WO2020015364A1 - 显示设备及投影系统 - Google Patents

显示设备及投影系统 Download PDF

Info

Publication number
WO2020015364A1
WO2020015364A1 PCT/CN2019/076633 CN2019076633W WO2020015364A1 WO 2020015364 A1 WO2020015364 A1 WO 2020015364A1 CN 2019076633 W CN2019076633 W CN 2019076633W WO 2020015364 A1 WO2020015364 A1 WO 2020015364A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence
light
section
region
color gamut
Prior art date
Application number
PCT/CN2019/076633
Other languages
English (en)
French (fr)
Inventor
田梓峰
周萌
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2020015364A1 publication Critical patent/WO2020015364A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3155Modulator illumination systems for controlling the light source

Definitions

  • the present invention relates to the field of display technology, and in particular, to a display device and a projection system.
  • the light sources for projection equipment are mainly divided into the following categories: the first is a light source based on red, green and blue LEDs, the second is a light source based on red, green and blue LDs, and the third is based on blue light LD to excite phosphors to produce red Green fluorescent light source.
  • the first scheme its color reproduction ability can reach more than 105% of the NTSC standard color gamut.
  • the main problems are the low electro-optical conversion efficiency of green LEDs and the low brightness of red, green and blue LEDs.
  • the color gamut range of pure RGB laser can reach BT2020, but the main problems of pure laser light source are serious speckle, high cost, low efficiency of green laser, and poor temperature stability of red laser;
  • the emission spectrum of the phosphor is wide, and the overall color gamut range is small.
  • the projection reduction equipment using this scheme can achieve 72% of the NTSC standard color gamut.
  • some enhancement processes such as adding filters to remove the yellow light spectrum in green and red light, the color gamut can be enlarged, but the filters will cause a large amount of light loss, which greatly reduces the efficiency of the system.
  • the present invention provides a display device with adjustable dynamic color gamut, and the invention also provides a projection system.
  • a display device includes:
  • a control device for obtaining a light amount control signal and correcting the image data after decoding the original image data
  • a light source for emitting according to the light quantity control signal :
  • the second color gamut range covers the first color gamut range and has a portion beyond the first color gamut range;
  • the first fluorescence and the second fluorescence are first color light, and the first The three fluorescences and the fourth fluorescence are the second color light, and the excitation light is the third color light;
  • the first fluorescence and the second fluorescence are metamerism fluorescence and / or the third fluorescence and the fourth fluorescence are Metamerism;
  • a light modulation device is configured to modulate light emitted from the light source according to the corrected image data and generate image light of an image to be displayed.
  • a projection system includes a display device as described above.
  • the control device is configured to send the light quantity control signal and the corrected image signal according to the original image data
  • the light source is used to send the light quantity control signal to modulate The first fluorescence and the third fluorescence of the first color gamut range image, and the second fluorescence and the fourth fluorescence of the second color gamut range image
  • the light modulation device is configured to correct the image signal according to the The image light is modulated, so that the ratio of the first fluorescence, the third fluorescence, the second fluorescence, and the fourth fluorescence is dynamically adjusted, and the color gamut range of the image light is dynamically adjusted, which also improves the light utilization rate.
  • FIG. 1 is a schematic structural diagram of a display device according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic plan view of the color wheel shown in FIG. 1.
  • FIG. 3 is a schematic diagram of narrow-spectrum fluorescence, broad-spectrum fluorescence, and common color gamut ranges emitted by a color wheel.
  • Figure 4 shows the excitation and emission spectra of the first and second sections.
  • Figure 5 shows the excitation and emission spectra of the third segment.
  • Figure 6 shows the excitation and emission spectra of the fourth segment.
  • FIG. 7 is a schematic plan view of a color wheel according to an embodiment.
  • FIG. 8 is a schematic plan view of a color wheel according to another embodiment.
  • FIG. 9 is a luminance distribution diagram of each pixel in a high color gamut range image.
  • FIG. 10 is a graph of the relative luminous efficiency of ⁇ -sialon: Eu 2+ and LuAG: Ce 3+ .
  • FIG. 11 is a graph showing the variation of the electro-optical conversion efficiency of the narrow-spectrum green fluorescence scheme and the green laser light source scheme using the blue laser excitation with the luminous flux of the excitation light source.
  • FIG. 12 is a schematic block diagram of a control device for dynamically adjusting a color gamut.
  • FIG. 13 is a schematic diagram of driving currents of various light emitted by the color wheel corresponding to the excitation light source.
  • FIG. 14 is a schematic block diagram of the principle of dynamically adjusting the color gamut corresponding to the color wheel shown in FIG. 7.
  • An embodiment of the present invention provides a display device with adjustable dynamic color gamut.
  • a light source of the display device is used to emit a first fluorescence and a third fluorescence that modulate an image in a first color gamut, and modulate a second color gamut.
  • the second fluorescence and the fourth fluorescence of the image wherein the second color gamut range covers the first color gamut range and has a portion that exceeds the first color gamut range, that is, the first color gamut range is low
  • a color gamut range, and the second color gamut range is a high color gamut range.
  • the control device dynamically adjusts the proportion of various light rays used to modulate the image light according to the original image data, so as to dynamically adjust the color gamut range of the image light emitted by the display device.
  • the display device in the embodiment of the present invention can be applied to a projection system, and the three primary color lights emitted by the display device maintain white balance.
  • FIG. 1 is a schematic structural diagram of a display device 100 according to a preferred embodiment of the present invention.
  • the display device 100 includes a light source 101, a light modulation device 105, and a control device 107.
  • the control device 107 is used to obtain the light amount control signal and correct the image data after decoding the original image data;
  • the light source 101 is used to emit the light source light according to the light amount control signal, and
  • the light modulation device 105 is used to modulate the image data according to the corrected image data.
  • the source light is used to generate image light of an image to be displayed.
  • the control device 107 adjusts the light ratio used to modulate the image in the first color gamut range and the image in the second color gamut range, and then dynamically adjusts the color gamut range of the image light.
  • the light source 101 includes an excitation light source 110 and a color wheel 130.
  • the excitation light source 110 is used to emit excitation light; a wavelength conversion material is provided on the color wheel 130, and the wavelength conversion material is used to generate fluorescence under the excitation of the excitation light.
  • the excitation light source 110 includes a laser for emitting excitation light including a laser.
  • the excitation light is a third color light.
  • the third color light is blue light
  • the excitation light source 110 is a blue light source. It can be understood that the third color light is not limited to a blue light source, and the third color light may also be purple light, red light, or green light.
  • the luminous body in the excitation light source 110 is a blue laser for emitting a blue laser light as the excitation light.
  • the light emitting body may further include a laser of two colors, such as a blue laser and an ultraviolet laser.
  • the light emitting body may include one, two lasers, or a blue laser array, and the number of the lasers may be selected according to actual needs.
  • the excitation light source 110 may further include a light homogenizing device, so as to emit the excitation light to a subsequent device after homogenizing the excitation light.
  • the light homogenizing device may be a light homogenizing rod or a fly-eye lens.
  • FIG. 2 is a schematic top view of the color wheel 130 shown in FIG. 1.
  • the excitation light is guided and incident on the color wheel 130 through the light splitting and combining element 125.
  • the substrate 131 of the color wheel 130 is circular, and the substrate 131 rotates periodically under the driving of the driving unit, so that the edge region of the substrate 131 is always located on the optical path of the excitation light.
  • the surface of the substrate 131 includes an outer ring region 131b and an inner ring region 131a.
  • the outer ring region 131b and the inner ring region 131a are both annular and are disposed around the edge of the substrate 131.
  • the inner diameter of the outer ring region 131b is larger than the inner diameter of the inner ring region 131a.
  • the outer ring region 131b is provided adjacent to the inner ring region 131a. In other embodiments, the outer ring region 131b is spaced from the inner ring region 131a.
  • the color wheel 130 includes a scattering layer B, a conversion layer, and a filter unit.
  • the scattering layer B and the conversion layer are disposed in the outer ring region 131b, and the filter unit is disposed in the inner ring region 131a.
