WO2019174274A1 - 显示设备及显示方法 - Google Patents

显示设备及显示方法 Download PDF

Info

Publication number
WO2019174274A1
WO2019174274A1 PCT/CN2018/113881 CN2018113881W WO2019174274A1 WO 2019174274 A1 WO2019174274 A1 WO 2019174274A1 CN 2018113881 W CN2018113881 W CN 2018113881W WO 2019174274 A1 WO2019174274 A1 WO 2019174274A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image
color gamut
gamut range
image data
Prior art date
Application number
PCT/CN2018/113881
Other languages
English (en)
French (fr)
Inventor
余新
胡飞
郭祖强
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2019174274A1 publication Critical patent/WO2019174274A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3158Modulator illumination systems for controlling the spectrum
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2053Intensity control of illuminating light
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/002Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to project the image of a two-dimensional display, such as an array of light emitting or modulating elements or a CRT
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • H04N9/3114Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources by using a sequential colour filter producing one colour at a time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3182Colour adjustment, e.g. white balance, shading or gamut
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0235Field-sequential colour display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a display device and a display method.
  • the light sources of display devices such as laser projectors are generally classified into three categories, one is to excite phosphors of different colors by a short-wavelength laser to generate primary colors of red, green and blue primary colors.
  • the other type directly uses red, green and blue three-color lasers as the three primary color light sources.
  • the third type is a combination of the first two types.
  • the blue laser light source excites the phosphor as a short-wavelength excitation source to generate red-green primary light, and itself acts as a blue primary light.
  • the gallium nitride-based semiconductor blue laser has the characteristics of high efficiency, long life, and stable operation
  • the scheme of exciting the fluorescent pink wheel by using the blue semiconductor laser has long life and high efficiency. Stable equipment and low cost.
  • the color gamut of this scheme is relatively narrow.
  • the display device generally using this technology can cover the complete sRGB color gamut, and can enhance the color gamut to reach the DCI-P3 color gamut by some enhancement processing, such as adding a narrowband optical filter to remove the yellow light spectrum in the green and red light. .
  • a display device using a pure RGB laser has a very wide color gamut because of its excellent monochromaticity.
  • the display device using RGB laser (such as projection system) can easily reach the REC2020 color gamut standard. See Figure 1 for the color gamut comparison of the above several display devices.
  • RGB laser display devices such as projectors
  • RGB laser display devices also have a number of disadvantages.
  • the first is speckle.
  • the speckle is due to the coherence of the laser, causing the light reflected on the display plane to interfere due to the phase difference caused by the undulation of the plane, resulting in unevenness in the luminance distribution of the display screen.
  • many inventions have attempted to solve the problem of laser speckle, the results are not satisfactory.
  • the second is the high cost of RGB laser display devices. This is because the red and green lasers in RGB laser display devices are still immature under current technology. The efficiency of the semiconductor green laser can only be achieved below 20%, which is much lower than the blue laser of the gallium nitride substrate and the red laser of the ternary substrate, and the cost is high.
  • the efficiency of the red laser is similar to that of the blue laser, the temperature stability of the red laser is poor, and the efficiency is significantly reduced not only with the increase of temperature, but also the center wavelength is also drifted. These two points make the RGB laser display device appear color cast with temperature changes. This requires adding a thermostat to the red laser to stabilize the operating state of the red laser, which also means that a high-power cooling device is required to ensure the stable operating temperature of the red laser, thereby greatly increasing the cost of the RGB laser display device.
  • a basic laser-excited phosphor wheel light source 200 is shown in FIG. 2 (as disclosed in Chinese Patent Application No. CN201110424486.8), and the short-wavelength visible light emitted from the light source 210 excites the phosphor on the color wheel 220 to generate a time series.
  • Basic light or white light Due to the wide spectrum of fluorescence, the gamut coverage based on this system is relatively narrow.
  • An improved method of enhancing the color gamut is shown in Figure 3 (as disclosed in Chinese Patent Application No. CN201110191454.8).
  • the short-wavelength visible light emitted by the excitation light source 310 is converted into primary color light by the color wheel 320 and filtered by the sync filter device 330 to obtain a narrow-band color pure higher primary color light to expand the color gamut of the laser fluorescence.
  • the filter device introduces additional optical power loss, which reduces the efficiency of the display device.
  • the color gamut of the light source can also be extended by incorporating a solid red and green laser into the laser fluorescence.
  • An optical system incorporating a solid color laser into a laser fluorescence has been reported, as is the implementation of a solid color laser incorporated in a laser fluorescence system as proposed in the prior art (as disclosed in US Pat.
  • Another prior art such as Chinese patent application CN201110191454.8 incorporates one or two optical path implementations and the like.
  • the incorporation of a solid color laser can extend the color gamut of the laser fluorescence, there is no modulation for the ratio of the display content to the light source, and the enhanced color gamut range is limited.
  • the present invention provides a display device and a display method capable of realizing a wider color gamut and having a lower light source cost.
  • a display device comprising:
  • a light source device emitting first light and second light, the first light being used for modulating an image of a first color gamut, the second light being used for separately modulating or co-modulating the first light with the first light
  • An image outside the gamut range, the gamut of the second light is in a second gamut range, the second gamut range covers the first gamut range and has a portion beyond the first gamut ;
  • An image pre-processing controller receives an original image data of an image to be displayed and obtains a color gamut range of the image to be displayed and a brightness value of each pixel according to the original image data of the image to be displayed.
  • the image pre-processing controller further determines a current color gamut range and the first light and the first light corresponding to the current color gamut range according to a color gamut range of the image to be displayed and a brightness value of each pixel.
  • the image pre-processing controller outputs a control light quantity control signal according to the light quantity of the first light and the second light to control the first light and the second light emitted by the light source device Amount of light;
  • a light modulating device configured to modulate light emitted by the light source device according to image data corresponding to the current color gamut range to generate image light of an image to be displayed
  • the image data corresponding to the current color gamut range is obtained by the image pre-processing controller or the light modulating device according to the original image data of the image to be displayed.
  • a display method includes the following steps:
  • first light being used to modulate an image of a first color gamut
  • second light having a color gamut wider than the first light
  • second light being used for a separate Modulating or cooperating with the first light to modulate an image outside the first color gamut
  • the light emitted by the light source device is modulated according to image data corresponding to the current color gamut range to generate image light of an image to be displayed.
  • the current color gamut range and the corresponding color gamut range are determined according to the color gamut range of the image to be displayed and the brightness value of each pixel.
  • a light quantity of the first light and the second light, and modulating the first light and the second light corresponding to the light amount according to image data corresponding to the current color gamut range not only an image of a wide color gamut can be realized Display of data, adjusting the amount of light of the first light and the second light for the current color gamut range to minimize the use of wide color gamut light (ie, the second light), reducing use of the second light , thereby reducing the cost of the light source.
  • reducing the use of the second light also reduces the power and heat dissipation requirements of the light source device to a certain extent, thereby eliminating the need for a complicated heat dissipation system and reducing the cost.
  • Figure 1 is a gamut range comparison diagram of several display devices employing different light sources.
  • FIG. 2 is a schematic view showing the structure of a light source of a prior art display device.
  • FIG. 3 is a schematic view showing the structure of a light source of another prior art display device.
  • 4a and 4b are schematic diagrams showing the color gamut range achieved by the display device shown in FIG. 2 and FIG. 3 by adding different ratios of pure color lasers.
  • FIG. 5 is a schematic structural diagram of a display device according to a preferred embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a current color gamut range of the display device shown in FIG. 5.
  • FIG. 7 is a schematic diagram showing the working principle of the image pre-processing controller of the display device shown in FIG. 5.
  • FIG. 8 is a schematic structural view of a display device according to a modified embodiment of FIG. 5.
  • FIG. 8 is a schematic structural view of a display device according to a modified embodiment of FIG. 5.
  • FIG. 9 is a flow chart of a display method in accordance with a preferred embodiment of the present invention.
  • Light source driving circuit 520
  • a wide color gamut light source such as R, G, B three-color pure laser light source
  • a wide color gamut light source and a fluorescent light source can make the display device realize the color gamut standard of Rec.2020, but there are technologies such as high cost. Problems (such as red laser and green laser are expensive and electro-optical conversion efficiency is low), the present invention provides a display device and display method that can reduce the use of a wide color gamut light source.
  • the present invention provides a method for dynamically enhancing color gamut by incorporating a laser emitted from a wide color gamut source on the basis of fluorescence, so that the display device can meet and exceed the DCI-P3 color gamut standard. At the same time maintain high efficiency. Further, the present invention provides a scheme for dynamically adjusting the brightness of the first light (such as fluorescence) and the second light (such as red and green laser light) according to the displayed image content, which can be greatly enhanced without changing the second light.
  • the system displays the color gamut, and can also greatly reduce the power of the second light required while keeping the color gamut of the display device not changed, reducing the use of a wide color gamut light source and reducing the cost of the display device.
  • the brightness and color gamut of the light emitted by the light source device of the display device vary with the image data to be displayed, so that the light source device does not always operate at the maximum power, thereby reducing energy consumption and heat dissipation burden of the device, thereby reducing heat dissipation.
  • the cost of equipment and thermostats are not always operate at the maximum power, so that the light source device does not always operate at the maximum power, thereby reducing energy consumption and heat dissipation burden of the device, thereby reducing heat dissipation.
  • FIG. 5 is a schematic structural diagram of a display device 500 according to a preferred embodiment of the present invention.
  • the display device 500 includes a light source device 510, a light source driving circuit 520, a gamma correction circuit 530, an image pre-processing controller 540, a light modulation device 550, and an image synthesizing device 560.
  • the light source driving circuit 520 is electrically connected to the light source device 510 for emitting a driving signal to drive the light source device 510 to emit light.
  • the light source device 510 is configured to emit light source light
  • the light source light may include first light and second light, wherein the first light is used to modulate an image of the first color gamut range F1, and the second light color has a first color gamut range
  • the second light gamut covers the second gamut range F2, and the second gamut range F2 covers the first gamut.
  • FIG. 6 is a schematic diagram of a color gamut range of the display device 500 shown in FIG. 5.
  • the first color gamut range F1 is a color gamut range that can be displayed by the first light, and may be a DCI color gamut range, such as The gamut range is DCI-P3, and the second gamut range F2 can be the REC gamut range, such as the gamut range REC.2020.
  • the first light and the second light may each include at least two colors of light, such as three colors of light including red, green and blue.
  • the light source device 510 includes an excitation light source 511, a color wheel 512, a supplemental light source 513, and a light combining and combining device 514, and the excitation light emitted by the excitation light source 511, the excitation light may be a first color light (such as blue light), and the color wheel 512 has a fluorescent material and receives excitation light to generate fluorescence, color wheel 512 is for receiving excitation light and emits first light, and first light emitted by color wheel 512 includes first color light and fluorescence.
  • the supplemental light source 513 is for emitting supplemental light
  • the supplemental light may include a laser
  • the fluorescent light and the complementary light comprise the same primary color component
  • the light source driving circuit 520 can control the first light and the second light emitted by the light source device 510 by emitting a driving signal to the excitation light source 511 and the supplementary light source 513.
  • the fluorescence includes a second color fluorescence (such as red fluorescence) and a third color fluorescence (such as green fluorescence) or the fluorescence includes a fourth color fluorescence (such as yellow fluorescence) in which the second color is mixed with the third color (such as red and green).
  • the supplemental light includes a second color laser (such as a red laser) and a third color laser (such as a green laser), and the first color, the second color, and the third color are three primary colors.
  • the excitation light source 511 may be a blue laser light source for emitting blue excitation light
  • the color wheel 512 may include two segmented regions arranged at least in the circumferential direction, such as a blue segmentation region. a yellow segmented region or a blue segmented region, a red segmented region, and a green segmented region, wherein the blue segmented region may be provided with a scattering material, wherein at least one of the segmented regions is provided with a fluorescent material, such as a yellow segmented region A yellow fluorescent material or red and green segmented regions are respectively provided with red and green fluorescent materials, and each segmented region emits a color light, such as a blue segmented region that scatters blue excitation light to emit blue light.
  • the yellow segmented area emits yellow light or the red and green segmented areas respectively emit red light and green light, and at least two segmented regions can emit at least two color lights, such as blue light and yellow light or blue light, red light and Green light. It can be understood that the yellow light includes components of red light and green light, that is, the first light may include three primary colors of red, green and blue.
  • the excitation light emitted by the excitation light source 511 is incident on the color wheel 512 via the light combining and combining device 514 (for example, transmission), and the color wheel 512 is rotated in the circumferential direction when the color wheel 512 is operated, so that the respective segment regions are sequentially located on the optical path where the excitation light is located, and the color A segmented region of wheel 512 directs (e.g., reflects) the received excitation light to splitting light combining device 514 during a first time period, and the other one or both segmented regions of color wheel 512 also receive excitation light generation at other times.
  • the light combining and combining device 514 for example, transmission
  • Fluorescence and fluorescence are reflected to the optical splitting device 514, the excitation light and the fluorescent light emitted from the color wheel 512 to the optical splitting device 514 are used as the first light, and the optical combining device 514 further provides (eg, reflects) the first light to the light modulation.
  • the color wheel 512 can be a reflective color wheel, and the beam splitting device 514 can include a light splitting film.
  • the excitation light source 511 and the color wheel 512 may also be replaced by a light emitting diode, that is, the first light is emitted by the light emitting diode, and the first light has fluorescence.
  • the first light may include at least two colors. Light, such as blue and yellow or blue, red and green.
  • the supplemental light may include a laser.
  • the supplemental light source 513 may include a laser of at least two colors, such as a red laser, a green laser, for emitting laser light of at least two colors, such as a red laser and a green laser. (such as a red laser and a green laser) and at least a portion of the excitation light (blue excitation light) emitted from the excitation light source 511 as the second light.
  • the supplemental light also comprises a laser
  • the supplemental light source 513 may comprise a laser of at least two colors, such as a blue laser, a red laser, and a green laser, for emitting laser light of at least two colors, such as blue.
  • the color laser, the red laser, and the green laser at this time, supplement light (such as blue laser, red laser, and green laser) as the second light.
  • the color of the supplemental light emitted by the supplemental light source may be selected according to actual needs.
  • the supplemental light source may also include a laser that emits a color, such as a complementary light source.
  • the supplemental light source 513 also emits supplemental light to the color wheel 512.
  • One of the segmented regions of the color wheel 512 also receives excitation light for a second time period different from the first time period, and the color wheel 512 also supplements the light and
  • the excitation light received in the second period is guided as a second light to the spectroscopic unit 514, and the spectroscopic unit 514 directs (e.g., reflects) the second light to the light modulation unit 550.
  • the color wheel 512 can transmit supplemental light to the beam splitting device 514, which reflects the excitation light to the beam splitting device 514 for a second period of time.
  • the supplemental light source 513 when the supplemental light source 513 emits supplemental light as the second light, one of the segmented regions of the color wheel 512 can transmit supplemental light to the spectroscopic light combining device 514, and the splitting light combining device 514 can use the second light. It is guided to the light modulation device 550.
  • the light source device 510 may further include a light homogenizing device 515 (such as a light-diffusing square bar) and a relay lens 516.
  • the relay lens 516 may be disposed between the complementary light source 513 and the color wheel 512, the color wheel 512, and the light combining light.
  • the light homogenizing device 515 can be disposed between the beam splitting and light combining device 514 and the light modulating device 550 for aligning the first light and the second light and dimming the first light and the second light. Light is directed to light modulation device 550.
  • the image pre-processing controller 540 is configured to receive raw image data of an image to be displayed. It can be understood that, in an embodiment, the display device 500 can further include an interface circuit 570, a video processing circuit 580, an image processing circuit 590, a video processing circuit 580, and an image processing circuit 590 sequentially connected to the interface circuit 570 and the image pre- Between the processing controller 540, the interface circuit 570 (such as a VGA interface circuit, an HDMI interface circuit, a DP interface circuit, or a DVI interface circuit) can receive a specific format (such as VGA, VGA, or the like from an external image source (such as a smart device such as a computer).
  • a specific format such as VGA, VGA, or the like from an external image source (such as a smart device such as a computer).
  • the image processing circuit 580 can decode the image data of the specific format and provide the image data to the image processing circuit 590.
  • the image processing circuit 590 can perform trapezoidal correction, edge blending, and consistency correction on the decoded image data.
  • the raw image data is obtained after the steps, and the raw image data is supplied to the image pre-processing controller 540.
