WO2019174272A1 - 显示设备及显示方法 - Google Patents

显示设备及显示方法 Download PDF

Info

Publication number
WO2019174272A1
WO2019174272A1 PCT/CN2018/113879 CN2018113879W WO2019174272A1 WO 2019174272 A1 WO2019174272 A1 WO 2019174272A1 CN 2018113879 W CN2018113879 W CN 2018113879W WO 2019174272 A1 WO2019174272 A1 WO 2019174272A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image
control signal
image data
signal values
Prior art date
Application number
PCT/CN2018/113879
Other languages
English (en)
French (fr)
Inventor
余新
胡飞
郭祖强
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2019174272A1 publication Critical patent/WO2019174272A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3182Colour adjustment, e.g. white balance, shading or gamut

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a display device and a display method.
  • the gamut generally refers to the spectral trajectory of visible light that can be seen by the human eye in nature.
  • the area of the region formed by the visible spectral trajectory is the maximum gamut area that the human eye can see visible light.
  • projectors, displays, etc. which are composed of different display devices, use R, G, and B three primary color display devices to perform color reproduction and reproduction on images.
  • the triangle formed by the three primary colors R, G, and B of the display device is called the color gamut that the device can display.
  • the present invention provides a display device and a display method that can realize a wider color gamut.
  • a display device comprising:
  • a light source device for emitting first light and second light, wherein the first light is used to modulate an image of a first color gamut, and the second light is used to modulate the first color together with the first light
  • the first light includes m color lights
  • the second light includes n color lights of m color lights, m is greater than or equal to n;
  • An image data processing module configured to receive original image data of an image to be displayed, the original image data of the image to be displayed is image data based on a second color gamut range and includes original control signal values of m colors of each pixel,
  • the second color gamut range covers the first color gamut range and has a portion exceeding the first color gamut range
  • the image data processing module is further configured to use each pixel of the original image data of the image to be displayed
  • the original control signal value of the m colors is mapped to the correction control signal value of (m+n) colors to obtain corrected image data of the image to be displayed, in the corrected image data, (m+n) of each pixel
  • the color correction control signal value includes m first correction control signal values corresponding to the first light and n second correction control signal values corresponding to the second light;
  • a light modulating device configured to receive the corrected image data, modulate the first light according to m first correction control signal values of each pixel of the corrected image data, obtain first image light, and according to the corrected image data The n second correction control signal values of each pixel modulate the second light to obtain a second image light, and the first image light and the second image light are also synthesized to display the image.
  • a display method includes the following steps:
  • the first light includes m color lights, and the second light includes n color lights of m color lights, m is greater than or equal to n;
  • the original image data of the image to be displayed is based on image data of a second color gamut range and including original control signal values of m colors of each pixel, the second color gamut range Covering the first color gamut range and having a portion that extends beyond the first color gamut;
  • the correction control signal value of (m+n) colors of each pixel includes m first correction control signal values corresponding to the first light and n second correction controls corresponding to the second light Signal value;
  • Receiving the corrected image data modulating the first light according to m first correction control signal values of each pixel of the corrected image data, obtaining first image light, and n pixels of each pixel according to the corrected image data
  • the second correction control signal value modulates the second light to obtain a second image light, and the first image light and the second image light are further combined to display the image.
  • the display device and the display method of the present invention since the second light is added, the original image data of the image is also converted into m corresponding to the first light and the second light, respectively. a first correction control signal value and n second correction control signal values, respectively modulating the first light and the second light according to the m first correction control signal values and the n second correction control signal values.
  • the first image light and the second image light can be obtained, the display of the image data of the wide color gamut can be realized, and the accurate restoration of the display image can be ensured, and the display device and the display device adopting the display method have wider color gamut The display effect is better.
  • the correction control signal values r, g, b, rl, gl, r, g, b, rl, gl when the rl 2 + gl 2 is minimized The data values can make the use of the red laser and the green laser corresponding to the rl and gl less, thereby reducing the cost of the light source.
  • Figure 1 is a gamut range comparison diagram of several display devices employing different light sources.
  • FIG. 2 is a schematic view showing the structure of a light source of a display device.
  • FIG 3 is a schematic view showing the structure of a light source of another display device.
  • 4a and 4b are schematic diagrams showing the color gamut range achieved by the display device shown in FIG. 2 and FIG. 3 by adding different ratios of pure color lasers.
  • 5a and 5b are schematic diagrams of color gamut ranges achieved by a display device employing dynamic color gamut.
  • FIG. 6 is a block schematic diagram of a display device in accordance with a preferred embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a color gamut range of the display device shown in FIG. 6.
  • FIG. 8 is a partial structural schematic view of the display device shown in FIG. 6.
  • FIG. 8 is a partial structural schematic view of the display device shown in FIG. 6.
  • FIG. 9 is a timing chart of modulation of two spatial light modulators of the display device of FIG. 6.
  • FIG. 10 is a flow chart showing a display method of the display device shown in FIG. 6.
  • FIG. 11 is a schematic diagram showing the technical color gamut and color volume expansion of the display device shown in FIG. 6.
  • the light sources of display devices such as laser projectors are generally classified into three categories, one is to excite phosphors of different colors by a short-wavelength laser to generate primary colors of red, green and blue primary colors.
  • the other type directly uses red, green and blue three-color lasers as the three primary color light sources.
  • the third type is a combination of the first two types.
  • the blue laser light source excites the phosphor as a short-wavelength excitation source to generate red-green primary light, and itself acts as a blue primary light.
  • the gallium nitride-based semiconductor blue laser has the characteristics of high efficiency, long life, and stable operation
  • the scheme of exciting the fluorescent pink wheel by using the blue semiconductor laser has long life and high efficiency. Stable equipment and low cost.
  • the color gamut of this scheme is relatively narrow.
  • the display device generally using this technology can cover the complete sRGB color gamut, and can enhance the color gamut to reach the DCI-P3 color gamut by some enhancement processing, such as adding a narrowband optical filter to remove the yellow light spectrum in the green and red light. .
  • a display device using a pure RGB laser has a very wide color gamut because of its excellent monochromaticity.
  • the display device using RGB laser (such as projection system) can easily reach the REC2020 color gamut standard. See Figure 1 for the color gamut comparison of the above several display devices.
  • RGB laser display devices such as projectors
  • RGB laser display devices also have a number of disadvantages.
  • the first is speckle.
  • the speckle is due to the coherence of the laser, causing the light reflected on the display plane to interfere due to the phase difference caused by the undulation of the plane, resulting in unevenness in the luminance distribution of the display screen.
  • many inventions have attempted to solve the problem of laser speckle, the results are not satisfactory.
  • the second is the high cost of RGB laser display devices. This is because the red and green lasers in RGB laser display devices are still immature under current technology. The efficiency of the semiconductor green laser can only be achieved below 20%, which is much lower than the blue laser of the gallium nitride substrate and the red laser of the ternary substrate, and the cost is high.
  • the efficiency of the red laser is similar to that of the blue laser, the temperature stability of the red laser is poor, and the efficiency is significantly reduced not only with the increase of temperature, but also the center wavelength is also drifted. These two points make the RGB laser display device appear color cast with temperature changes. This requires adding a thermostat to the red laser to stabilize the operating state of the red laser, which also means that a high-power cooling device is required to ensure the stable operating temperature of the red laser, thereby greatly increasing the cost of the RGB laser display device.
  • a basic laser-excited phosphor wheel source 200 is shown in FIG. 2, and the short-wavelength visible light emitted by the light source 210 excites the phosphor on the color wheel 220 to produce a time-sequential primary or white light. Due to the wide spectrum of fluorescence, the gamut coverage based on this system is relatively narrow.
  • An improved method of enhancing the color gamut is shown in FIG.
  • the short-wavelength visible light emitted by the excitation light source 310 is converted into primary color light by the color wheel 320 and filtered by the sync filter device 330 to obtain a narrow-band color pure higher primary color light to expand the color gamut of the laser fluorescence.
  • the filter device introduces additional optical power loss, which reduces the efficiency of the display device.
  • the color gamut of the light source can also be extended by incorporating a solid red and green laser into the laser fluorescence.
  • the incorporation of a solid color laser can extend the color gamut of the laser fluorescence, there is no modulation for the ratio of the display content to the light source, and the enhanced color gamut range is limited.
  • a display device using a dynamic color gamut that dynamically adjusts the brightness of laser light and fluorescence by analyzing an image can also increase system efficiency. Since the picture always has a certain brightness, and the fluorescence and laser are combined in front of the spatial light modulator to form a three-primary system, the blue primary color is from the blue laser, and the green primary color is from the green fluorescent and green laser. The ratio of the dynamic control signal to the combined light, the red primary color comes from the proportional combination of the red and red lasers. Since the maximum brightness of the picture is usually not zero, and the intensity of the fluorescence is set according to the maximum brightness of the picture, and the bright field information of the picture usually has a large amount of white light components, the method of dynamic color gamut cannot be fluorescent.
  • FIG. 5 is a schematic diagram of the color gamut range that can be achieved by a display device using dynamic color gamut.
  • 5a is a schematic diagram of the color gamut range that can be achieved by fluorescence incorporation of 20% red laser and green laser.
  • Figure 5b is a schematic diagram of the color gamut range that can be achieved by fluorescence incorporation of 40% red laser and green laser. See Figure 5a and Figure 5b is more difficult to fully meet the gamut range of the Rec.2020 standard.
  • FIG. 6 is a block diagram of a display device 600 according to a preferred embodiment of the present invention.