  • the conversion layer includes a first section R1, a second section R2, a third section G1, and a fourth section G2.
  • the scattering layer B and the four sections in the conversion layer are disposed along the circumferential direction of the color wheel 130, and the scattering layer B, the first section R1, the second section R2, the third section G1, and the fourth section G2 are more than Five sections, driven by the driving unit, are sequentially located on the optical path of the excitation light.
  • the scattering layer B is provided with a scattering material on the surface of the substrate 131 to scatter the excitation light, so as to perform decoherence processing on the laser light in the excitation light.
  • the first segment R1 is provided with a red wavelength conversion material for modulating an image in the first color gamut, so that when the first segment R1 is on the optical path where the excitation light is located, the excitation light irradiates the first segment R1 also generates a first red fluorescence for modulating an image in a first color gamut.
  • the second segment R2 is provided with a red wavelength conversion material for modulating an image in the second color gamut, so that when the second segment R2 is on the optical path where the excitation light is located, the excitation light irradiates the second segment R2 also generates a second red fluorescence that is used to modulate the image in the second color gamut.
  • the third segment G1 is provided with a green wavelength conversion material for modulating an image in the first color gamut, so that when the third segment G1 is on the optical path where the excitation light is located, the excitation light irradiates the third segment G1 also generates a third green fluorescence for modulating the image in the first color gamut.
  • the fourth segment G2 is provided with a green wavelength conversion material for modulating an image in the second color gamut, so that when the fourth segment G2 is on the optical path where the excitation light is located, the excitation light illuminates the fourth segment G2 also generates a fourth fluorescence that is used to modulate the image in the second color gamut.
  • the first fluorescence and the second fluorescence are first-color light
  • the third fluorescence and the fourth fluorescence are second-color light
  • the first color light is red light
  • the second color light is green light, and it can be understood that the first color light and the second color light may also be other color lights, and is not limited thereto.
  • the first fluorescence and the second fluorescence are metamerism fluorescence and / or the third fluorescence and the fourth fluorescence are metamerism fluorescence.
  • the second color gamut range covers the first color gamut range and has a portion beyond the first color gamut range, so the second color gamut range is a high color gamut range, and the first color gamut range is Low color gamut range. Since the narrow-spectrum fluorescence covers a high-color gamut range, and the broad-spectrum fluorescence covers a low-color gamut range, the first fluorescence and the third fluorescence are broad-spectrum fluorescence, and the second fluorescence and the fourth fluorescence are narrow-spectrum. Fluorescent.
  • the first segment R1 and the third segment G1 are each provided with a broad-spectrum phosphor
  • the second segment R2 and the fourth segment G2 are each provided with a narrow-spectrum phosphor.
  • the half-peak width of broad-spectrum fluorescence is 70 nm or more, and the half-width of narrow-spectrum fluorescence is less than 70 nm.
  • the first fluorescence and the second fluorescence are metamerism, that is, the first fluorescence is a broad-spectrum fluorescence, the second fluorescence is a narrow-spectrum fluorescence, and the third fluorescence It is the same spectrum light as the fourth fluorescence.
  • the third fluorescence and the fourth fluorescence are metamerism, the third fluorescence is a broad-spectrum fluorescence, the fourth fluorescence is a narrow-spectrum fluorescence, and the first fluorescence and The second fluorescence is light of the same spectrum.
  • FIG. 3 is a schematic diagram of narrow-spectrum fluorescence, broad-spectrum fluorescence, and commonly used color gamut ranges emitted by the color wheel 130.
  • the color gamut range of broad spectrum fluorescence is between the sRGB standard color gamut and the NTSC standard color gamut, and the color gamut range of narrow spectrum fluorescence is close to the BT2020 standard color gamut.
  • the color gamut range of narrow-spectrum fluorescence covers the broad-spectrum fluorescence and has a portion that exceeds the broad-spectrum fluorescence.
  • the second segment R2 and the fourth segment G2 are both provided with quantum dots to perform wavelength conversion on the excitation light.
  • the red wavelength conversion material provided in the first section R1 is CaAlSiN 3 : Eu 2+
  • the red wavelength conversion material provided in the second section R2 is K 2 SiF 6 : Mn 4+ .
  • FIG. 4 is an excitation and emission spectrum of the first section R1 and the second section R2.
  • the first section R1 emits a first spectrum of broad spectrum (half-peak width of 93nm), and the color coordinates of the first fluorescence are located in the NTSC standard color gamut.
  • the second segment R2 emits a second fluorescence with a narrow emission spectrum, with a peak wavelength of 630 nm and a color coordinate of (0.69, 0.30).
  • the color gamut of the second segment R2 exceeds the DCI-P3 color gamut standard and is close to the BT2020 color gamut standard.
  • the red wavelength conversion material in the second segment R2 is K 2 TiF 6 : Mn 4+ (peak wavelength 630 nm, color coordinate (0.69, 0.30)) or K 2 GeF 6 : Mn 4+ ( The peak wavelength is 630nm, the color coordinate is (0.69, 0.30)), and the color is close to the BT2020 red requirement.
  • the second section R2 may be provided with other wavelength conversion materials having a narrow emission spectrum, or the second section R2 may be provided with K 2 SiF 6 : Mn 4+ , K 2 TiF 6 : Mn 4+ , K 2 GeF 6 : Many mixed materials in Mn 4+ and quantum dots.
  • the green wavelength conversion material provided in the third section G1 is LuAG: Ce 3+
  • the wavelength conversion material provided in the fourth section G2 is ⁇ -AlON: Mn 2+ .
  • FIG. 5 is an excitation and emission spectrum of the third section G1
  • FIG. 6 is an excitation and emission spectrum of the fourth section G2.
  • the third segment G1 emits a third spectrum of broad spectrum (half-peak width of 110 nm), and the color coordinates of the third fluorescence are in the NTSC standard color gamut.
  • the fourth segment G2 emits a fourth fluorescence with a narrow emission spectrum (full width at half maximum of 44nm). The peak wavelength is 515nm-520nm.
  • the color coordinates of the fourth fluorescence of 515nm are (0.19, 0.75), and the color coordinates of the fourth fluorescence of 520nm are 0.22, 0.71), and its color gamut exceeds the DCI-P3 color gamut standard, and is close to the BT2020 color gamut standard.
  • the fourth segment G2 may use other green wavelength conversion materials with narrow emission spectrum or ⁇ -AlON: Mn 2+ , ⁇ -sialon: Eu 2+ (49nm half-width, peak wavelength is 528nm , Color coordinates (0.28, 0.68), green close to the DCI-P3 standard color gamut), Ba 2 LiSi 7 AlN 12 : Eu 2+ (61nm half width, peak wavelength 515nm (0.24, 0.61), close to DCI-P3 Green) and any one or more combinations of quantum dots.
  • ⁇ -AlON Mn 2+
  • ⁇ -sialon Eu 2+ (49nm half-width, peak wavelength is 528nm , Color coordinates (0.28, 0.68), green close to the DCI-P3 standard color gamut)
  • Ba 2 LiSi 7 AlN 12 Eu 2+ (61nm half width, peak wavelength 515nm (0.24, 0.61), close to DCI-P3 Green) and any one or more combinations of quantum dots
  • the light emitted from the outer ring region 131b in the color wheel 130 passes through the light-splitting and combining element 125 and the light-splitting in order.
  • the light element 126 is guided to the inner ring region 131a.
  • the light generated by the outer ring region 131b is reflected by the substrate 131 to the light splitting and combining element 125, and the light emitted by the light splitting and combining element 126 passes through the inner ring region 131a, passes through the light homogenizing device and the TIR prism, and then enters the light modulation device 105.
  • the inner ring region 131a is provided with filter units B ', R1', R2 ', G1', and G2 ', which are used to emit the scattered excitation light to the scattering layer B, the first fluorescence emitted from the first segment R1, and the first The second fluorescence emitted by the second segment R2, the third fluorescence emitted by the third segment G1, and the fourth fluorescence emitted by the fourth segment G2 are filtered.
  • each segment of the filter unit B ′, R1 ′, R2 ′, G1 ′, G2 ′ is provided with a corresponding filter.
  • first section R1 and the second section R2 are arranged adjacent to each other in the circumferential direction, and the third section G1 and the fourth section G2 are arranged adjacent to each other in the circumferential direction.
  • first section R1 and the third section G1 are arranged adjacent to each other in the circumferential direction, and the second section R2 and the fourth section G2 are arranged adjacent to each other in the circumferential direction.
  • the five sections in the outer ring region 131b are arranged in other order, for example, red-blue-green-red-green light is sequentially emitted, and correspondingly, each area of the filter unit The segments correspond to the sequence of the above five sections.
  • FIG. 7 is a schematic plan view of a color wheel 230 according to an embodiment.
  • the color wheel 230 includes a substrate 231 having a circular shape, and a surface of the substrate 231 includes a first fan-shaped region 231 c, a second fan-shaped region 231 d, and a third fan-shaped environmental region 231 e provided along the circumferential direction of the substrate 231.
  • the first fan-shaped ring region 231c has the same radius as the second fan-shaped ring region 231d and the third fan-shaped ring region 231e, and is arranged adjacently to form a ring-shaped region.