  • the image processing circuit 590 can also be omitted according to actual needs, so that the video processing circuit 580 directly supplies the decoded image data as the original image data to the image pre-processing controller 540.
  • the image pre-processing controller 540 knows the color gamut range of the image to be displayed and the brightness value of each pixel according to the original image data of the image to be displayed, and the image pre-processing controller 540 further determines the image to be displayed according to the image.
  • the color gamut range and the brightness value of each pixel determine the current color gamut range and the amount of light of the first light and the second light corresponding to the current color gamut range, and the image pre-processing controller 540 determines the light quantity according to the first light and the second light.
  • the control light quantity control signal is output for controlling the amount of light of the first light and the second light emitted by the light source device 510.
  • the image pre-processing controller 540 further obtains the corrected image data corresponding to the current color gamut range of the image to be displayed according to the original image data of the image to be displayed.
  • the light quantity control signal is used to control the excitation light emitted by the excitation light source 511 and the supplementary light emitted by the supplemental light source 513 to control the amount of light of the first light and the second light.
  • the amount of light can refer to the amount of light in the image modulation time (ie, image display time) of the image to be displayed, and it can be understood that the control of the amount of light when the supply time of the first light and the second light is determined is determined is determined This can be achieved by controlling the brightness (ie, light intensity) of the first light and the second light.
  • the light amount control signal may include a first control signal for controlling the first light and a second control signal for controlling the second light.
  • the image pre-processing controller 540 obtains the brightness value of each pixel of the image to be displayed according to the original image data of the image to be displayed, and generates a first control signal according to the maximum brightness value in each pixel of the image to be displayed.
  • the brightness of the first light emitted by the light source device 510 is controlled to control the amount of light of the first light.
  • the image pre-processing controller may further obtain color coordinates of each pixel of the image to be displayed according to the original image data of the image to be displayed, and the color coordinate of each pixel of the image to be displayed defines a range of the image to be displayed.
  • the color gamut range so that the image pre-processing controller can also obtain the color gamut range of the image to be displayed according to the original image data of the image to be displayed.
  • the original image data of each pixel of the image to be displayed is an RGB encoding format, but it can be understood that, in a modified embodiment, the original image data of each pixel of the image to be displayed is not limited to RGB.
  • the encoding format such as YUV encoding format, can also be used.
  • the original image data of each pixel of the image to be displayed may include three primary color original image data, such as red original image data r, green original image data g, and blue original image data b, wherein, in one embodiment In the middle, r, g, and b may be represented by gray scale values.
  • the original image data r, g, and b of any one pixel may be gray scale values of 100, 120, and 150, respectively.
  • the original image data of each pixel of the image to be displayed has a color gamut range to which it belongs, and the color gamut range information to which the original image data of each pixel of the image to be displayed belongs is known or identifiable.
  • the original image data of each pixel of the image to be displayed may further include the color gamut range information to which the image belongs, and the image preprocessing controller receives After the original image data of each pixel of the image to be displayed, the color gamut range to which the original image data of each pixel of the image to be displayed belongs is obtained according to the color gamut range information.
  • the original image data of each pixel of the image to be displayed may be image data of a wider color gamut range, such as image data of a second color gamut range, that is, image data of a REC gamut range.
  • the color gamut of the original image data of each pixel of the image to be displayed belongs to the color coordinates (x r , y r , Y r ) of the three vertices r 0 , g 0 , b 0 in the xyY coordinate system, (x g , y g , Y g ), (x b , y b , Y b ) can be expressed by the following formula 1:
  • the xyY coordinate system can be defined by the CIE 1931 standard, and the CIE 1931 defines the absolute color and the brightness of the color that can be resolved by any human eye in a three-dimensional vector, which does not change with the transformation of the color gamut.
  • the gamut range information to which the original image data of each pixel of the image to be displayed belongs is known or identifiable, that is, the gamut range of the original image data of each pixel of the image to be displayed belongs to the xyY coordinate.
  • the color coordinates (x r , y r , Y r ), (x g , y g , Y g ), (x b , y b , Y b ) of the three lower vertices r 0 , g 0 , b 0 are Know or know.
  • the original image data of each pixel of the image to be displayed is the image data of the color range of the REC.2020
  • the coordinates (x r , y r , Y r ), (x g , y g , Y g ), (x b , y b , Y b ) are (0.708, 0.292, 0.2627), (0.17, 0.797, 0.6780), respectively. , (0.131, 0.046, 0.0593).
  • the tristimulus value X, Y, Z of the pixel calculated according to the original image data r, g, b of any one pixel of the image to be displayed is as shown in Formula 2:
  • the conversion matrix C is a conversion matrix required to calculate a corresponding tristimulus value X, Y, Z according to the original image data of each pixel of the image to be displayed and its associated color gamut range information, which conforms to the following formula 3 :
  • the color gamut range information on which the original image data of the image to be displayed is based may include a conversion matrix C, that is, an original image of the image to be displayed except the original image data of the three primary colors.
  • the data may store the conversion matrix C as the color gamut range information on which the original image data of the image to be displayed is based, but in a modified embodiment, the color gamut range information on which the original image data of the image to be displayed is based is It can also be the color coordinates (x r , y r , Y r ), (x g , y g , Y g ), (x b , y b , Y b ) information of the three vertices r 0 , g 0 , b 0 . Or a specific character or code representing the gamut range information, and the like, and is not limited to the above.
  • the original image data r, g, b of any pixel of the image to be displayed and the gamut range information to which it belongs can calculate the tristimulus value X, Y of the obtained pixel , Z, and, in the tristimulus values X, Y, Z, Y represents the brightness value of the pixel, and the relationship between the tristimulus values X, Y, Z and the color coordinate xy conforms to the following formula 4:
  • the original image data r, g, b of any pixel of the image to be displayed and the color gamut range information (x r , y r , Y r ), (x g ) to which the image is to be displayed , y g , Y g ), (x b , y b , Y b ) can obtain CIE xyY chromaticity value data of the pixel, that is, color coordinates x, y and luminance value Y of each pixel.
  • the display device 500 it has a default color gamut range, that is, the light modulating device 550 generally needs to store a color gamut conversion formula T corresponding to the default color gamut range, wherein the default color gamut range of the display device 500 is generally the same as the light source.
  • the color gamut range of the default illuminating device 510 is adapted, and the optical modulating device 550 converts the received image data into image data for modulation by using the color gamut conversion formula T, and further modulates the light source device 510 according to the image data for modulation.
  • the default light emitted is such that the image is accurately displayed and the displayed image meets the color gamut requirements.
  • the color gamut conversion formula T stored in the light modulating device 550 is fixed, as the color gamut conversion formula T can be stored in the light modulating device 550 in advance in the manufacturing process of the display device 500, so that the display device 500 is
  • the gamut conversion formula T can be used to generate corresponding image data for modulation during normal operation.
  • the color coordinates of the three vertices r 0 ', g 0 ', b 0 ' of the color gamut range of the light supplied to the light modulating device 550 by the light source device 510 are (x r ', y r ', Y r '), (x g ', y g ', Y g '), (x b ', y b ', Y b '), it can be understood that the default color gamut range of the display device 500 and the color of the three primary colors emitted by the light source device 510 Domain-scope-dependent, that is, for a display device, when the three primary colors emitted by the light source device are fixed, the default color gamut range of the display device is also known, that is, the three primary colors emitted by the light source device can be displayed.
  • the color gamut range so the color coordinates (x r ', y r ', Y r '), (x g ', y g ', Y g ') of the three vertices r 0 ', g 0 ', b 0 ', (x b ', y b ', Y b ') is also the vertex of the default gamut range of the display device, and can be obtained by measuring the gamut range of the three primary colors emitted by its light source device.
  • the default color gamut range of the three primary colors of light emitted by the light source device 510 of the display device 500 is the REC.2020 color gamut range
  • the default color gamut range of the display device 500 is the REC.2020 color gamut range.
  • the coordinates of the three vertices r 0 ', g 0 ', b 0 ' (x r ', y r ', Y r '), (x g ', y g ', Y g '), (x b ', y b ', Y b ') are (0.708, 0.292, 0.2627), (0.17, 0.797, 0.6780), (0.131, 0.046, 0.0593), respectively.
  • the color coordinates (x r ', y r ', Y r '), (x g ', y g ) of the three vertices r 0 ', g 0 ', b 0 ' of the default color gamut range of the display device 500 ', Y g '), (x b ', y b ', Y b ') can be expressed by the following formula 5:
  • Equation 6 the tristimulus values X, Y, Z of the pixels calculated according to the image data r', g', b' of any one pixel corresponding to the default color gamut range of the display device 500 are as shown in Equation 6:
  • the conversion matrix C' is a conversion matrix required by the light modulation device 550 to calculate the corresponding tristimulus values X, Y, Z according to the image data of any pixel corresponding to the default color gamut range, which conforms to the following formula 7:
  • the original image data r, g, b of any one pixel is used according to the above formula 1-6.
  • the relationship between the image data r', g', b' of the pixel corresponding to the default color gamut range of the display device 500 satisfies the following formula 8:
  • a display device it is generally required to convert image data (such as original image data r, g, b) received by the light modulation device 550 into image data r', g', b' and further according to the image.
  • the data r', g', b' modulate the light emitted by the light source device to accurately generate image light.
  • the color gamut conversion formula T stored in the light modulating device 550 for converting the image data of any one of the received pixels into the image data corresponding to the default color gamut range of the display device 500 can conform to the following formula:
  • the light modulation device 550 can calculate and obtain the image data r', g', b' according to the color gamut conversion formula T, and further modulate The corresponding source light produces accurate image light.
  • the image pre-processing controller 540 needs to consider the light modulation when converting the original image data into the corrected image data. The effect of the color gamut conversion formula T stored in the device. How the image pre-processing controller 540 obtains corrected image data is further explained below in conjunction with FIG.
  • FIG. 7 is a schematic diagram showing the working principle of the image pre-processing controller 540 of the display device 500 shown in FIG. 5.
  • the image pre-processing controller 540 can convert the original image data (such as r, g, b) of each pixel of the image to be displayed into CIE xyY chromaticity value data by using the above formulas 1, 2, 3, wherein each pixel
  • the CIE xyY chromaticity value data includes color coordinates x, y and a brightness value Y.
  • the image pre-processing controller 540 obtains the color coordinates (ie, the color coordinates x, y) of each pixel of the image to be displayed according to the CIE xyY chromaticity value data of each pixel, that is, the color coordinates x, y, and the brightness value Y.
  • the range defined by the color coordinates of each pixel of the image to be displayed is obtained, that is, the color gamut range of the image to be displayed.
  • the image pre-processing controller 540 obtains the brightness value Y of each pixel of the image to be displayed according to the CIE xyY chromaticity value data of each pixel, so that the image pre-processing controller 540 can display the image according to the image.
  • the maximum brightness value in each pixel generates a first control signal to control the brightness of the first light emitted by the light source device 510 to control the amount of light of the first light.
  • the image pre-processing controller 540 calculates a brightness value of the first light according to a maximum brightness value in each pixel of the image to be displayed, and generates a first control signal for controlling the first light according to the brightness value of the first light.
  • the amount of light It can be understood that in one embodiment, the larger the maximum brightness value, the larger the amount of light of the first light, that is, the two can be in a proportional relationship.
  • the image pre-processing controller 540 further determines a current color gamut range according to a color gamut range of the image to be displayed, wherein the current color gamut range is a triangular area, which covers a color gamut range of the image to be displayed, that is, the The color coordinate of each pixel of the image to be displayed, specifically, the current color gamut range may be a color gamut region that covers the color coordinates of each pixel of the image to be displayed and has the smallest area. It can be understood that, because the content of each image to be displayed is different, the color gamut range of each image to be displayed (such as a frame to be displayed) may also be different, so that the image pre-processing controller 540 determines according to each image to be displayed.
  • the current gamut range can also be different. It is assumed that the color coordinates of the three vertices r 0 ′′, g 0 ′′, b 0 ′ of the current color gamut range determined by the image pre-processing controller 540 according to the original image data of the image to be displayed are (x r ′′, y r “, Y r ”), (x g ”, y g ”, Y g ”), (x b ′′, y b ”, Y b ”), and the three vertices of the current color gamut range r 0 ”, g 0
  • the color coordinates of ", b 0 " (x r ", y r “, Y r “), (x g ", y g “, Y g “), (x b “, y b ”, Y b ”) Expressed by the following formula 10:
  • the tristimulus value X, Y, Z of the pixel calculated according to the image data r", g", b" exhibiting any one pixel corresponding to the current color gamut range is as shown in Formula 11:
  • the conversion matrix C′′ is a conversion matrix required to calculate a corresponding tristimulus value X, Y, Z according to image data of any pixel corresponding to the current color gamut range, which conforms to the following formula 12:
  • the image pre-processing controller determines the current color gamut range to determine the current color gamut range information.
  • the current color gamut range information may include an image of any pixel corresponding to the current color gamut range.
  • the data calculates a conversion matrix C" required for the corresponding tristimulus values X, Y, Z, but in a modified embodiment, the gamut range information on which the original image data of the image to be displayed is based may also be three The color coordinates of the vertices r 0 ', g 0 ', b 0 ' (x r ', y r ', Y r '), (x g ', y g ', Y g '), (x b ', y b The ', Y b ') information or a specific character or code representing the gamut range information is not limited to the above.
  • the conversion matrix required for the corresponding tristimulus values X, Y, Z is calculated according to the original image data r, g, b of each pixel of the image to be displayed and the gamut range information to which it belongs.
  • the conversion matrix required for the corresponding tristimulus values X, Y, Z is calculated according to the image data r', g', b' of any pixel corresponding to the default color gamut range;
  • the conversion matrix required for the tristimulus values X, Y, Z of the pixels calculated according to the image data r", g", b" of any pixel of the current color gamut range is C"; the image pre-processing controller 540 will pixel
  • the conversion of the original image data r, g, b to the corresponding corrected image data r"', g"', b"' is in accordance with the following formula 13:
  • the light modulation device 550 receives the image data r", g" corresponding to the current color gamut range calculated according to the stored color gamut conversion matrix T, b" (where r", g", b" is also the image data for modulation by the light modulating device 55) will conform to the following formula 14:
  • the light modulating device 550 receives the corrected image data r"', g"', b"' and further calculates the image data corresponding to the current color gamut range by using the internally stored fixed color gamut conversion formula T. r", g", b", and the light modulating device 550 further modulates the required light source light according to the image data r", g", b" to accurately restore the pixels of the image to be displayed.
  • the image pre-processing controller 540 may determine the current color gamut range information (such as the conversion matrix C), the color gamut range information on which the original image data of the image to be displayed is based.
  • the correction conversion formula is calculated (for example, the conversion matrix C) and the color gamut conversion formula T of the display device 500, wherein, according to the formula 13, the correction conversion formula is C'C" -1 , and the image pre-processing controller 540 is further based on the correction conversion formula.
  • the original image data r, g, b of the image to be displayed is converted into corrected image data r"', g"', b"', and the light modulation device 550 corrects the image data r"' according to the color gamut conversion formula T, g"', b"' is converted into image data r", g", b" corresponding to the current color gamut range.
  • the image pre-processing controller 540 needs to learn the conversion matrix C, the conversion matrix C', and the conversion matrix C" according to the received original image data of the image to be displayed, wherein, according to the foregoing analysis,
  • the conversion matrix C is determined by the color gamut range to which the original image data of the image to be displayed belongs, and since the original image data of the image to be displayed is known, the color gamut range to which the original image data of the image to be displayed belongs is It is known that the conversion matrix C is known.
  • the conversion matrix C' is determined by the default color gamut range of the display device 500, that is, the conversion formula T stored internally by the light modulation device 550, and therefore, the conversion matrix C' is also known.
  • the image pre-processing controller 540 determines the current color gamut range determined from the original image data of the image to be displayed, that is, the three vertices of the current color gamut range are known, the conversion matrix C" is also known, when C C, C and C are known, and the corrected image data r"', g"', b"' can be calculated from the original image data r, g, b.
  • the first color gamut range, the second color gamut range, and the current color gamut range are all triangular regions.
  • the image pre-processing controller 540 can calculate the color coordinates of each pixel of the image to be displayed to know the color gamut range of the image to be displayed (as shown in FIG. 6).
  • F3 it can be understood that F3 refers to an irregular shaded area composed of color coordinates of each pixel).
  • the current color gamut range (F4 shown in FIG. 6) may be a pixel that just covers the image to be displayed. The color gamut area with the smallest color area and the smallest area. Referring to FIG.
  • the three vertices corresponding to the three primary colors in the first color gamut range are respectively R1, G1, and B1, and the three vertices corresponding to the three primary colors in the second color gamut are R2, G2, and B2, respectively.
  • the three vertices corresponding to the three primary colors of the current color gamut range may be respectively located on the connecting line between R1 and R2, the connecting line between G1 and G2, and the connecting line between B1 and B2.
  • the vertices R0 are selected on the line between R1 and R2, the line between G1 and G2, and the line between B1 and B2.
  • the area surrounded by the vertices R0, G0 and B0 covers the color coordinates of each pixel of the image to be displayed, and the area of the area surrounded by the vertices R0, G0 and B0 is compared with the three-segment connection.