  • the display device 600 includes a light source device 610, an image data processing module 620, a light modulation device 630, and an image synthesis device 640.
  • the light source device 610 is configured to emit first light and second light, the first light is used to modulate an image of a first color gamut range F1, and the second light is used to co-modulate the first light An image other than the first color gamut range F1, the first light includes m color lights, and the second light includes n color lights of m color lights, and m is greater than or equal to n.
  • the first light may also include fluorescence
  • m may be 3
  • the first light includes three primary colors of light, such as red, green, and blue light, wherein the first light, the blue light It may be a laser, and the green light and the red light are both fluorescent, and the fluorescence may be generated by a blue laser excitation fluorescent material such as a red fluorescent material and a green fluorescent material; or a yellow fluorescent material.
  • the second light may include red light and green light, and the red light and the green light may both be lasers, that is, n may be 2, and the two colors of the second light may be red laser and Green laser.
  • the gamut of the first light can be displayed in the first gamut range F1.
  • the first gamut range F1 can be a DCI gamut range, such as a color.
  • the domain range is DCI-P3. Therefore, if the image to be displayed is an image of the first color gamut range F1, the second light may be 0, and only the first light is modulated to display the image of the first color gamut range F1. .
  • the laser of the second light can exhibit a wide color gamut
  • the red laser in the first light and the red-green laser in the second light may display an image in which the color gamut is located on the boundary line of the second color gamut F2 (the red and green fluorescence in the first light may be 0 at this time)
  • the second color gamut range F2 covers the first color gamut range F1 and has a portion that exceeds the first color gamut range F1
  • the second color gamut range F2 may be a REC gamut range, such as a color gamut range REC.2020; further, an image of a boundary line of the color gamut of the first color gamut range F1 and the second color gamut range F2 may be
  • the light source device 610 includes a first light source 611 for emitting the first light, and a second light source for emitting the second light
  • the first light source 611 may include an excitation light source that emits excitation light, and a wavelength conversion device having a fluorescent material and configured to receive the excitation light and emit the first light, the first light Including fluorescence, the second source comprises a laser source and the second source comprises a laser.
  • the image data processing module 620 is configured to receive original image data of an image to be displayed, the original image data of the image to be displayed is based on the image data of the second color gamut range F2 and includes m colors of each pixel.
  • the original control signal value the image data processing module 620 is further configured to map the original control signal values of the m colors of the pixels of the original image data of the image to be displayed into the (m+n) color correction control signals. The value thus obtains corrected image data of the image to be displayed.
  • the correction control signal value of (m+n) colors of each pixel includes m first correction control signal values corresponding to the first light and n corresponding to the second light
  • the second correction control signal value is configured to receive original image data of an image to be displayed, the original image data of the image to be displayed is based on the image data of the second color gamut range F2 and includes m colors of each pixel.
  • the original control signal value the image data processing module 620 is further configured to map the original control signal values of the m
  • the original image data may adopt different encoding formats such as RGB encoding, YUV encoding, etc., wherein different encoding formats may correspond to different color spaces.
  • the original image data is mainly converted into The xyY gamut coordinates are calculated using the tristimulus values X, Y, Z of the color space defined by the CIE 1937 standard.
  • CIE 1937 defines a absolute color and color that can be resolved by any human eye in a three-dimensional vector.
  • Brightness, which does not change with the transformation of the color gamut, so the obtained tristimulus values X, Y, Z of the pixel and the first correction control signal value according to the pixel can be calculated according to the original control signal value of the pixel
  • the principle that the third stimulation value X, Y, and Z of the pixel obtained by the second correction control signal value are equal, and the corresponding first correction control signal value and the second correction control signal are calculated according to the original control signal value of each pixel. value.
  • the original control signal values of the m colors of each pixel are R, G, B, and the m first correction control signal values are r, g, b, and the n second correction control signals
  • the values are rl, gl, and the tristimulus values X, Y, Z of the pixels obtained according to the original control signal values R, G, B of the pixels and the first correction control signal values r, g according to the pixels And b and the second correction control signal values rl, gl calculate the principle that the tristimulus values X, Y, and Z of the pixel are equal, the image data processing module is original of each color of the original image data of the image
  • the control signal values R, G, B are mapped to correction correction signal values r, g, b, rl, gl of (m + n) colors to obtain corrected image data of the image to be displayed.
  • the values of r, g, b, rl, and gl when rl 2 + gl 2 are the smallest are selected as the correction control signal values r, g, b, rl, gl, thereby obtaining The most suitable r, g, b, rl, gl values.
  • the rl 2 + gl 2 is the smallest, it can be ensured that the rl and gl corresponding to the second light are small, so that the gamut of the image is displayed using the least second light, and the image is not accurately restored. It is also possible to reduce the use of the second light and reduce the cost of the light source.
  • the original image data when the original image data is in the RGB encoding format, how to obtain the corresponding correction control signal values r, g, b, rl according to the original control signal values of the m colors of each pixel are R, G, and B. And gl for detailed explanation.
  • the original image data when the original image data is image data of an RGB encoding format, when the m colors are red, green, and blue, the original control signal values R, G, and B are respectively red original grayscale values R, green.
  • An original grayscale value G and a blue original grayscale value B wherein the first correction control signal value is r, g, and b, respectively, a red first corrected grayscale value r corresponding to the red fluorescence of the first light, corresponding to the first The green fluorescent green first corrected gray scale value g of the light, and the blue first corrected gray scale value b of the blue laser corresponding to the first light, the second corrected control signal values rl and gl are respectively corresponding to the second The red second corrected gray scale value rl of the red laser light of the light, and the green second corrected gray scale value gl of the green laser light corresponding to the second light.
  • the original grayscale values R, G, B and the corrected grayscale values r, g, b, rl, and gl may all adopt a binary encoding format, such as an N-bit binary encoding.
  • the gray level of the display device is 256
  • the original grayscale values R, G, and B and the corrected grayscale values r, g, b, rl, and gl are both In the range of [0 to 255], where the grayscale value is 0, the color is completely turned off, and the grayscale value of 255 indicates that the color is displayed with the highest brightness.
  • the RGB three primary colors are also different according to the gamut range of the original image data.
  • the original image data is image data of the second color gamut range F2
  • the colors and brightness of the three primary colors r 0 , g 0 , b 0 of the second color gamut range F2 are set in CIE 1937 color.
  • the xyY gamut coordinates of the space satisfy the following formula 1.
  • the original image data, the color gamut of the second F2 is known
  • the r 0, g 0, b xyY color space coordinate 0 are also known.
  • the second color gamut range is the REC 2020 color gamut range
  • the xyY color gamut coordinates of the r 0 , g 0 , and b 0 in the CIE 1937 color space are respectively (0.708, 0.292, 0.2627), (0.17, 0.797). , 0.6780), (0.131, 0.046, 0.0593).
  • the tristimulus value (X) , Y, Z) satisfy the following formula 2.
  • M is the gray level of the display device.
  • the matrix C satisfies the following formula 3.
  • the display device of the present invention uses a five-primary color system of m color light of the first light and n color lights of the second light
  • the five primary colors r 0 , g 0 , b 0 , rl 0 , and gl 0 represents color and luminance of red fluorescence in the first light, green fluorescence in the first light, blue laser in the first light, red laser in the second light, and green laser in the second light, respectively.
  • the base colors r 0 , g 0 , b 0 , rl 0 , and gl 0 satisfy the following formula 4 in the xyY color gamut coordinates in the CIE 1937 color space.
  • any color brightness in the CIE space may be formed by combining the five primary colors of light according to the brightness ratio, and the five primary colors r 0 , g 0 , b 0 , rl 0 , and gl 0 may also be It is known to be determined according to the first light and the second light emitted by the light source device 610.
  • the second corrected gray scale values rl, gl are calculated by the principle that the tristimulus values X, Y, and Z of the pixels are equal, and the corrected gray scale values r, g, b, rl, and gl satisfy the following formula 5.
  • the conversion matrix C' satisfies the following Formula 6.
  • the conversion matrix C' can also be obtained according to the five primary colors r 0 , g 0 , b 0 , rl 0 , and gl 0 , and therefore, according to In the formula 5, the corrected grayscale values r, g, b, rl, gl actually have an infinite number of solutions.
  • an additional limit needs to be added to solve the corrected gray scale values r, g, b, rl, gl.
  • the brightness of two of the gray scale values r, g, b, rl, and gl may be randomly specified, and the values of the other three quantities are obtained. It should be noted that the values of the five control signals are between 0 and 255. The two randomly selected values may cause the remaining three values to be out of the range of values, so the method of random selection is not the most A preferred embodiment.
  • the sum of the squares of the luminances of the red and green lasers can be minimized to the minimum rl 2 + gl 2 , that is, min(rl 2 + gl 2 ).
  • a function f(rl, gl) is defined, wherein the function f(rl, gl) satisfies the following formula 11.
  • the partial differentiation of the r, g, b can be made.
  • Minimal that is, the partial differential of r, g, b
  • the following formula 12 is satisfied.
  • Equation 13 By rewriting the matrix in Equation 10, the following Equation 13 can be obtained.
  • the formula 12 can be rewritten as the following formula 14.
  • Equation 13 is obtained by matrix rewriting, since the parameters A and B can be calculated by the gamut coordinates xyZ of the five primary colors r 0 , g 0 , b 0 , rl 0 , and gl 0 of formula 4 and the tristimulus value XYZ of the formula 2, Therefore, the parameter T and its parameters t11, t12, t13, t14, t21, t22, t23, t24 can be known, and the parameter numbers t11, t12, t13, t14, t21, t22, t23, t24 are further substituted into the formula 15 and the formula.
  • the values of the parameters D and d can be obtained, thereby obtaining the first corrected gray scale values r, g, b, and then the values of r, g, b are brought into the formula 7 to obtain the second corrected gray scale values rl and gl. Value.
  • the grayscale value of the five primary colors may exceed the range of values, and a simple truncation may be performed. Specifically, the grayscale value exceeding M is replaced by M. Grayscale values below 0 are replaced by zeros.