  • the inner diameter and / or outer diameter of the first fan-shaped annular region 231c, the second fan-shaped annular region 231d, and the third fan-shaped annular region 231e are different.
  • the first fan-shaped ring region 231c is spaced apart from the second fan-shaped ring region 231d and the third fan-shaped ring region 231e.
  • the second fan-shaped annular region 231d includes a first region p and a second region q
  • the third fan-shaped annular region 231e includes a third region s and a fourth region t.
  • the first region p, the second region q, the third region s, and the fourth region t are all distributed along the circumferential direction of the substrate 231.
  • the first region p, the second region q, the third region s, and the fourth region t are disposed adjacent to each other.
  • the first region p, the second region q, the third region s, and the fourth region t are disposed at intervals.
  • the scattering layer B is disposed in the first fan-shaped region 231c, and the first segment R1, the second segment R2, the third segment G1, and the fourth segment G2 are disposed in the first region p and the second region, respectively. q, one of the third region s and the fourth region t.
  • the first section R1, the second section R2, the third section G1, and the fourth section G2 are not limited to the first area p, the second area q, the third area s, and the fourth area, respectively. Correspondence between regions t.
  • the first section R1, the second section R2, the third section G1, and the fourth section G2 are sequentially disposed in the first region p, the second region q, the third region s, and the fourth region.
  • the sections that emit light of the same color are set in the same ring area.
  • the first section R1 and the second section R2 for emitting the first color light are set in the second fan ring area 231d.
  • the third segment G1 and the fourth segment G2 that emit the second color light are disposed in the third fan-shaped region 231e.
  • the sections for emitting light of the same color may be provided in adjacent fan-shaped areas, for example, the first section R1 and the third section G1 are provided in the second fan-shaped area.
  • the second section R2 and the fourth section G2 are disposed in the third annular region 231e.
  • the boundary between the first region p and the third region s is sawtooth
  • the boundary between the second region q and the fourth region t is sawtooth.
  • the boundary between the first region p and the second region q is an arbitrary curve
  • the boundary between the third region s and the fourth region t is an arbitrary curve
  • the arbitrary curve may be a wave Shape, straight type, etc.
  • the second ring-shaped region 231d is provided with a broad-spectrum phosphor and a narrow-spectrum phosphor, and the following relationship exists between the two:
  • r b and r n are the proportions of the broad-spectrum phosphor and the narrow-spectrum phosphor, respectively, and R 0 is the distance between the laser spot and the geometric center of the color wheel 230. The distance has a linear relationship.
  • (x b , y b , Y b ) represents the color coordinates and brightness of the broad-spectrum phosphor
  • (x b , y b , Y b ) represents the color coordinates and brightness of the narrow-spectrum phosphor
  • (x, y, Y ) Represents the color coordinates and brightness of the mixed primary color light. If the ratio of the broad-spectrum phosphor to the narrow-spectrum phosphor changes, the light color coordinates of the primary color obtained after mixing will also change accordingly, and the new color gamut can be adapted.
  • the driving current of the excitation light source 110 needs to be adjusted, that is, when the signal on the spatial light modulator 105 is a narrow-spectrum fluorescent signal, the driving current of the excitation light source 110 needs to be reduced.
  • the distance between the excitation light spot formed on the surface of the substrate 231 and the geometric center of the substrate 231 is adjustable.
  • the first fluorescence, Proportions of second fluorescence, third fluorescence, and fourth fluorescence By adjusting the distance between the excitation light spot formed on the surface of the substrate 231 and the geometric center of the substrate 231, the first fluorescence, Proportions of second fluorescence, third fluorescence, and fourth fluorescence.
  • the ratio of the light used to modulate the first color gamut and the second color gamut image changes, and the coordinate of the primary color light color obtained after the mixing also changes accordingly, and the new color gamut can be adapted.
  • the position of the color wheel 230 by adjusting the position of the color wheel 230, the distance between the spot formed by the excitation light on the surface of the substrate 231 and the geometric center of the substrate 231 is adjusted.
  • FIG. 8 is a schematic plan view of a color wheel 330 according to another embodiment.
  • the main difference between the color wheel 330 and the color wheel 230 is that the first region p and the second region q, the third region s, and the fourth region t are all fan-shaped, that is, the division between the first region p and the second region q
  • the boundary is an arc
  • the boundary between the third region s and the fourth region t is an arc.
  • the substrate 131 of the color wheel 130 is circular, and the scattering layer B, the first section R1, the second section R2, the third section G1, and the fourth section G2 are along the diameter of the substrate 131. ⁇ setting.
  • the distances of the scattering layer B, the first section R1, the second section R2, the third section G1, and the fourth section G2 from the geometric center of the substrate 131 are different.
  • the scattering layer B, the first section R1, the second section R2, the third section G1, and the fourth section G2 are annular regions with different inner diameters.
  • the distance between the excitation light spot formed on the surface of the substrate 131 and the geometric center of the substrate 131 is adjusted to adjust the proportions of the first fluorescence, the second fluorescence, the third fluorescence, and the fourth fluorescence in the light source light.
  • the ratio of the light used to modulate the first color gamut and the second color gamut image changes, and the coordinate of the primary color light color obtained after the mixing also changes accordingly, and the new color gamut can be adapted.
  • the distance between the spot formed by the excitation light on the surface of the substrate 131 and the geometric center of the substrate 131 is adjusted.
  • the light modulation device 105 is DMD, LCOS, or LCD, preferably LCOS or LCD.
  • the control device 107 is electrically connected to the light modulation device 105 and is electrically connected to the excitation light source 110 through a gamma correction circuit 109.
  • the control device 107 and the gamma correction circuit 109 are independent of each other.
  • the gamma correction circuit 109 is disposed inside the control device 107.
  • the control device 107 is configured to obtain a light amount control signal and correct the image data after decoding the original image data.
  • the excitation light source 110 is configured to emit the excitation light according to the light amount control signal, and the light amount of the excitation light is controlled by the light amount control signal. In the embodiment of the present invention, the light amount is reflected as the optical power of the excitation light.
  • the light modulation device 105 is configured to modulate the light emitted from the color wheel 130 according to the corrected image data and generate image light of an image to be displayed.
  • the light quantity control signal is used to control the driving current intensity of the excitation light source corresponding to different sections located on the excitation light optical path, thereby adjusting the optical power of the excitation light.
  • FIG. 9 is a brightness distribution diagram of each pixel in a high color gamut range image.
  • the high brightness of the natural picture is mainly distributed in the sRGB standard color gamut.
  • the peak value of the brightness outside the sRGB standard color gamut is very low, and its brightness requirement is about an order of magnitude lower than that in the sRGB standard color gamut.
  • the light in the sRGB standard color gamut mainly provides brightness
  • the light outside the sRGB standard color gamut requires much lower brightness than the light in the sRGB standard color gamut.
  • five segments are made on the outer ring region 131b of the same color wheel 130, and the first segment R1 and the third segment G1 with a wider fluorescence emission spectrum are selected to provide a lower color gamut sRGB.
  • the second segment R2 and the fourth segment G2 with a narrow fluorescence emission spectrum are selected to provide the primary color light close to the high color gamut BT2020 range, and then to provide the image to be displayed with low brightness pixel points in the high color gamut range.
  • the excitation light power requirements for the second fluorescence (narrow spectrum red light) and the fourth fluorescence (narrow spectrum green light) on the color wheel 130 are relatively low. Judging from the brightness distribution, the brightness requirement of narrow-spectrum fluorescence is 1/10 of that of broad-spectrum fluorescence. Although narrow-spectrum fluorescence due to its longer afterglow time, the power density of the excitation light is lower than that of broad-spectrum fluorescence, and the luminous efficiency is lower under the condition of higher optical power density; The efficiency of the fluorescence can still be kept high, while saving the light power of the excitation light source 110, which is beneficial to the display device 100 to reduce power consumption, and also improves the light utilization rate.
  • the optical power of the excitation light is the first section optical power, the first section Two-segment optical power, third-segment optical power, and fourth-segment optical power.