  • the area surrounded by any other three vertices is the smallest, or in the case where the area surrounded by the vertices R0, G0, and B0 can cover the color coordinates of each pixel of the image to be displayed, three segments are selected.
  • the point closest to the distance R1, G1, and B1 on the line is used as the apex three-segment line.
  • the color gamut range of the image to be displayed has a portion exceeding the second color gamut range F2 (ie, a portion other than the triangular region surrounded by the vertices R2, G2, and B2), since the light source device 510 is used according to the present.
  • the ability to generate light that exceeds the second gamut range F2 is such that the current gamut range is now determined to be the maximum gamut range (ie, the second gamut range) that the light source device 510 can exhibit. It can be understood that in the present embodiment, the vertices B1 and B2 overlap.
  • the image pre-processing controller 540 can determine the current color gamut range by knowing the color coordinates of each pixel of the image to be displayed, that is, the three vertices R0, G0, and B0 of the current color gamut range are obtained. Thereby the conversion matrix C" is known.
  • the image pre-processing controller 540 obtains the current color gamut range of the image to be displayed, so that the image to be displayed can be accurately restored, and the mixed light of the first light and the second light emitted by the light source device 510
  • the color gamut range also needs to be consistent with the current color gamut range.
  • the image pre-processing controller 540 generates a first control signal according to the maximum brightness value of the luminance values Y of the pixels of the image to be displayed.
  • the image pre-processing controller 540 can calculate the corresponding a light quantity of the second light of the intensity first light, and a second control signal is generated according to the calculation result of the light quantity of the second light, for controlling the light quantity of the second light emitted by the light source device 510, so that the first light and the second light
  • the gamut of the mixed light can be exactly the same as the current gamut range.
  • the amount of light of the second light can be controlled by controlling the brightness of the second light supplied from the light source device 510 to the light modulation device 550 during the modulation time of the image to be displayed.
  • the image pre-processing controller 540 can determine the first color gamut range F1 as the current color gamut range, and the image pre-processing controller 540 can emit the light quantity control signal (including the first control signal and the second control signal) by the amount of light.
  • Control signal at this time, for the light source device 510, the second light can be turned off, the light source device 510 emits the first light, and at this time, the amount of light of the first light can reach a maximum value, and the image pre-processing controller 540 according to formula 12
  • the corrected image data r"', g"', b"' is calculated, and the light modulating means 550 calculates the image data r", g", b of the current color gamut range based on the corrected image data r"', g"', b"' Then, the first light can be modulated according to the image data of the current color gamut to obtain the image light of the accurately restored image.
  • the image pre-processing controller 540 obtains the color coordinates of each pixel of the image to be displayed, the partial color coordinate exceeds the second color gamut range F2 or the partial boundary line located in the second color gamut range F2, that is, the image to be displayed.
  • the gamut range F3 has a portion beyond the second gamut range F2 or a partial boundary line containing the second gamut range F2, and the image pre-processing controller 540 takes the second gamut range F2 as the current gamut range, image pre-processing
  • the controller 540 can emit a light quantity control signal (including the first control signal and the second control signal) by the light quantity control signal.
  • the first light can be turned off, and the light source device 510 emits the second Light, and at this time, the amount of light of the second light can reach a maximum value, and the image pre-processing controller 540 calculates corrected image data r"', g"', b"' according to the formula 12, and the light modulation device according to the corrected image data r"' , g"', b"' calculates the image data r", g", b" for modulation, and then modulates the second light according to the image data r", g", b" for modulation to obtain an image of the accurately restored image. Light.
  • the image pre-processing controller 540 obtains the color coordinates of each pixel of the image to be displayed that the partial color coordinate exceeds the first color gamut range F1 but does not exceed the boundary line of the second color gamut range F2, that is, the image If the color gamut range F3 of the image to be displayed exceeds the first color gamut range F1 but does not exceed the boundary line of the second color gamut range F2, the image pre-processing controller 540 selects the region surrounded by the vertices R0, G0, and B0 as the current color gamut.
  • the current color gamut range F4 is located between the first color gamut range F1 and the second color gamut range F2 and covers the color gamut range F3 of the image to be displayed, and the first control signal in the light quantity control signal is Obtaining according to a maximum brightness value in each pixel of the image to be displayed, so that the first control signal controls the light source device to emit the first light corresponding to the brightness of the maximum brightness value in each pixel of the image to be displayed, in the light quantity control signal
  • the second control signal can be calculated according to the light quantity of the first light (specifically, the brightness of the first light) and the current color gamut range F4, so that the light quantity of the second light can be controlled by the light source device 510, and the image is pre-predicted.
  • the controller 540 calculates the corrected image data r"', g"', b"' according to the formula 12, and the light modulation device 550 calculates an image corresponding to the current color gamut range based on the corrected image data r"', g"', b"'
  • the data r", g", b" (or image data r for modulation, g", b"), and then the first light and the second light are obtained according to the image data r", g", b". Accurately restore image light from images.
  • the light quantity control signal and the brightness of the first light and the second light emitted by the light source device 510 are not linear, it is necessary to perform gamma on the light amount control signal supplied to the light source device 510. Compensation is performed to achieve a linear mapping between the light quantity control signal and the first light and the second light brightness.
  • the display device 500 is further provided with a gamma correction circuit 530 for receiving the light amount control signal and issuing a correction signal based on the light amount control signal to the light source driving circuit 520 to control the driving signal emitted by the light source driving circuit 520, thereby
  • the light source driving circuit 520 controls the light quantity of the first light and the second light emitted by the light source device 510 according to the driving signal
  • the gamma correction circuit 530 stores a plurality of light quantity control signals and one-to-one correspondence with the plurality of light quantity control signals.
  • the correction signal, the gamma correction circuit 530 receives the light amount control signal output from the image pre-processing controller 540, and searches for a correction signal corresponding to the light amount control signal in accordance with the light amount control signal, and supplies the correction signal to the light source driving circuit 520. It will be appreciated that the gamma correction circuit 530 can take the form of a lookup table.
  • the light modulating device 550 can include a control chip 551 and a modulator 552.
  • the control chip 551 internally stores a color gamut conversion formula T for receiving corrected image data and calculating image data for modulation in accordance with the color gamut conversion formula T.
  • the modulator 552 can be a DMD modulator, but is not limited to a DMD modulator.
  • the modulator 552 modulates light emitted by the light source device 510 according to image data for modulation to generate image light
  • the modulator 552 can include A plurality of modulation units (such as mirror units), each of which may correspond to image data for modulation of one pixel and modulate (eg, reflect) corresponding light source light under control of image data for modulation to generate corresponding image light.
  • the number of the modulators 552 is not limited, and may be one, two or more, such as sequentially modulating the first light and the second light by using one modulator, and separately modulating the first light and the second by using two modulators.
  • Light using three modulators to separately modulate light of three different primary colors of the mixed light of the first light and the second light, respectively, using two modulators to modulate three different ones of the mixed light of the first light and the second light, respectively Primary color light (one of the modulators modulates the light of the two primary colors and the other modulates the light of a primary color), using six modulators to separately modulate the light of the three different primary colors of the first light and the three different primary colors of the second light The light... Because it is difficult to exhaust all the embodiments, it will not be repeated here.
  • the image synthesizing device 560 is for projecting image light generated by the light modulating device 550 to display an image.
  • the image synthesizing device 560 may include a beam splitting module 561 and a projection lens 562.
  • the beam splitting module 561 may be located between the light source device and the light modulating device 550, that is, the first light and the first light emitted by the light source device 510. The two lights can be supplied to the light modulating device 550 via the beam splitting module 561.
  • the image light generated by the light modulating device 550 can also be further guided to the projection lens 562 via the beam splitting module 561, and the projection lens 562 projects the image light to a predetermined area or object (such as projecting a specific position in a screen, wall or space) to display an image.
  • a predetermined area or object Such as projecting a specific position in a screen, wall or space
  • the current color gamut range F4 and the first light corresponding to the current color gamut range F4 are determined according to the color gamut range F3 of the image to be displayed and the brightness value of each pixel.
  • the amount of light of the second light, and modulating the first light and the second light corresponding to the light amount according to the image data corresponding to the current color gamut range F4 not only the display of the image data of the wide color gamut, but also the current color gamut range F4
  • Adjusting the amount of light of the first light and the second light can minimize the use of the wide color gamut light (ie, the second light), reducing the use of the second light, thereby reducing the cost of the light source device 510.
  • reducing the use of the second light also reduces the power and heat dissipation requirements of the light source device 510 to a certain extent, thereby eliminating the need for a complicated heat dissipation system and reducing the cost.
  • the image pre-processing controller 540 needs to consider the existence of the color gamut conversion formula T, and needs the original image data r, g. And b is converted into the corrected image data r"', g"', b"' according to the formula 12.
  • the image pre-processing controller 540 can learn the conversion matrix C' (specifically, according to the color gamut conversion formula prestored by the light modulation device 550) T knows), and further calculates the current color gamut range F4 according to the original image data of the image to be displayed, thereby obtaining the conversion matrix C" according to the formula 11, and further calculating according to the original image data r, g, b (such as the original image data r
  • the g and b matrices are multiplied by C'C" -1 to obtain corrected image data r"', g"', b"'.
  • the corrected image data r"', g"', b"' can be corrected by using the pre-stored color gamut conversion formula T"' Further converted into image data r for modulation, g", b", image data r", g", b" for modulation are image data based on the current color gamut range F4, and further, the light modulation device 550 is based on the current color.
  • the image data of the domain range F4 modulates the corresponding source light of the current color gamut range F4, and the image to be displayed can be accurately restored.
  • the light modulating device 550 if it does not need to pre-store the color gamut conversion formula T, it directly receives the image data output by the image pre-processing controller 540 and according to the received image data. Directly modulating the light (ie, without converting the image data for modulation), the image data output by the image pre-processing controller at this time is image data r", g", b" based on the current color gamut range F4, and then In the modified embodiment, the image pre-processing controller 540 can directly calculate r", g", b" according to the original image data r, g, b, according to the above formula 14:
  • the conversion matrix C is known, after the image pre-processing controller 540 analyzes the original image data of the image to be displayed, the current color gamut range F4 can be determined, thereby obtaining the conversion matrix C", and the obtained image data r", g can be calculated. ", b" and the image data r", g", b” are supplied as output image data to the light modulation device 550, and the control chip 551 of the light modulation device 550 is not required for further data conversion. It can be understood that the first modification is implemented. In the manner, how the image pre-processing controller 540 generates the light quantity control signal and determines the current color gamut range F4 can be substantially the same as the foregoing embodiment, and details are not described herein again.
  • the image pre-processing controller 540' can calculate the light modulation device 550' according to the original image data of the image to be displayed in real time.
  • the light modulating device 550' may Receiving the color gamut conversion formula T' and the original image data r, g, b, and calculating the image data r", g", b" for modulation according to the above formula 13, and further based on the image data r", g", b"
  • the image to be displayed can be accurately restored by modulating the corresponding source light.
  • the image pre-processing controller 540' can generate the light quantity control signal and determine the principle and steps of the current color gamut range F4. It is basically the same as the foregoing embodiment, and will not be described again here.
  • C' may be a 4x3 or 5x3 matrix whose pseudo-inverse matrix has a determinant value of zero, thus correcting image data from the XYZ space (r', g' , b')
  • the conversion of the primary color space has infinite solutions.
  • C'- 1 should be written as C' * , which is a certain transformation matrix of XYZ to the primary color space of the corrected image data (r', g', b').
  • This conversion matrix can be solved by adding certain constraints, such as maximizing white light in the RGBW system and distributing the brightness of the base color as evenly as possible.
  • the color coordinates of the three vertices r 0 ', g 0 ', b 0 ' of the color gamut range of the display device are respectively (x r ', y r ', Y r '), (x g ', y g ', Y g '), (x b ', y b ', Y b '), thereby generating an accurate C', thereby ensuring the display device The color is displayed accurately.
  • the existing display device whether it is a flat panel display or a projection display device, whether it is a three-primary color or a multi-primary color display device, the three primary colors of the display device are fixed, and the light amount ratio of the three primary colors (such as the brightness ratio) does not follow
  • the content of the picture changes dynamically. Therefore, the color calibration of the conventional display device can be used only for one or a limited number of calibrations.
  • the display device 500, 500' of the present invention the light quantity of the first light and the second light is finally calculated and generated by the image pre-processing controller 540, 540' according to the original image data of the image to be displayed.
  • the light quantity control signals of the light amounts of the first light and the second light control the light amounts of the first light and the second light emitted by the light source devices 550, 550', so that the light amount ratio of the three primary colors of the display devices 500, 500' is dynamically changed. That is, the ratio of the amount of light of the three primary colors emitted by the light source devices 510, 510' may vary according to the content of each image to be displayed, resulting in the current color gamut range F4 of the display device 500, 500' under each frame of image.
  • the conversion matrix C" can be changed according to the content of each image to be displayed.
  • the existing fixed color conversion display device cannot meet this requirement.
  • the display device 500, 500' proposed by the present invention can be displayed according to each
  • the original image data of the image dynamically calculates the conversion matrix C" and controls the amount of light of the first light and the second light emitted by the light source devices 510, 510' to control the proportion of the light of the three primary colors.
  • image data r", g", b" according to the first light and the second light of the light quantity, and further displaying the image by modulating the first light and the second light according to the image data r", g", b"
  • the image data of each image and the corresponding source light are adapted to the current color gamut range F4 of the image, i.e., according to the dynamic color gamut of each image.
  • FIG. 9 is a flow chart of a display method according to a preferred embodiment of the present invention.
  • the display method can be applied to the display devices 500, 500' of any of the above embodiments and the display device of the modified embodiment, and the display method can include the following steps S1-S6.
  • Step S1 providing first light and second light, wherein the first light is used to modulate an image of a first color gamut, the second light has a color gamut wider than the first light, and the second light is used to separately modulate or cooperate with the first light.
  • the light collectively modulates an image outside the range of the first color gamut.
  • the first light and the second light may be provided by the light source device 510.
  • the function and working principle of the light source device 510 have been described in detail above, and will not be described herein.
  • step S2 the original image data of the image to be displayed is received, and the color gamut range of the image to be displayed and the brightness value of each pixel are obtained according to the original image data of the image to be displayed.
  • Step S3 determining a current color gamut range and a light quantity of the first light and the second light corresponding to the current color gamut range according to the color gamut range of the image to be displayed and the brightness value of each pixel.
  • Step S4 outputting a control light quantity control signal according to the light quantity of the first light and the second light to control the light quantity of the first light and the second light emitted by the light source device.
  • Steps S2, S3, and S4 can all be performed by the image pre-processing controller 540.
  • the function and working principle of the image pre-processing controller 540 have been described in detail above, and are not described herein again.
  • Step S5 Obtain image data corresponding to the current color gamut range of the image to be displayed according to the original image data of the image to be displayed.
  • Step S5 may be performed by the image pre-processing controller 540 (the embodiment shown in FIG. 5), or the image pre-processing controller 540 and the control chip 551 of the light modulating device 550 (the first and second embodiments of the embodiment shown in FIG. 5) The implementation is changed, as shown in Figure 9).
  • Step S6 modulating the light emitted by the light source device according to the image data corresponding to the current color gamut range to generate image light of the image to be displayed.
  • Step S6 can be performed by the light modulation device 550.
  • the current color gamut range and the first light and the first light corresponding to the current color gamut range F4 are determined according to the color gamut range F3 of the image to be displayed and the brightness value of each pixel.
  • the amount of light of the two lights, and modulating the first light and the second light corresponding to the light amount according to the corrected image data corresponding to the current color gamut range F4 can not only display the image data of the wide color gamut, but also adjust the current color gamut range F4
  • the amount of light of the first light and the second light can use the wide color gamut light (ie, the second light) to a minimum, reducing the use of the second light, thereby reducing the cost of the light source.
  • reducing the use of the second light also reduces the power and heat dissipation requirements of the light source device 510 to a certain extent, thereby eliminating the need for a complicated heat dissipation system and reducing the cost.