  • the image data processing module 620 converts the original control signal values R, G, and B of the m colors of each pixel into corresponding correction control signal values r,
  • the corrected image data is obtained by g, b, rl, gl, and the image data processing module 620 also supplies the corrected image data to the light modulating device 630.
  • the light modulating device 630 is configured to receive the corrected image data, modulate the first light according to m first correction control signal values r, g, b of each pixel of the corrected image data to obtain first image light, And modulating the second light according to n second correction control signal values rl, gl of each pixel of the corrected image data to obtain second image light.
  • the light modulating device 630 includes a first spatial light modulator 631 and a second spatial light modulator 632, and the first spatial light modulator 631 is configured to m according to each pixel of the corrected image data.
  • the first correction control signal value modulates the first light to obtain the first image light
  • the second spatial light modulator 632 is configured to use n second correction control signal values of each pixel of the corrected image data Modulating the second light to obtain the second image light.
  • the first image light and the second image light generated by the light modulation device 630 may be synthesized via the image synthesis device 640 to display the image.
  • the first spatial light modulator 631 and the second spatial light modulator 632 can be a DMD spatial light modulator, a Lcos spatial light modulator, an LCD spatial light modulator, or the like. It can be understood that, in this embodiment, the light modulating device 630 includes the first spatial light modulator 631 and the second spatial light modulator 632, respectively modulating the first light and the second light. However, in a modified embodiment, the light modulating device 630 may also include a spatial light modulator that modulates the first light and the second light in a time-sharing manner, and details are not described herein again.
  • FIG. 8 is a schematic diagram showing the specific structure of the light source device 610, the light modulating device 630, and the image synthesizing device 640 of the display device 600 shown in FIG. Specifically, in the embodiment shown in FIG. 8, the light source device 610 includes a first light source 611 and a second light source 612.
  • the first light source 611 is configured to emit the first light
  • the second light source 612 is configured to emit the second light
  • the first light source 611 includes an excitation light source and a wavelength conversion device, and the excitation light source emits excitation Light, the wavelength conversion device having a fluorescent material and for receiving the excitation light and emitting the first light, the first light comprising fluorescence, the second light source 612 comprising a laser light source, the second light comprising laser.
  • the excitation light source may be a laser light source, such as a blue laser light source, wherein the excitation light is a blue laser light, and the wavelength conversion device is configured to receive the excitation light and convert a part of the excitation light into the fluorescence, And using another portion of the excitation light and the fluorescent light as the first light, the fluorescent material may include a red and green fluorescent material or a yellow fluorescent material, the fluorescent light including red light and green light, the wavelength Among the first lights emitted by the conversion device, the red fluorescent light, the green fluorescent light, and the blue excitation light may be sequentially emitted in time series.
  • the second light source 612 includes a red laser light source 615 and a green laser light source 616.
  • the second light includes a red laser light and a green laser light.
  • the red laser light and the green laser light may also be emitted in a time-sharing manner, such as a control station.
  • the red laser source 615 and the green laser source 616 are alternately turned on.
  • the first light source 611 further includes a polarization converter 617 located between the wavelength conversion device and the first spatial light modulator 631, and the polarization converter 617 receives the wavelength conversion device Generating the second light and converting the second light into light of a first polarization state and providing light of the first polarization state to the first spatial light modulator 631, the red laser
  • the green laser light is light of a second polarization state different from the first polarization state.
  • the first polarization state may be a p-polarization state
  • the second polarization state may be an s-polarization state.
  • the image synthesizing device 640 is a polarization combining device that synthesizes the first image light and the second image light by polarization combining to display the image.
  • the second light source 612 further includes a wavelength combining component 618, and both the red laser source 615 and the green laser source 616 emit light toward the wavelength combining element 618, and the wavelength combining component 618 will be the red color.
  • the laser light and the green laser light are combined by light combining light and then supplied to the second spatial light modulator 632.
  • the red laser light emitted by the red laser light source 615 may be transmitted through the wavelength combining light element 618
  • the green laser light emitted by the green laser light source 616 may be reflected by the wavelength combining light element 618.
  • the red laser source 615, the green laser source 616 and the second spatial light modulator 632 are synchronized to achieve independent modulation of the red laser and the green laser.
  • the display device 600 further includes a first guiding element 619a and a second guiding element 619b, and the first guiding element 619a receives the first light emitted by the polarization converter 617 Directing the first light to the first spatial light modulator 631, the first image light emitted by the first spatial light modulator 631 is also provided to the image synthesis device 640 via the first guiding element
  • the second guiding element 619b receives the second light emitted by the wavelength combining element 618 and directs the second light to the second spatial light modulator 632, the second spatial light modulator 632 emits
  • the second image light is also supplied to the image synthesizing device 640 via the second guiding element 619b.
  • the first spatial light modulator 631 and the second spatial light modulator 632 can simultaneously perform modulation of the first light and modulation of the second light.
  • FIG. 9 is a timing chart of modulation of two spatial light modulators 631, 632 of the display device 600 of FIG.
  • the first spatial light modulator 631 sequentially receives the m color lights and sequentially emits the first image light of the m colors, and sets the first spatial light.
  • the modulation time of the modulator 631 for the m color lights is m1, m2, and m3, respectively, and the second spatial light modulator 632 sequentially receives the n color lights and sequentially emits the second image of the n colors.
  • the modulation time of the n kinds of color lights by the second spatial light modulator 632 is n1 and n2, respectively.
  • m1+m2+m3 may not be equal to n1+n2, that is, since the two spatial light modulators 631 and 632 can be independently modulated, the timing of the two may not be completely synchronized.
  • the display device 600 of the present invention since the second light is added, the original image data of the image is also converted into m first corresponding to the first light and the second light, respectively. Correcting the control signal value and the n second correction control signal values, and modulating the first light and the second light respectively according to the m first correction control signal values and the n second correction control signal values.
  • the first image light and the second image light can realize display of image data of a wide color gamut, and can ensure accurate restoration of the display image.
  • the display device 600 has a wider color gamut and a better display effect.
  • FIG. 10 is a schematic flowchart diagram of a display method of the display device 600 shown in FIG. 6.
  • the display method includes the following steps S1, S2, S3, and S4.
  • Step S1 providing first light and second light, the first light is used to modulate an image of a first color gamut, and the second light is used to co-modulate the first color gamut range with the first light
  • the first light includes m color lights
  • the second light includes n color lights of m color lights
  • m is greater than or equal to n.
  • the step S1 can be performed by the light source device. Since the specific structure and function of the light source device 610 have been described above, details are not described herein.
  • Step S2 receiving raw image data of an image to be displayed, the original image data of the image to be displayed is image data based on the second color gamut range and including original control signal values of m colors of each pixel, the second The gamut range covers the first gamut range and has a portion that extends beyond the first gamut range.
  • the step S2 can be performed by the image data processing module 620.
  • Step S3 mapping the original control signal values of the m colors of the pixels of the original image data of the image to be displayed to the correction control signal values of the (m+n) colors to obtain the corrected image data of the image to be displayed.
  • the correction control signal value of (m+n) colors of each pixel includes m first correction control signal values corresponding to the first light and n first numbers corresponding to the second light Second correction control signal value.
  • the step S3 may be performed by the image data processing module 620. Since the specific structure and function of the image data processing module 620 have been described above, details are not described herein.
  • Step S4 receiving the corrected image data, modulating the first light according to m first correction control signal values of each pixel of the corrected image data, obtaining first image light, and each pixel according to the corrected image data
  • the n second correction control signal values modulate the second light to obtain a second image light, and the first image light and the second image light are further combined to display the image.
  • the step S4 can be performed by the light modulating device 630 and the image synthesizing device 640. Since the specific structure and function of the light modulating device 630 and the image synthesizing device 640 have been described above, they will not be described herein.
  • m 3
  • n 2
  • the original control signal values of m colors of each pixel are R, G, and B
  • the m first correction control signal values are r, g, b
  • the n second correction control signal values are rl, gl
  • the tristimulus values of the pixels obtained by the calculation of the correction control signal values r, g, b and the second correction control signal values rl, gl are equal.
  • step S3 when the first and second correction control signal values are calculated as r, g, b, rl, and gl according to the original control signal values R, G, and B of each pixel, rl 2 + gl 2 is taken.
  • the display method of the present invention since the second light is added, and the original image data of the image is also converted into m first corrections respectively corresponding to the first light and the second light Controlling the signal value and the n second correction control signal values, and further modulating the first light and the second light according to the m first correction control signal values and the n second correction control signal values respectively
  • the image light and the second image light can realize the display of the image data of the wide color gamut, and can ensure the accurate restoration of the display image.
  • the display device adopting the display method has a wider color gamut and a better display effect.
  • FIG. 11 is a schematic diagram showing the technical color gamut and color volume expansion of the display device shown in FIG. 6. As shown in FIG. 11, by adding a 5% brightness green laser and a red laser, the color gamut can be extended to the range of Rec. 2020, wherein the peripheral shadow area shown in FIG. 11 is an extended color gamut range, so The display device 600 and the display device using the display method have better display effects.