  • the light quantity control signal is used to control the optical power in the second section to be less than or equal to the optical power in the first section, and to control the optical power in the fourth section to be less than or equal to the optical power in the third section.
  • the light quantity control signal is used to control the optical power of the second section to be less than or equal to 1/10 of the optical power of the one red fluorescent zone, and / or control the optical power of the fourth section. Less than or equal to 1/10 of the optical power of the third section.
  • FIG. 10 is a graph of relative luminous efficiency of ⁇ -sialon: Eu 2+ and LuAG: Ce 3+ .
  • LuAG: Ce 3+ is used to emit broad-spectrum green fluorescence, and the third half-width of its fluorescence is 110 nm.
  • ⁇ -sialon: Eu 2+ is used to emit narrow-spectrum green fluorescence, and the full width at half maximum of the fourth fluorescence emitted is 50 nm.
  • the excitation light source 110 corresponds to different sections of the excitation light optical path, and the driving currents are different, so that different proportions of the primary color light are generated to achieve dynamic color gamut adjustment and maintain high light conversion. Efficiency also improves light utilization.
  • the electro-optical conversion efficiency of green laser-induced fluorescence is 12%, and the electro-optical conversion efficiency of blue laser is 38%.
  • the conversion efficiency of narrow-spectrum green fluorescence is 40-60%, so the electro-optical conversion efficiency of narrow-spectrum green fluorescence generated by blue laser is 15-23%. Therefore, the efficiency of narrow-spectrum green fluorescence generated by blue laser excitation is higher than that of current green lasers. Program.
  • FIG. 11 is a curve showing the electro-optical conversion efficiency of the narrow-spectrum green fluorescence scheme and the green laser light source scheme using the blue laser excitation as a function of the luminous flux of the excitation light source 110.
  • the luminous flux of the excitation light source 110 is below 6000 lm, the blue laser excitation
  • the narrow-spectrum green fluorescence scheme has higher electro-optical conversion efficiency than the green laser light source scheme.
  • the electro-optical conversion efficiency of both schemes decreases. Among them, the electro-optical conversion efficiency of the narrow-spectrum green fluorescent scheme generated by the blue laser excitation is faster than that of the green laser source scheme.
  • FIG. 12 is a schematic block diagram of the control device 107 for dynamically adjusting the color gamut.
  • the control device 107 is configured to obtain a color gamut range on which the original image data is based on the original image data of the image to be displayed, so as to obtain the light quantity control signal.
  • control device 107 may convert the original image data (such as r, g, and b) of each pixel of the image to be displayed into CIExyY chromaticity value data by using a related formula, where the CIExyY chromaticity value data of each pixel includes Color coordinates x, y, and brightness value Y.
  • the control device 107 obtains the color coordinates (ie, the color coordinates x, y) of each pixel of the image to be displayed, and then obtains the image to be displayed
  • the range defined by the color coordinates of each pixel is the range of the color gamut of the image to be displayed.
  • the control device 107 also obtains the luminance value Y of each pixel of the image to be displayed, so that the control device 107 can determine the color coordinates x, y, and The brightness value Y generates the light amount control signal to control the brightness of the excitation light emitted by the excitation light source 110 to control its optical power.
  • FIG. 13 is a schematic diagram of driving currents of the excitation light source 110 corresponding to the color wheel 130.
  • the light quantity control signal controls the intensity of the driving current of the excitation light source 110, so as to control the excitation light source 110 to emit excitation light corresponding to the optical power to adjust the broad-spectrum fluorescence and narrow-spectrum fluorescence.
  • Scale to obtain color coordinates adapted to the color gamut range on which the image to be displayed is based. Because the content of each image to be displayed is different, the color gamut range of each image to be displayed (such as a frame of image to be displayed) may also be different, so the light quantity control signals corresponding to each image to be displayed are different.
  • the light amount control signal is provided to a gamma correction circuit 109, and the gamma correction circuit 109 sends a corresponding driving signal to the driving circuit in the excitation light source 110 according to the light amount control signal.
  • the driving circuit dynamically controls the excitation light power emitted by the excitation light source 110 according to the driving signal.
  • FIG. 14 is a schematic block diagram illustrating a principle of dynamically adjusting a color gamut by the control device 107 corresponding to the color wheel shown in FIG. 7.
  • the control device 107 calculates the ratio of narrow-spectrum fluorescence to broad-spectrum fluorescence, and the light quantity control signal output by the control device 107 controls the excitation light source 110 at the same time.
  • the driving current and the position of the color wheel 230 cause the control device 107 to dynamically adjust the irradiation position of the excitation light spot on the color wheel 230, thereby adjusting the light emitted from the light source 101 to modulate the image light in the first color gamut and the second color gamut.
  • control device 107 is configured to calculate a current color gamut range according to the light quantity control signal, and use the current color gamut range and the color gamut range on which the original image data is based to convert the original image data of the image to be displayed
  • the corresponding formula is converted into image data of the current color gamut range, and the image data of the current color gamut range is used as the corrected image data, and the light modulation device 105 further modulates the emission of the color wheel 130 according to the corrected image data.
  • the light can accurately restore the pixels of the image to be displayed.
  • the control device 107 determines the current color gamut range based on the color gamut range based on the image to be displayed.
  • the current color gamut range is a triangular area, which covers the color gamut range on which the image to be displayed is based, that is, it covers the color coordinates of each pixel of the image to be displayed.
  • the current color gamut range may be a color gamut region that covers the color coordinates of each pixel of the image to be displayed and has the smallest area. It can be understood that because the content of each image to be displayed is different, the color gamut range of each image to be displayed (such as a frame of image to be displayed) may also be different, so the control device 107 determines the current color gamut according to each image to be displayed.
  • the ranges may all be different.
  • the control device 107 transmits the corrected image signal to the light modulation device 105.
  • the original image data is an RGB signal, where the R signal is used to modulate red light, the G signal is used to modulate green light, and the B signal is used to modulate blue light.
  • the corrected image signal is an RRGGB signal, which is equivalent to the R signal and the G signal being repeated in time sequence, that is, during the time when both segments are R or both segments are G signals, the optical modulation device 105 actually processes them separately.
  • the light modulation device 105 receives the corrected image signal corresponding to the first fluorescence and the second fluorescence period as aa.
  • the color coordinates of the first fluorescence are (x R1 , y R1 ).
  • the color coordinates of the second fluorescence are (x R2 , y R2 ), the red primary color light intensity Y R ′ and the color coordinates (x, y) emitted by the light modulation device 105 satisfy:
  • the red primary color light is obtained by mixing the first fluorescence (broad spectrum fluorescence) and the second fluorescence (narrow spectrum fluorescence). If the ratio of the two types of light changes, the red primary color light obtained after mixing will also change accordingly.
  • the brightness of the first fluorescence and the second fluorescence is determined by the driving current of the corresponding excitation light source 110. Therefore, the driving corresponding to the first section R1 and the second section R2 is changed by the light amount control signal.
  • the current can change the corresponding brightness of the two sections, thereby changing the light color coordinates and brightness of the red base color finally obtained.
  • time series combining of green fluorescence of two different color gamuts can also be obtained, and the green primary color light required by the system can be obtained by mixing. And while changing the red or green primary color light color coordinates, maintain white balance.
  • the control device 107 is configured to issue a light amount control signal and correct an image signal according to the original image data
  • the light source 101 is configured to issue a light source control signal for modulating the first A first fluorescence and a third fluorescence of the color gamut range image, and a second fluorescence and a fourth fluorescence for modulating the second color gamut range image
  • the light modulation device 105 is configured to modulate the image light according to the corrected image signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种显示设备(100)及投影系统,包括:控制装置(107),用于获得光量控制信号及校正图像数据;光源(101),用于根据光量控制信号发出第一荧光、第二荧光、第三荧光、第四荧光及散射后的激发光;光调制装置(105)用于根据校正图像数据对色轮(130)出射的光线进行调制并产生待显示图像的图像光,从而动态调整第一荧光、第三荧光与第二荧光、第四荧光的比例进而动态调整图像光的色域范围,也提高了光利用率。

