value the image data processing module 620 is further configured to map the original control signal values of the m colors of the pixels of the original image data of the image to be displayed to the correction control signal values of the m+n colors.
  • the corrected image data of the image to be displayed is obtained.
  • the correction control signal values of the m+n colors of each pixel include m correction control signal values corresponding to the first light and n correction control signals corresponding to the second light. value.
  • the original image data may adopt different encoding formats such as RGB encoding, YUV encoding, etc., wherein different encoding formats may correspond to different color spaces.
  • the original image data is mainly converted into The xyY gamut coordinates are calculated using the tristimulus values X, Y, Z of the color space defined by the CIE 1937 standard.
  • CIE 1937 defines a absolute color and color that can be resolved by any human eye in a three-dimensional vector.
  • Brightness, which does not change with the transformation of the color gamut, so the obtained tristimulus values X, Y, Z of the pixel and the first correction control signal value according to the pixel can be calculated according to the original control signal value of the pixel
  • the principle that the third stimulation value X, Y, and Z of the pixel obtained by the second correction control signal value are equal, and the corresponding first correction control signal value and the second correction control signal are calculated according to the original control signal value of each pixel. value.
  • the original control signal values of the m colors of each pixel are R, G, and B
  • the m correction control signal values are r, g, and b
  • the n correction control signal values are rl, Gl, the tristimulus value X, Y, Z of the pixel obtained according to the original control signal values R, G, B of the pixel and the correction control signal values r, g, b and rl, gl according to the pixel
  • the image data processing module maps the original control signal values R, G, and B of the respective colors of the original image data of the image to m
  • the correction control signal values r, g, b, rl, gl of +n colors are used to obtain corrected image data of the image to be displayed.
  • the values of r, g, b, rl, and gl when rl 2 + gl 2 are the smallest are selected as the correction control signal values r, g, b, rl, gl, thereby obtaining The most suitable r, g, b, rl, gl values.
  • the rl 2 + gl 2 is the smallest, it can be ensured that the rl and gl corresponding to the second light are small, so that the gamut of the image is displayed using the least second light, and the image is not accurately restored. It is also possible to reduce the use of the second light and reduce the cost of the light source.
  • the original image data when the original image data is in the RGB encoding format, how to obtain the corresponding correction control signal values r, g, b, rl according to the original control signal values of the m colors of each pixel are R, G, and B. And gl for detailed explanation.
  • the original image data when the original image data is image data of an RGB encoding format, when the m colors are red, green, and blue, the original control signal values R, G, and B are respectively red original grayscale values R, green.
  • An original grayscale value G and a blue original grayscale value B wherein the first correction control signal value is r, g, and b, respectively, a red first corrected grayscale value r corresponding to the red fluorescence of the first light, corresponding to the first The green fluorescent green first corrected grayscale value g of the light, and the blue first corrected grayscale value b of the blue laser corresponding to the first light, the second corrected control signal values rl and gl are respectively corresponding to the second The red second corrected gray scale value rl of the red laser light of the light, and the green second corrected gray scale value gl of the green laser light corresponding to the second light.
  • the original grayscale values R, G, B and the corrected grayscale values r, g, b, rl, and gl may all adopt a binary encoding format, such as an N-bit binary encoding.
  • the gray level of the display device is 256
  • the original grayscale values R, G, and B and the corrected grayscale values r, g, b, rl, and gl are both In the range of [0 to 255], where the grayscale value is 0, the color is completely turned off, and the grayscale value of 255 indicates that the color is displayed with the highest brightness.
  • the RGB three primary colors are also different according to the gamut range of the original image data.
  • the original image data is image data of the second color gamut range F2
  • the colors and brightness of the three primary colors r 0 , g 0 , b 0 of the second color gamut range F2 are set in CIE 1937 color.
  • the xyY gamut coordinates of the space satisfy the following formula 1.
  • the original image data, the color gamut of the second F2 is known
  • the r 0, g 0, b xyY color space coordinate 0 are also known.
  • the second color gamut range is the REC 2020 color gamut range
  • the xyY color gamut coordinates of the r 0 , g 0 , and b 0 in the CIE 1937 color space are respectively (0.708, 0.292, 0.2627), (0.17, 0.797). , 0.6780), (0.131, 0.046, 0.0593).
  • the tristimulus value (X) , Y, Z) satisfy the following formula 2.
  • M is the gray level of the display device.
  • the matrix C satisfies the following formula 3.
  • the display device of the present invention uses a five-primary color system of m color light of the first light and n color lights of the second light
  • the five primary colors r 0 , g 0 , b 0 , rl 0 , and gl 0 represents color and luminance of red fluorescence in the first light, green fluorescence in the first light, blue laser in the first light, red laser in the second light, and green laser in the second light, respectively.
  • the base colors r 0 , g 0 , b 0 , rl 0 , and gl 0 satisfy the following formula 4 in the xyY color gamut coordinates in the CIE 1937 color space.
  • any color brightness in the CIE space may be formed by combining the five primary colors of light according to the brightness ratio, and the five primary colors r 0 , g 0 , b 0 , rl 0 , and gl 0 may also be It is known to be determined according to the first light and the second light emitted by the light source device 610.
  • the second corrected gray scale values rl, gl are calculated by the principle that the tristimulus values X, Y, and Z of the pixels are equal, and the corrected gray scale values r, g, b, rl, and gl satisfy the following formula 5.
  • the conversion matrix C' satisfies the following Formula 6.
  • the conversion matrix C' can also be obtained according to the five primary colors r 0 , g 0 , b 0 , rl 0 , and gl 0 , and therefore, according to In the formula 5, the corrected grayscale values r, g, b, rl, gl actually have an infinite number of solutions.
  • an additional limit needs to be added to solve the corrected gray scale values r, g, b, rl, gl.
  • the brightness of two of the gray scale values r, g, b, rl, and gl may be randomly specified, and the values of the other three quantities are obtained. It should be noted that the values of the five control signals are between 0 and 255. The two randomly selected values may cause the remaining three values to be out of the range of values, so the method of random selection is not the most A preferred embodiment.
  • the sum of the squares of the luminances of the red and green lasers can be minimized to the minimum rl 2 + gl 2 , that is, min(rl 2 + gl 2 ).
  • a function f(rl, gl) is defined, wherein the function f(rl, gl) satisfies the following formula 11.
  • the partial differentiation of the r, g, b can be made.
  • Minimal that is, the partial differential of r, g, b
  • the following formula 12 is satisfied.
  • Equation 13 By rewriting the matrix in Equation 10, the following Equation 13 can be obtained.
  • the formula 12 can be rewritten as the following formula 14.
  • Equation 13 is obtained by matrix rewriting, since the parameters A and B can be calculated by the gamut coordinates xyZ of the five primary colors r 0 , g 0 , b 0 , rl 0 , and gl 0 of formula 4 and the tristimulus value XYZ of the formula 2, Therefore, the parameter T and its parameters t11, t12, t13, t14, t21, t22, t23, t24 can be known, and the parameter numbers t11, t12, t13, t14, t21, t22, t23, t24 are further substituted into the formula 15 and the formula.
  • the values of the parameters D and d can be obtained, thereby obtaining the first corrected gray scale values r, g, b, and then the values of r, g, b are brought into the formula 7 to obtain the second corrected gray scale values rl and gl. Value.
  • the grayscale value of the five primary colors may exceed the range of values, and a simple truncation may be performed. Specifically, the grayscale value exceeding M is replaced by M. Grayscale values below 0 are replaced by zeros.
  • the image data processing module 620 converts the original control signal values R, G, and B of the m colors of each pixel into corresponding correction control signal values r,
  • the corrected image data is obtained by g, b, rl, gl, and the image data processing module 620 also supplies the corrected image data to the light modulating device 630.
  • the light modulating device 630 is configured to receive the corrected image data, modulate the first light and the first light according to m+n correction control signal values r, g, b, rl, gl of each pixel of the corrected image data. Two light obtains image light.
  • the light modulating device 630 includes a first spatial light modulator 631, a second spatial light modulator 632, and a third spatial light modulator 633.
  • the m color lights of the first light and the n color lights of the second light are divided into light of a first wavelength range, light of a second wavelength range, and light of a third wavelength range of different wavelength ranges.
  • the first wavelength range may be a wavelength range of red light, such as 620-750 nm.
  • the second wavelength range may be a wavelength range of green light, such as 495-570 nm.
  • the third wavelength range may be a wavelength range of blue light, such as 435 nm to 495 nm.
  • the first spatial light modulator 631 modulates light of the first wavelength range (such as red light) according to a correction control signal value (such as r, rl) corresponding to the light of the first wavelength range to generate first image light
  • the second spatial light modulator 632 modulates light of the second wavelength range (such as green light) according to a correction control signal value (eg, g, gl) corresponding to the light of the second wavelength range to generate second image light
  • the third spatial light modulator 633 modulates the light of the third wavelength range (such as blue light) according to a correction control signal value (such as b) corresponding to the light of the third wavelength range to generate a third image light.
  • the first image light, the second image light, and the third image light generated by the light modulation device 630 may be synthesized via the image synthesis device 640 to display the image.
  • the first spatial light modulator 631 and the second spatial light modulator 632 can be a DMD spatial light modulator, a Lcos spatial light modulator, an LCD spatial light modulator, or the like.