Abstract

一种显示设备包括光源装置、图像数据处理模块、光调制装置及图像合成装置。光源装置发出第一光与第二光。图像数据处理模块接收一幅待显示图像的原始图像数据,该幅待显示图像的原始图像数据是基于第二色域范围的图像数据且包括各像素m种颜色的原始控制信号值,第二色域范围覆盖第一色域范围且具有超出第一色域范围的部分,图像数据处理模块还将该幅待显示图像的原始图像数据的各像素的m种颜色的原始控制信号值映射为对应第一光的m个第一校正控制信号值及对应第二光的n个第二校正控制信号值。光调制装置依据各像素的m个第一校正控制信号值调制第一光获得第一图像光、以及依据各像素的n个第二校正控制信号值调制第二光获得第二图像光。

Description

显示设备及显示方法 技术领域
本发明涉及显示技术领域,尤其涉及一种显示设备及显示方法。
背景技术
色域通常指人眼在自然界能够看到的可见光的光谱轨迹,可见光谱轨迹所构成区域的面积即为人眼能够看到可见光的最大色域面积。目前,以不同显示器件构成的投影机、显示器等显示涉笔都是采用R、G、B三基色显示设备,对图像进行色彩还原再现。在一个指定的色度空间,如CIE1931xy色度空间,显示设备的R、G、B三基色所形成三角形称为该设备能够显示的色域,色域空间面积越大,则人们感觉呈现的色彩画面越鲜艳、越逼真,然而,如何使得所述显示设备可以实现较宽色域的显示是业界一种重要的技术课题。
发明内容
有鉴于此,本发明提供一种可实现较宽色域的显示设备与显示方法。
一种显示设备,其包括:
光源装置,用于发出第一光及第二光,所述第一光用于调制第一色域范围的图像,所述第二光用于配合所述第一光共同调制所述第一色域范围以外的图像,所述第一光包括m种颜色光,所述第二光包括m种颜色光中的n种颜色光,m大于等于n;
图像数据处理模块,用于接收一幅待显示图像的原始图像数据,该幅待显示图像的原始图像数据是基于第二色域范围的图像数据且包括各像素m种颜色的原始控制信号值,所述第二色域范围覆盖所述第一色域范围且具有超出所述第一色域范围的部分,所述图像数据处理 模块还用于将该幅待显示图像的原始图像数据的各像素的m种颜色的原始控制信号值映射为(m+n)种颜色的校正控制信号值从而获得该幅待显示图像的校正图像数据,所述校正图像数据中,各像素的(m+n)种颜色的校正控制信号值包括对应所述第一光的m个第一校正控制信号值及对应所述第二光的n个第二校正控制信号值;及
光调制装置,用于接收所述校正图像数据、依据所述校正图像数据的各像素的m个第一校正控制信号值调制所述第一光获得第一图像光、以及依据所述校正图像数据的各像素的n个第二校正控制信号值调制所述第二光获得第二图像光,所述第一图像光及所述第二图像光还被合成以显示该幅图像。
一种显示方法,其包括如下步骤:
提供第一光及第二光,所述第一光用于调制第一色域范围的图像,所述第二光用于配合所述第一光共同调制所述第一色域范围以外的图像,所述第一光包括m种颜色光,所述第二光包括m种颜色光中的n种颜色光,m大于等于n;
接收一幅待显示图像的原始图像数据,该幅待显示图像的原始图像数据是基于第二色域范围的图像数据且包括各像素m种颜色的原始控制信号值,所述第二色域范围覆盖所述第一色域范围且具有超出所述第一色域范围的部分;
将该幅待显示图像的原始图像数据的各像素的m种颜色的原始控制信号值映射为(m+n)种颜色的校正控制信号值从而获得该幅待显示图像的校正图像数据,所述校正图像数据中,各像素的(m+n)种颜色的校正控制信号值包括对应所述第一光的m个第一校正控制信号值及对应所述第二光的n个第二校正控制信号值;及
接收所述校正图像数据、依据所述校正图像数据的各像素的m个第一校正控制信号值调制所述第一光获得第一图像光、以及依据所述校正图像数据的各像素的n个第二校正控制信号值调制所述第二光获得第二图像光,所述第一图像光及所述第二图像光还被合成以显示该幅图像。
与现有技术相比较,本发明显示设备与显示方法中,由于增加所述第二光,并且还将该幅图像的原始图像数据转换为分别对应所述第一光及第二光的m个第一校正控制信号值与n个第二校正控制信号值,进而依据所述m个第一校正控制信号值与n个第二校正控制信号值分别调制所述第一光与所述第二光可以获得第一图像光及第二图像光,可以实现宽色域的图像数据的显示,而且可以保证显示图像的准确还原,所述显示设备与采用所述显示方法的显示设备的色域较宽、显示效果较好。
进一步地,在一种实施中,在计算所述校正控制信号值r、g、b、rl、gl时,通过使得所述取rl 2+gl 2最小时的r、g、b、rl、gl各数据值,可以使得对所述rl、gl对应的红色激光与绿色激光的使用较少,进而降低光源成本。
附图说明
图1是几种采用不同光源的显示设备的色域范围比对图。
图2是一种显示设备的光源结构示意图。
图3是另一种显示设备的光源结构示意图。
图4a与图4b分别是图2及图3所示的显示设备加入不同比例的纯色激光所达到的色域范围示意图。
图5a与图5b是在一种采用动态色域的显示设备所达到的色域范围示意图。
图6是本发明一较佳实施方式的显示设备的方框示意图。
图7是图6所示显示设备的色域范围示意图。
图8是图6所示显示设备的部分具体结构示意图。
图9是图6所述显示设备的两个空间光调制器的调制时序图。
图10是图6所示的显示设备的显示方法的流程示意图。
图11是图6所示显示设备的技术色域和色彩体积扩展示意图。
主要元件符号说明
显示设备          600
光源装置          610
图像数据处理模块  620
光调制装置        630
第一光源          611
第二光源          612
激光光源          615、616
偏振转换器        617
波长合光元件      618
引导元件          619a、619b
第一空间光调制器  631
第二空间光调制器  632
图像合成装置      640
第一色域范围      F1
第二色域范围      F2
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
激光投影机等显示设备的光源一般分为三大类,一类是通过短波长的激光激发不同颜色的荧光粉以产生红绿蓝三基色的基色光。另一类直接利用红绿蓝三色激光作为三基色光源。第三类是前两类的组合,一般蓝色激光光源既作为短波长的激发光源激发荧光粉以产生红绿基色光,本身又作为蓝色的基色光。这三种不同的实现技术各有优缺点。对于激光激发荧光粉或激光荧光混合的方案,因为氮化镓基底的半导体蓝光激光器具有效率高,寿命长,工作稳定的特点,利用蓝光半导体激光器激发荧光粉色轮的方案具有寿命长,效率高,设备稳定,成本低的特点。但是由于荧光粉激发的荧光(Laser phospher)的频谱较宽,因而导致这种方案的色域比较窄。一般利用此技术的显示设备能够覆盖完全的sRGB色域,通过一些增强处理,如加入窄带的光滤波器去 除绿光和红光中的黄光光谱,能够增强其色域达到DCI-P3色域。但是窄带滤波会损失相当大的光亮度,从而使得显示设备的效率大大降低。采用纯RGB激光的显示设备,因为RGB激光具有很好的单色性,因而具有非常宽广的色域范围。利用RGB激光的显示设备(如投影系统)能够轻易达到REC2020色域标准,关于前述几种显示设备的色域比对图请参阅图1。
然而,RGB激光显示设备(如投影仪)也存在诸多缺点。第一是散斑。散斑是由于激光的相干性,导致在显示平面上反射的光由于平面的起伏产生的相位差引起干涉,导致显示画面出现亮度分布的不均匀。虽然有很多发明尝试解决激光散斑的问题,但是效果都不理想。第二是RGB激光显示设备的成本高。这是由于RGB激光显示设备中的红和绿激光在目前的技术下还不成熟。半导体绿激光的效率目前还只能做到20%以下,远低于氮化镓衬底的蓝光激光器和三元衬底的红光激光器,且成本很高。而红激光虽然效率能做到和蓝激光差不多,但是红激光的温度稳定性差,不仅随着温度的增加其效率显著降低,而且中心波长也会发生漂移。这两点使得RGB激光显示设备随温度变化会出现偏色。这就需要对红激光器增加恒温装置以稳定红激光器的工作状态,这也意味着需要大功率的冷却装置来保证红激光的工作温度稳定,从而大大增加了RGB激光显示设备的成本。
一种基本的激光激发荧光粉轮的光源200如图2所示,激发光光源210发出的短波长可见光激发色轮220上的荧光粉以产生时序的基色光或白光。由于荧光的频谱较宽,使得基于此系统的色域覆盖比较窄。一种改进的增强色域的方法如图3所示。激发光源310发出的短波长可见光通过色轮320转化为基色光并通过同步滤光器件330滤波获得窄带色纯更高的基色光以扩展激光荧光的色域。滤光器件会带来额外的光功率损失,使显示设备的效率降低。
通过往激光荧光中掺入纯色的红绿激光也能够扩展光源的色域。如一种技术中提出的能够在激光荧光系统中掺入一种纯色激光的实现方案,以及另一种技术中提到的掺入一种或两种的光路实现方案等。 虽然掺入纯色激光能够扩展激光荧光的色域,但是没有针对显示内容对光源配比的调制,其能增强的色域范围有限。如图4所示,在加入荧光亮度20%的纯色激光(如图4a所示)的混合光(mix gamut)基础上,如果需要将激光荧光的色域扩展到DCI-P3标准,需要加入相当于荧光亮度40%的纯色激光(如图4b所示)形成混合光。相比荧光加滤色片的方案,这种方案的显示设备的效率更高,但是需要加入大功率的红绿激光导致了系统成本的增加。
此外,一种通过对图像进行分析进而动态的调整激光和荧光的亮度的采用动态色域的显示设备,也能够增加系统效率。由于画面总是有一定的亮度的,而且荧光和激光在空间光调制器前合光从而形成一个三基色的系统,其中的蓝色基色来自于蓝光激光器,绿色基色来自于绿色荧光和绿色激光按动态控制信号所给的比例的合光,红色基色来自于红色荧光和红色激光按比例的合光。由于画面的最大亮度通常不为零,而荧光的强度是依据所述画面的最大亮度设定,且画面的亮场信息通常带有大量的白光成分,因而这种动态色域的方法无法将荧光亮度完全关掉,从而这种动态色域的方法无法完全达到Rec.2020标准的色域,请参阅图5,图5为采用动态色域的显示设备能够达到的色域范围的示意图,其中图5a是在荧光掺入20%的红色激光与绿色激光能够达到的色域范围示意图,图5b是在荧光掺入40%的红色激光与绿色激光能够达到的色域范围示意图,可见,图5a及图5b均较难完全达到Rec.2020标准的色域范围。
请参阅图6,图6是本发明一较佳实施方式的显示设备600的方框示意图。所述显示设备600包括光源装置610、图像数据处理模块620、光调制装置630及图像合成装置640。
所述光源装置610用于发出第一光及第二光,所述第一光用于调制第一色域范围F1的图像,所述第二光用于配合所述第一光共同调制所述第一色域范围F1以外的图像,所述第一光包括m种颜色光,所述第二光包括m种颜色光中的n种颜色光,m大于等于n。具体地,所述第一光也可以包括荧光,m可以为3,所述第一光包括三基色光, 如红绿蓝三种颜色光,其中,所述第一光中,所述蓝色光可以为激光,所述绿色光及所述红色光均为荧光,所述荧光可以由蓝色激光激发荧光材料(如红色荧光材料与绿色荧光材料;或者黄色荧光材料)产生。所述第二光可以包括红色光及绿色光,所述红色光及所述绿色光可以均为激光,即,n可以为2,所述第二光的两种颜色光可以分别为红色激光与绿色激光。
