WO2020057296A1 - 显示设备、显示设备的控制方法及计算机可读存储介质 - Google Patents

显示设备、显示设备的控制方法及计算机可读存储介质 Download PDF

Info

Publication number
WO2020057296A1
WO2020057296A1 PCT/CN2019/100478 CN2019100478W WO2020057296A1 WO 2020057296 A1 WO2020057296 A1 WO 2020057296A1 CN 2019100478 W CN2019100478 W CN 2019100478W WO 2020057296 A1 WO2020057296 A1 WO 2020057296A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
period
primary color
color
light source
Prior art date
Application number
PCT/CN2019/100478
Other languages
English (en)
French (fr)
Inventor
余新
胡飞
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Priority to US17/278,046 priority Critical patent/US11404010B2/en
Publication of WO2020057296A1 publication Critical patent/WO2020057296A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • H04N9/3114Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources by using a sequential colour filter producing one colour at a time
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/002Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to project the image of a two-dimensional display, such as an array of light emitting or modulating elements or a CRT
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/3413Details of control of colour illumination sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3158Modulator illumination systems for controlling the spectrum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3182Colour adjustment, e.g. white balance, shading or gamut
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0235Field-sequential colour display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature

Definitions

  • the present invention relates to the field of display technology, and in particular, to a display device, a method for controlling the display device, and a computer-readable storage medium.
  • a blue laser light source is used as a short-wavelength excitation light source to excite a wavelength conversion material on a color wheel to generate red-green primary color light, and the blue laser light source itself is also used as a blue primary color light.
  • the laser speckle phenomenon emitted by it is obvious, and the fluorescence coverage color gamut range emitted by the light source is relatively small.
  • the light source system is emitted The combination of laser fluorescence and RGB laser can effectively exert the advantages of both and make up for their respective shortcomings.
  • the color gamut range of the display device can be effectively expanded.
  • the addition of fluorescence can greatly reduce the speckle effect of pure lasers.
  • the speckle cannot be completely eliminated, the addition of fluorescence makes the contrast of speckle greatly reduced without being detected by the human eye.
  • a high-power red-green laser is not required, a complicated heat dissipation system is not required compared to an RGB laser light source, thereby greatly reducing the system cost.
  • the present invention provides a low-cost display device that implements extended color gamut.
  • the present invention also provides a control method of a display device and a computer-readable storage. medium.
  • a display device includes:
  • a control device configured to divide a display period of each frame of the image to be displayed into a first period and a second period, and issue a light source control signal according to the original image data in each frame of the image to be displayed and corresponding to each pixel in the image to be displayed Modulated signal;
  • the light source system is configured to emit light source light according to the light source control signal.
  • the light source light includes:
  • the first light including the three primary color components emitted during the first period
  • Second light including a laser beam emitted during the second period of time, the laser light included in the second light and at least part of the primary color light of the first light being metamer light;
  • a light modulation device is configured to modulate the first light and the second light to generate a first image light and a second image light of an image to be displayed according to the modulation signal.
  • a method for controlling a display device includes the following steps:
  • the display period of each frame of images to be displayed is divided into a first period and a second period, and a light source control signal is generated and applied to the first period and the second period, respectively.
  • First modulation data and second modulation data of a period are divided into a first period and a second period, and a light source control signal is generated and applied to the first period and the second period, respectively.
  • the first light and the second light are respectively modulated according to the first modulation data and the second modulation data, and a first image light and a second image light corresponding to an image to be displayed are generated.
  • a computer-readable storage medium has stored thereon a computer program that, when executed by a processor, implements steps of a method for controlling a display device as described above.
  • Embodiments of the present invention provide a display device, a method for controlling the display device, and a computer-readable storage medium.
  • the display device controls a display period of a frame of an image to be displayed into a first period and a second period, and controls the display period.
  • the light source system emits the first light in the first period and the second light in the second period, because the laser light in the second light and at least part of the primary color light in the first light are metamerism Light, so the first light and the second light belong to a different color gamut range, and the light modulation device, under the control of the control device, modulates the first light and the second light respectively, using the human eye to temporarily
  • the residual effect superimposes the first image light emitted in the first period and the second image light emitted in the second period, thereby being beneficial to expanding the color gamut range of the image emitted by the display device.
  • FIG. 1 is a schematic structural diagram of a display device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic plan view of the color wheel shown in FIG. 1.
  • FIG. 3 is a schematic structural diagram of a display device according to a second embodiment of the present invention.
  • FIG. 4 is a schematic diagram of color gamut and color volume expansion of an image emitted by a display device according to an embodiment of the present invention.