Abstract

一种显示设备(500、500')及显示方法。显示设备(500、500')包括光源装置(510、510')、图像预处理控制器( 540、540')及光调制装置( 550、550')。光源装置(510、510')发出第一光及第二光,第二光的色域范围较第一光宽。图像预处理控制器( 540、540')依据一幅待显示图像的原始图像数据获知该幅待显示图像的色域范围及各像素的亮度值,并依据该幅待显示图像的色域范围及各像素的亮度值确定当前色域范围及控制光源装置(510、510')发出与当前色域范围所需光量相对应的第一光及第二光,光调制装置( 550、550')依据当前色域范围对应的图像数据调制光源装置(510、510')发出的光以产生待显示图像的图像光,当前色域范围对应的图像数据由图像预处理控制器( 540、540')或光调制装置( 550、550')依据该幅待显示图像的原始图像数据转换而获得。

Description

显示设备及显示方法 技术领域
本发明涉及显示技术领域,尤其涉及一种显示设备及显示方法。
背景技术
激光投影机等显示设备的光源一般分为三大类,一类是通过短波长的激光激发不同颜色的荧光粉以产生红绿蓝三基色的基色光。另一类直接利用红绿蓝三色激光作为三基色光源。第三类是前两类的组合,一般蓝色激光光源既作为短波长的激发光源激发荧光粉以产生红绿基色光,本身又作为蓝色的基色光。这三种不同的实现技术各有优缺点。对于激光激发荧光粉或激光荧光混合的方案,因为氮化镓基底的半导体蓝光激光器具有效率高,寿命长,工作稳定的特点,利用蓝光半导体激光器激发荧光粉色轮的方案具有寿命长,效率高,设备稳定,成本低的特点。但是由于荧光粉激发的荧光(Laser phospher)的频谱较宽,因而导致这种方案的色域比较窄。一般利用此技术的显示设备能够覆盖完全的sRGB色域,通过一些增强处理,如加入窄带的光滤波器去除绿光和红光中的黄光光谱,能够增强其色域达到DCI-P3色域。但是窄带滤波会损失相当大的光亮度,从而使得显示设备的效率大大降低。采用纯RGB激光的显示设备,因为RGB激光具有很好的单色性,因而具有非常宽广的色域范围。利用RGB激光的显示设备(如投影系统)能够轻易达到REC2020色域标准,关于前述几种显示设备的色域比对图请参阅图1。
然而,RGB激光显示设备(如投影仪)也存在诸多缺点。第一是散斑。散斑是由于激光的相干性,导致在显示平面上反射的光由于平面的起伏产生的相位差引起干涉,导致显示画面出现亮度分布的不均匀。虽然有很多发明尝试解决激光散斑的问题,但是效果都不理想。 第二是RGB激光显示设备的成本高。这是由于RGB激光显示设备中的红和绿激光在目前的技术下还不成熟。半导体绿激光的效率目前还只能做到20%以下,远低于氮化镓衬底的蓝光激光器和三元衬底的红光激光器,且成本很高。而红激光虽然效率能做到和蓝激光差不多,但是红激光的温度稳定性差,不仅随着温度的增加其效率显著降低,而且中心波长也会发生漂移。这两点使得RGB激光显示设备随温度变化会出现偏色。这就需要对红激光器增加恒温装置以稳定红激光器的工作状态,这也意味着需要大功率的冷却装置来保证红激光的工作温度稳定,从而大大增加了RGB激光显示设备的成本。
一种基本的激光激发荧光粉轮的光源200如图2所示(如中国专利申请CN201110424486.8所揭露),激发光光源210发出的短波长可见光激发色轮220上的荧光粉以产生时序的基色光或白光。由于荧光的频谱较宽,使得基于此系统的色域覆盖比较窄。一种改进的增强色域的方法如图3所示(如中国专利申请CN201110191454.8所揭露)。激发光源310发出的短波长可见光通过色轮320转化为基色光并通过同步滤光器件330滤波获得窄带色纯更高的基色光以扩展激光荧光的色域。滤光器件会带来额外的光功率损失,使显示设备的效率降低。
通过往激光荧光中掺入纯色的红绿激光也能够扩展光源的色域。往激光荧光中掺入纯色激光的光学系统已经有过报道,如一种现有技术(如美国专利申请US20150316775A1所揭露)中提出的能够在激光荧光系统中掺入一种纯色激光的实现方案,以及另一种现有技术(如中国专利申请CN201110191454.8)中提到的掺入一种或两种的光路实现方案等。虽然掺入纯色激光能够扩展激光荧光的色域,但是没有针对显示内容对光源配比的调制,其能增强的色域范围有限。如图4所示,在加入荧光亮度20%的纯色激光(如图4a所示)的混合光(mix gamut)基础上,如果需要将激光荧光的色域扩展到DCI-P3标准,需要加入相当于荧光亮度40%的纯色激光(如图4b所示)形成混合光。相比荧光加滤色片的方案,这种方案的显示设备的效率更高,但是需要加入大功率的红绿激光导致了系统成本的增加。
发明内容
为解决现有宽色域显示设备的光源成本较高的技术问题,本发明提供一种可实现较宽色域且光源成本较低的显示设备与显示方法。
一种显示设备,其包括:
光源装置,发出第一光及第二光,所述第一光用于调制第一色域范围的图像,所述第二光用于单独调制或者配合所述第一光共同调制所述第一色域范围以外的图像,所述第二光的色域范围为第二色域范围,所述第二色域范围覆盖所述第一色域范围且具有超出所述第一色域范围的部分;
图像预处理控制器,所述图像预处理控制器接收一幅待显示图像的原始图像数据并依据该幅待显示图像的原始图像数据获知该幅待显示图像的色域范围及各像素的亮度值,所述图像预处理控制器还依据该幅待显示图像的色域范围及各像素的亮度值确定当前色域范围及与所述当前色域范围相对应的所述第一光及所述第二光的光量,所述图像预处理控制器依据所述第一光及所述第二光的光量输出控制光量控制信号以控制所述光源装置发出的所述第一光及所述第二光的光量;及
光调制装置,用于依据所述当前色域范围对应的图像数据调制所述光源装置发出的光以产生待显示图像的图像光,
其中,所述当前色域范围对应的图像数据由所述图像预处理控制器或所述光调制装置依据该幅待显示图像的原始图像数据转换而获得。
一种显示方法,其包括如下步骤:
提供第一光及第二光,所述第一光用于调制第一色域范围的图像,所述第二光的色域范围较所述第一光宽,所述第二光用于单独调制或者配合所述第一光共同调制所述第一色域范围以外的图像;
接收一幅待显示图像的原始图像数据并依据该幅待显示图像的原始图像数据获知该幅待显示图像的色域范围及各像素的亮度值;
依据该幅待显示图像的色域范围及各像素的亮度值确定当前色 域范围及与所述当前色域范围相对应的所述第一光及所述第二光的光量;
依据所述第一光及所述第二光的光量输出控制光量控制信号以控制所述光源装置发出的所述第一光及所述第二光的光量;
依据该幅待显示图像的原始图像数据获得该幅待显示图像与所述当前色域范围对应的图像数据;及
依据当前色域范围对应的图像数据调制所述光源装置发出的光以产生待显示图像的图像光。
与现有技术相比较,本发明显示设备与显示方法中,依据该幅待显示图像的色域范围及各像素的亮度值确定当前色域范围及与所述当前色域范围相对应的所述第一光及所述第二光的光量,并且依据与所述当前色域范围对应的图像数据调制相对应光量的所述第一光及所述第二光,不仅可以实现宽色域的图像数据的显示,针对当前色域范围调节所述第一光及所述第二光的光量可以最小程度的使用宽色域光(即所述第二光),减少对所述第二光的使用,进而降低光源成本。并且,减少所述第二光的使用,也在一定程度降低所述光源装置的功率及散热需求,进而不需要使用复杂的散热系统,也可以降低成本。
附图说明
图1是几种采用不同光源的显示设备的色域范围比对图。
图2是一种现有技术显示设备的光源结构示意图。
图3是另一种现有技术显示设备的光源结构示意图。
图4a与图4b分别是图2及图3所示的显示设备加入不同比例的纯色激光所达到的色域范围示意图。
图5本发明一较佳实施方式的显示设备的结构示意图。
图6是图5所示显示设备的当前色域范围示意图。
图7是图5所示显示设备的图像预处理控制器的工作原理示意图。
图8是图5一种变更实施方式的显示设备的结构示意图。
图9是本发明一较佳实施方式的显示方法的流程图。
主要元件符号说明
显示设备          500、500’
光源装置          510、510’
光源驱动电路      520
伽玛校正电路      530
图像预处理控制器  540、540’
光调制装置        550、550’
图像合成装置      560
激发光源          511
色轮              512
补充光源          513
分光合光装置      514
匀光器件          515
中继透镜          516
接口电路          570
视频处理电路      580
图像处理电路      590
色域范围          F1、F2、F3、F4
控制芯片          551
调制器            552
分光模块          561
投影镜头          562
步骤              S1、S2、S3、S4、S5、S6
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
基于以上采用宽色域光源(如R、G、B三色纯激光光源)或宽色域光源与荧光光源的混合光源可以使得显示设备实现Rec.2020的色 域标准,但存在成本较高等技术问题(如红激光与绿激光价格昂贵而且电光转换效率较低),本发明提供可以减少使用宽色域光源的显示设备与显示方法。
在一种实施方式中,本发明针对在荧光的基础上中加入宽色域光源发出的激光,提出了一种动态增强色域的方法,使得显示设备能够达到并超过DCI-P3色域标准的同时保持较高的效率。进一步地,本发明提出的一种根据显示图像内容动态调节第一光(如荧光)以及第二光(如红、绿激光)亮度的方案,能够在不改变第二光的条件下,大大增强系统显示色域,同时也能够在保持显示设备色域变化不大的情况下,大大降低所需的第二光的功率,减少使用宽色域光源、降低显示设备的成本。具体地,显示设备的光源装置发出的光的亮度和色域随待显示的图像数据变化,使得光源装置不总是工作在最大的功率,从而降低了能耗和设备的散热负担,从而降低散热设备和恒温设备的成本。
以下结合附图对本发明显示设备与显示方法的具体结构及原理进行详细说明。请参阅图5,图5是本发明一较佳实施方式的显示设备500的结构示意图。显示设备500包括光源装置510、光源驱动电路520、伽玛校正电路530、图像预处理控制器540、光调制装置550、及图像合成装置560。
光源驱动电路520电连接光源装置510,用于发出驱动信号驱动光源装置510发光。具体地,光源装置510用于发出光源光,光源光可以包括第一光及第二光,其中第一光用于调制第一色域范围F1的图像,第二光的色域范围较第一光宽,第二光用于单独调制或者配合第一光共同调制第一色域范围F1以外的图像,第二光的色域范围为第二色域范围F2,第二色域范围F2覆盖第一色域范围F1且具有超出第一色域范围F1的部分。具体地,请参阅图6,图6是图5所示显示设备500的色域范围示意图,第一色域范围F1为第一光可以展示的色域范围,其可以是DCI色域范围,如色域范围DCI-P3,第二色域范围F2可以为REC色域范围,如色域范围REC.2020。
可以理解,第一光及第二光可以均包括至少两种颜色光,如均包括红绿蓝三种颜色光。具体地,光源装置510包括激发光源511、色轮512、补充光源513、及分光合光装置514,激发光源511发出的激发光,激发光可以为第一颜色光(如蓝色光),色轮512具有荧光材料并接收激发光产生荧光,色轮512用于接收激发光并发出第一光,色轮512发出的第一光包括第一颜色光及荧光。补充光源513用于发出补充光,补充光可以包括激光,荧光与补充光包含相同的基色成分,补充光与激发光源511发出的至少部分激发光作为第二光或者补充光单独作为第二光。可以理解,本实施方式中,光源驱动电路520可以通过发出驱动信号至激发光源511及补充光源513来控制光源装置510发出的第一光及第二光。
进一步地,荧光包括第二颜色荧光(如红色荧光)及第三颜色荧光(如绿色荧光)或者荧光包括第二颜色与第三颜色(如红色与绿色)混合的第四颜色荧光(如黄色荧光),补充光包括第二颜色激光(如红色激光)及第三颜色激光(如绿色激光),第一颜色、第二颜色及第三颜色为三基色。
本实施方式中,激发光源511可以为蓝色激光光源,用于发出蓝色激发光,色轮512上可以包括至少沿圆周方向依序设置的两个分段区域,如蓝色分段区域、黄色分段区域或者蓝色分段区域、红色分段区域及绿色分段区域,其中蓝色分段区域可以设置有散射材料,其中至少一个分段区域上设置有荧光材料,如黄色分段区域设置有黄色荧光材料或者红色及绿色分段区域分别设置有红色及绿色荧光材料,且每个分段区域射出一种颜色光,如蓝色分段区域对蓝色激发光进行散射射出蓝色光,黄色分段区域发出黄色光或者红色及绿色分段区域分别射出红色光及绿色光,进而至少两个分段区域可以射出至少两种颜色光,如蓝色光与黄色光或者蓝色光、红色光与绿色光。其中,可以理解,黄色光包含红色光与绿色光的成分,即第一光可以包括红绿蓝三种基色。
进一步地,激发光源511发出的激发光经由分光合光装置514(如 透射)射入色轮512,色轮512工作时沿圆周方向转动使得各个分段区域顺序位于激发光所在的光路上,色轮512的一个分段区域在第一时段将接收到的激发光引导(如反射)至分光合光装置514,且色轮512的其他一个或两个分段区域在其他时段还接收激发光产生荧光并将荧光反射至分光合光装置514,色轮512发出至分光合光装置514的激发光及荧光作为第一光,分光合光装置514进一步将第一光提供(如反射)至光调制装置550。色轮512可以为反射式色轮,分光合光装置514可以包括分光合光膜片。
进一步地,在变更实施方式中,激发光源511与色轮512也可以由发光二极管代替,即由发光二极管发出第一光,第一光具有荧光,具体地,第一光可以包括至少两种颜色光,如蓝色光与黄色光或者蓝色光、红色光与绿色光。
补充光可以包括激光,具体地,补充光源513可以包括至少两种颜色的激光器,如红色激光器、绿色激光器,用于发出至少两种颜色的激光,如红色激光与绿色激光,此时,补充光(如红色激光与绿色激光)与激发光源511发出的至少部分激发光(蓝色激发光)作为第二光。在一种变更实施方式中,补充光也包括激光,补充光源513可以包括至少两种颜色的激光器,如蓝色激光器、红色激光器、及绿色激光器,用于发出至少两种颜色的激光,如蓝色激光、红色激光与绿色激光,此时,补充光(如蓝色激光、红色激光与绿色激光)作为第二光。当然,可以理解,在一种变更实施方式中,所述补充光源发出的补充光的颜色可以依据实际需要选择,具体地,所述补充光源也可以包括发出一种颜色的激光器,如补充光源包括发出红色光的红色激光器、发出绿色光的绿色激光器或者发出黄色光的黄色光源等。
本实施方式中,补充光源513还发出补充光至色轮512,色轮512的其中一个分段区域还在不同于第一时段的第二时段接收激发光,且色轮512还将补充光及第二时段接收的激发光作为第二光引导至分光合光装置514,分光合光装置514将第二光引导(如反射)至光调制装置550。具体地,色轮512可以将补充光透射至分光合光装置514, 色轮512在第二时段将激发光反射至分光合光装置514。
在一种变更实施方式中,补充光源513发出补充光作为第二光时,色轮512的其中一个分段区域可以将补充光透射至分光合光装置514,分光合光装置514将第二光引导至光调制装置550。
具体地,光源装置510还可以包括匀光器件515(如匀光方棒)及中继透镜516,中继透镜516可以设置于补充光源513与色轮512之间、色轮512及分光合光装置514之间,匀光器件515可以设置于分光合光装置514及光调制装置550之间,用于对第一光及第二光进行匀光并将匀光后的第一光及第二光引导至光调制装置550。
图像预处理控制器540用于接收一幅待显示图像的原始图像数据。可以理解,在一种实施方式中,显示设备500也可以进一步包括接口电路570、视频处理电路580、图像处理电路590,视频处理电路580及图像处理电路590依序连接于接口电路570与图像预处理控制器540之间,接口电路570(如VGA接口电路、HDMI接口电路、DP接口电路或DVI接口电路等)可以自外部图像源(如计算机等智能设备)接收特定格式(如VGA、VGA、DP或DVI)的图像数据,视频处理电路580可以对特定格式的图像数据进行解码后提供到图像处理电路590,图像处理电路590可以对解码后的图像数据进行梯形校正、边缘融合、一致性校正等步骤后获得原始图像数据,并将原始图像数据提供至图像预处理控制器540。当然,在变更实施方式中,图像处理电路590也可以依据实际需要被省略,从而视频处理电路580直接将解码后的图像数据直接作为原始图像数据提供至图像预处理控制器540。