可以理解,如前所述,所述第一光可以展示的色域范围为第一色域范围F1,如图7所示,所述第一色域范围F1可以是DCI色域范围,如色域范围DCI-P3,因此若待显示图像为第一色域范围F1的图像,所述第二光可以为0,仅调制所述第一光即可展示所述第一色域范围F1的图像。进一步,所述第一光中,由于所述红色光与所述绿色光为荧光,而所述第二光包括红色激光及绿色激光,因此所述第二光的激光可以展示的色域范围宽于所述第一光中的荧光可以展示的色域范围,具体地,所述第一光与所述第二光可以共同展示超出所述第一色域范围的图像,具体地,通过调制所述第一光中蓝色激光与所述第二光的红绿激光可以展示色域位于第二色域范围F2边界线上的图像(此时所述第一光中的红绿荧光可以为0),其中所述第二色域范围F2覆盖所述第一色域范围F1且具有超出所述第一色域范围F1的部分,所述第二色域范围F2可以为REC色域范围,如色域范围REC.2020;进一步地,对于色域位于所述第一色域范围F1的边界线与所述第二色域范围F2的边界线的图像,可以通过调制所述第一光中的蓝色激光、红绿荧光与所述第二光中的红绿激光共同展示,所述第一光中的蓝色激光、红绿荧光与所述第二光中的红绿激光可以均不为0。
具体地,所述光源装置610包括第一光源611及第二光源612,所述第一光源611用于发出所述第一光,所述第二光源用于发出所述第二光,所述第一光源611可以包括激发光源及波长转换装置,所述激发光源发出激发光,所述波长转换装置具有荧光材料且用于接收所述激发光并发出所述第一光,所述第一光包括荧光,所述第二光源包括激光光源,所述第二光包括激光。
所述图像数据处理模块620用于接收一幅待显示图像的原始图像数据,该幅待显示图像的原始图像数据是基于所述第二色域范围F2的图像数据且包括各像素m种颜色的原始控制信号值,所述图像数据处理模块620还用于将该幅待显示图像的原始图像数据的各像素的m种颜色的原始控制信号值映射为(m+n)种颜色的校正控制信号值从而获得该幅待显示图像的校正图像数据。具体地,所述校正图像数据中,各像素的(m+n)种颜色的校正控制信号值包括对应所述第一光的m个第一校正控制信号值及对应所述第二光的n个第二校正控制信号值。
首先,可以理解,所述原始图像数据可以采用RGB编码、YUV编码等不同的编码格式,其中不同编码格式可以对应不同的颜色空间,本实施方式中,主要是将所述原始图像数据转换为由xyY色域坐标以CIE 1937标准定义的颜色空间的三刺激值X、Y、Z来计算校正控制信号值,具体来说,CIE 1937以一个三维向量定义了任意人眼可以分辨的绝对颜色和颜色的亮度,其不随色域的变换而变换,因此可以依据所述像素的原始控制信号值计算获得的所述像素的三刺激值X、Y、Z与依据所述像素的第一校正控制信号值及第二校正控制信号值计算获得的所述像素的三刺激值X、Y、Z相等的原理,依据每个像素的原始控制信号值计算对应的第一校正控制信号值及第二校正控制信号值。
举例来说,设每个像素的m种颜色的原始控制信号值为R、G、B,所述m个第一校正控制信号值为r、g、b,所述n个第二校正控制信号值为rl、gl,依据所述像素的原始控制信号值R、G、B计算获得的所述像素的三刺激值X、Y、Z与依据所述像素的第一校正控制信号值r、g、b及第二校正控制信号值rl、gl计算获得的所述像素的三刺激值X、Y、Z相等的原理,所述图像数据处理模块将该幅图像的原始图像数据的各颜色的原始控制信号值R、G、B将映射为(m+n)种颜色的校正控制信号值r、g、b、rl、gl从而获得该幅待显示图像的校正图像数据。
其中,将所述原始控制信号值R、G、B转换为校正控制信号值r、 g、b、rl、gl的映射过程中,所述原始控制信号值R、G、B是已知的,藉由三刺激值的映射公式可以获得无数个r、g、b、rl、gl的解,此时,在保证r、g、b、rl、gl均在所述显示设备可以展示的0至M的最大灰阶范围内的基础上,选择rl 2+gl 2最小时的r、g、b、rl、gl的值作为所述校正控制信号值r、g、b、rl、gl,从而可以获得最适合的r、g、b、rl、gl值。同时,由于所述rl 2+gl 2最小,从而可以保证对应所述第二光的rl、gl较小,从而使用最少的第二光来实现所述图像的色域的展示,不仅准确还原图像,还可以减少所述第二光的使用,降低光源成本。
其中,以下主要对所述原始图像数据为RGB编码格式时,如何依据每个像素的m种颜色的原始控制信号值为R、G、B获得对应的校正控制信号值r、g、b、rl、gl进行详细说明。具体地,所述原始图像数据为RGB编码格式的图像数据时,所述m种颜色为红绿蓝三基色时,所述原始控制信号值R、G、B分别红色原始灰阶值R、绿色原始灰阶值G及蓝色原始灰阶值B,所述第一校正控制信号值为r、g、b分别为对应第一光的红色荧光的红色第一校正灰阶值r、对应第一光的绿色荧光的绿色第一校正灰阶值g、及对应第一光的蓝色激光的蓝色第一校正灰阶值b,所述第二校正控制信号值rl、gl分别为对应第二光的红色激光的红色第二校正灰阶值rl、对应第二光的绿色激光的绿色第二校正灰阶值gl。进一步地,所述显示设备中,所述原始灰阶值R、G、B与所述校正灰阶值r、g、b、rl、gl可以均采用二进制编码格式,如N位的二进制编码,则所述显示设备各颜色可以展示的灰度级别M与所述二进制编码的位数N对应,即所述原始灰阶值R、G、B与所述校正灰阶值r、g、b、rl、gl均在【0至M】的范围内,其中M=2 N-1。举例来说,当N=8时,所述显示设备的灰度级别为256个,所述原始灰阶值R、G、B与所述校正灰阶值r、g、b、rl、gl均在【0至255】的范围,其中灰阶值为0代表该颜色完全关闭,灰阶值255表示该颜色以最高亮度显示。
进一步地,根据所述原始图像数据的色域范围不同,RGB三基色 也不同。本实施方式中,所述原始图像数据为第二色域范围F2的图像数据,设所述第二色域范围F2的三基色r 0、g 0、b 0的色彩和亮度在在CIE 1937颜色空间的xyY色域坐标满足以下公式1。
Figure PCTCN2018113879-appb-000001
可以理解,对于原始图像数据来说,所述第二色域范围F2是已知的,因此所述r 0、g 0、b 0的xyY色域坐标也是已知的。当所述第二色域范围为REC 2020色域范围时,所述r 0、g 0、b 0在CIE 1937颜色空间的xyY色域坐标分别为(0.708,0.292,0.2627),(0.17,0.797,0.6780),(0.131,0.046,0.0593)。
进一步地,将每个像素的各颜色的原始灰阶值(R,G,B)的转换到CIE 1937颜色空间中计算三刺激值(X,Y,Z)时,所述三刺激值(X,Y,Z)满足以下公式2。
Figure PCTCN2018113879-appb-000002
其中,公式2中,如前所述,M为所述显示设备的灰度级别。进一步地,依据所述第二色域范围的三个基色r 0、g 0、b 0的xyY色域坐标(参公式1)可知,所述矩阵C满足以下公式3。
Figure PCTCN2018113879-appb-000003
进一步地,由于本发明显示设备使用了第一光的m种颜色光与第二光的n种颜色光的五基色系统,所述五基色r 0,g 0,b 0,rl 0,和gl 0分别代表第一光中的红荧光、第一光中的绿荧光、第一光中的蓝激光、第二光中的红激光和第二光中的绿激光的色彩和亮度,所述五基色r 0,g 0,b 0,rl 0,和gl 0在在CIE 1937颜色空间的xyY色域坐标满足以下公式4。
Figure PCTCN2018113879-appb-000004
可以理解,CIE空间中的任意一颜色亮度可以有这五种基色光按亮度比例调制后合光而成,所述五基色r 0,g 0,b 0,rl 0,和gl 0也可以是已知的,如依据所述光源装置610发出的所述第一光及所述第二光来确定。进一步地,依据每个像素的原始灰阶值R、G、B计算获得的所述像素的三刺激值X、Y、Z与依据所述像素的第一校正灰阶值r、g、b及第二校正灰阶值rl、gl计算获得的所述像素的三刺激值X、Y、Z相等的原理,所述校正灰阶值r、g、b、rl、gl满足以下公式5。
Figure PCTCN2018113879-appb-000005
进一步地,按照公式4,所述转换矩阵C′满足以下公式6。
Figure PCTCN2018113879-appb-000006
由于所述三刺激值X、Y、Z可以依据原始图像数据计算获得,所述转换矩阵C′也可以依据五基色r 0,g 0,b 0,rl 0,和gl 0获得,因此,按照所述公式5,所述校正灰阶值r、g、b、rl、gl实际上具有无穷多组解。要想实现唯一五基色对应的校正灰阶值r、g、b、rl、gl,对所述校正灰阶值r、g、b、rl、gl的求解,需要加入额外的限制。
具体地,在一种实施方式中,可以随机指定校正灰阶值r、g、b、rl、gl其中两个量的亮度,再求其他三个量的值。需要注意的是,五个控制信号的取值范围都在0和255之间,随机选取的两个值可能使 得求解到的其余三个值超出取值的范围,所以随机选取的方法并不是最优选的实施方案。在另一种实施方式中,可以使得红绿激光的亮度平方和最低rl 2+gl 2最小,即求min(rl 2+gl 2)。
首先,我们可以将公式(5)变换为以下公式7。
Figure PCTCN2018113879-appb-000007
其中,参数A、B分别满足以下公式8与9。
Figure PCTCN2018113879-appb-000008
Figure PCTCN2018113879-appb-000009
进一步,为求解r,g,b,rl,gl,将公式7进行变换,可以获得以下公式10。
Figure PCTCN2018113879-appb-000010
进一步地,为使rl 2+gl 2最小,即需求解min(rl 2+gl 2),也就是需求解
Figure PCTCN2018113879-appb-000011
定义函数f(rl,gl),其中所述函数f(rl,gl)满足以下公式11。
Figure PCTCN2018113879-appb-000012
进一步地,为求解函数f(rl,gl),可使所述r,g,b的偏微分
Figure PCTCN2018113879-appb-000013
最小,即,所述r,g,b的偏微分
Figure PCTCN2018113879-appb-000014
满足以下公式12。
Figure PCTCN2018113879-appb-000015
更进一步地,将公式10中的矩阵进改写,可以得到以下公式13。
Figure PCTCN2018113879-appb-000016
所述公式12则可改写为以下公式14。
Figure PCTCN2018113879-appb-000017