  • the m may be 3, the n may be 2, the first light includes first color light, second color light, and third color light, and the second light includes first Color light and second color light, as described above, the correction control signal value includes a correction control signal value r corresponding to the first color light of the first light, and a second color light corresponding to the first light a correction control signal value g, a control signal value b corresponding to the third color light of the first light, a correction control signal value rl corresponding to the first color light of the second light, and a corresponding to the second light a second color light correction control signal value gl, the first spatial light modulator 631 configured to modulate the first light of the first light according to the correction control signal value r corresponding to the first color light of the first light The color light, and the first color light of the second light is modulated according to a correction control signal value rl corresponding to the first color light of the second light to generate the first image light.
  • the correction control signal value includes a correction control signal value
  • the second spatial light modulator 632 is configured to modulate the second color light of the first light according to the correction control signal value g corresponding to the second color light of the first light, according to the corresponding The correction control signal value gl of the second color light of the two lights modulates the second color light of the second light.
  • the third spatial light modulator 633 is configured to modulate the third color light of the first light according to the correction control signal value b corresponding to the third color light of the first light to generate the second image light.
  • the first color light, the second color light, and the third color light may be red light, green light, and blue light in sequence, and the first color light, the second color light, and the third color of the first light.
  • the lights are red, green and blue.
  • the first color light and the second color light of the second light are respectively a red laser light and a green laser light.
  • FIG. 8 is a timing chart of modulation of three spatial light modulators 631, 632, and 633 of the display device 600 of FIG.
  • the modulation time T1 of the image is divided into a first time period t1 and a second time period t2, and the first spatial light modulator 631 modulates the first color light of the second light in the first time period t1 and Modulating the first color light of the first light in the second time period t2, the second spatial light modulator 631 modulating the second color light of the second light in the first time period t1 and The second time period t2 modulates the first color light of the first light, and the third spatial light modulator 633 modulates the third color light of the first light at a modulation time T1 of the image.
  • the first time period t1 is smaller than the second time period t2.
  • FIG. 9 is a schematic diagram showing the specific structure of the light source device 610, the light modulating device 630, and the image synthesizing device 640 of the display device 600 shown in FIG.
  • the light source device 610 includes a first light source 611, a second light source 612, a first beam splitting element 618a, a second beam splitting component 618b, a first light combining component 617a, and a second Light element 617b and beam splitting light element 617c.
  • the first beam splitting element 618a, the second beam splitting component 618b, the first light combining component 617a, the second light combining component 617b, and the beam splitting light combining component 617c may all be wavelength splitting/combining components, such as a wavelength splitting/light combining film. sheet.
  • the first light source 611 is configured to emit the first light
  • the second light source 612 is used to emit the second light
  • the first light source 611 includes an excitation light source 613 and a wavelength conversion device 614
  • the excitation light source 613 emits excitation light
  • the wavelength conversion device 614 has a fluorescent material and is configured to receive the excitation light and emit the first light
  • the first light includes fluorescence
  • the second light source 612 includes a laser light source
  • the second light includes a laser.
  • the excitation light source 613 is a laser light source, the excitation light is a blue laser light, and the wavelength conversion device 614 is configured to receive the excitation light and convert a part of the excitation light into the fluorescence, and Another portion of the excitation light and the fluorescence as the first light, the fluorescence includes red light and green light;
  • the second light source 612 includes a first laser light source 615 and a second laser light source 616, the second The light includes a first laser and a second laser, the first laser being a red laser and the second laser being a green laser or the first laser being a green laser and the second laser being a red laser.
  • the first light combining element 617a combines excitation light emitted by the excitation light source with one of the red laser light and the green laser light
  • the second light combining element 617b is configured to use the first light combining element 617b
  • the light emitted from the element 617a is combined with the other of the red laser light and the green laser light, and the combined excitation light, the red laser light, and the green laser light are guided to the wavelength via the light splitting light combining element 617c. Conversion device.
  • the first beam splitting element 617c receives the first light and the second light emitted by the second light combining element 617b and the light of the first wavelength range and the second and third wavelength ranges Light splitting, the light of the first wavelength range is directed to the first spatial light modulator 631, and the light of the second and third wavelength ranges is directed to the second beam splitting element 618b, the second The light splitting element 618b receives the light of the second and third wavelength ranges emitted by the first light splitting element 618a and splits the light of the second and third wavelength ranges, and the light of the second wavelength range is guided to The second spatial light modulator 632 directs light of the third wavelength range to the third spatial light modulator 633.
  • FIG. 10 is a schematic plan view of the light splitting and light combining element 617c
  • FIG. 11 is a schematic diagram of the optical path when the light splitting and light combining element 617c is in operation
  • the spectroscopic light combining element 617c includes a first region 617d and a second region 617e.
  • the first region 617d receives the excitation light, the first laser light, and the second laser light emitted by the second light combining element 617b, and transmits the excitation light, the first laser light, and the second laser light to Wavelength conversion device 614.
  • the first region 617d is located at the center of the second region 617e.
  • a lens may be disposed between the wavelength conversion device 614 and the beam splitting unit for collimating light emitted by the wavelength conversion device 614.
  • the wavelength conversion device 614 includes a fluorescent region 614a having a fluorescent material and a scattering region 614b, the fluorescent region 614a and the scattering region 614b are arranged in a circumferential direction, the scattering region receiving the excitation light in a first time period t1,
  • the red laser and the green laser emit and scatter the excitation light
  • the red laser and the green laser and the fluorescent region 614a receives the excitation light and emits the excitation light during a second time period t2 a first portion of the light is converted into the fluorescence and emits a second portion of the excitation light and the fluorescence
  • the excitation light of the first time period t1 and the second portion of light of the second time period are collectively The third color of the first light.
  • the time that the wavelength conversion device 614 rotates one week is the modulation time T1 of the picture.
  • the excitation light source 613, the first laser light source 615, and the second laser light source 616 are turned on.
  • the excitation light, the first laser and the second laser are guided to the scattering region 614b, and the scattering region 614b reflects the excitation light, the first laser, and the second laser to the a second region 617e that reflects the excitation light, the first laser, and the second laser light to the first beam splitting element 618a, the first beam splitting element 618a to the excitation light
  • the first and second lasers are split to direct the first laser light to the first spatial light modulator 631 via the guiding element 618c and to direct the second laser light and the excitation light to the Second beam splitting element 618b.
  • the second beam splitting element 618b further splits the second laser and excitation light, and supplies the second laser light to the second spatial light modulator 632, and provides the excitation light via a guiding
  • the excitation light source 613 is turned on, the first laser light source 615 and the second laser light source 616 are turned on, and the first laser light source 615 and the second laser light source 616 are turned off, Excitation light is directed to the fluorescent region 614b, which generates fluorescence according to a portion of the excitation light and provides the fluorescence and another portion of the excitation light to the first beam splitting element 618a via the beam splitting light element 617c,
  • the first beam splitting element 618a splits the excitation light and the fluorescence to direct a first color light of the fluorescence to the first spatial light modulator 631 via a guiding element 618c and to excite the excitation Light and a second color of light in the fluorescence are directed to the second beam splitting element.
  • the second beam splitting element 618b further splits the excitation light and the second color light of the fluorescence, and supplies the second color light of the fluorescence to the second spatial light modulator 632, and The excitation light is provided to the third spatial light modulator 633 via a guiding element 618c.
  • the display device 600 of the present invention since the second light is added, the original image data of the image is also converted into m+n corresponding to the first light and the second light, respectively. Correcting the control signal value, and respectively modulating the first light and the second light according to the m+n second correction control signal values to obtain the first image light and the second image light, thereby realizing a wide color gamut
  • the display of the image data, and the accurate restoration of the displayed image can be ensured, and the color gamut of the display device 600 is wider and the display effect is better.
  • three spatial light modulators can modulate light of different wavelength ranges, and three spatial light modulators can work simultaneously, thereby reducing image modulation time, and can be realized by wavelength splitting, which also makes the display device more practical. .
  • FIG. 13 is a schematic diagram of the technical color gamut and color volume expansion of the display device shown in FIG. As shown in FIG.
  • the color gamut can be extended to the range of Rec. 2020, wherein the peripheral shadow area shown in FIG. 13 is an extended color gamut range, so The display device 600 and the display device using the display method have better display effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Projection Apparatus (AREA)