具体地,图像预处理控制器540依据该幅待显示图像的原始图像数据获知该幅待显示图像的色域范围及各像素的亮度值,图像预处理控制器540还依据该幅待显示图像的色域范围及各像素的亮度值确定当前色域范围及与当前色域范围相对应的第一光及第二光的光量,以及图像预处理控制器540依据第一光及第二光的光量输出控制光量控制信号,用于控制光源装置510发出的第一光及第二光的光量。进一 步地,本实施方式中,图像预处理控制器540还依据该幅待显示图像的原始图像数据获得该幅待显示图像与当前色域范围对应的校正图像数据。
其中,光量控制信号用于控制激发光源511发出的激发光及补充光源513发出的补充光来控制第一光及第二光的光量。可以理解,光量可指在该幅待显示图像的图像调制时间(即图像显示时间)内的光量,并且,可以理解,当第一光及第二光的提供时间确定的情况下,光量的控制可以通过控制第一光及第二光的亮度(即光强度)来实现。光量控制信号可以包括用于控制第一光的第一控制信号及用于控制第二光的第二控制信号。
图像预处理控制器540依据该幅待显示图像的原始图像数据获得该幅待显示图像的各像素的亮度值,并可以依据该幅待显示图像的各像素中的最大亮度值产生第一控制信号来控制光源装置510发出的第一光的亮度来控制第一光的光量。图像预处理控制器还可以依据该幅待显示图像的原始图像数据获得该幅待显示图像的各像素的色坐标,该幅待显示图像的各像素的色坐标界定的范围为该幅待显示图像的色域范围,从而图像预处理控制器还可以依据该幅待显示图像的原始图像数据获得该幅待显示图像的色域范围。
进一步地,本实施方式中,该幅待显示图像的各像素的原始图像数据为RGB编码格式,但是可以理解,在变更实施方式中,该幅待显示图像的各像素的原始图像数据不限于RGB编码格式,如也可以为YUV编码格式等。进一步地,该幅待显示图像的各像素的原始图像数据可以包括三基色原始图像数据,如红色原始图像数据r、绿色原始图像数据g及蓝色原始图像数据b,其中,在一种实施方式中,r、g、b可以由灰阶值来表征,如任意一个像素的原始图像数据r、g、b可以分别为灰阶值100、120、150。
进一步地,该幅待显示图像的各像素的原始图像数据具有其所属的色域范围,并且该幅待显示图像的各像素的原始图像数据所属的色域范围信息是已知或可以获知的,具体地,在一种实施方式中,除了 各像素的三基色图像数据外,该幅待显示图像的各像素的原始图像数据还可以包括其所属的色域范围信息,进而图像预处理控制器接收该幅待显示图像的各像素的原始图像数据后,依据其色域范围信息可以获知该幅待显示图像的各像素的原始图像数据所属的色域范围。本实施方式中,该幅待显示图像的各像素的原始图像数据可以为较宽色域范围的图像数据,如第二色域范围的图像数据,即REC色域范围的图像数据。
其中,该幅待显示图像的各像素的原始图像数据所属的色域范围在xyY坐标系下的三个顶点r 0、g 0、b 0的色坐标(x r,y r,Y r)、(x g,y g,Y g)、(x b,y b,Y b)可以利用以下公式1表示:
Figure PCTCN2018113881-appb-000001
可以理解,xyY坐标系可以以CIE 1931标准定义,CIE 1931以一个三维向量定义了任意人眼可以分辨的绝对颜色和颜色的亮度,其不随色域的变换而变换。如前,该幅待显示图像的各像素的原始图像数据所属的色域范围信息是已知或可以获知的,即该幅待显示图像的各像素的原始图像数据所属的色域范围在xyY坐标下的三个顶点r 0、g 0、b 0的色坐标(x r,y r,Y r)、(x g,y g,Y g)、(x b,y b,Y b)是已知或可以获知的。举例来说,若该幅待显示图像的各像素的原始图像数据是REC.2020色域范围的图像数据,依据REC.2020色域范围的标准,三个顶点r 0、g 0、b 0的坐标(x r,y r,Y r)、(x g,y g,Y g)、(x b,y b,Y b)分别为(0.708,0.292,0.2627),(0.17,0.797,0.6780),(0.131,0.046,0.0593)。
进一步地,依据该幅待显示图像的任意一个像素的原始图像数据r、g、b计算的像素的三刺激值X,Y,Z如公式2所示:
Figure PCTCN2018113881-appb-000002
其中,转换矩阵C为依据该幅待显示图像的每个像素的原始图像数据及其所属的色域范围信息计算对应的三刺激值X,Y,Z所需的转 换矩阵,其符合以下公式3:
Figure PCTCN2018113881-appb-000003
具体地,在一种实施方式中,该幅待显示图像的原始图像数据所基于的色域范围信息可以包括转换矩阵C,即除了三基色的原始图像数据外,该幅待显示图像的原始图像数据可以存储有转换矩阵C作为该幅待显示图像的原始图像数据所基于的色域范围信息,但是在一种变更实施方式中,该幅待显示图像的原始图像数据所基于的色域范围信息也可以为三个顶点r 0、g 0、b 0的色坐标(x r,y r,Y r)、(x g,y g,Y g)、(x b,y b,Y b)信息或者代表色域范围信息的特定字符或编码等,并不限于上述。
进一步地,依据上述公式1、2、3可知,依据该幅待显示图像的任意一个像素的原始图像数据r、g、b及其所属的色域范围信息,即三个顶点r 0、g 0、b 0的色坐标(x r,y r,Y r)、(x g,y g,Y g)、(x b,y b,Y b),可以计算获得像素的三刺激值X,Y,Z,并且,三刺激值X,Y,Z中,Y代表像素的亮度值,且三刺激值X,Y,Z与色坐标xy的关系符合如下公式4:
Figure PCTCN2018113881-appb-000004
进而,依据上述公式1-4,根据该幅待显示图像的任意一个像素的原始图像数据r、g、b及其所属的色域范围信息(x r,y r,Y r)、(x g,y g,Y g)、(x b,y b,Y b)可以获得像素的CIE xyY色度值数据,即每个像素的色坐标x、y及亮度值Y。
进一步地,对于显示设备500来说,其具有默认色域范围,即光调制装置550一般需存储与默认色域范围对应的色域转换公式T,其中显示设备500的默认色域范围一般与光源装置510默认出光的色域 范围相适应,光调制装置550工作时将接收到的图像数据利用色域转换公式T转换为调制用的图像数据,再进一步依据调制用的图像数据调制光源装置510的发出的默认出光从而可以准确的显示图像,并且显示图像符合色域要求。通常地,光调制装置550中存储的色域转换公式T是固定不变的,如可以在显示设备500的制造过程中预先在光调制装置550中存储色域转换公式T,使得显示设备500在正常工作时可以使用色域转换公式T产生对应的调制用的图像数据。设光源装置510提供至光调制装置550的光的色域范围的三个顶点r 0’、g 0’、b 0’的色坐标分别为(x r’,y r’,Y r’)、(x g’,y g’,Y g’)、(x b’,y b’,Y b’),可以理解,显示设备500的默认色域范围与其光源装置510发出的三基色光的色域范围相关,即,对于一个显示设备,其光源装置发出的三基色光固定不变时,显示设备的默认色域范围也是已知的,即为光源装置默认发出的三基色光所能显示的色域范围,故三个顶点r 0’、g 0’、b 0’的色坐标(x r’,y r’,Y r’)、(x g’,y g’,Y g’)、(x b’,y b’,Y b’)也是显示设备的默认色域范围的顶点,并且可以通过测量其光源装置发出的三基色光的色域范围来获得。举例来说,若显示设备500的光源装置510发出的三基色光的默认色域范围是REC.2020色域范围,显示设备500的默认色域范围即为REC.2020色域范围,进一步地,依据REC.2020色域范围的标准,三个顶点r 0’、g 0’、b 0’的坐标(x r’,y r’,Y r’)、(x g’,y g’,Y g’)、(x b’,y b’,Y b’)分别为(0.708,0.292,0.2627),(0.17,0.797,0.6780),(0.131,0.046,0.0593)。
进一步地,显示设备500的默认色域范围的三个顶点r 0’、g 0’、b 0’的色坐标(x r’,y r’,Y r’)、(x g’,y g’,Y g’)、(x b’,y b’,Y b’)可以利用以下公式5表示:
Figure PCTCN2018113881-appb-000005
进一步地,依据显示设备500的默认色域范围对应的任意一个像素的图像数据r’、g’、b’计算的像素的三刺激值X,Y,Z如公式6所 示:
Figure PCTCN2018113881-appb-000006
其中,转换矩阵C’为光调制装置550记录的依据默认色域范围对应的任意一个像素的图像数据计算对应的三刺激值X,Y,Z所需的转换矩阵,其符合以下公式7:
Figure PCTCN2018113881-appb-000007
由于无论任意一个像素的图像数据对应的色域范围为何,像素的三刺激值X,Y,Z保持不变,因此依据上述公式1-6,任意一个像素的原始图像数据r、g、b与显示设备500的默认色域范围对应的像素的图像数据r’、g’、b’之间的关系满足以下公式8:
Figure PCTCN2018113881-appb-000008
依据上述描述可知,对于一个显示设备,一般需将光调制装置接550接收到的图像数据(如原始图像数据r、g、b)转换为图像数据r’、g’、b’并进一步依据图像数据r’、g’、b’调制光源装置发出的光可以准确产生图像光。由此可知,光调制装置550中存储的将接收到的任意一个像素的图像数据转换为显示设备500的默认色域范围对应的图像数据的色域转换公式T可以符合以下公式:
T=C′ -1C   (公式9)。
依据上述公式8及9,若原始图像数据r、g、b输出光调制装置后,光调制装置550依据色域转换公式T即可计算获得图像数据r’、g’、b’,并进一步调制对应的光源光产生准确的图像光。换句话说,由于光调制装置550需针对显示设备500的默认色域范围存储一固定的色域转换公式T,因此图像预处理控制器540将原始图像数据转换为校正图像数据时需考虑光调制装置中存储的色域转换公式T的影响。 以下结合图7,进一步说明图像预处理控制器540如何获得校正图像数据。
请参阅图7,图7是图5所示显示设备500的图像预处理控制器540的工作原理示意图。图像预处理控制器540可以利用上述公式1、2、3将该幅待显示图像的各像素的原始图像数据(如r、g、b)转换为CIE xyY色度值数据,其中每个像素的CIE xyY色度值数据包括色坐标x、y及亮度值Y。依据每个像素的CIE xyY色度值数据,即色坐标x、y及亮度值Y,图像预处理控制器540获得该幅待显示图像的各像素的色坐标(即色坐标x、y),进而获得该幅待显示图像的各像素的色坐标界定的范围,即该幅待显示图像的色域范围。进一步地,依据每个像素的CIE xyY色度值数据,图像预处理控制器540还获得该幅待显示图像的各像素的亮度值Y,从而图像预处理控制器540可以依据该幅待显示图像的各像素中的最大亮度值产生第一控制信号来控制光源装置510发出的第一光的亮度从而控制第一光的光量。
具体地,图像预处理控制器540依据该幅待显示图像的各像素中的最大亮度值计算第一光的亮度值,并依据第一光的亮度值产生第一控制信号用于控制第一光的光量。可以理解,在一种实施方式中,最大亮度值越大,第一光的光量也可以越大,即二者可以呈正比关系。
图像预处理控制器540还依据该幅待显示图像的色域范围确定当前色域范围,其中,当前色域范围为三角形区域,其涵盖该幅待显示图像的色域范围,即其涵盖该幅待显示图像的各像素的色坐标,具体地,当前色域范围可以为刚好涵盖该幅待显示图像的各像素的色坐标且面积最小的色域区域。可以理解,由于每幅待显示图像的内容不同,每幅待显示图像(如一帧待显示图像)的色域范围也可以均不相同,从而图像预处理控制器540依据每幅待显示图像确定的当前色域范围也可以均不相同。设图像预处理控制器540依据该幅待显示图像的原始图像数据确定的当前色域范围的三个顶点r 0”、g 0”、b 0”的色坐标分别为(x r”,y r”,Y r”)、(x g”,y g”,Y g”)、(x b”,y b”,Y b”),且当前色域范围的三个顶点r 0”、g 0”、b 0”的色坐标(x r”,y r”,Y r”)、(x g”,y g”,Y g”)、 (x b”,y b”,Y b”)可以利用以下公式10表示:
Figure PCTCN2018113881-appb-000009
进一步地,依据展现当前色域范围对应的任意一个像素的图像数据r”、g”、b”计算的像素的三刺激值X,Y,Z如公式11所示:
Figure PCTCN2018113881-appb-000010
其中,转换矩阵C”为依据当前色域范围对应的任意一个像素的图像数据计算对应的三刺激值X,Y,Z所需的转换矩阵,其符合以下公式12:
Figure PCTCN2018113881-appb-000011
具体地,图像预处理控制器确定当前色域范围即可确定其对应当前色域范围信息,在一种实施方式中,当前色域范围信息可以包括依据当前色域范围对应的任意一个像素的图像数据计算对应的三刺激值X,Y,Z所需的转换矩阵C”,但是在一种变更实施方式中,该幅待显示图像的原始图像数据所基于的色域范围信息也可以为三个顶点r 0’、g 0’、b 0’的色坐标(x r’,y r’,Y r’)、(x g’,y g’,Y g’)、(x b’,y b’,Y b’)信息或者代表色域范围信息的特定字符或编码等,并不限于上述。
具体地,根据公式2,依据该幅待显示图像的每个像素的原始图像数据r、g、b及其所属的色域范围信息计算对应的三刺激值X,Y,Z所需的转换矩阵为C;根据公式6可知,依据默认色域范围对应的任意一个像素的图像数据r’、g’、b’计算对应的三刺激值X,Y,Z所需的转换矩阵;根据公式11可知,依据当前色域范围的任意一个像素的图像数据r”、g”、b”计算的像素的三刺激值X,Y,Z所需的转换矩阵为C”;图像预处理控制器540将像素的原始图像数据r、g、b 转换为对应的校正图像数据r”’、g”’、b”’需符合如下公式13:
Figure PCTCN2018113881-appb-000012
更进一步地,光调制装置550接收校正图像数据r”’、g”’、b”’后,依据其存储的色域转换矩阵T计算的当前色域范围对应的图像数据r”、g”、b”(其中,r”、g”、b”也是光调制装置55调制用的图像数据)将符合以下公式14:
Figure PCTCN2018113881-appb-000013
进而,依据公式14可知,光调制装置550接收校正图像数据r”’、g”’、b”’并进一步利用内部存储的固定的色域转换公式T可计算获得当前色域范围对应的图像数据r”、g”、b”,且光调制装置550进一步依据图像数据r”、g”、b”调制所需的光源光可以准确还原待显示图像的像素。
依据上述介绍的原理,本实施方式中,图像预处理控制器540可以基于确定的当前色域范围信息(如转换矩阵C”)、该幅待显示图像的原始图像数据所基于的色域范围信息(如转换矩阵C)、及显示设备500的色域转换公式T计算校正转换公式,其中,依据公式13,校正转换公式为C′C″ -1,图像预处理控制器540还依据校正转换公式将该幅待显示图像的原始图像数据r、g、b转换为校正图像数据r”’、g”’、b”’,光调制装置550依据色域转换公式T将校正图像数据r”’、g”’、b”’转换为当前色域范围对应的图像数据r”、g”、b”。
进一步地,依据公式13可知,图像预处理控制器540需依据接收到的该幅待显示图像的原始图像数据获知转换矩阵C、转换矩阵C’及转换矩阵C”,其中,依据前述分析可知,转换矩阵C由该幅待显示图像的原始图像数据所属的色域范围决定,由于该幅待显示图像的原始图像数据是已知,该幅待显示图像的原始图像数据所属的色域范围也是已知的,因而转换矩阵C是已知的。转换矩阵C’由显示设备500的默认色域范围决定,即光调制装置550内部存储的转换公式T 决定,因此,转换矩阵C’也是已知的。进一步地,当图像预处理控制器540依据该幅待显示图像的原始图像数据确定的当前色域范围,即获知当前色域范围的三个顶点,转换矩阵C”也是已知的,当C、C’及C”均已知,依据原始图像数据r、g、b即可计算获知校正图像数据r”’、g”’、b”’。