其中,按照公式13,所述参数D与d分别满足以下公式15及公式16。
Figure PCTCN2018113879-appb-000018
Figure PCTCN2018113879-appb-000019
通过矩阵改写获得公式13,由于参数A、B可以通过公式4的五基色r 0,g 0,b 0,rl 0,和gl 0的色域坐标xyZ及公式2的三刺激值XYZ计算获得,因此所述参数T及其参数t11、t12、t13、t14、t21、t22、t23、t24可以获知,进一步将参数数t11、t12、t13、t14、t21、t22、t23、t24代入公式15及公式16,可以获得参数D与d的数值,从而获得第一校正灰阶值r、g、b,然后将r、g、b的值带入公式7可以求得第二校正灰阶值rl和gl的值。如果色彩的颜色亮度超过了五基色色域所能表示的范围,则五基色的灰阶值会出现超出范围的数值,做简单截断即可,具体地,超过M的灰阶值以M代替,低于0的灰阶值以0代替。
由上述描述可知,所述图像数据处理模块620接收该幅图像的原始图像数据后,将每个像素的m种颜色的原始控制信号值R、G、B转换为对应的校正控制信号值r、g、b、rl、gl,从而获得所述校正图像数据,所述图像数据处理模块620还将所述校正图像数据提供至光调制装置630。
所述光调制装置630用于接收所述校正图像数据、依据所述校正 图像数据的各像素的m个第一校正控制信号值r、g、b调制所述第一光获得第一图像光、以及依据所述校正图像数据的各像素的n个第二校正控制信号值rl、gl调制所述第二光获得第二图像光。
本实施方式中,所述光调制装置630包括第一空间光调制器631与第二空间光调制器632,所述第一空间光调制器631用于依据所述校正图像数据的各像素的m个第一校正控制信号值调制所述第一光获得所述第一图像光,所述第二空间光调制器632用于依据所述校正图像数据的各像素的n个第二校正控制信号值调制所述第二光获得所述第二图像光。进一步地,所述光调制装置630产生的所述第一图像光与所述第二图像光可以经由图像合成装置640合成以显示该幅图像。可以理解,所述第一空间光调制器631与所述第二空间光调制器632可以为DMD空间光调制器、Lcos空间光调制器及LCD空间光调制器等。可以理解,在本实施方式中,所述光调制装置630包括所述第一空间光调制器631与所述第二空间光调制器632,分别调制所述第一光及所述第二光,但是在变更实施方式中,所述光调制装置630也可以包括一个空间光调制器,分时调制所述第一光及所述第二光,此处不再赘述。
请参阅图8,图8是图6所示显示设备600的光源装置610、光调制装置630及图像合成装置640的具体结构示意图。具体地,在图8所示实施例中,所述光源装置610包括第一光源611及第二光源612。所述第一光源611用于发出所述第一光,所述第二光源612用于发出所述第二光,所述第一光源611包括激发光源及波长转换装置,所述激发光源发出激发光,所述波长转换装置具有荧光材料且用于接收所述激发光并发出所述第一光,所述第一光包括荧光,所述第二光源612包括激光光源,所述第二光包括激光。
所述激发光源可以为激光光源,如蓝色激光光源所述激发光为蓝色激光,所述波长转换装置用于接收所述激发光并将所述激发光中的一部分转换为所述荧光、以及将所述激发光中的另一部分及所述荧光作为所述第一光,所述荧光材料可以包括红色及绿色荧光材料或者黄 色荧光材料,所述荧光包括红色光及绿色光,所述波长转换装置发出的所述第一光中,所述红色荧光、绿色荧光及所述蓝色激发光可以分时顺序发出。所述第二光源612包括红色激光光源615及绿色激光光源616,所述第二光包括红色激光及绿色激光,所述红色激光及所述绿色激光也可以分时且顺序被发出,如控制所述红色激光光源615及绿色激光光源616交替开启。
所述第一光源611还包括偏振转换器617,所述偏振转换器617位于所述波长转换装置与所述第一空间光调制器631之间,所述偏振转换器617接收所述波长转换装置发出的所述第二光并将所述第二光转换为第一偏振态的光以及将所述第一偏振态的光提供至所述第一空间光调制器631,所述红色激光及所述绿色激光均为与所述第一偏振态不同的第二偏振态的光。所述第一偏振态可以为p偏振态,所述第二偏振态可以为s偏振态。本实施例中,所述图像合成装置640为偏振合光器件,所述偏振合光器件将所述第一图像光与所述第二图像光通过偏振合光的方式合成以显示该幅图像。
进一步地,所述第二光源612还包括波长合光元件618,所述红色激光光源615及绿色激光光源616均朝向所述波长合光元件618发光,所述波长合光元件618将所述红色激光及所述绿色激光通过波长合光的方式合光后再提供至所述第二空间光调制器632。具体地,所述红色激光光源615发出的红色激光可以经所述波长合光元件618透射,所述绿色激光光源616发出的绿色激光可以经由所述波长合光元件618反射。进一步地,可以理解,所述红色激光光源615、所述绿色激光光源616与所述第二空间光调制器632的时序同步,以实现对所述红激光及所述绿激光的独立调制。
更进一步地,本实施例中,所述显示设备600还包括第一引导元件619a及第二引导元件619b,所述第一引导元件619a接收所述偏振转换器617发出的所述第一光并将所述第一光引导至所述第一空间光调制器631,所述第一空间光调制器631发出的第一图像光还经由所述第一引导元件被提供至所述图像合成装置640;所述第二引导元件 619b接收所述波长合光元件618发出的第二光并将所述第二光引导至所述第二空间光调制器632,所述第二空间光调制器632发出的第二图像光还经由所述第二引导元件619b被提供至所述图像合成装置640。
本实施例中,所述第一空间光调制器631与所述第二空间光调制器632可以同时进行所述第一光的调制及所述第二光的调制。具体地,请参阅图9,图9是图6所述显示设备600的两个空间光调制器631、632的调制时序图。在该幅图像的调制时间T1内,所述第一空间光调制器631依序接收所述m种颜色光并依序发出所述m种颜色的第一图像光,设所述第一空间光调制器631对m种颜色光的调制时间分别为m1、m2及m3,所述第二空间光调制器632依序接收所述n种颜色光并依序发出所述n种颜色的第二图像光,设所述第二空间光调制器632对n种颜色光的调制时间分别为n1、n2,本实施方式中,T1=m1+m2+m3=n1+n2,但是可以理解,在变更实施方式中,m1+m2+m3也可以不等于n1+n2,即由于两个空间光调制器631、632可以独立进行调制,二者的时序可以不用完全同步。
与现有技术相比较,本发明显示设备600中,由于增加所述第二光,并且还将该幅图像的原始图像数据转换为分别对应所述第一光及第二光的m个第一校正控制信号值与n个第二校正控制信号值,进而依据所述m个第一校正控制信号值与n个第二校正控制信号值分别调制所述第一光与所述第二光可以获得第一图像光及第二图像光,可以实现宽色域的图像数据的显示,而且可以保证显示图像的准确还原,所述显示设备600的色域较宽、显示效果较好。
进一步地,在计算所述校正控制信号值r、g、b、rl、gl时,通过使得所述取rl 2+gl 2最小时的r、g、b、rl、gl各数据值,可以使得对所述rl、gl对应的红色激光与绿色激光的使用较少,进而降低光源成本。
请参阅图10,图10是图6所示的显示设备600的显示方法的流程示意图。所述显示方法包括以下步骤S1、S2、S3及S4。
步骤S1,提供第一光及第二光,所述第一光用于调制第一色域范 围的图像,所述第二光用于配合所述第一光共同调制所述第一色域范围以外的图像,所述第一光包括m种颜色光,所述第二光包括m种颜色光中的n种颜色光,m大于等于n。所述步骤S1可以由所述光源装置执行,由于以上已对所述光源装置610的具体结构及作用进行了介绍,此处就不再赘述。
步骤S2,接收一幅待显示图像的原始图像数据,该幅待显示图像的原始图像数据是基于第二色域范围的图像数据且包括各像素m种颜色的原始控制信号值,所述第二色域范围覆盖所述第一色域范围且具有超出所述第一色域范围的部分。所述步骤S2可以由所述图像数据处理模块620执行。
步骤S3,将该幅待显示图像的原始图像数据的各像素的m种颜色的原始控制信号值映射为(m+n)种颜色的校正控制信号值从而获得该幅待显示图像的校正图像数据,所述校正图像数据中,各像素的(m+n)种颜色的校正控制信号值包括对应所述第一光的m个第一校正控制信号值及对应所述第二光的n个第二校正控制信号值。所述步骤S3可以由所述图像数据处理模块620执行,由于以上已对所述图像数据处理模块620的具体结构及作用进行了介绍,此处就不再赘述。
步骤S4,接收所述校正图像数据、依据所述校正图像数据的各像素的m个第一校正控制信号值调制所述第一光获得第一图像光、以及依据所述校正图像数据的各像素的n个第二校正控制信号值调制所述第二光获得第二图像光,所述第一图像光及所述第二图像光还被合成以显示该幅图像。所述步骤S4可以由所述光调制装置630及图像合成装置640执行,由于以上已对所述光调制装置630及图像合成装置640的具体结构及作用进行了介绍,此处就不再赘述。
进一步地,所述显示方法中,设m为3,n为2,每个像素的m种颜色的原始控制信号值为R、G、B,所述m个第一校正控制信号值为r、g、b,所述n个第二校正控制信号值为rl、gl,依据所述像素的原始控制信号值R、G、B计算获得的所述像素的三刺激值与依据所述像素的第一校正控制信号值r、g、b及第二校正控制信号值rl、gl计 算获得的所述像素的三刺激值相等。所述步骤S3中,依据每个像素的原始控制信号值R、G、B计算所述第一及第二校正控制信号值为r、g、b、rl、gl时,取rl 2+gl 2最小时的r、g、b、rl、gl各数据值。
与现有技术相比较,本发明显示方法中,由于增加所述第二光,并且还将该幅图像的原始图像数据转换为分别对应所述第一光及第二光的m个第一校正控制信号值与n个第二校正控制信号值,进而依据所述m个第一校正控制信号值与n个第二校正控制信号值分别调制所述第一光与所述第二光可以获得第一图像光及第二图像光,可以实现宽色域的图像数据的显示,而且可以保证显示图像的准确还原,采用所述显示方法的显示设备的色域较宽、显示效果较好。
进一步地,在计算所述校正控制信号值r、g、b、rl、gl时,通过使得所述取rl 2+gl 2最小时的r、g、b、rl、gl各数据值,可以使得对所述rl、gl对应的红色激光与绿色激光的使用较少,进而降低光源成本。
采用本发明所述的显示设备600及显示方法,能够通过加入少量红、绿激光以达到REC 2020的色域范围。请参阅图11,图11是图6所示显示设备的技术色域和色彩体积扩展示意图。如图11所示,通过加入5%亮度的绿色激光和红色激光,能够将色域扩展到Rec.2020的范围,其中,图11所示的外围阴影区域为扩展的色域范围,因此所述显示设备600及采用所述显示方法的显示设备的显示效果较好。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (13)