Abstract

一种显示设备包括光源装置、图像数据处理模块、光调制装置及图像合成装置。光源装置发出第一光与第二光。图像数据处理模块接收一幅待显示图像的原始图像数据,该幅待显示图像的原始图像数据是基于第二色域范围的图像数据且包括各像素m种颜色的原始控制信号值,第二色域范围覆盖第一色域范围且具有超出第一色域范围的部分,图像数据处理模块还将该幅待显示图像的原始图像数据的各像素的m种颜色的原始控制信号值映射为对应第一光的m个校正控制信号值及对应第二光的n个校正控制信号值。光调制装置包括三个空间光调制器,分别依据各像素的m+n个校正控制信号值调制不同波长范围的第一光与第二光获得图像光。

Description

显示设备 技术领域
本发明涉及显示技术领域,尤其涉及一种显示设备。
背景技术
色域通常指人眼在自然界能够看到的可见光的光谱轨迹,可见光谱轨迹所构成区域的面积即为人眼能够看到可见光的最大色域面积。目前,以不同显示器件构成的投影机、显示器等显示涉笔都是采用R、G、B三基色显示设备,对图像进行色彩还原再现。在一个指定的色度空间,如CIE1931xy色度空间,显示设备的R、G、B三基色所形成三角形称为该设备能够显示的色域,色域空间面积越大,则人们感觉呈现的色彩画面越鲜艳、越逼真,然而,如何使得所述显示设备可以实现较宽色域的显示是业界一种重要的技术课题。
发明内容
有鉴于此,本发明提供一种可实现较宽色域的显示设备。
一种显示设备,其包括:
光源装置,用于发出第一光及第二光,所述第一光用于调制第一色域范围的图像,所述第二光用于配合所述第一光共同调制所述第一色域范围以外的图像,所述第一光包括m种颜色光,所述第二光包括m种颜色光中的n种颜色光,其中m大于等于n,n为大于等于1的自然数,m为大于等于2的自然数;
图像数据处理模块,用于接收一幅待显示图像的原始图像数据,该幅待显示图像的原始图像数据是基于第二色域范围的图像数据且包括各像素m种颜色的原始控制信号值,所述第二色域范围覆盖所述第一色域范围且具有超出所述第一色域范围的部分,所述图像数据处理 模块还用于将该幅待显示图像的原始图像数据的各像素的m种颜色的原始控制信号值映射为m+n种颜色的校正控制信号值从而获得该幅待显示图像的校正图像数据,所述校正图像数据中,各像素的m+n种颜色的校正控制信号值包括分别对应所述第一光的m种颜色光以及对应所述第二光的n种颜色光的m+n个校正控制信号值;
光调制装置,其包括第一空间光调制器、第二空间光调制器及第三空间光调制器,所述第一光的m种颜色光及所述第二光的n种颜色光被划分为波长范围不同的第一波长范围的光、第二波长范围的光及第三波长范围的光,所述第一空间光调制器依据所述第一波长范围的光对应的校正控制信号值调制所述第一波长范围的光产生第一图像光,所述第二空间光调制器依据所述第二波长范围的光对应的校正控制信号值调制所述第二波长范围的光产生第二图像光,所述第三空间光调制器依据所述第三波长范围的光对应的校正控制信号值调制所述第三波长范围的光产生第三图像光。
与现有技术相比较,本发明显示设备中,由于增加所述第二光,并且还将该幅图像的原始图像数据转换为分别对应所述第一光及第二光的m个校正控制信号值与n个校正控制信号值,进而依据所述m+n个校正控制信号值分时调制所述第一光与所述第二光可以获得图像光,可以实现宽色域的图像数据的显示,而且可以保证显示图像的准确还原,所述显示设备的色域较宽、显示效果较好。此外,通过三个空间光调制器调制不同波长范围的光,三个空间光调制器可以同时工作,从而减少图像调制时间,而且通过波长分光的方式就可以实现,也使得所述显示设备较为实用。
附图说明
图1是几种采用不同光源的显示设备的色域范围比对图。
图2是一种显示设备的光源结构示意图。
图3是另一种显示设备的光源结构示意图。
图4a与图4b分别是图2及图3所示的显示设备加入不同比例的 纯色激光所达到的色域范围示意图。
图5a与图5b是在一种采用动态色域的显示设备所达到的色域范围示意图。
图6是本发明一较佳实施方式的显示设备的方框示意图。
图7是图6所示显示设备的色域范围示意图。
图8是图6所述显示设备的三个空间光调制器的调制时序图。
图9是图6所示显示设备的部分具体结构示意图。
图10是图9所示的分光合光元件的平面结构示意图。
图11是图9所示的分光合光元件工作时的光路示意图。
图12是图9所示的波长转换装置的结构示意图。
图13是图6所示显示设备的技术色域和色彩体积扩展示意图。
主要元件符号说明
显示设备           600
光源装置           610
图像数据处理模块   620
光调制装置         630
第一光源           611
第二光源           612
激发光源           613
波长转换装置       614
激光光源           615、616
第一合光元件       617a
第二合光元件       617b
分光合光元件       617c
第一分光元件       618a
第二分光元件       618b
引导元件           618c
第一区域           617d
第二区域           617e
荧光区域           614a
散射区域           614b
第一空间光调制器   631
第二空间光调制器   632
第三空间光调制器   633
图像合成装置       640
第一色域范围       F1
第二色域范围       F2
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
激光投影机等显示设备的光源一般分为三大类,一类是通过短波长的激光激发不同颜色的荧光粉以产生红绿蓝三基色的基色光。另一类直接利用红绿蓝三色激光作为三基色光源。第三类是前两类的组合,一般蓝色激光光源既作为短波长的激发光源激发荧光粉以产生红绿基色光,本身又作为蓝色的基色光。这三种不同的实现技术各有优缺点。对于激光激发荧光粉或激光荧光混合的方案,因为氮化镓基底的半导体蓝光激光器具有效率高,寿命长,工作稳定的特点,利用蓝光半导体激光器激发荧光粉色轮的方案具有寿命长,效率高,设备稳定,成本低的特点。但是由于荧光粉激发的荧光(Laser phospher)的频谱较宽,因而导致这种方案的色域比较窄。一般利用此技术的显示设备能够覆盖完全的sRGB色域,通过一些增强处理,如加入窄带的光滤波器去除绿光和红光中的黄光光谱,能够增强其色域达到DCI-P3色域。但是窄带滤波会损失相当大的光亮度,从而使得显示设备的效率大大降低。采用纯RGB激光的显示设备,因为RGB激光具有很好的单色性,因而具有非常宽广的色域范围。利用RGB激光的显示设备(如投影系统)能够轻易达到REC2020色域标准,关于前述几种显示设备的色域比对图请参阅图1。
然而,RGB激光显示设备(如投影仪)也存在诸多缺点。第一是散斑。散斑是由于激光的相干性,导致在显示平面上反射的光由于平面的起伏产生的相位差引起干涉,导致显示画面出现亮度分布的不均匀。虽然有很多发明尝试解决激光散斑的问题,但是效果都不理想。第二是RGB激光显示设备的成本高。这是由于RGB激光显示设备中的红和绿激光在目前的技术下还不成熟。半导体绿激光的效率目前还只能做到20%以下,远低于氮化镓衬底的蓝光激光器和三元衬底的红光激光器,且成本很高。而红激光虽然效率能做到和蓝激光差不多,但是红激光的温度稳定性差,不仅随着温度的增加其效率显著降低,而且中心波长也会发生漂移。这两点使得RGB激光显示设备随温度变化会出现偏色。这就需要对红激光器增加恒温装置以稳定红激光器的工作状态,这也意味着需要大功率的冷却装置来保证红激光的工作温度稳定,从而大大增加了RGB激光显示设备的成本。
一种基本的激光激发荧光粉轮的光源200如图2所示,激发光光源210发出的短波长可见光激发色轮220上的荧光粉以产生时序的基色光或白光。由于荧光的频谱较宽,使得基于此系统的色域覆盖比较窄。一种改进的增强色域的方法如图3所示。激发光源310发出的短波长可见光通过色轮320转化为基色光并通过同步滤光器件330滤波获得窄带色纯更高的基色光以扩展激光荧光的色域。滤光器件会带来额外的光功率损失,使显示设备的效率降低。