Description

显示设备及投影系统 技术领域
本发明涉及显示技术领域,尤其涉及一种显示设备及投影系统。
背景技术
本部分旨在为权利要求书中陈述的本发明的具体实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
目前,投影设备用的光源主要分为以下几类:第一种是基于红绿蓝LED的光源、第二种是基于红绿蓝LD的光源,第三种是基于蓝光LD激发荧光粉产生红绿荧光的光源。第一种方案中,其色彩还原能力能达到NTSC标准色域的105%以上,其存在的主要问题是绿光LED的电光转换效率较低,且红绿蓝LED的亮度也较低;第二种方案中,采用纯RGB激光其色域范围能够达到BT2020,但纯激光光源的主要问题在于其散斑严重,成本较高,且绿激光的效率较低,红激光的温度稳定性较差;第三种方案中,荧光粉发射的光谱较宽,其总体色域范围较小,一般利用该方案的投影设备其色彩还原能力能达到NTSC标准色域的72%。通过一些增强处理,如加入滤光片去除绿光和红光中的黄光光谱,能够扩大其色域,但是滤光片会导致大量光损失,从而使得系统的效率大大降低。
发明内容
为解决现有技术中激光荧光方案的色域范围与光利用率不可兼得的问题,本案提供一种动态色域可调的显示设备,本发明还提供一种投影系统。
一种显示设备,包括:
控制装置,用于对原始图像数据解码后获得光量控制信号及校正 图像数据;
光源,用于根据所述光量控制信号发出:
用于调制第一色域范围内图像的第一荧光及第三荧光;及
用于调制第二色域范围内图像的第二荧光、第四荧光及散射后的激发光;
其中,所述第二色域范围覆盖所述第一色域范围且具有超出所述第一色域范围的部分;所述第一荧光与所述第二荧光为第一色光,所述第三荧光与所述第四荧光为第二色光,所述激发光为第三色光;所述第一荧光与所述第二荧光为同色异谱的荧光及/或第三荧光与第四荧光为同色异谱的荧光;及
光调制装置,用于根据所述校正图像数据对所述光源出射的光线进行调制并产生待显示图像的图像光。
一种投影系统,包括如上所述的显示设备。
本发明提供的显示设备及投影系统中,所述控制装置用于根据原始图像数据发出所述光量控制信号及所述校正图像信号,所述光源用于根据所述光量控制信号发出用于调制所述第一色域范围图像的第一荧光与第三荧光,及用于调制所述第二色域范围图像的第二荧光与第四荧光,所述光调制装置用于根据所述校正图像信号调制图像光,从而动态调整所述第一荧光、第三荧光与第二荧光、第四荧光的比例进而动态调整所述图像光的色域范围,也提高了光利用率。
附图说明
为了更清楚地说明本发明实施例/方式技术方案,下面将对实施例/方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例/方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明优选实施方式提供的显示设备的结构示意图。
图2为图1所示的色轮的俯视结构示意图。
图3为色轮发出的窄谱荧光、宽谱荧光及常用色域范围示意图。
图4为第一区段与第二区段的激发和发射光谱。
图5为第三区段的激发和发射光谱。
图6为第四区段的激发和发射光谱。
图7为一种实施方式中色轮的俯视结构示意图。
图8为另一种实施方式中色轮的俯视结构示意图。
图9为高色域范围图像的各像素的亮度分布图。
图10为β-sialon:Eu 2+与LuAG:Ce 3+的相对发光效率曲线图。
图11为利用蓝激光激发产生窄谱绿色荧光方案与绿激光光源方案的电光转化效率随激发光源光通量变化曲线。
图12为控制装置动态调整色域的原理方框示意图。
图13为激发光源对应色轮发出各种光线的驱动电流示意图。
图14为图7所示的色轮对应的动态调整色域的原理方框示意图。
主要元件符号说明
显示设备 100
光源 101
激发光源 110
分光合光元件 125、126
色轮 130、230、330
基板 131、231
外环区域 131b
内环区域 131a
散射层 B
第一区段 R1
第二区段 R2
第三区段 G1
第四区段 G2
第一扇环形区域 231c
第二扇环形区域 231d
第三扇环形区域 231e
第一区域 p
第二区域 q
第三区域 s
第四区域 t
滤光单元 B'、R1'、R2'、G1'、G2'
光调制装置 105
控制装置 107
伽玛校正电路 109
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施例对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
本发明实施方式提供一种动态色域可调的显示设备,所述显示设备的光源用于出射调制第一色域范围内图像的第一荧光与第三荧光,以及调制第二色域范围内图像的第二荧光与第四荧光,其中,所述第 二色域范围覆盖所述第一色域范围且具有超出所述第一色域范围的部分,即所述第一色域范围为低色域范围,所述第二色域范围为高色域范围。控制装置根据原始图像数据动态调整用于调制图像光的各种光线的比例,从而实现动态调整所述显示设备出射图像光的色域范围。本发明实施方式中的显示设备能够应用于投影系统中,所述显示设备出射的三种基色光保持白平衡。
以下结合附图对本发明显示设备与投影系统的具体结构及原理进行详细说明。
请参阅图1,为本发明优选实施方式提供的显示设备100的结构示意图。显示设备100包括光源101、光调制装置105及控制装置107。其中,控制装置107用于对原始图像数据解码后获得光量控制信号及校正图像数据;光源101用于根据所述光量控制信号发出光源光,光调制装置105用于根据所述校正图像数据调制所述光源光,并产生待显示图像的图像光。控制装置107调整用于调制第一色域范围内图像及第二色域范围内图像的光线比例,进而动态调整图像光的色域范围。
具体地,光源101包括激发光源110与色轮130。其中,激发光源110用于发出激发光;色轮130上设置有波长转换材料,所述波长转换材料用于在所述激发光的激发下产生荧光。
进一步地,激发光源110包括激光器,用于发出包括激光的激发光。所述激发光为第三色光,在本发明实施方式中,所述第三色光为蓝色光,激发光源110为蓝色光源。可以理解的是,所述第三色光不限于蓝色光源,所述第三色光还可以是紫色光、红色光或绿色光等。本实施方式中,激发光源110中的发光体为蓝色激光器,用于发出蓝色激光作为激发光。可以理解,所述发光体还可以包括两种颜色的激光器,比如蓝色激光器与紫外激光器。本实施方式中,所述发光体可以包括一个、两个激光器或蓝色激光器阵列,具体其激光器的数量可以依据实际需要选择。
激发光源110还可以包括匀光器件,以将所述激发光进行匀光后出射至后续装置。所述匀光器件可为匀光棒或复眼透镜等。
请结合图1进一步参阅图2,图2为图1所示的色轮130的俯视结构示意图。所述激发光经过分光合光元件125引导入射至色轮130。
如图2所示,色轮130的基板131呈圆形,基板131在驱动单元的驱动下周期性旋转,使得基板131的边缘区域始终位于所述激发光的光路上。基板131表面包括外环区域131b及内环区域131a。其中,外环区域131b与内环区域131a均呈环形并设置于基板131的边缘四周,外环区域131b的内径大于内环区域131a的内径。在本实施方式中,外环区域131b与内环区域131a相邻设置。在其他实施方式中,外环区域131b与内环区域131a间隔设置。
进一步地,色轮130包括散射层B、转换层及滤光单元。本实施方式中,散射层B、所述转换层设置于外环区域131b中,所述滤光单元设置于内环区域131a中。所述转换层包括第一区段R1、第二区段R2、第三区段G1及第四区段G2。散射层B与所述转换层中四个区段沿色轮130的周向设置,散射层B、第一区段R1、第二区段R2、第三区段G1及第四区段G2以上五个区段,在所述驱动单元的带动下,时序性位于所述激发光的光路上。
具体地,散射层B在基板131表面设置有散射材料以对所述激发光进行散射,从而对所述激发光中的激光进行消相干处理。
第一区段R1中设置有用于调制第一色域范围内的图像的红色波长转换材料,使得第一区段R1在所述激发光所在的光路上时,所述激发光照射第一区段R1并产生用于调制第一色域范围内图像的红色的第一荧光。第二区段R2中设置有用于调制第二色域范围内的图像的红色波长转换材料,使得第二区段R2在所述激发光所在的光路上时,所述激发光照射第二区段R2并产生用于调制第二色域范围内图像的红色的第二荧光。第三区段G1中设置有用于调制第一色域范围内的图像的绿色波长转换材料,使得第三区段G1在所述激发光所在的光路上时,所述激发光照射第三区段G1并产生用于调制第一色域范围内图像的绿色的第三荧光。第四区段G2中设置有用于调制第二色域范围内的图像的绿色波长转换材料,使得第四区段G2在所述激 发光所在的光路上时,所述激发光照射第四区段G2并产生用于调制第二色域范围内图像的的第四荧光。其中,所述第一荧光与所述第二荧光为第一色光,所述第三荧光与所述第四荧光为第二色光,本实施方式中,所述第一色光为红色光,所述第二色光为绿色光,可以理解的是,所述第一色光与所述第二色光还可以是其他颜色光,并不以此为限。
所述第一荧光与所述第二荧光为同色异谱的荧光及/或第三荧光与第四荧光为同色异谱的荧光。所述第二色域范围覆盖所述第一色域范围且具有超出所述第一色域范围的部分,故所述第二色域范围为高色域范围,所述第一色域范围为低色域范围。由于窄谱荧光覆盖高色域范围,宽谱荧光覆盖低色域范围,从而所述第一荧光与所述第三荧光为宽谱荧光,所述第二荧光与所述第四荧光为窄谱荧光。相应地,第一区段R1与第三区段G1均设置有宽谱荧光粉,第二区段R2与第四区段G2均设置有窄谱荧光粉。一般来说,宽谱荧光的半峰宽是大于等于70nm,窄谱荧光的半峰宽小于70nm。在一种实施方式中,所述第一荧光与所述第二荧光为同色异谱光,即所述第一荧光为宽谱荧光,所述第二荧光为窄谱荧光,所述第三荧光与所述第四荧光为同光谱光。在一种实施方式中,所述第三荧光与所述第四荧光为同色异谱光,所述第三荧光为宽谱荧光,所述第四荧光为窄谱荧光,所述第一荧光与所述第二荧光为同光谱光。通过调节至少一种色光中的宽谱荧光与窄谱荧光的比例,则混合后得到的基色光色坐标也会发生相应的变化,即可适配新的色域。