  1. 一种显示设备,其特征在于,所述显示设备包括:
    光源装置,用于发出第一光及第二光,所述第一光用于调制第一色域范围的图像,所述第二光用于配合所述第一光共同调制所述第一色域范围以外的图像,所述第一光包括m种颜色光,所述第二光包括m种颜色光中的n种颜色光,m大于等于n;
    图像数据处理模块,用于接收一幅待显示图像的原始图像数据,该幅待显示图像的原始图像数据是基于第二色域范围的图像数据且包括各像素m种颜色的原始控制信号值,所述第二色域范围覆盖所述第一色域范围且具有超出所述第一色域范围的部分,所述图像数据处理模块还用于将该幅待显示图像的原始图像数据的各像素的m种颜色的原始控制信号值映射为(m+n)种颜色的校正控制信号值从而获得该幅待显示图像的校正图像数据,所述校正图像数据中,各像素的(m+n)种颜色的校正控制信号值包括对应所述第一光的m个第一校正控制信号值及对应所述第二光的n个第二校正控制信号值;及
    光调制装置,用于接收所述校正图像数据、依据所述校正图像数据的各像素的m个第一校正控制信号值调制所述第一光获得第一图像光、以及依据所述校正图像数据的各像素的n个第二校正控制信号值调制所述第二光获得第二图像光,所述第一图像光及所述第二图像光还被合成以显示该幅图像。
  2. 如权利要求1所述的显示设备,其特征在于:设m为3,n为2,每个像素的m种颜色的原始控制信号值为R、G、B,所述m个第一校正控制信号值为r、g、b,所述n个第二校正控制信号值为rl、gl,依据所述像素的原始控制信号值R、G、B计算获得的所述像素的三刺激值与依据所述像素的第一校正控制信号值r、g、b及第二校正控制信号值rl、gl计算获得的所述像素的三刺激值相等。
  3. 如权利要求2所述的显示设备,其特征在于:所述图像数据处理模块依据每个像素的原始控制信号值R、G、B计算所述第一及第二校正控制信号值为r、g、b、rl、gl时,取rl 2+gl 2最小时的r、g、b、 rl、gl各数据值。
  4. 如权利要求1所述的显示设备,其特征在于:所述光调制装置包括第一空间光调制器与第二空间光调制器,所述第一空间光调制器用于依据所述校正图像数据的各像素的m个第一校正控制信号值调制所述第一光获得所述第一图像光,所述第二空间光调制器用于依据所述校正图像数据的各像素的n个第二校正控制信号值调制所述第二光获得所述第二图像光。
  5. 如权利要求4所述的显示设备,其特征在于:所述光源装置包括第一光源及第二光源,所述第一光源用于发出所述第一光,所述第二光源用于发出所述第二光,所述第一光源包括激发光源及波长转换装置,所述激发光源发出激发光,所述波长转换装置具有荧光材料且用于接收所述激发光并发出所述第一光,所述第一光包括荧光,所述第二光源包括激光光源,所述第二光包括激光。
  6. 如权利要求5所述的显示设备,其特征在于:所述激发光源为激光光源,所述激发光为蓝色激光,所述波长转换装置用于接收所述激发光并将所述激发光中的一部分转换为所述荧光、以及将所述激发光中的另一部分及所述荧光作为所述第一光,所述荧光包括红色光及绿色光;所述第二光源包括红色激光光源及绿色激光光源,所述第二光包括红色激光及绿色激光。
  7. 如权利要求6所述的显示设备,其特征在于:所述显示设备还包括图像合成装置,所述图像合成装置用于将所述第一图像光与所述第二图像光合成以显示该幅图像。
  8. 如权利要求7所述的显示设备,其特征在于:所述第一光源还包括偏振转换器,所述偏振转换器位于所述波长转换装置与所述第一空间光调制器之间,所述偏振转换器接收所述波长转换装置发出的所述第二光并将所述第二光转换为第一偏振态的光以及将所述第一偏振态的光提供至所述第一空间光调制器,所述红色激光及所述绿色激光均为与所述第一偏振态不同的第二偏振态的光,所述图像合成装置为偏振合光器件,所述偏振合光器件将所述第一图像光与所述第二图像 光通过偏振合光的方式合成以显示该幅图像。
  9. 如权利要求8所述的显示设备,其特征在于:所述第二光源还包括波长合光元件,所述红色激光光源及绿色激光光源均朝向所述波长合光元件发光,所述波长合光元件将所述红色激光及所述绿色激光通过波长合光的方式合光后再提供至所述第二空间光调制器。
  10. 如权利要求9所述的显示设备,其特征在于:所述显示设备还包括第一引导元件及第二引导元件,所述第一引导元件接收所述偏振转换器发出的所述第一光并将所述第一光引导至所述第一空间光调制器,所述第一空间光调制器发出的第一图像光还经由所述第一引导元件被提供至所述图像合成装置;所述第二引导元件接收所述波长合光元件发出的第二光并将所述第二光引导至所述第二空间光调制器,所述第二空间光调制器发出的第二图像光还经由所述第二引导元件被提供至所述图像合成装置。
  11. 一种显示方法,其特征在于,所述显示方法包括如下步骤:
    提供第一光及第二光,所述第一光用于调制第一色域范围的图像,所述第二光用于配合所述第一光共同调制所述第一色域范围以外的图像,所述第一光包括m种颜色光,所述第二光包括m种颜色光中的n种颜色光,m大于等于n;
    接收一幅待显示图像的原始图像数据,该幅待显示图像的原始图像数据是基于第二色域范围的图像数据且包括各像素m种颜色的原始控制信号值,所述第二色域范围覆盖所述第一色域范围且具有超出所述第一色域范围的部分;
    将该幅待显示图像的原始图像数据的各像素的m种颜色的原始控制信号值映射为(m+n)种颜色的校正控制信号值从而获得该幅待显示图像的校正图像数据,所述校正图像数据中,各像素的(m+n)种颜色的校正控制信号值包括对应所述第一光的m个第一校正控制信号值及对应所述第二光的n个第二校正控制信号值;及
    接收所述校正图像数据、依据所述校正图像数据的各像素的m个第一校正控制信号值调制所述第一光获得第一图像光、以及依据所述 校正图像数据的各像素的n个第二校正控制信号值调制所述第二光获得第二图像光,所述第一图像光及所述第二图像光还被合成以显示该幅图像。
  12. 如权利要求11所述的显示方法,其特征在于:设m为3,n为2,每个像素的m种颜色的原始控制信号值为R、G、B,所述m个第一校正控制信号值为r、g、b,所述n个第二校正控制信号值为rl、gl,依据所述像素的原始控制信号值R、G、B计算获得的所述像素的三刺激值与依据所述像素的第一校正控制信号值r、g、b及第二校正控制信号值rl、gl计算获得的所述像素的三刺激值相等。
  13. 如权利要求11所述的显示方法,其特征在于:依据每个像素的原始控制信号值R、G、B计算所述第一及第二校正控制信号值为r、g、b、rl、gl时,取rl 2+gl 2最小时的r、g、b、rl、gl各数据值。
PCT/CN2018/113879 2018-03-16 2018-11-05 显示设备及显示方法 WO2019174272A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810219582.0 2018-03-16
CN201810219582.0A CN110278421B (zh) 2018-03-16 2018-03-16 显示设备及显示方法