通过往激光荧光中掺入纯色的红绿激光也能够扩展光源的色域。如一种技术中提出的能够在激光荧光系统中掺入一种纯色激光的实现方案,以及另一种技术中提到的掺入一种或两种的光路实现方案等。虽然掺入纯色激光能够扩展激光荧光的色域,但是没有针对显示内容对光源配比的调制,其能增强的色域范围有限。如图4所示,在加入荧光亮度20%的纯色激光(如图4a所示)的混合光(mix gamut)基础上,如果需要将激光荧光的色域扩展到DCI-P3标准,需要加入相当于荧光亮度40%的纯色激光(如图4b所示)形成混合光。相比荧光加滤色片的方案,这种方案的显示设备的效率更高,但是需要加入大 功率的红绿激光导致了系统成本的增加。
此外,一种通过对图像进行分析进而动态的调整激光和荧光的亮度的采用动态色域的显示设备,也能够增加系统效率。由于画面总是有一定的亮度的,而且荧光和激光在空间光调制器前合光从而形成一个三基色的系统,其中的蓝色基色来自于蓝光激光器,绿色基色来自于绿色荧光和绿色激光按动态控制信号所给的比例的合光,红色基色来自于红色荧光和红色激光按比例的合光。由于画面的最大亮度通常不为零,而荧光的强度是依据所述画面的最大亮度设定,且画面的亮场信息通常带有大量的白光成分,因而这种动态色域的方法无法将荧光亮度完全关掉,从而这种动态色域的方法无法完全达到Rec.2020标准的色域,请参阅图5,图5为采用动态色域的显示设备能够达到的色域范围的示意图,其中图5a是在荧光掺入20%的红色激光与绿色激光能够达到的色域范围示意图,图5b是在荧光掺入40%的红色激光与绿色激光能够达到的色域范围示意图,可见,图5a及图5b均较难完全达到Rec.2020标准的色域范围。
请参阅图6,图6是本发明一较佳实施方式的显示设备600的方框示意图。所述显示设备600包括光源装置610、图像数据处理模块620、光调制装置630及图像合成装置640。
所述光源装置610用于发出第一光及第二光,所述第一光用于调制第一色域范围F1的图像,所述第二光用于配合所述第一光共同调制所述第一色域范围F1以外的图像,所述第一光包括m种颜色光,所述第二光包括m种颜色光中的n种颜色光,m大于等于n。具体地,所述第一光也可以包括荧光,m可以为3,所述第一光包括三基色光,如红绿蓝三种颜色光,其中,所述第一光中,所述蓝色光可以为激光,所述绿色光及所述红色光均为荧光,所述荧光可以由蓝色激光激发荧光材料(如红色荧光材料与绿色荧光材料;或者黄色荧光材料)产生。所述第二光可以包括红色光及绿色光,所述红色光及所述绿色光可以均为激光,即,n可以为2,所述第二光的两种颜色光可以分别为红色激光与绿色激光。
可以理解,如前所述,所述第一光可以展示的色域范围为第一色域范围F1,如图7所示,所述第一色域范围F1可以是DCI色域范围,如色域范围DCI-P3,因此若待显示图像为第一色域范围F1的图像,所述第二光可以为0,仅调制所述第一光即可展示所述第一色域范围F1的图像。进一步,所述第一光中,由于所述红色光与所述绿色光为荧光,而所述第二光包括红色激光及绿色激光,因此所述第二光的激光可以展示的色域范围宽于所述第一光中的荧光可以展示的色域范围,具体地,所述第一光与所述第二光可以共同展示超出所述第一色域范围的图像,具体地,通过调制所述第一光中蓝色激光与所述第二光的红绿激光可以展示色域位于第二色域范围F2边界线上的图像(此时所述第一光中的红绿荧光可以为0),其中所述第二色域范围F2覆盖所述第一色域范围F1且具有超出所述第一色域范围F1的部分,所述第二色域范围F2可以为REC色域范围,如色域范围REC.2020;进一步地,对于色域位于所述第一色域范围F1的边界线与所述第二色域范围F2的边界线的图像,可以通过调制所述第一光中的蓝色激光、红绿荧光与所述第二光中的红绿激光共同展示,所述第一光中的蓝色激光、红绿荧光与所述第二光中的红绿激光可以均不为0。
所述图像数据处理模块620用于接收一幅待显示图像的原始图像数据,该幅待显示图像的原始图像数据是基于所述第二色域范围F2的图像数据且包括各像素m种颜色的原始控制信号值,所述图像数据处理模块620还用于将该幅待显示图像的原始图像数据的各像素的m种颜色的原始控制信号值映射为m+n种颜色的校正控制信号值从而获得该幅待显示图像的校正图像数据。具体地,所述校正图像数据中,各像素的m+n种颜色的校正控制信号值包括对应所述第一光的m个校正控制信号值及对应所述第二光的n个校正控制信号值。
首先,可以理解,所述原始图像数据可以采用RGB编码、YUV编码等不同的编码格式,其中不同编码格式可以对应不同的颜色空间,本实施方式中,主要是将所述原始图像数据转换为由xyY色域坐标以CIE 1937标准定义的颜色空间的三刺激值X、Y、Z来计算校正控制 信号值,具体来说,CIE 1937以一个三维向量定义了任意人眼可以分辨的绝对颜色和颜色的亮度,其不随色域的变换而变换,因此可以依据所述像素的原始控制信号值计算获得的所述像素的三刺激值X、Y、Z与依据所述像素的第一校正控制信号值及第二校正控制信号值计算获得的所述像素的三刺激值X、Y、Z相等的原理,依据每个像素的原始控制信号值计算对应的第一校正控制信号值及第二校正控制信号值。
举例来说,设每个像素的m种颜色的原始控制信号值为R、G、B,所述m个校正控制信号值为r、g、b,所述n个校正控制信号值为rl、gl,依据所述像素的原始控制信号值R、G、B计算获得的所述像素的三刺激值X、Y、Z与依据所述像素的校正控制信号值r、g、b及rl、gl计算获得的所述像素的三刺激值X、Y、Z相等的原理,所述图像数据处理模块将该幅图像的原始图像数据的各颜色的原始控制信号值R、G、B将映射为m+n种颜色的校正控制信号值r、g、b、rl、gl从而获得该幅待显示图像的校正图像数据。
其中,将所述原始控制信号值R、G、B转换为校正控制信号值r、g、b、rl、gl的映射过程中,所述原始控制信号值R、G、B是已知的,藉由三刺激值的映射公式可以获得无数个r、g、b、rl、gl的解,此时,在保证r、g、b、rl、gl均在所述显示设备可以展示的0至M的最大灰阶范围内的基础上,选择rl 2+gl 2最小时的r、g、b、rl、gl的值作为所述校正控制信号值r、g、b、rl、gl,从而可以获得最适合的r、g、b、rl、gl值。同时,由于所述rl 2+gl 2最小,从而可以保证对应所述第二光的rl、gl较小,从而使用最少的第二光来实现所述图像的色域的展示,不仅准确还原图像,还可以减少所述第二光的使用,降低光源成本。
其中,以下主要对所述原始图像数据为RGB编码格式时,如何依据每个像素的m种颜色的原始控制信号值为R、G、B获得对应的校正控制信号值r、g、b、rl、gl进行详细说明。具体地,所述原始图像数据为RGB编码格式的图像数据时,所述m种颜色为红绿蓝三基色时,所述原始控制信号值R、G、B分别红色原始灰阶值R、绿色原 始灰阶值G及蓝色原始灰阶值B,所述第一校正控制信号值为r、g、b分别为对应第一光的红色荧光的红色第一校正灰阶值r、对应第一光的绿色荧光的绿色第一校正灰阶值g、及对应第一光的蓝色激光的蓝色第一校正灰阶值b,所述第二校正控制信号值rl、gl分别为对应第二光的红色激光的红色第二校正灰阶值rl、对应第二光的绿色激光的绿色第二校正灰阶值gl。进一步地,所述显示设备中,所述原始灰阶值R、G、B与所述校正灰阶值r、g、b、rl、gl可以均采用二进制编码格式,如N位的二进制编码,则所述显示设备各颜色可以展示的灰度级别M与所述二进制编码的位数N对应,即所述原始灰阶值R、G、B与所述校正灰阶值r、g、b、rl、gl均在【0至M】的范围内,其中M=2 N-1。举例来说,当N=8时,所述显示设备的灰度级别为256个,所述原始灰阶值R、G、B与所述校正灰阶值r、g、b、rl、gl均在【0至255】的范围,其中灰阶值为0代表该颜色完全关闭,灰阶值255表示该颜色以最高亮度显示。
进一步地,根据所述原始图像数据的色域范围不同,RGB三基色也不同。本实施方式中,所述原始图像数据为第二色域范围F2的图像数据,设所述第二色域范围F2的三基色r 0、g 0、b 0的色彩和亮度在在CIE 1937颜色空间的xyY色域坐标满足以下公式1。