请参阅图3,图3为色轮130发出的窄谱荧光、宽谱荧光及常用色域范围示意图。宽谱荧光的色域范围介于sRGB标准色域与NTSC标准色域之间,窄谱荧光的色域范围接近BT2020标准色域。窄谱荧光的色域范围覆盖所述宽谱荧光,并具有超出所述宽谱荧光的部分。
在一种实施方式中,第二区段R2及第四区段G2均设置有量子点,以对所述激发光进行波长转换。在本实施方式中,第一区段R1设置的红色波长转换材料为CaAlSiN 3:Eu 2+,第二区段R2设置的红色波长 转换材料为K 2SiF 6:Mn 4+
请结合图3参阅图4,图4为第一区段R1与第二区段R2的激发和发射光谱。在蓝色激发光(445nm作用)的激发下,第一区段R1发出宽谱(半峰宽为93nm)的第一荧光,第一荧光的色坐标位于NTSC标准色域内。第二区段R2发出发射谱较窄的第二荧光,峰值波长630nm,色坐标为(0.69,0.30),其所在的色域超过DCI-P3色域标准,并接近BT2020色域标准。
在一种实施方式中,第二区段R2中的红色波长转换材料为K 2TiF 6:Mn 4+(峰值波长630nm,色坐标(0.69,0.30))或K 2GeF 6:Mn 4+(峰值波长630nm,色坐标(0.69,0.30)),颜色接近BT2020红色要求。在一种实施方式中,第二区段R2可以设置发射谱较窄的其他波长转换材料,或者第二区段R2可以设置K 2SiF 6:Mn 4+、K 2TiF 6:Mn 4+、K 2GeF 6:Mn 4+及量子点中的多种混合材料。
在本发明实施方式中,第三区段G1设置的绿色波长转换材料为LuAG:Ce 3+,第四区段G2设置的波长转换材料为γ-AlON:Mn 2+
请结合图3进一步参阅图5-图6,图5为第三区段G1的激发和发射光谱,图6为第四区段G2的激发和发射光谱。在蓝色激发光(445nm作用)的激发下,第三区段G1发出宽谱(半峰宽为110nm)的第三荧光,所述第三荧光的色坐标位于NTSC标准色域内。第四区段G2发出发射谱较窄(半峰宽44nm)的第四荧光,峰值波长515nm-520nm,515nm第四荧光的色坐标为(0.19,0.75),520nm第四荧光的色坐标为(0.22,0.71),其所在的色域超过DCI-P3色域标准,并接近BT2020色域标准。
在一种实施方式中,第四区段G2可以采用其他发射谱较窄的绿色波长转换材料或γ-AlON:Mn 2+、β-sialon:Eu 2+(半峰宽49nm,峰值波长为528nm,色坐标(0.28,0.68),接近DCI-P3标准色域的绿色)、Ba 2LiSi 7AlN 12:Eu 2+(半峰宽61nm,峰值波长为515nm(0.24,0.61),接近DCI-P3绿色)及量子点中的任意一种或多种组合。
请进一步参阅图1-图2,色轮130中外环区域131b出射的光线 (包括散射后的激发光与波长转换后的宽谱荧光与窄谱荧光)依次经过分光合光元件125与分光合光元件126引导至内环区域131a。外环区域131b产生的光线经基板131反射至分光合光元件125,分光合光元件126出射的光线穿过内环区域131a经过匀光装置、TIR棱镜后入射至光调制装置105。
内环区域131a设置有滤光单元B'、R1'、R2'、G1'、G2',用于分别对散射层B发出散射后的激发光、第一区段R1发出的第一荧光、第二区段R2发出的第二荧光、第三区段G1发出的第三荧光、第四区段G2发出的第四荧光进行滤光。在一种实施方式中,滤光单元B'、R1'、R2'、G1'、G2'各个区段设置有对应的滤光片。
在本实施方式中,第一区段R1与第二区段R2沿周向相邻设置,第三区段G1与第四区段G2沿周向相邻设置。在一种实施方式中,第一区段R1与第三区段G1沿周向相邻设置,第二区段R2与第四区段G2沿周向相邻设置。在一种实施方式中,外环区域131b中的五个区段按其他顺序排布,比如,依次出射红色-蓝色-绿色-红色-绿色光,相应地,所述滤光单元的各个区段对应以上五个区段的顺序排布。
请参阅图7,为一种实施方式中色轮230的俯视结构示意图。色轮230包括呈圆形的基板231,基板231表面包括沿基板231周向设置的第一扇环形区域231c、第二扇环形区域231d及第三扇环境区域231e。本实施方式中,第一扇环形区域231c与第二扇环形区域231d及第三扇环形区域231e半径相同,相邻设置并组成一环形区域。可以理解的是,在其他实施方式中,第一扇环形区域231c与第二扇环形区域231d及第三扇环形区域231e的内径及/或外径不同。在一种实施方式中,第一扇环形区域231c与第二扇环形区域231d及第三扇环形区域231e间隔设置。
本发明实施方式中,第二扇环形区域231d包括第一区域p及第二区域q,第三扇环形区域231e包括第三区域s及第四区域t。进一步地,第一区域p、第二区域q、第三区域s及第四区域t均沿基板231的周向分布。本实施方式中,第一区域p、第二区域q、第三区域s 及第四区域t相邻设置。在一种实施方式中,第一区域p、第二区域q、第三区域s及第四区域t间隔设置。
进一步地,散射层B设置于第一扇环形区域231c中,第一区段R1、第二区段R2、第三区段G1及第四区段G2分别设置于第一区域p、第二区域q、第三区域s及第四区域t中的一个区域中。本发明实施方式中,不限定第一区段R1、第二区段R2、第三区段G1及第四区段G2分别与第一区域p、第二区域q、第三区域s及第四区域t的对应关系。在本实施方式中,第一区段R1、第二区段R2、第三区段G1及第四区段G2依次设置于第一区域p、第二区域q、第三区域s及第四区域t中,即出射相同颜色光的区段设置于同一扇环形区域中,比如用于出射第一色光的第一区段R1及第二区段R2设置于第二扇环形区域231d中,用于出射第二色光的第三区段G1及第四区段G2设置于第三扇环形区域231e中。可以理解的是,在其他实施方式中,用于出射相同颜色光的区段可以设置于相邻的扇环形区域中,比如第一区段R1与第三区段G1设置于第二扇环形区域231d中,第二区段R2与第四区段G2设置于第三扇环形区域231e中。
本实施方式中,第一区域p与第三区域s之间的分界线呈锯齿状,第二区域q与第四区域t之间的分界线呈锯齿状。在一种实施方式中,第一区域p与第二区域q之间的分界线呈任意曲线,第三区域s与第四区域t之间的分界线呈任意曲线,所述任意曲线可以为波浪形、直线型等。
第二扇环形区域231d设置有宽谱荧光粉和窄谱荧光粉,且两者之间存在如下关系:
Figure PCTCN2019076633-appb-000001
其中r b和r n分别为宽谱荧光粉和窄谱荧光粉的占比,R 0为激光光斑距色轮230几何中心的距离,两种荧光粉占比与激光光斑距色轮230中心的距离呈线性关系,通过调节激光光斑的位置即色轮的位置可以调节两种荧光粉之间的占比大小。
进一步地,根据
(x b,y b,Y b)*r b+(x b,y b,Y b)*(1-r b)=(x,y,Y),
其中,(x b,y b,Y b)代表宽谱荧光粉的色坐标与亮度,(x b,y b,Y b)代表窄谱荧光粉的色坐标与亮度,(x,y,Y)代表混合基色光的色坐标与亮度。若宽谱荧光粉与窄谱荧光粉的比例发生变化,则混合后得到的基色光色坐标也会发生相应的变化,即可适配新的色域。且由于窄谱荧光粉的光饱和现象明显大于宽谱荧光粉的光饱和现象,窄谱荧光粉承受激发光的功率密度比宽谱荧光粉低,在较高光功率密度条件下的发光效率较低,故需要对激发光源110的驱动电流进行调整,即当空间光调制器105上的信号为窄谱荧光信号时,需调小激发光源110的驱动电流。
基板231表面形成的激发光光斑与基板231几何中心的距离为可调节的,通过调节基板231表面形成的激发光光斑与基板231几何中心的距离,以调节所述光源光中第一荧光、第二荧光、第三荧光及第四荧光的占比。用于调制所述第一色域及所述第二色域图像的光线比例发生变化,则混合后得到的基色光色坐标也会发生相应的变化,即可适配新的色域。在一种优选的实施方式中,通过调节色轮230的位置从而调整激发光在基板231表面形成光斑与基板231几何中心的距离。
请参阅图8,为另一种实施方式中色轮330的俯视结构示意图。色轮330与色轮230的主要区别在于,第一区域p与第二区域q、第三区域s及第四区域t均呈扇环形,即第一区域p与第二区域q之间的分界线为弧线,第三区域s与第四区域t之间的分界线呈弧线。
需要说明的是,在本发明的精神或基本特征的范围内,适用于色轮230中的各具体方案也可以相应的适用于色轮330中,为节省篇幅及避免重复起见,在此就不再赘述。
在一种实施方式中,色轮130的基板131呈圆形,散射层B、第一区段R1、第二区段R2、第三区段G1及第四区段G2在基板131上沿径向设置。在一种优选的实施方式中,散射层B、第一区段R1、第二区段R2、第三区段G1及第四区段G2距离基板131几何中心的距 离不同。进一步地,在一种优选的实施方式中,散射层B、第一区段R1、第二区段R2、第三区段G1及第四区段G2呈内径不同的环形区域。
调整基板131表面形成的激发光光斑与基板131几何中心之间的距离,以调节光源光中第一荧光、第二荧光、第三荧光及第四荧光的占比。用于调制所述第一色域及所述第二色域图像的光线比例发生变化,则混合后得到的基色光色坐标也会发生相应的变化,即可适配新的色域。在一种优选的实施方式中,通过调节色轮130的位置从而调整激发光在基板131表面形成光斑与基板131几何中心的距离。
请进一步参阅图1,在本发明实施方式中,光调制装置105为DMD、LCOS、LCD,优选LCOS、LCD。
控制装置107与光调制装置105电连接,并且通过伽玛校正电路109与激发光源110电连接。在本实施方式中,控制装置107与伽玛校正电路109相互独立。在一种实施方式中,伽玛校正电路109设置于控制装置107内部。控制装置107用于对原始图像数据解码后获得光量控制信号及校正图像数据。激发光源110用于根据所述光量控制信号发出所述激发光,所述激发光的光量由所述光量控制信号控制,本发明实施方式中,所述光量体现为所述激发光的光功率。光调制装置105用于根据所述校正图像数据对色轮130出射的光线进行调制并产生待显示图像的图像光。
进一步地,所述光量控制信号用于控制位于所述激发光光路上不同区段所对应的所述激发光源的驱动电流强度,从而调节所述激发光的光功率。