Publications (1)

Publication Number Publication Date
WO2019174272A1 true WO2019174272A1 (zh) 2019-09-19

Family

ID=67908707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113879 WO2019174272A1 (zh) 2018-03-16 2018-11-05 显示设备及显示方法

Country Status (2)

Country Link
CN (1) CN110278421B (zh)
WO (1) WO2019174272A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111045284B (zh) * 2019-12-11 2022-03-01 江西省科学院应用物理研究所 一种高效利用激光光源的超大屏幕激光投影仪

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104980721A (zh) * 2014-04-02 2015-10-14 深圳市绎立锐光科技开发有限公司 一种光源系统及投影系统
CN105204279A (zh) * 2014-06-23 2015-12-30 深圳市绎立锐光科技开发有限公司 光源系统及投影设备
CN106292142A (zh) * 2015-05-14 2017-01-04 深圳市绎立锐光科技开发有限公司 一种发光装置及其发光控制方法、投影设备
CN108279548A (zh) * 2017-01-06 2018-07-13 深圳市光峰光电技术有限公司 投影系统
CN108628069A (zh) * 2017-03-22 2018-10-09 深圳市光峰光电技术有限公司 投影系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6736514B2 (en) * 2002-06-21 2004-05-18 Eastman Kodak Company Imaging apparatus for increased color gamut using dual spatial light modulators

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104980721A (zh) * 2014-04-02 2015-10-14 深圳市绎立锐光科技开发有限公司 一种光源系统及投影系统
CN105204279A (zh) * 2014-06-23 2015-12-30 深圳市绎立锐光科技开发有限公司 光源系统及投影设备
CN106292142A (zh) * 2015-05-14 2017-01-04 深圳市绎立锐光科技开发有限公司 一种发光装置及其发光控制方法、投影设备
CN108279548A (zh) * 2017-01-06 2018-07-13 深圳市光峰光电技术有限公司 投影系统
CN108628069A (zh) * 2017-03-22 2018-10-09 深圳市光峰光电技术有限公司 投影系统

Also Published As

Publication number Publication date
CN110278421A (zh) 2019-09-24
CN110278421B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
JP4241902B2 (ja) カラー画像表示装置及び色変換装置
WO2019174271A1 (zh) 显示设备
US20050280850A1 (en) Color signal processing apparatus and method
JP4950846B2 (ja) カラー画像表示装置及び色変換装置
WO2007026885A1 (ja) レーザ画像形成装置およびカラー画像形成方法
CN110941135B (zh) 动态色域调节系统、方法及显示系统
WO2019174270A1 (zh) 显示设备
WO2019174274A1 (zh) 显示设备及显示方法
CN110874002B (zh) 动态调节显示系统色域的系统、方法及显示系统
WO2006085274A2 (en) Method of displaying an image and correspond image-display system
WO2019174272A1 (zh) 显示设备及显示方法
CN109327689B (zh) 显示设备及显示方法
JP2019527947A (ja) 三次元(3d)対応ディスプレイ上への広色域二次元(2d)画像の描画
WO2019174273A1 (zh) 图像处理装置、显示设备、图像处理与显示装置及方法
CN110278422B (zh) 显示设备
CN109324465B (zh) 显示设备及显示方法
JP2008107445A (ja) プロジェクタおよび変調制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909862

Country of ref document: EP

Kind code of ref document: A1