Figure PCTCN2018113874-appb-000001
可以理解,对于原始图像数据来说,所述第二色域范围F2是已知的,因此所述r 0、g 0、b 0的xyY色域坐标也是已知的。当所述第二色域范围为REC 2020色域范围时,所述r 0、g 0、b 0在CIE 1937颜色空间的xyY色域坐标分别为(0.708,0.292,0.2627),(0.17,0.797,0.6780),(0.131,0.046,0.0593)。
进一步地,将每个像素的各颜色的原始灰阶值(R,G,B)的转换到CIE 1937颜色空间中计算三刺激值(X,Y,Z)时,所述三刺激值(X,Y,Z)满足以下公式2。
Figure PCTCN2018113874-appb-000002
其中,公式2中,如前所述,M为所述显示设备的灰度级别。进一步地,依据所述第二色域范围的三个基色r 0、g 0、b 0的xyY色域坐标(参公式1)可知,所述矩阵C满足以下公式3。
Figure PCTCN2018113874-appb-000003
进一步地,由于本发明显示设备使用了第一光的m种颜色光与第二光的n种颜色光的五基色系统,所述五基色r 0,g 0,b 0,rl 0,和gl 0分别代表第一光中的红荧光、第一光中的绿荧光、第一光中的蓝激光、第二光中的红激光和第二光中的绿激光的色彩和亮度,所述五基色r 0,g 0,b 0,rl 0,和gl 0在在CIE 1937颜色空间的xyY色域坐标满足以下公式4。
Figure PCTCN2018113874-appb-000004
可以理解,CIE空间中的任意一颜色亮度可以有这五种基色光按亮度比例调制后合光而成,所述五基色r 0,g 0,b 0,rl 0,和gl 0也可以是已知的,如依据所述光源装置610发出的所述第一光及所述第二光来确定。进一步地,依据每个像素的原始灰阶值R、G、B计算获得的所述像素的三刺激值X、Y、Z与依据所述像素的第一校正灰阶值r、g、b及第二校正灰阶值rl、gl计算获得的所述像素的三刺激值X、Y、Z相等的原理,所述校正灰阶值r、g、b、rl、gl满足以下公式5。
Figure PCTCN2018113874-appb-000005
进一步地,按照公式4,所述转换矩阵C′满足以下公式6。
Figure PCTCN2018113874-appb-000006
由于所述三刺激值X、Y、Z可以依据原始图像数据计算获得,所述转换矩阵C′也可以依据五基色r 0,g 0,b 0,rl 0,和gl 0获得,因此,按照所述公式5,所述校正灰阶值r、g、b、rl、gl实际上具有无穷多组解。要想实现唯一五基色对应的校正灰阶值r、g、b、rl、gl,对所述校正灰阶值r、g、b、rl、gl的求解,需要加入额外的限制。
具体地,在一种实施方式中,可以随机指定校正灰阶值r、g、b、rl、gl其中两个量的亮度,再求其他三个量的值。需要注意的是,五个控制信号的取值范围都在0和255之间,随机选取的两个值可能使得求解到的其余三个值超出取值的范围,所以随机选取的方法并不是最优选的实施方案。在另一种实施方式中,可以使得红绿激光的亮度平方和最低rl 2+gl 2最小,即求min(rl 2+gl 2)。
首先,我们可以将公式(5)变换为以下公式7。
Figure PCTCN2018113874-appb-000007
其中,参数A、B分别满足以下公式8与9。
Figure PCTCN2018113874-appb-000008
Figure PCTCN2018113874-appb-000009
进一步,为求解r,g,b,rl,gl,将公式7进行变换,可以获得以下公式10。
Figure PCTCN2018113874-appb-000010
进一步地,为使rl 2+gl 2最小,即需求解min(rl 2+gl 2),也就是需求解
Figure PCTCN2018113874-appb-000011
定义函数f(rl,gl),其中所述函数f(rl,gl)满足以下公式11。
Figure PCTCN2018113874-appb-000012
进一步地,为求解函数f(rl,gl),可使所述r,g,b的偏微分
Figure PCTCN2018113874-appb-000013
最小,即,所述r,g,b的偏微分
Figure PCTCN2018113874-appb-000014
满足以下公式12。
Figure PCTCN2018113874-appb-000015
更进一步地,将公式10中的矩阵进改写,可以得到以下公式13。
Figure PCTCN2018113874-appb-000016
所述公式12则可改写为以下公式14。
Figure PCTCN2018113874-appb-000017
其中,按照公式13,所述参数D与d分别满足以下公式15及公 式16。
Figure PCTCN2018113874-appb-000018
Figure PCTCN2018113874-appb-000019
通过矩阵改写获得公式13,由于参数A、B可以通过公式4的五基色r 0,g 0,b 0,rl 0,和gl 0的色域坐标xyZ及公式2的三刺激值XYZ计算获得,因此所述参数T及其参数t11、t12、t13、t14、t21、t22、t23、t24可以获知,进一步将参数数t11、t12、t13、t14、t21、t22、t23、t24代入公式15及公式16,可以获得参数D与d的数值,从而获得第一校正灰阶值r、g、b,然后将r、g、b的值带入公式7可以求得第二校正灰阶值rl和gl的值。如果色彩的颜色亮度超过了五基色色域所能表示的范围,则五基色的灰阶值会出现超出范围的数值,做简单截断即可,具体地,超过M的灰阶值以M代替,低于0的灰阶值以0代替。
由上述描述可知,所述图像数据处理模块620接收该幅图像的原始图像数据后,将每个像素的m种颜色的原始控制信号值R、G、B转换为对应的校正控制信号值r、g、b、rl、gl,从而获得所述校正图像数据,所述图像数据处理模块620还将所述校正图像数据提供至光调制装置630。
所述光调制装置630用于接收所述校正图像数据、依据所述校正图像数据的各像素的m+n个校正控制信号值r、g、b、rl、gl调制所述第一光及第二光获得图像光。
所述光调制装置630包括第一空间光调制器631、第二空间光调制器632及第三空间光调制器633。所述第一光的m种颜色光及所述第二光的n种颜色光被划分为波长范围不同的第一波长范围的光、第二波长范围的光及第三波长范围的光。所述第一波长范围可以为红色光的波长范围,如620-750nm。所述第二波长范围可以为绿色光的波长范围,如495-570nm。所述第三波长范围可以为蓝色光的波长范围, 如435nm-495nm。
所述第一空间光调制器631依据所述第一波长范围的光对应的校正控制信号值(如r、rl)调制所述第一波长范围的光(如红色光)产生第一图像光,所述第二空间光调制器632依据所述第二波长范围的光对应的校正控制信号值(如g、gl)调制所述第二波长范围的光(如绿色光)产生第二图像光,所述第三空间光调制器633依据所述第三波长范围的光对应的校正控制信号值(如b)调制所述第三波长范围的光(如蓝色光)产生第三图像光。所述光调制装置630产生的所述第一图像光、所述第二图像光及所述第三图像光可以经由图像合成装置640合成以显示该幅图像。可以理解,所述第一空间光调制器631与所述第二空间光调制器632可以为DMD空间光调制器、Lcos空间光调制器及LCD空间光调制器等。
在一种实施例中,所述m可以为3,所述n可以为2,所述第一光包括第一颜色光、第二颜色光及第三颜色光,所述第二光包括第一颜色光及第二颜色光,如前所述,所述校正控制信号值包括对应所述第一光的第一颜色光的校正控制信号值r、对应所述第一光的第二颜色光的校正控制信号值g、对应所述第一光的第三颜色光的控制信号值b、对应所述第二光的第一颜色光的校正控制信号值rl、及对应所述第二光的第二颜色光的校正控制信号值gl,所述第一空间光调制器631用于依据所述对应所述第一光的第一颜色光的校正控制信号值r调制所述第一光的第一颜色光、以及依据对应所述第二光的第一颜色光的校正控制信号值rl调制所述第二光的第一颜色光以产生所述第一图像光。所述第二空间光调制器632用于依据所述对应所述第一光的第二颜色光的校正控制信号值g调制所述第一光的第二颜色光、依据所述对应所述第二光的第二颜色光的校正控制信号值gl调制所述第二光的第二颜色光。所述第三空间光调制器633用于依据所述第一光的第三颜色光对应的校正控制信号值b调制所述第一光的第三颜色光以产生所述第二图像光。