本实施方式中,第一色域范围、第二色域范围及当前色域范围均为三角形区域。关于如何获知当前色域范围,依据前述分析可知,图像预处理控制器540可以计算该幅待显示图像的各像素的色坐标从而获知该幅待显示图像的色域范围(如图6所示的F3,可以理解,F3指各像素色坐标组成的不规则的阴影区域),一般来说,当前色域范围(如图6所示的F4)可以是刚好涵盖该幅待显示图像的各像素的色坐标且面积最小的色域区域。请参阅图6,设第一色域范围的三个分别对应三基色的顶点分别为R1、G1、B1,第二色域范围的三个分别对应三基色的顶点分别为R2、G2、B2,当前色域范围的三个分别对应三基色的顶点可以分别位于R1与R2之间的连线上、G1与G2之间的连线上及B1及B2之间的连线上。具体来说,获知该幅待显示图像的色域范围后,再R1与R2之间的连线上、G1与G2之间的连线上及B1及B2之间的连线上分别选择顶点R0、G0与B0,使得顶点R0、G0与B0围成的区域刚好涵盖该幅待显示图像的各像素的色坐标,且顶点R0、G0与B0围成的区域的面积相较于三段连线上的任意其他三个顶点围成的区域来说是最小的,或者说在顶点R0、G0与B0围成的区域可以涵盖该幅待显示图像的各像素的色坐标的情况下,选择三段连线上距离R1、G1、B1距离最近的点作为顶点三段连线上。当然,可以理解,若该幅待显示图像的色域范围具有超过第二色域范围F2的部分(即具有顶点R2、G2、B2围成的三角形区域以外的部分),由于依据目前光源装置510的能力,其无法产生超过第二色域范围F2的光,因此,此时将当前色域范围确定为光源装置510可以展现的最大色域范围(即第二色域范围)即可。可以理解,本实施方式中,顶点B1与B2重叠。
由此可知,依据上述原则,图像预处理控制器540通过获知该幅待显示图像的各像素的色坐标可以确定当前色域范围,即获知当前色域范围的三个顶点R0、G0与B0,从而获知转换矩阵C”。
进一步地,依据前述分析,图像预处理控制器540获得该幅待显示图像的当前色域范围,为使得待显示图像可以被准确还原,光源装置510发出的第一光及第二光的混合光的色域范围也需要与当前色域范围一致,具体地,依据前述分析,图像预处理控制器540依据该幅待显示图像的各像素的亮度值Y中的最大亮度值产生第一控制信号来控制光源装置510发出的第一光的亮度从而控制第一光的光量,进一步依据第一光及第二光的混合光需要达到的当前色域范围,图像预处理控制器540可以计算出对应上述强度的第一光的第二光的光量,并依据第二光的光量的计算结果产生第二控制信号,用于控制光源装置510发出的第二光的光量,使得第一光及第二光的混合光的色域范围可以刚好与当前色域范围一致。具体地,可以通过控制在该幅待显示图像的调制时间内光源装置510提供到光调制装置550的第二光的亮度来控制第二光的光量。
具体来说,若图像预处理控制器540获得该幅待显示图像的各像素的色坐标均位于第一色域范围F1内,即该幅待显示图像的色域范围位于第一色域范围F1以内,图像预处理控制器540可以将第一色域范围F1确定为当前色域范围,图像预处理控制器540可以发出光量控制信号(包括第一控制信号及第二控制信号),藉由光量控制信号,此时,对光源装置510来说,第二光可以被关闭,光源装置510发出第一光,且此时第一光的光量可以达到最大值,图像预处理控制器540依据公式12计算校正图像数据r”’、g”’、b”’,光调制装置550依据校正图像数据r”’、g”’、b”’计算当前色域范围的图像数据r”、g”、b”,再依据当前色域范围的图像数据调制第一光即可获得准确还原图像的图像光。
若图像预处理控制器540获得该幅待显示图像的各像素的色坐标有部分色坐标超过第二色域范围F2或位于第二色域范围F2的部分边 界线,即该幅待显示图像的色域范围F3具有超出第二色域范围F2的部分或者包含第二色域范围F2的部分边界线,则图像预处理控制器540将第二色域范围F2作为当前色域范围,图像预处理控制器540可以发出光量控制信号(包括第一控制信号及第二控制信号),藉由光量控制信号,此时,对光源装置510来说,第一光可以被关闭,光源装置510发出第二光,且此时第二光的光量可以达到最大值,图像预处理控制器540依据公式12计算校正图像数据r”’、g”’、b”’,光调制装置依据校正图像数据r”’、g”’、b”’计算调制用的图像数据r”、g”、b”,再依据调制用的图像数据r”、g”、b”调制第二光即可获得准确还原图像的图像光。
可以理解,若图像预处理控制器540获得该幅待显示图像的各像素的色坐标有部分色坐标超过第一色域范围F1但是均不超过第二色域范围F2的边界线,即该幅待显示图像的色域范围F3超出第一色域范围F1但不超过第二色域范围F2的边界线,则图像预处理控制器540选择顶点R0、G0与B0围成的区域作为当前色域范围F4,此时,当前色域范围F4位于第一色域范围F1与第二色域范围F2之间且涵盖该幅待显示图像的色域范围F3,光量控制信号中的第一控制信号是依据该幅待显示图像的各像素中的最大亮度值获得,从而第一控制信号控制光源装置发出与该幅待显示图像的各像素中的最大亮度值亮度对应的第一光,光量控制信号中的第二控制信号可以依据第一光的光量(具体可以是第一光的亮度)及当前色域范围F4计算获得,从而可以控制光源装置510发出第二光的光量,图像预处理控制器540依据公式12计算校正图像数据r”’、g”’、b”’,光调制装置550依据校正图像数据r”’、g”’、b”’计算当前色域范围对应的图像数据r”、g”、b”(或者说调制用的图像数据r”、g”、b”),再依据图像数据r”、g”、b”调制第一光及第二光即可获得准确还原图像的图像光。
需要说明的是,由于光量控制信号和光源装置510发出的第一光及第二光的亮度之间并不是线性关系,因而需要经过对提供至光源装置510的光量控制信号进行伽玛(gamma)补偿以实现光量控制信号 和第一光及第二光亮度之间的线性映射。因此,显示设备500还设置有伽玛校正电路530,伽玛校正电路530用于接收光量控制信号并基于光量控制信号发出一校正信号至光源驱动电路520控制光源驱动电路520发出的驱动信号,进而所述光源驱动电路520依据所述驱动信号控制光源装置510发出的第一光及第二光的光量,伽玛校正电路530存储有多个光量控制信号及与多个光量控制信号一一对应的校正信号,伽玛校正电路530接收图像预处理控制器540输出的光量控制信号后依据光量控制信号查找与光量控制信号一一对应的校正信号,并将校正信号提供至光源驱动电路520。可以理解,伽玛校正电路530可以采用查找表的方式。
光调制装置550可以包括控制芯片551及调制器552。控制芯片551内部存储有色域转换公式T,其用于接收校正图像数据并依据色域转换公式T计算调制用的图像数据。调制器552可以为DMD调制器,但不限于DMD调制器,如也可以为LCOS调制器,调制器552依据调制用的图像数据调制光源装置510发出的光来产生图像光,调制器552可以包括多个调制单元(如反射镜单元),每个调制单元可以对应一个像素的调制用的图像数据并在调制用的图像数据控制下调制(如反射)对应的光源光以产生对应的图像光。
进一步地,调制器552的数量不限,可以为一个、两个或多个,如使用一个调制器依序调制第一光及第二光,使用两个调制器分别调制第一光及第二光,使用三个调制器分别调制第一光与第二光的混合光中的三个不同基色的光,使用两个调制器分别调制第一光与第二光的混合光中的三个不同基色的光(其中一个调制器调制两个基色的光,另一个调制一个基色的光),使用六个调制器分别调制第一光的三个不同基色的光以及第二光的三个不同基色的光……,由于难于穷举所有实施例,此处就不再赘述。
图像合成装置560用于将光调制装置550产生的图像光进行投影以显示图像。具体地,图像合成装置560可以包括分光模块561及投影镜头562,在一种实施方式中,分光模块561可以位于光源装置与 光调制装置550之间,即光源装置510发出的第一光及第二光可以经由分光模块561被提供至光调制装置550,光调制装置550产生的图像光也可以进一步经由分光模块561被引导至投影镜头562,投影镜头562将图像光投影至预定区域或物体(如投影屏幕、墙壁或空间中的特定位置)以显示图像。
与现有技术相比较,本发明显示设备500中,依据该幅待显示图像的色域范围F3及各像素的亮度值确定当前色域范围F4及与当前色域范围F4相对应的第一光及第二光的光量,并且依据与当前色域范围F4对应的图像数据调制相对应光量的第一光及第二光,不仅可以实现宽色域的图像数据的显示,针对当前色域范围F4调节第一光及第二光的光量可以最小程度的使用宽色域光(即第二光),减少对第二光的使用,进而降低光源装置510成本。并且,减少第二光的使用,也在一定程度降低光源装置510的功率及散热需求,进而不需要使用复杂的散热系统,也可以降低成本。
进一步地,根据以上实施方式可知,因光调制装置550内部需预存色域转换公式T,故图像预处理控制器540需考虑到色域转换公式T的存在,而需要将原始图像数据r、g、b按照公式12转换为校正图像数据r”’、g”’、b”’,具体地,图像预处理控制器540可以获知转换矩阵C′(具体依据光调制装置550预存的色域转换公式T可知),并进一步依据该幅待显示图像的原始图像数据计算当前色域范围F4,从而依据公式11获知转换矩阵C″,进而依据原始图像数据r、g、b计算(如原始图像数据r、g、b矩阵与C′C″ -1相乘)获得校正图像数据r”’、g”’、b”’。更进一步地,光调制装置550接收校正图像数据r”’、g”’、b”’后,利用其预存的色域转换公式T,可以将校正图像数据r”’、g”’、b”’进一步转换为调制用的图像数据r”、g”、b”,调制用的图像数据r”、g”、b”为基于当前色域范围F4的图像数据,进而光调制装置550基于当前色域范围F4的图像数据调制对应的当前色域范围F4的光源光,即可准确还原待显示图像。
然而,依据上一段原理,在第一种变更实施方式中,若光调制装 置550无需预存色域转换公式T,而是直接接收图像预处理控制器540输出的图像数据并依据接收到的图像数据直接调制光线(即无需转换为调制用的图像数据),则此时图像预处理控制器输出的图像数据为基于当前色域范围F4的图像数据r”、g”、b”即可,进而再本变更实施方式中,图像预处理控制器540可以直接依据原始图像数据r、g、b计算r”、g”、b”,依据上述公式14可知:
Figure PCTCN2018113881-appb-000014
由于转换矩阵C已知,图像预处理控制器540分析该幅待显示图像的原始图像数据后,可以确定当前色域范围F4,从而获知转换矩阵C″,即可计算获得图像数据r”、g”、b”且将图像数据r”、g”、b”作为输出的图像数据提供到光调制装置550,无需光调制装置550的控制芯片551做进一步数据转换。可以理解,第一种变更实施方式中,图像预处理控制器540如何产生光量控制信号及确定当前色域范围F4的原理与步骤等均可以与前述实施方式基本相同,此处就不再赘述。
更进一步地,依据上几段的原理,在第二种变更实施方式中,请参阅图8,图像预处理控制器540’可以实时依据该幅待显示图像的原始图像数据计算光调制装置550’针对当前色域范围F4所需的色域转换公式T’,T’=C″ -1C,并将色域转换公式T’提供至光调制装置550’,此时,光调制装置550’可以接收色域转换公式T’及原始图像数据r、g、b,并依据上述公式13计算获得调制用的图像数据r”、g”、b”,进而依据图像数据r”、g”、b”调制对应的光源光即可准确还原待显示图像。可以理解,第二种变更实施方式中,图像预处理控制器540’如何产生光量控制信号及确定当前色域范围F4的原理与步骤等均可以与前述实施方式基本相同,此处就不再赘述。
可以理解,以上各实施方式中,仅以三基色显示设备为例来阐述色彩转换的原理。对于使用四基色或五基色的显示设备,C′可以为4×3或5×3的矩阵,其伪逆矩阵的行列式值为零,因而从XYZ空间到校正图像数据(r’、g’、b’)的基色空间的转换有无穷多解。其中C′ -1应 可以写为C′ *,其为XYZ到校正图像数据(r’、g’、b’)的基色空间的某一转换矩阵。这个转换矩阵可以由加入的某一限制条件求解,比如在RGBW系统中最大化白光,尽量平均分配基色亮度等。
进一步地,对于显示设备色彩的校准,也就是对C′的校准。通过准确测量显示设备的光源装置的三基色光的色坐标和亮度值,可以获知显示设备的色域范围的三个顶点r 0’、g 0’、b 0’的色坐标分别为(x r’,y r’,Y r’)、(x g’,y g’,Y g’)、(x b’,y b’,Y b’),从而生成准确的C′,进而保障显示设备色彩显示准确。现有显示设备,不管是平板显示还是投影显示设备,不管是三基色还是多基色显示设备,显示设备的三基色光都是固定不变的,三基色光的光量比例(如亮度比例)也不随着画面的内容动态变化。因而对传统显示设备的色彩校准,只用做一次或有限次的校准即可。然而,对于本发明的显示设备500、500’,主要通过图像预处理控制器540、540’依据该幅待显示图像的原始图像数据最终计算确定第一光及第二光的光量,并生成控制第一光及第二光的光量的光量控制信号控制光源装置550、550’发出的第一光及第二光的光量,从而显示设备500、500’的三基色光的光量比例是动态变化的,即光源装置510、510’发出的三基色光的光量比例可以依据每幅待显示图像的内容的不同而变化,从而导致每帧图像下,显示设备500、500’的当前色域范围F4对应的转换矩阵C″可以根据每幅待显示图像的内容变化而变化。现有的固定色彩转换的显示设备无法满足这个要求。本发明提出的显示设备500、500’中,可以依据每幅待显示图像的原始图像数据动态计算转换矩阵C″及控制光源装置510、510’发出的第一光及第二光的光量以控制三基色光的光量比例,并且进一步依据光量的第一光及第二光来计算图像数据r”、g”、b”,并进一步依据图像数据r”、g”、b”调制第一光及第二光来显示图像,使得每幅图像的图像数据及对应的光源光都适应于该幅图像的当前色域范围F4,即依据每幅图像的动态色域的显示。
请参阅图9,图9是本发明一较佳实施方式的显示方法的流程图。显示方法可以应用于上述任意一实施方式的显示设备500、500’及其 变更实施方式的显示设备,显示方法可以包括以下步骤S1-S6。
步骤S1,提供第一光及第二光,第一光用于调制第一色域范围的图像,第二光的色域范围较第一光宽,第二光用于单独调制或者配合第一光共同调制第一色域范围以外的图像。第一光及第二光可以由上述光源装置510、提供,因以上已对光源装置510的作用及工作原理进行了详细介绍,此处就不再赘述。
步骤S2,接收一幅待显示图像的原始图像数据并依据该幅待显示图像的原始图像数据获知该幅待显示图像的色域范围及各像素的亮度值。
步骤S3,依据该幅待显示图像的色域范围及各像素的亮度值确定当前色域范围及与当前色域范围相对应的第一光及第二光的光量。
步骤S4,依据第一光及第二光的光量输出控制光量控制信号以控制光源装置发出的第一光及第二光的光量。
步骤S2、S3及S4均可以由图像预处理控制器540执行,因以上已对图像预处理控制器540的作用及工作原理进行了详细介绍,此处不再赘述。
步骤S5,依据该幅待显示图像的原始图像数据获得该幅待显示图像与当前色域范围对应的图像数据。步骤S5可以由图像预处理控制器540(图5所示实施方式)、或者图像预处理控制器540与光调制装置550的控制芯片551(图5所示实施方式的第一种及第二种变更实施方式,如图9)共同执行。
步骤S6,依据当前色域范围对应的图像数据调制光源装置发出的光以产生待显示图像的图像光。步骤S6可以由光调制装置550执行。
与现有技术相比较,本发明显示方法中,依据该幅待显示图像的色域范围F3及各像素的亮度值确定当前色域范围及与当前色域范围F4相对应的第一光及第二光的光量,并且依据与当前色域范围F4对应的校正图像数据调制相对应光量的第一光及第二光,不仅可以实现宽色域的图像数据的显示,针对当前色域范围F4调节第一光及第二光的光量可以最小程度的使用宽色域光(即第二光),减少对第二光的 使用,进而降低光源成本。并且,减少第二光的使用,也在一定程度降低光源装置510的功率及散热需求,进而不需要使用复杂的散热系统,也可以降低成本。
以上仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (18)