请参阅图9,为高色域范围图像的各像素的亮度分布图。研究人员研究发现目前的高色域图片的像素点亮度分布如图9所示。自然画面的高亮度主要分布在sRGB标准色域内,sRGB标准色域外亮度峰值很低,其亮度需求比sRGB标准色域内低约一个数量级以上。也就是说,sRGB标准色域内光主要提供亮度,sRGB标准色域外的光对亮度要求比sRGB标准色域内的光低很多。
因此本发明实施方式中将五个区段制作在同一个色轮130的外环区域131b上,利用选择荧光发射谱较宽的第一区段R1、第三区段G1提供较低色域sRGB范围([R(0.64,0.33)G(0.30,0.60)B(0.15,0.06)])的基色光,从而为待显示图像提供地色域范围内的高亮度像素点。选择荧光发射谱较窄的第二区段R2、第四区段G2提供接近高色域BT2020范围的基色光,进而为待显示图像提供高色域范围内的低亮度像素点。
由于目前的高色域画面的亮度需求较低,因而激发色轮130上的第二荧光(窄谱红光)和第四荧光(窄谱绿光)的激发光功率要求较低,从图9的亮度分布来看,窄谱荧光的亮度需求是宽谱荧光的1/10。尽管窄谱荧光由于其较长的余辉时间,承受激发光的功率密度比宽谱荧光低,在较高光功率密度条件下的发光效率较低;但是通过调低窄谱荧光的光功率,窄谱荧光的效率仍然可以保持较高,同时节省了激发光源110的光功率,有利于显示设备100降低功耗,也提高了光利用率。
第一区段R1、第二区段R2、第三区段G1、第四区段G2分别位于激发光所在的光路上时,所述激发光的光功率分别为第一区段光功率、第二区段光功率、第三区段光功率、第四区段光功率。其中,所述光量控制信号用于控制所述第二区段光功率小于等于所述第一区段光功率,以及控制所述第四区段光功率小于等于所述第三区段光功率。在一种实施方式中,所述光量控制信号用于控制所述第二区段光功率小于等于所述一红色荧光区光功率的1/10,及/或控制所述第四区段光功率小于等于所述第三区段光功率的1/10。
请参阅图10,为β-sialon:Eu 2+与LuAG:Ce 3+的相对发光效率曲线图。LuAG:Ce 3+用于发出宽谱绿色荧光,其发出的第三荧光半峰宽是110nm。β-sialon:Eu 2+用于发出窄谱绿色荧光,其发出的第四荧光的半峰宽是50nm。
如图10所示,在相对光功率密度为1时,β-sialon:Eu 2+的发光效率与LuAG:Ce 3+接近。在相对光功率密度为10时,β-sialon:Eu 2+ 的效率为LuAG:Ce 3+的80%左右,因而在窄谱绿粉β-sialon:Eu 2+的激发光功率密度为宽谱绿粉LuAG:Ce 3+的1/10时,β-sialon:Eu 2+也可以保持较高效率,与LuAG:Ce 3+接近。激发光源110根据所述光量控制信号,对应位于所述激发光光路上的不同区段,驱动电流有所区别,从而产生不同比例的基色光以实现色域动态调整,并保持较高的光转换效率,也提高了光利用率。
进一步地,相对于背景技术中提到的第二种的RGB激光方案,具体来说,目前绿激光激发荧光的电光转化效率在12%,蓝激光电光转化效率为38%,而利用蓝激光产生窄谱绿色荧光的转化效率为40~60%,因而利用蓝激光产生窄谱绿色荧光的电光转化效率为15~23%,因而利用蓝激光激发产生窄谱绿色荧光的效率高于目前的绿激光方案。
请参阅图11,图11为利用蓝激光激发产生窄谱绿色荧光方案与绿激光光源方案的电光转化效率随激发光源110光通量变化曲线,当激发光源110光通量在6000lm以下时,利用蓝激光激发产生窄谱绿色荧光方案的电光转化效率高于绿激光光源方案。随着激发光源110光通量逐渐变大,两种方案的电光转换效率均呈减小趋势,其中,利用蓝激光激发产生窄谱绿色荧光方案的电光转换效率相较于绿激光光源方案衰减快。
请参阅图12,为控制装置107动态调整色域的原理方框示意图。控制装置107用于根据待显示图像的原始图像数据得到原始图像数据所基于的色域范围,以得到所述光量控制信号。
具体地,控制装置107可以利用相关公式将待显示图像的各像素的原始图像数据(如r、g、b)转换为CIE xyY色度值数据,其中每个像素的CIE xyY色度值数据包括色坐标x、y及亮度值Y。依据每个像素的CIE xyY色度值数据,即色坐标x、y及亮度值Y,控制装置107获得待显示图像的各像素的色坐标(即色坐标x、y),进而获得待显示图像的各像素的色坐标界定的范围,即待显示图像的色域范围。进一步地,依据每个像素的CIE xyY色度值数据,控制装置107 还获得待显示图像的各像素的亮度值Y,从而控制装置107可以根据待显示图像的各像素的色坐标x、y及亮度值Y产生所述光量控制信号来控制激发光源110发出的激发光的亮度从而控制其光功率。
请参阅图13,为激发光源110对应色轮130发出各种光线的驱动电流示意图。对应位于所述激发光光路上的不同区段,所述光量控制信号控制激发光源110的驱动电流强度,从而控制激发光源110出射对应光功率的激发光,以调节宽谱荧光和窄谱荧光的比例,得到适配待显示图像所基于的色域范围的色坐标。由于每幅待显示图像的内容不同,每幅待显示图像(如一帧待显示图像)的色域范围也可以均不相同,从而对应每幅待显示图像的光量控制信号不同。
具体地,如图1所示,所述光量控制信号被提供至伽玛校正电路109,伽玛校正电路109依据所述光量控制信号发出对应的驱动信号至激发光源110中的驱动电路,所述驱动电路依据所述驱动信号动态控制激发光源110发出的激发光功率。
请参阅图14,为图7所示的色轮对应的控制装置107动态调整色域的原理方框示意图。本实施方式与上述实施方式中控制原理主要区别在于:在本实施方式中,控制装置107计算出窄谱荧光与宽谱荧光的占比,控制装置107输出的光量控制信号同时控制激发光源110的驱动电流以及色轮230的位置,使得控制装置107动态调整色轮230上激发光光斑的照射位置,从而调整光源101出射用于调制所述第一色域及所述第二色域内图像光线的比例,进而实现待显示图像对应基色光坐标的色域调整。需要说明的是,在本发明的精神或基本特征的范围内,适用于上述实施方式中的各具体方案也可以相应的适用于本实施方式中,为节省篇幅及避免重复起见,在此就不再赘述。
请进一步参阅图12,控制装置107用于根据所述光量控制信号计算当前色域范围,以及利用所述当前色域范围、原始图像数据所基于的色域范围,将待显示图像的原始图像数据通过相应公式转换为所述当前色域范围的图像数据,并将所述当前色域范围的图像数据作为所述校正图像数据,且光调制装置105进一步依据所述校正图像数据调 制色轮130出射的光线可以准确还原待显示图像的像素。
控制装置107依据待显示图像的所基于色域范围确定当前色域范围。其中,当前色域范围为三角形区域,其涵盖待显示图像所基于的色域范围,即其涵盖待显示图像的各像素的色坐标。具体地,当前色域范围可以为刚好涵盖待显示图像的各像素的色坐标且面积最小的色域区域。可以理解,由于每幅待显示图像的内容不同,每幅待显示图像(如一帧待显示图像)的色域范围也可以均不相同,从而控制装置107依据每幅待显示图像确定的当前色域范围也可以均不相同。
控制装置107将所述校正图像信号传输给光调制装置105。以RGB编码格式的校正图像信号为例,原始图像数据为RGB信号,其中原始图像数据中的R信号用于调制红色光,G信号用于调制绿色光,B信号用于调制蓝色光。所述校正图像信号为RRGGB信号,相当于R信号和G信号在时序上重复了一下,即在两段均为R或者两段均为G信号的时间内,光调制装置105实际上分别处理了第一区段R1发出的第一荧光和第二区段R2发出的第二荧光,或者第三区段G1发出的第三荧光和第四区段G2发出的第四荧光。
具体来说,假设R信号值为a(0≤a≤255),光调制装置105接收所述第一荧光及所述第二荧光时段对应的校正图像信号为aa。
两时段时序上混合后,实际出射的红光亮度值为a/255·Y R'(Y R'为a=225时光调制装置105出射红色光的亮度);实际出射的红色基色光的色坐标为(x,y)。
假设所述第一荧光的亮度为a/255·Y R1(Y R1为所述第一荧光全部通过光调制装置105出射的亮度,即a=225时光调制装置105出射所述第一荧光的亮度);所述第一荧光的色坐标为(x R1,y R1)。
假设所述第二荧光的亮度为a/255·Y R2(Y R2为所述第二荧光全部通过光调制装置105出射的亮度,即a=225时光调制装置105出射所述第二荧光的亮度),所述第二荧光的色坐标为(x R2,y R2),则光调制装置105出射的红色基色光亮度Y R'及色坐标(x,y)满足:
Y R’=Y R1+Y R2
Figure PCTCN2019076633-appb-000002
Figure PCTCN2019076633-appb-000003
由于红色基色光是所述第一荧光(宽谱荧光)与所述第二荧光(窄谱荧光)混合得到的。若两种光的比例发生变化,则混合后得到的红色基色光也会发生相应的变化。所述第一荧光和所述第二荧光的亮度是由其对应的激发光源110驱动电流大小决定的,因此,通过所述光量控制信号改变第一区段R1与第二区段R2对应的驱动电流,即可改变两区段对应的亮度,从而改变最终得到的红基色光色坐标及亮度。采用相同方式也可以得到两种不同色域的绿色荧光的时序合光,混合得到系统所需要的绿色基色光。且在改变红色或者绿色基色光色坐标的同时,保持白平衡。
本发明提供的显示设备100及所述投影系统中,控制装置107用于根据原始图像数据发出光量控制信号及校正图像信号,光源101用于根据所述光量控制信号发出用于调制所述第一色域范围图像的第一荧光与第三荧光,及用于调制所述第二色域范围图像的第二荧光与第四荧光,光调制装置105用于根据所述校正图像信号调制图像光,从而动态调整图像光中宽谱荧光与窄谱荧光的比例,进而动态调整图像光的色域范围,也提高了光利用率。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单 元或步骤,单数不排除复数。装置权利要求中陈述的多个装置也可以由同一个装置或系统通过软件或者硬件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。
最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。