其中,所述第一颜色光、第二颜色光、第三颜色光、可以依次为 红色光、绿色光及蓝色光,所述第一光的第一颜色光、第二颜色光、第三颜色光分别为红色荧光、绿色荧光及蓝色激光。所述第二光的第一颜色光、第二颜色光分别为红色激光及绿色激光。
请参阅图8,图8是图6所述显示设备600的三个空间光调制器631、632、633的调制时序图。该幅图像的调制时间T1划分为第一时间段t1及第二时间段t2,所述第一空间光调制器631在所述第一时间段t1调制所述第二光的第一颜色光以及在所述第二时间段t2调制所述第一光的第一颜色光,所述第二空间光调制器631在所述第一时间段t1调制所述第二光的第二颜色光及在所述第二时间段t2调制所述第一光的第一颜色光,所述第三空间光调制器633在该幅图像的调制时间T1调制所述第一光的第三颜色光。本实施方式中,所述第一时间段t1小于所述第二时间段t2。
请参阅图9,图9是图6所示显示设备600的光源装置610、光调制装置630及图像合成装置640的具体结构示意图。具体地,在图9所示实施例中,所述光源装置610包括第一光源611、第二光源612、第一分光元件618a、第二分光元件618b、第一合光元件617a、第二合光元件617b及分光合光元件617c。其中,第一分光元件618a、第二分光元件618b、第一合光元件617a、第二合光元件617b及分光合光元件617c可以均为波长分光/合光元件,如波长分光/合光膜片。
所述第一光源611用于发出所述第一光,所述第二光源612用于发出所述第二光,所述第一光源611包括激发光源613及波长转换装置614,所述激发光源613发出激发光,所述波长转换装置614具有荧光材料且用于接收所述激发光并发出所述第一光,所述第一光包括荧光,所述第二光源612包括激光光源,所述第二光包括激光。
所述激发光源613为激光光源,所述激发光为蓝色激光,所述波长转换装置614用于接收所述激发光并将所述激发光中的一部分转换为所述荧光、以及将所述激发光中的另一部分及所述荧光作为所述第一光,所述荧光包括红色光及绿色光;所述第二光源612包括第一激光光源615及第二激光光源616,所述第二光包括第一激光及第二激 光,所述第一激光为红色激光且所述第二激光为绿色激光或者所述第一激光为绿色激光且所述第二激光为红色激光。
所述第一合光元件617a将所述激发光源发出的激发光与所述红色激光及绿色激光中的一种进行合光,所述第二合光元件617b用于将所述第一合光元件617a发出的光与所述红色激光及绿色激光中的另外一种进行合光并将所述合光后的激发光、红色激光及绿色激光经由所述分光合光元件617c引导至所述波长转换装置。
所述第一分光元件617c接收所述第二合光元件617b发出的所述第一光及所述第二光并将所述第一波长范围的光与所述第二及第三波长范围的光分光,所述第一波长范围的光被引导至所述第一空间光调制器631,所述第二及第三波长范围的光被引导至所述第二分光元件618b,所述第二分光元件618b接收所述第一分光元件618a发出的所述第二及第三波长范围的光并将所述第二及第三波长范围的光分光,所述第二波长范围的光被引导至所述第二空间光调制器632,所述第三波长范围的光被引导至所述第三空间光调制器633。
进一步地,请参阅图10、图11及图12,图10是所述分光合光元件617c的平面结构示意图,图11是所述分光合光元件617c工作时的光路示意图,图12是所述波长转换装置614的结构示意图。本实施方式中,所述分光合光元件617c包括第一区域617d及第二区域617e。所述第一区域617d接收所述第二合光元件617b发出的所述激发光、所述第一激光及第二激光并将所述激发光、所述第一激光及第二激光透射至所述波长转换装置614。所述第一区域617d位于所述第二区域617e的中心。所述波长转换装置614与所述分光合光元件之间还可以设置有透镜,用于对所述波长转换装置614发出的光进行准直。
所述波长转换装置614包括具有荧光材料的荧光区域614a及散射区域614b,所述荧光区域614a、所述散射区域614b沿圆周方向排列,所述散射区域在第一时段t1接收所述激发光、所述红色激光及所述绿色激光并将所述激发光、所述红色激光及所述绿色激光散射后发出,所述荧光区域614a在第二时段t2接收所述激发光并将所述激发 光中的第一部分光转换为所述荧光并发出所述激发光中第二部分光及所述荧光,所述第一时段t1的激发光及所述第二时段的第二部分光共同作为所述第一光的第三颜色光。
所述波长转换装置614旋转一周的时间为该幅画面的调制时间T1,在第一时间段t1,所述激发光源613、所述第一激光光源615及所述第二激光光源616开启,所述激发光、所述第一激光及所述第二激光被引导至所述散射区域614b,所述散射区域614b将所述激发光、所述第一激光及所述第二激光反射至所述第二区域617e,所述第二区域617e将所述激发光、所述第一激光及所述第二激光反射至所述第一分光元件618a,所述第一分光元件618a将所述激发光、所述第一、第二激光进行分光,从而将所述第一激光经由引导元件618c引导至所述第一空间光调制器631以及将所述第二激光及所述激发光引导至所述第二分光元件618b。所述第二分光元件618b进一步将所述第二激光及激发光进行分光,并将所述第二激光提供至所述第二空间光调制器632,以及将所述激发光经由引导元件618c提供至所述第三空间光调制器633。
在第二时间段t2,所述激发光源613开启,所述第一激光光源615及所述第二激光光源616开启,所述第一激光光源615及所述第二激光光源616关闭,所述激发光被引导至所述荧光区域614b,所述荧光区域614b依据一部分激发光产生荧光并将所述荧光及另一部分激发光经由所述分光合光元件617c提供至所述第一分光元件618a,所述第一分光元件618a将所述激发光与所述荧光进行分光,从而将所述荧光中的第一颜色光经由引导元件618c引导至所述第一空间光调制器631以及将所述激发光与所述荧光中的第二颜色光引导至所述第二分光元件。所述第二分光元件618b进一步将所述激发光与所述荧光中的第二颜色光进行分光,并将所述荧光中的第二颜色光提供至所述第二空间光调制器632,以及将所述激发光经由引导元件618c提供至所述第三空间光调制器633。
与现有技术相比较,本发明显示设备600中,由于增加所述第二 光,并且还将该幅图像的原始图像数据转换为分别对应所述第一光及第二光的m+n个校正控制信号值,进而依据所述m+n个第二校正控制信号值分别调制所述第一光与所述第二光可以获得第一图像光及第二图像光,可以实现宽色域的图像数据的显示,而且可以保证显示图像的准确还原,所述显示设备600的色域较宽、显示效果较好。此外,通过三个空间光调制器调制不同波长范围的光,三个空间光调制器可以同时工作,从而减少图像调制时间,而且通过波长分光的方式就可以实现,也使得所述显示设备较为实用。
进一步地,在计算所述校正控制信号值r、g、b、rl、gl时,通过使得所述取rl 2+gl 2最小时的r、g、b、rl、gl各数据值,可以使得对所述rl、gl对应的红色激光与绿色激光的使用较少,进而降低光源成本。更进一步地,对于采用本发明所述的显示设备600,能够通过加入少量红、绿激光以达到REC 2020的色域范围。请参阅图13,图13是图6所示显示设备的技术色域和色彩体积扩展示意图。如图13所示,通过加入5%亮度的绿色激光和红色激光,能够将色域扩展到Rec.2020的范围,其中,图13所示的外围阴影区域为扩展的色域范围,因此所述显示设备600及采用所述显示方法的显示设备的显示效果较好。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (12)