  1. 一种显示设备,其特征在于,所述显示设备包括:
    光源装置,发出第一光及第二光,所述第一光用于调制第一色域范围的图像,所述第二光用于单独调制或者配合所述第一光共同调制所述第一色域范围以外的图像,所述第二光的色域范围为第二色域范围,所述第二色域范围覆盖所述第一色域范围且具有超出所述第一色域范围的部分;
    图像预处理控制器,所述图像预处理控制器接收一幅待显示图像的原始图像数据并依据该幅待显示图像的原始图像数据获知该幅待显示图像的色域范围及各像素的亮度值,所述图像预处理控制器还依据该幅待显示图像的色域范围及各像素的亮度值确定当前色域范围及与所述当前色域范围相对应的所述第一光及所述第二光的光量,所述图像预处理控制器依据所述第一光及所述第二光的光量输出光量控制信号以控制所述光源装置发出的所述第一光及所述第二光的光量;及
    光调制装置,用于依据所述当前色域范围对应的图像数据调制所述光源装置发出的光以产生待显示图像的图像光,
    其中,所述当前色域范围对应的图像数据由所述图像预处理控制器或所述光调制装置依据该幅待显示图像的原始图像数据转换而获得。
  2. 如权利要求1所述的显示设备,其特征在于:所述图像预处理控制器依据该幅待显示图像的原始图像数据获得该幅待显示图像的各像素的亮度值,并依据该幅待显示图像的各像素中的最大亮度值产生所述第一控制信号来控制所述光源装置发出的第一光的光量。
  3. 如权利要求1所述的显示设备,其特征在于:所述图像预处理控制器依据该幅待显示图像的原始图像数据获得该幅待显示图像的各像素的色坐标,其中所述该幅待显示图像的各像素的色坐标界定的范围为该幅待显示图像的色域范围。
  4. 如权利要求1所述的显示设备,其特征在于:所述显示设备具有默认色域范围,所述光调制装置存储有与所述默认色域范围对应的色域转换公式,所述图像预处理控制器基于确定的所述当前色域范围 信息、该幅待显示图像的原始图像数据所基于的色域范围信息、及所述显示设备的色域转换公式计算校正转换公式,所述图像预处理控制器还依据所述校正转换公式将该幅待显示图像的原始图像数据转换为校正图像数据,所述光调制装置依据所述色域转换公式将所述校正图像数据转换为所述当前色域范围对应的图像数据。
  5. 如权利要求4所述的显示设备,其特征在于:该幅待显示图像的原始图像数据所基于的色域范围信息包括依据该幅待显示图像的每个像素的原始图像数据及其所属的色域范围信息计算对应的三刺激值X,Y,Z所需的转换矩阵C,所述色域转换公式T=C′ -1C,C’为所述光调制装置记录的依据默认色域范围对应的任意一个像素的图像数据计算对应的三刺激值X,Y,Z所需的转换矩阵,所述当前色域范围信息包括依据所述当前色域范围对应的任意一个像素的图像数据计算对应的三刺激值X,Y,Z所需的转换矩阵C”,该幅待显示图像的任意一个像素的原始图像数据r、g、b对应的校正图像数据r”’、g”’、b”’符合如下公式:
    Figure PCTCN2018113881-appb-100001
    所述校正转换公式为C′C″ -1,所述校正图像数据r”’、g”’、b”’转换为所述当前色域范围的图像数据r”、g”、b”符合如下公式:
    Figure PCTCN2018113881-appb-100002
  6. 如权利要求1所述的显示设备,其特征在于:所述图像预处理控制器基于确定的所述当前色域范围信息、该幅待显示图像的原始图像数据所基于的色域范围信息将该幅待显示图像的原始图像数据转换为所述当前色域范围的图像数据,并将所述当前色域范围的图像数据提供至所述光调制装置。
  7. 如权利要求6所述的显示设备,其特征在于:该幅待显示图像的原始图像数据所基于的色域范围信息包括依据该幅待显示图像的每个像素的原始图像数据r、g、b及其所属的色域范围信息计算对应的 三刺激值X,Y,Z所需的转换矩阵C,所述当前色域范围信息包括依据所述当前色域范围的任意一个像素的图像数据计算三刺激值X,Y,Z所需的转换矩阵C”,该幅待显示图像的任意一个像素的原始图像数据r、g、b对应的所述当前色域范围的图像数据r”、g”、b”符合如下公式:
    Figure PCTCN2018113881-appb-100003
  8. 如权利要求1所述的显示设备,其特征在于:所述图像预处理控制器基于确定的所述当前色域范围信息、该幅待显示图像的原始图像数据所基于的色域范围信息计算与所述当前色域范围对应的色域转换公式T’,并将所述色域转换公式T’提供至所述光调制装置,所述光调制装置将该幅待显示图像的原始图像数据依据所述色域转换公式T’转换为所述当前色域范围的图像数据。
  9. 如权利要求8所述的显示设备,其特征在于:该幅待显示图像的原始图像数据所基于的色域范围信息包括依据该幅待显示图像的每个像素的原始图像数据r、g、b及其所属的色域范围信息计算对应的三刺激值X,Y,Z所需的转换矩阵C,所述当前色域范围信息包括依据所述当前色域范围的任意一个像素的图像数据计算三刺激值X,Y,Z所需的转换矩阵C”,所述色域转换矩阵T’=C″ -1C,该幅待显示图像的任意一个像素的原始图像数据r、g、b对应的所述当前色域范围的图像数据r”、g”、b”符合如下公式:
    Figure PCTCN2018113881-appb-100004
  10. 如权利要求1所述的显示设备,其特征在于:若该幅待显示图像的色域范围超出所述第一色域范围但不超过所述第二色域范围的边界线,则所述光量控制信号控制所述光源装置发出所述第一光及所述第二光至所述光调制装置,所述当前色域范围位于所述第一色域范围与所述第二色域范围之间。
  11. 如权利要求10所述的显示设备,其特征在于:所述图像预处 理控制器依据所述该幅待显示图像的色域范围确定所述当前色域范围,所述当前色域范围大于或等于该幅待显示图像的色域范围且小于所述第二色域范围,所述图像预处理控制器还依据确定的所述第一光的光量及所述当前色域范围确定所述第二光的光量以使得所述第一光与所述第二光的混合光达到所述当前色域范围。
  12. 如权利要求1所述的显示设备,其特征在于:若该幅待显示图像的色域范围位于所述第一色域范围以内,则所述光量控制信号控制所述第二光关闭,所述光源装置发出所述第一光,所述当前色域范围为所述第一色域范围。
  13. 如权利要求1所述的显示设备,其特征在于:若该幅待显示图像的色域范围具有超出所述第二色域范围的部分或者包含所述第二色域范围的部分边界线,则所述光源装置发出所述第二光,所述当前色域范围为所述第二色域范围。
  14. 如权利要求1所述的显示设备,其特征在于:所述光源装置包括激发光源、色轮及补充光源,所述激发光源发出的激发光,所述色轮用于接收所述激发光并发出所述第一光,所述补充光源用于发出补充光,所述补充光与所述激发光源发出的至少部分激发光作为所述第二光或者所述补充光作为所述第二光,所述第一光及所述第二光均包括至少两种颜色光,所述光量控制信号用于控制所述激发光源发出的激发光及所述补充光源发出的补充光来控制所述第一光及所述第二光的光量。
  15. 如权利要求14所述的显示设备,其特征在于:所述激发光为第一颜色光,所述色轮具有荧光材料并接收所述激发光产生荧光,所述色轮发出的所述第一光包括所述第一颜色光及所述荧光,所述补充光包括激光,所述荧光与所述补充光包含相同的基色成分。
  16. 如权利要求15所述的显示设备,其特征在于:所述荧光包括第二颜色荧光及第三颜色荧光或者所述荧光包括第二颜色与第三颜色混合的第四颜色荧光,所述补充光包括第二颜色激光及第三颜色激光,所述第一颜色、第二颜色及第三颜色为三基色。
  17. 如权利要求1所述的显示设备,其特征在于:所述显示设备还包括光源驱动电路及伽玛校正电路,所述光源驱动电路用于发出驱动信号驱动所述光源装置发光;
    所述伽玛校正电路用于接收所述光量控制信号并基于所述光量控制信号发出一校正信号至所述光源驱动电路控制所述光源驱动电路发出的驱动信号,进而所述光源驱动电路依据所述驱动信号控制所述光源装置发出的所述第一光及所述第二光的光量,所述伽玛校正电路存储有多个光量控制信号及与所述多个光量控制信号一一对应的校正信号,所述伽玛校正电路接收所述图像预处理控制器输出的光量控制信号后依据所述光量控制信号查找与所述光量控制信号一一对应的校正信号,并将所述校正信号提供至所述光源驱动电路。
  18. 一种显示方法,其包括如下步骤:
    提供第一光及第二光,所述第一光用于调制第一色域范围的图像,所述第二光用于单独调制或者配合所述第一光共同调制所述第一色域范围以外的图像;
    接收一幅待显示图像的原始图像数据并依据该幅待显示图像的原始图像数据获知该幅待显示图像的色域范围及各像素的亮度值;
    依据该幅待显示图像的色域范围及各像素的亮度值确定当前色域范围及与所述当前色域范围相对应的所述第一光及所述第二光的光量;
    依据所述第一光及所述第二光的光量输出控制光量控制信号以控制所述光源装置发出的所述第一光及所述第二光的光量;
    依据该幅待显示图像的原始图像数据获得该幅待显示图像与所述当前色域范围对应的图像数据;及
    依据当前色域范围对应的图像数据调制所述光源装置发出的光以产生待显示图像的图像光。
PCT/CN2018/113881 2018-03-16 2018-11-05 显示设备及显示方法 WO2019174274A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810219777.5A CN110275376B (zh) 2018-03-16 2018-03-16 显示设备及显示方法
CN201810219777.5 2018-03-16