Claims (17)

  1. 一种显示设备,其特征在于,包括:
    控制装置,用于对原始图像数据解码后获得光量控制信号及校正图像数据;
    光源,用于根据所述光量控制信号发出:
    用于调制第一色域范围内图像的第一荧光及第三荧光;及
    用于调制第二色域范围内图像的第二荧光、第四荧光及散射后的激发光;
    其中,所述第二色域范围覆盖所述第一色域范围且具有超出所述第一色域范围的部分;所述第一荧光与所述第二荧光为第一色光,所述第三荧光与所述第四荧光为第二色光,所述激发光为第三色光;所述第一荧光与所述第二荧光为同色异谱的荧光及/或第三荧光与第四荧光为同色异谱的荧光;及
    光调制装置,用于根据所述校正图像数据对所述光源出射的光线进行调制并产生待显示图像的图像光。
  2. 如权利要求1所述的显示设备,其特征在于,所述光源包括:
    用于发出所述激发光的激发光源;及
    用于接收所述激发光的色轮,包括:
    基板;
    散射层,设置于所述基板表面,用于对所述激发光进行散射以得到散射后的激发光;及
    转换层,设置于所述基板表面,包括设置有波长转换材料的分别用于将所述激发光转换为第一荧光、第二荧光、第三荧光及第四荧光的第一区段、第二区段、第三区段及第四区段;
    所述光量控制信号用于控制位于所述激发光光路上不同区段对应的激发光源的驱动电流强度,从而调节所述激发光的光功率。
  3. 如权利要求2所述的显示设备,其特征在于,所述第一区段、所述第二区段、所述第三区段及所述第四区段分别位于所述激发光所 在的光路上时,所述激发光的光功率分别为第一光功率、第二光功率、第三光功率、第四光功率;
    其中,所述光量控制信号用于控制所述第二光功率小于等于所述第一光功率,及/或控制所述第四光功率小于等于所述第三光功率。
  4. 如权利要求3所述的显示设备,其特征在于,所述光量控制信号用于控制所述第二光功率小于等于所述第一光功率的1/10,以及控制所述第四光功率小于等于所述第三光功率的1/10。
  5. 如权利要求2所述的显示设备,其特征在于,所述第一区段中设置的波长转换材料为CaAlSiN 3:Eu 2+
  6. 如权利要求2所述的显示设备,其特征在于,所述第三区段中设置的波长转换材料为LuAG:Ce 3+
  7. 如权利要求2所述的显示设备,其特征在于,所述第二区段设置的波长转换材料为K 2SiF 6:Mn 4+、K 2TiF 6:Mn 4+、K 2GeF 6:Mn 4+及量子点中的任意一种或几种组合。
  8. 如权利要求2所述的显示设备,其特征在于,所述第四区段中设置的波长转换材料为γ-AlON:Mn 2+、β-sialon:Eu 2+、Ba 2LiSi 7AlN 12:Eu 2+及量子点中的任意一种或几种组合。
  9. 如权利要求2所述的显示设备,其特征在于,所述基板呈圆形,所述散射层、所述第一区段、所述第二区段、所述第三区段及所述第四区段在所述基板上沿周向设置。
  10. 如权利要求2所述的显示设备,其特征在于,所述基板表面形成的激发光光斑与所述基板几何中心之间的距离为可调节的,通过调节所述基板表面形成的激发光光斑与所述基板几何中心的之间距离,以调节所述光源光中第一荧光、第二荧光、第三荧光及第四荧光的占比。
  11. 如权利要求10所述的显示设备,其特征在于,所述基板呈圆形,所述基板表面包括沿所述基板周向设置的第一扇环形区域、第二扇环形区域及第三扇环形区域,所述第二扇环形区域包括第一区域及第二区域,所述第三扇环境区域包括第三区域及第四区域,所述第一 区域及所述第三区域邻近所述基板的几何中心设置,所述第二区域及所述第四区域邻近所述基板的边缘设置;
    其中,所述散射层设置于所述第一扇环形区域中,所述第一区段、所述第二区段、所述第三区段及所述第四区段分别设置于所述第一区域、所述第二区域、所述第三区域及所述第四区域中的一个区域中。
  12. 如权利要求11所述的显示设备,其特征在于,所述第一区段、所述第二区段、所述第三区段及所述第四区段依次设置于所述第一区域、所述第二区域、所述第三区域及所述第四区域中。
  13. 如权利要求10所述的显示设备,其特征在于,所述基板呈圆形,所述散射层、所述第一区段、所述第二区段、所述第三区段及所述第四区段在所述基板上沿径向设置。
  14. 如权利要求1所述的显示设备,其特征在于,所述光调制装置为LCOS或LCD。
  15. 如权利要求1-14任意一项所述的显示设备,其特征在于,
    所述控制装置用于根据待显示图像的原始图像数据得到原始图像数据所基于的色域范围,以得到所述光量控制信号。
  16. 如权利要求14所述的显示设备,其特征在于,
    所述控制装置用于根据所述光量控制信号计算当前色域范围,以及利用所述当前色域范围、原始图像数据所基于的色域范围,将待显示图像的原始图像数据转换为所述当前色域范围的图像数据,并将所述当前色域范围的图像数据作为所述校正图像数据。
  17. 一种投影系统,其特征在于,包括如权利要求1-16任意一项所述的显示设备。
PCT/CN2019/076633 2018-07-18 2019-03-01 显示设备及投影系统 WO2020015364A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810791547.6 2018-07-18
CN201810791547.6A CN110737162B (zh) 2018-07-18 2018-07-18 显示设备及投影系统

Publications (1)

Publication Number Publication Date
WO2020015364A1 true WO2020015364A1 (zh) 2020-01-23

Family

ID=69164056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076633 WO2020015364A1 (zh) 2018-07-18 2019-03-01 显示设备及投影系统

Country Status (2)

Country Link
CN (1) CN110737162B (zh)
WO (1) WO2020015364A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114236956A (zh) * 2020-09-09 2022-03-25 宁波舜宇车载光学技术有限公司 彩色投影系统及彩色投影方法
CN113204159A (zh) * 2021-05-17 2021-08-03 扬州吉新光电有限公司 一种红绿光增强的激光光源装置及波长转换层材料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102854728A (zh) * 2011-12-18 2013-01-02 深圳市光峰光电技术有限公司 光源系统及投影装置
CN105025279A (zh) * 2014-04-24 2015-11-04 深圳市绎立锐光科技开发有限公司 一种光源系统及投影显示装置
US20150370155A1 (en) * 2014-06-23 2015-12-24 National Sun Yat-Sen University Projector Using Glass Phosphor As a Color Mixing Element
CN105407344A (zh) * 2014-09-09 2016-03-16 深圳市绎立锐光科技开发有限公司 立体图像投影装置和立体显示的眼镜
CN205539893U (zh) * 2016-01-14 2016-08-31 深圳市光峰光电技术有限公司 一种波长转换装置、光源系统以及投影装置
CN106444248A (zh) * 2016-09-13 2017-02-22 合肥鑫晟光电科技有限公司 一种荧光轮、投影光源、投影仪及其控制方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5703631B2 (ja) * 2010-08-26 2015-04-22 セイコーエプソン株式会社 プロジェクター
CN103403617B (zh) * 2011-03-03 2015-09-02 Nec显示器解决方案株式会社 图像投影装置和控制光源的方法
JP5685996B2 (ja) * 2011-03-08 2015-03-18 セイコーエプソン株式会社 照明装置およびプロジェクター
KR101834809B1 (ko) * 2011-03-09 2018-03-06 엘지전자 주식회사 광원 장치 및 그 제조 방법
CN103792635B (zh) * 2012-10-29 2016-02-17 中强光电股份有限公司 波长转换轮模块及照明系统
CN103090320B (zh) * 2013-01-23 2014-07-16 海信集团有限公司 波长转换器、光源装置及投影机
TWI498661B (zh) * 2013-11-05 2015-09-01 一體成型之玻璃螢光體色輪及其製造之方法
TWI557493B (zh) * 2015-01-22 2016-11-11 中強光電股份有限公司 波長轉換模組及投影機
CN106154711B (zh) * 2015-04-09 2018-07-24 深圳市光峰光电技术有限公司 一种投影系统及其色域控制方法
CN106371274B (zh) * 2015-07-20 2019-11-26 深圳光峰科技股份有限公司 一种混合光源装置及其发光控制方法、投影系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102854728A (zh) * 2011-12-18 2013-01-02 深圳市光峰光电技术有限公司 光源系统及投影装置
CN105025279A (zh) * 2014-04-24 2015-11-04 深圳市绎立锐光科技开发有限公司 一种光源系统及投影显示装置
US20150370155A1 (en) * 2014-06-23 2015-12-24 National Sun Yat-Sen University Projector Using Glass Phosphor As a Color Mixing Element
CN105407344A (zh) * 2014-09-09 2016-03-16 深圳市绎立锐光科技开发有限公司 立体图像投影装置和立体显示的眼镜
CN205539893U (zh) * 2016-01-14 2016-08-31 深圳市光峰光电技术有限公司 一种波长转换装置、光源系统以及投影装置
CN106444248A (zh) * 2016-09-13 2017-02-22 合肥鑫晟光电科技有限公司 一种荧光轮、投影光源、投影仪及其控制方法

Also Published As

Publication number Publication date
CN110737162B (zh) 2021-09-28
CN110737162A (zh) 2020-01-31

Similar Documents

Publication Publication Date Title
JP4635551B2 (ja) カラー液晶表示装置
US9667929B2 (en) Display uniformity compensation method, optical modulation apparatus, signal processor, and projection system
WO2016161934A1 (zh) 一种投影系统及其色域控制方法
JP2005321727A (ja) バックライト装置及びカラー液晶表示装置
WO2016161933A1 (zh) 投影显示系统及其控制方法
WO2020015364A1 (zh) 显示设备及投影系统
WO2019174271A1 (zh) 显示设备
US9910347B2 (en) Image display apparatus and image generation method
WO2020057296A1 (zh) 显示设备、显示设备的控制方法及计算机可读存储介质
US11380237B2 (en) Display device and display method
US11343476B2 (en) Display apparatus
WO2020042566A1 (zh) 动态调节显示系统色域的系统、方法及显示系统
US20200233290A1 (en) Wavelength conversion module, projector and method for mixing light of a projector
WO2021249513A1 (zh) 一种投影显示系统
WO2020135292A1 (zh) 显示设备及其控制方法
WO2019174273A1 (zh) 图像处理装置、显示设备、图像处理与显示装置及方法
CN110505460B (zh) 显示设备
US20110149167A1 (en) Full Visible Gamut Color Video Display
US11202042B2 (en) Display apparatus
CN112241100B (zh) 一种照明系统的颜色校正方法及照明系统
WO2022002189A1 (zh) 光源以及投影装置
JP2005260116A (ja) 発光素子の駆動回路及び画像表示装置
KR20150069618A (ko) 반도체 레이저 다이오드용 청색 발광 물질

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19837064

Country of ref document: EP

Kind code of ref document: A1