  1. 一种显示设备,其特征在于,所述显示设备包括:
    光源装置,用于发出第一光及第二光,所述第一光用于调制第一色域范围的图像,所述第二光用于配合所述第一光共同调制所述第一色域范围以外的图像,所述第一光包括m种颜色光,所述第二光包括m种颜色光中的n种颜色光,其中m大于等于n,n为大于等于1的自然数,m为大于等于2的自然数;
    图像数据处理模块,用于接收一幅待显示图像的原始图像数据,该幅待显示图像的原始图像数据是基于第二色域范围的图像数据且包括各像素m种颜色的原始控制信号值,所述第二色域范围覆盖所述第一色域范围且具有超出所述第一色域范围的部分,所述图像数据处理模块还用于将该幅待显示图像的原始图像数据的各像素的m种颜色的原始控制信号值映射为m+n种颜色的校正控制信号值从而获得该幅待显示图像的校正图像数据,所述校正图像数据中,各像素的m+n种颜色的校正控制信号值包括分别对应所述第一光的m种颜色光以及对应所述第二光的n种颜色光的m+n个校正控制信号值;
    光调制装置,其包括第一空间光调制器、第二空间光调制器及第三空间光调制器,所述第一光的m种颜色光及所述第二光的n种颜色光被划分为波长范围不同的第一波长范围的光、第二波长范围的光及第三波长范围的光,所述第一空间光调制器依据所述第一波长范围的光对应的校正控制信号值调制所述第一波长范围的光产生第一图像光,所述第二空间光调制器依据所述第二波长范围的光对应的校正控制信号值调制所述第二波长范围的光产生第二图像光,所述第三空间光调制器依据所述第三波长范围的光对应的校正控制信号值调制所述第三波长范围的光产生第三图像光。
  2. 如权利要求1所述的显示设备,其特征在于:设m为3,n为2,每个像素的m种颜色的原始控制信号值为R、G、B,对应所述第一光的m种颜色光的校正控制信号值为r、g、b,对应所述第二光的n种颜色光的校正控制信号值为rl、gl,依据所述像素的原始控制信号值R、 G、B计算获得的所述像素的三刺激值与依据所述像素的第一校正控制信号值r、g、b及第二校正控制信号值rl、gl计算获得的所述像素的三刺激值相等。
  3. 如权利要求2所述的显示设备,其特征在于:所述图像数据处理模块依据每个像素的原始控制信号值R、G、B计算所述校正控制信号值为r、g、b、rl、gl时,取rl 2+gl 2最小时的r、g、b、rl、gl各数据值。
  4. 如权利要求1所述的显示设备,其特征在于:所述第一波长范围、第二波长范围及第三波长范围互不交叠。
  5. 如权利要求1所述的显示设备,其特征在于:所述第一光包括第一颜色光、第二颜色光及第三颜色光,所述第二光包括第一颜色光及第二颜色光,所述第一颜色光位于所述第一波长范围,所述第二颜色光位于所述第二波长范围,所述第三颜色光位于所述第三波长范围,所述校正控制信号值包括对应所述第一光的第一颜色光的校正控制信号值、对应所述第一光的第二颜色光的校正控制信号值、对应所述第一光的第三颜色光的控制信号值、对应所述第二光的第一颜色光的校正控制信号值、及对应所述第二光的第二颜色光的校正控制信号值,所述第一空间光调制器用于依据所述对应所述第一光的第一颜色光的校正控制信号值调制所述第一光的第一颜色光、以及依据对应所述第二光的第一颜色光的校正控制信号值调制所述第二光的第一颜色光以产生所述第一图像光,所述第二空间光调制器用于依据所述对应所述第一光的第二颜色光的校正控制信号值调制所述第一光的第二颜色光、依据所述对应所述第二光的第二颜色光的校正控制信号值调制所述第二光的第二颜色光以产生所述第二图像光,所述第三空间光调制器用于依据所述第一光的第三颜色光对应的校正控制信号值调制所述第一光的第三颜色光以产生所述第三图像光。
  6. 如权利要求5所述的显示设备,其特征在于:该幅图像的调制时间T1划分为第一时间段t1及第二时间段t2,所述第一空间光调制器在所述第一时间段t1调制所述第二光的第一颜色光以及在所述第 二时间段调制所述第一光的第一颜色光,所述第二空间光调制器在所述第一时间段t1调制所述第二光的第二颜色光及在所述第二时间段t2调制所述第一光的第一颜色光,所述第三空间光调制器在该幅图像的调制时间T1调制所述第一光的第三颜色光。
  7. 如权利要求6所述的显示设备,其特征在于:所述第一时间段t1小于所述第二时间段t2。
  8. 如权利要求5所述的显示设备,其特征在于:所述光源装置包括第一光源及第二光源,所述第一光源用于发出所述第一光,所述第二光源用于发出所述第二光,所述第一光源包括激发光源及波长转换装置,所述激发光源发出激发光,所述波长转换装置具有荧光材料且用于接收所述激发光并发出所述第一光,所述第一光包括荧光,所述第二光源包括激光光源,所述第二光包括激光。
  9. 如权利要求8所述的显示设备,其特征在于:所述激发光源为激光光源,所述激发光为蓝色激光,所述波长转换装置用于接收所述激发光并将所述激发光中的一部分转换为所述荧光、以及将所述激发光中的另一部分及所述荧光作为所述第一光,所述激发光中的另一部分为所述第一光的第三颜色光,所述荧光包括红色光及绿色光,所述荧光的红色光为所述第一光的第一颜色光,所述荧光的绿色光为所述第一光的第二颜色光;所述第二光源包括红色激光光源及绿色激光光源,所述第二光包括红色激光及绿色激光,所述红色激光为所述第二光的第一颜色光,所述绿色激光为所述第二光的第二颜色光。
  10. 如权利要求9所述的显示设备,其特征在于:所述波长转换装置包括具有荧光材料的荧光区域及散射区域,所述荧光区域、所述散射区域沿圆周方向排列,所述散射区域在第一时段接收所述激发光、所述红色激光及所述绿色激光并将所述激发光、所述红色激光及所述绿色激光散射后发出,所述荧光区域在第二时段接收所述激发光并将所述激发光中的第一部分光转换为所述荧光并发出所述激发光中第二部分光及所述荧光,所述第一时段的激发光及所述第二时段的第二部分光共同作为所述第一光的第三颜色光。
  11. 如权利要求1或10所述的显示设备,其特征在于:所述显示设备还包括第一分光元件及第二分光元件,所述第一分光元件接收所述光源装置发出的所述第一光及所述第二光并将所述第一波长范围的光与所述第二及第三波长范围的光分光,所述第一波长范围的光被引导至所述第一空间光调制器,所述第二及第三波长范围的光被引导至所述第二分光元件,所述第二分光元件接收所述第一分光元件发出的所述第二及第三波长范围的光并将所述第二及第三波长范围的光分光,所述第二波长范围的光被引导至所述第二空间光调制器,所述第三波长范围的光被引导至所述第三空间光调制器。
  12. 如权利要求10所述的显示设备,其特征在于:所述光源装置还包括第一合光元件、第二合光元件及分光合光元件,所述第一合光元件将所述激发光源发出的激发光与所述红色激光及绿色激光中的一种进行合光,所述第二合光元件用于将所述第一合光元件发出的光与所述红色激光及绿色激光中的另外一种进行合光并将所述合光后的激发光、红色激光及绿色激光经由所述分光合光元件引导至所述波长转换装置,所述波长转换装置发出的所述第一光及所述第二光还经由所述分光合光元件提供至所述空间光调制器。
PCT/CN2018/113874 2018-03-16 2018-11-05 显示设备 WO2019174270A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/981,386 US11343476B2 (en) 2018-03-16 2018-11-05 Display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810219946.5 2018-03-16
CN201810219946.5A CN110278423B (zh) 2018-03-16 2018-03-16 显示设备