Publications (1)

Publication Number Publication Date
WO2019174274A1 true WO2019174274A1 (zh) 2019-09-19

Family

ID=67908606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113881 WO2019174274A1 (zh) 2018-03-16 2018-11-05 显示设备及显示方法

Country Status (3)

Country Link
US (1) US11380237B2 (zh)
CN (1) CN110275376B (zh)
WO (1) WO2019174274A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110874002B (zh) * 2018-08-31 2021-12-21 深圳光峰科技股份有限公司 动态调节显示系统色域的系统、方法及显示系统
CN110824699B (zh) * 2019-12-25 2020-12-04 歌尔光学科技有限公司 一种近眼显示设备的眼球追踪系统及近眼显示设备
CN112669773B (zh) * 2020-12-31 2022-12-13 深圳Tcl数字技术有限公司 显示设备的色域调节方法、显示设备及可读存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030234911A1 (en) * 2002-06-21 2003-12-25 Eastman Kodak Company Imaging apparatus for increased color gamut using dual spatial light modulators
CN101119459A (zh) * 2006-08-04 2008-02-06 精工爱普生株式会社 图像显示装置及图像显示方法
CN102563544A (zh) * 2010-12-17 2012-07-11 杜比实验室特许公司 量子点技术
CN103543582A (zh) * 2012-07-17 2014-01-29 精工爱普生株式会社 投影仪及投影仪的发光控制方法
JP2014174242A (ja) * 2013-03-07 2014-09-22 Panasonic Corp 照明光学装置および投写型表示装置
CN106154711A (zh) * 2015-04-09 2016-11-23 深圳市光峰光电技术有限公司 一种投影系统及其色域控制方法
CN106537899A (zh) * 2014-05-15 2017-03-22 Mtt创新公司 优化用于多投影仪系统的驱动方案

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3316240B2 (ja) * 1992-11-30 2002-08-19 三洋電機株式会社 カラー液晶プロジェクター
DE10242978A1 (de) * 2002-09-17 2004-03-18 Philips Intellectual Property & Standards Gmbh Aktives Display
JP2004226608A (ja) * 2003-01-22 2004-08-12 Seiko Epson Corp 画像処理システム、プロジェクタ、プログラム、情報記憶媒体および画像処理方法
US7826126B2 (en) * 2003-11-01 2010-11-02 Silicon Quest Kabushiki-Kaisha Gamma correction for adjustable light source
WO2009032346A1 (en) * 2007-09-06 2009-03-12 Olympus Corporation Gamma correction for adjustable light source
CN201532516U (zh) * 2009-01-23 2010-07-21 上海三鑫科技发展有限公司 驱动装置及包括这种驱动装置的微型投影机
KR20200092424A (ko) * 2014-03-03 2020-08-03 아이웨이 비전 엘티디. 눈 투영 시스템
CN106154713B (zh) * 2015-04-09 2018-05-15 深圳市光峰光电技术有限公司 光源系统和投影系统
CN106292142B (zh) * 2015-05-14 2018-12-11 深圳市光峰光电技术有限公司 一种发光装置及其发光控制方法、投影设备
RU2020142116A (ru) * 2016-06-22 2021-02-11 Долби Лэборетериз Лайсенсинг Корпорейшн Визуализирующая широкая цветовая гамма, двумерные (2м) изображения на трехмерных (3м) устройствах отображения
EP3367659A1 (en) * 2017-02-28 2018-08-29 Thomson Licensing Hue changing color gamut mapping
WO2019033672A1 (zh) * 2017-08-18 2019-02-21 海信集团有限公司 双色激光光源和激光投影机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030234911A1 (en) * 2002-06-21 2003-12-25 Eastman Kodak Company Imaging apparatus for increased color gamut using dual spatial light modulators
CN101119459A (zh) * 2006-08-04 2008-02-06 精工爱普生株式会社 图像显示装置及图像显示方法
CN102563544A (zh) * 2010-12-17 2012-07-11 杜比实验室特许公司 量子点技术
CN103543582A (zh) * 2012-07-17 2014-01-29 精工爱普生株式会社 投影仪及投影仪的发光控制方法
JP2014174242A (ja) * 2013-03-07 2014-09-22 Panasonic Corp 照明光学装置および投写型表示装置
CN106537899A (zh) * 2014-05-15 2017-03-22 Mtt创新公司 优化用于多投影仪系统的驱动方案
CN106154711A (zh) * 2015-04-09 2016-11-23 深圳市光峰光电技术有限公司 一种投影系统及其色域控制方法

Also Published As

Publication number Publication date
US11380237B2 (en) 2022-07-05
US20210134208A1 (en) 2021-05-06
CN110275376A (zh) 2019-09-24
CN110275376B (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
US7453475B2 (en) Optical display device, program for controlling the optical display device, and method of controlling the optical display device
US7926950B2 (en) Laser image display device and color image display method utilizing control of the power of plural laser beams to display a pixel
JP5284321B2 (ja) 画像表示装置
WO2019174271A1 (zh) 显示设备
WO2019174274A1 (zh) 显示设备及显示方法
WO2020057152A1 (zh) 动态色域调节系统、方法及显示系统
WO2019174270A1 (zh) 显示设备
WO2020042566A1 (zh) 动态调节显示系统色域的系统、方法及显示系统
US9910347B2 (en) Image display apparatus and image generation method
WO2020057296A1 (zh) 显示设备、显示设备的控制方法及计算机可读存储介质
WO2019174273A1 (zh) 图像处理装置、显示设备、图像处理与显示装置及方法
JP2019527947A (ja) 三次元(3d)対応ディスプレイ上への広色域二次元(2d)画像の描画
WO2020015364A1 (zh) 显示设备及投影系统
CN109327689B (zh) 显示设备及显示方法
WO2019174272A1 (zh) 显示设备及显示方法
CN109324465B (zh) 显示设备及显示方法
CN110278422B (zh) 显示设备
JP2014066805A (ja) プロジェクター、及び、プロジェクターにおける発光制御方法
US20220100069A1 (en) Chromaticity adjustment method and projector
WO2020135292A1 (zh) 显示设备及其控制方法
CN110837199B (zh) 显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909355

Country of ref document: EP

Kind code of ref document: A1