Publications (1)

Publication Number Publication Date
WO2019174270A1 true WO2019174270A1 (zh) 2019-09-19

Family

ID=67908565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113874 WO2019174270A1 (zh) 2018-03-16 2018-11-05 显示设备

Country Status (3)

Country Link
US (1) US11343476B2 (zh)
CN (2) CN113938660A (zh)
WO (1) WO2019174270A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6932840B2 (ja) * 2017-04-10 2021-09-08 マテリオン プレシジョン オプティクス (シャンハイ) リミテッド 光変換のための組み合わせホイール
CN110874002B (zh) * 2018-08-31 2021-12-21 深圳光峰科技股份有限公司 动态调节显示系统色域的系统、方法及显示系统
CN111179801B (zh) * 2020-01-06 2024-01-09 京东方科技集团股份有限公司 显示面板的色彩空间调整方法、设备和系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070285670A1 (en) * 2006-06-05 2007-12-13 Minoru Yoshida Method and apparatus for detecting defect on a surface of a specimen
US20100007964A1 (en) * 2008-07-10 2010-01-14 Delta Electronics, Inc. Light integrating device for an illumination system and illumination system using the same
CN103713455A (zh) * 2012-09-28 2014-04-09 深圳市绎立锐光科技开发有限公司 光源系统及相关投影系统
CN104980721A (zh) * 2014-04-02 2015-10-14 深圳市绎立锐光科技开发有限公司 一种光源系统及投影系统
CN105025279A (zh) * 2014-04-24 2015-11-04 深圳市绎立锐光科技开发有限公司 一种光源系统及投影显示装置
CN106154711A (zh) * 2015-04-09 2016-11-23 深圳市光峰光电技术有限公司 一种投影系统及其色域控制方法
CN107680141A (zh) * 2017-09-21 2018-02-09 深圳市华星光电半导体显示技术有限公司 一种色域映射方法及其色域映射装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377236B1 (en) * 1999-07-29 2002-04-23 Hewlett-Packard Company Method of illuminating a light valve with improved light throughput and color balance correction
US6648475B1 (en) * 2002-05-20 2003-11-18 Eastman Kodak Company Method and apparatus for increasing color gamut of a display
US20070273797A1 (en) * 2006-05-26 2007-11-29 Silverstein Barry D High efficiency digital cinema projection system with increased etendue
US20100253769A1 (en) * 2008-09-04 2010-10-07 Laser Light Engines Optical System and Assembly Method
CN104272728B (zh) * 2012-04-13 2017-12-01 Red.Com有限责任公司 视频投影器系统
CN204178055U (zh) * 2014-09-26 2015-02-25 深圳市绎立锐光科技开发有限公司 分光合光装置和投影显示系统
CN105739226B (zh) * 2014-12-08 2019-06-21 深圳光峰科技股份有限公司 投影系统
CN204389864U (zh) * 2015-01-20 2015-06-10 深圳市绎立锐光科技开发有限公司 光源系统和投影系统
CN107329356B (zh) * 2016-04-29 2020-08-21 中强光电股份有限公司 照明系统以及投影装置
CN107621746B (zh) * 2016-07-15 2019-07-02 深圳光峰科技股份有限公司 发光装置及相关投影系统
CN107688273B (zh) * 2016-08-06 2019-07-16 深圳光峰科技股份有限公司 显示系统及图像调制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070285670A1 (en) * 2006-06-05 2007-12-13 Minoru Yoshida Method and apparatus for detecting defect on a surface of a specimen
US20100007964A1 (en) * 2008-07-10 2010-01-14 Delta Electronics, Inc. Light integrating device for an illumination system and illumination system using the same
CN103713455A (zh) * 2012-09-28 2014-04-09 深圳市绎立锐光科技开发有限公司 光源系统及相关投影系统
CN104980721A (zh) * 2014-04-02 2015-10-14 深圳市绎立锐光科技开发有限公司 一种光源系统及投影系统
CN105025279A (zh) * 2014-04-24 2015-11-04 深圳市绎立锐光科技开发有限公司 一种光源系统及投影显示装置
CN106154711A (zh) * 2015-04-09 2016-11-23 深圳市光峰光电技术有限公司 一种投影系统及其色域控制方法
CN107680141A (zh) * 2017-09-21 2018-02-09 深圳市华星光电半导体显示技术有限公司 一种色域映射方法及其色域映射装置

Also Published As

Publication number Publication date
US20210136337A1 (en) 2021-05-06
US11343476B2 (en) 2022-05-24
CN113938660A (zh) 2022-01-14
CN110278423A (zh) 2019-09-24
CN110278423B (zh) 2021-10-12

Similar Documents

Publication Publication Date Title
WO2019174271A1 (zh) 显示设备
KR101555183B1 (ko) 칼러 맵핑 방법
JP4833203B2 (ja) レーザ画像表示装置
WO2019174270A1 (zh) 显示设备
WO2007026885A1 (ja) レーザ画像形成装置およびカラー画像形成方法
CN110941135B (zh) 动态色域调节系统、方法及显示系统
US20080297530A1 (en) Four primary color display apparatus and method
WO2019174274A1 (zh) 显示设备及显示方法
US9910347B2 (en) Image display apparatus and image generation method
WO2020042566A1 (zh) 动态调节显示系统色域的系统、方法及显示系统
JP2019527947A (ja) 三次元(3d)対応ディスプレイ上への広色域二次元(2d)画像の描画
WO2019174272A1 (zh) 显示设备及显示方法
CN109327689B (zh) 显示设备及显示方法
WO2019174275A1 (zh) 显示设备
WO2019174273A1 (zh) 图像处理装置、显示设备、图像处理与显示装置及方法
CN109324465B (zh) 显示设备及显示方法
CN110837199B (zh) 显示设备
JP2008107445A (ja) プロジェクタおよび変調制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909467

Country of ref document: EP

Kind code of ref document: A1