  • Display screen 10 20 Light source system 100, 200 First light source 110, 210 Second light source 120, 220 Red emitter 121 Green emitter 122 Light splitting and combining element 125 First guide 130 First light splitting and light combining element 131 Second light splitting and combining element 132 Collection lens group 133, 134
  • Second guide 240 Third light splitting and light combining element 245
  • Fourth light splitting and light combining element 246 Fifth spectral light combining element 247 Color wheel 150, 250 Substrate 151 Transition area 152, 252 Filter unit 155, 255 First section R1, R2 Second section G1, G2 Third section B1, B2 Drive unit 159 Uniform light device 170, 270 Light modulation device 700 Control device 800
  • FIG. 1 is a schematic structural diagram of a display device 10 according to a first embodiment of the present invention.
  • the display device 10 provided by the present invention may be a device such as an education projector, a laser television, a micro-projector, a cinema projector, etc.
  • a projection device is used as an example for description.
  • the display device 10 may also be the other devices described above. .
  • the present invention provides a display device 10, a control method of the display device 10, and a computer-readable storage medium.
  • the display device 10 is configured to divide a display period of a frame of an image to be displayed into a first period and a second period, and emit a first image light within a first color gamut during the first period and a second color during the second period.
  • the second image light in the domain range uses the characteristics of the human eye to persist. When multiple frames of images are played continuously, as long as the frame rate is sufficiently large, the first image light and the second image light are displayed alternately without significant flicker.
  • the second color gamut range covers the first color gamut range and has a portion that exceeds the first color gamut range, that is, the second color gamut range is wider than the first color gamut range.
  • the first color gamut range is DCI-P3.
  • the second color gamut range is REC.2020. Since each frame of the image to be displayed is formed by superimposing the first image light and the second image light, it is beneficial to expand the color gamut range of the display device 10.
  • the display device 10 includes a light source system 100, a light modulation device 700, and a control device 800.
  • the control device 800 is configured to divide the display period of each frame of the image to be displayed into a first period and a second period, and emit a light source control signal and a modulation signal according to the original image data of each frame of the image to be displayed.
  • the light source system 100 is used for The light source light is emitted according to the light source control signal, and the light source light includes: a first light including three primary color components emitted during a first period, and a second light including a laser emitted during a second period.
  • the light modulation device 700 is configured to modulate the first light and the second light and generate a first image light and a second image light of an image to be displayed according to the modulation signal.
  • the color gamut to which the first image light belongs is the first color gamut
  • the color gamut to which the second image light belongs is the second color gamut. Since the laser light in the second light and at least part of the primary color light in the first light are metamer light, Therefore, the range of the first color gamut is different from that of the second color gamut, and since the second light includes a laser, in general, the color gamut range that the laser can modulate is wide, so the second color gamut range based on the second light can cover the first The color gamut range and has a portion that exceeds the first color gamut range.
  • the light source system 100 includes a first light source 110, a second light source 120, and a color wheel 150.
  • the first light source 110 is used to emit excitation light in the first period
  • the color wheel 150 is used to convert the excitation light into the first light
  • the second light source 120 is used to emit the second light in the second period .
  • the laser light in the second light and at least part of the primary color light in the first light are metamerism light.
  • the first light source 110 is a blue light source for emitting blue light as excitation light. It can be understood that the first light source 110 may also be a light source of other colors such as ultraviolet light, red light, and green light, or the first light source 110 is configured to emit at least two of the color light such as blue light, ultraviolet light, red light, and green light. Kind of light.
  • the luminous body in the first light source 110 is a blue laser.
  • the first light source 110 may include one, two blue lasers, or a blue laser array. The number of lasers may be flexibly selected according to requirements.
  • the light emitter in the first light source 110 is a light emitting diode or a light emitting diode array.
  • the second light source 120 is configured to emit a second light of at least one color, and the second light includes a laser.
  • the second light source 120 includes a red light emitting body 121, a green light emitting body 122, and a spectroscopic light combining element 125.
  • the red light emitter 121 and the green light emitter 122 each include a laser or a laser array.
  • the light splitting and combining element 125 is configured to combine the red laser light emitted from the red light emitting body 121 and the green laser light emitted from the green light emitting body 122 to obtain second light emitted from the second light source 120.
  • the light splitting and combining element 125 is a dichroic beam splitter which is red-transmissive and green-transmissive, and is configured to reflect red laser light and transmit green laser light.
  • the second light source 120 includes a red light emitter 121 or a green light emitter 122 to emit a red laser light or a green laser light as the second light, and the spectroscopic light combining element 125 is omitted.
  • the second light source 120 includes a red light emitter 121, a green light emitter 122, and a blue light emitter (not shown) to emit a three-primary color laser.
  • the first light source 110 may include an ultraviolet laser to emit light. The ultraviolet light excites the color wheel 150 to generate first light, and the first light includes red fluorescence, green fluorescence, and blue fluorescence.
  • the first light source 110 and / or the red luminous body 121 and / or the green luminous body 122 are further provided with a light homogenizing device, such as an optical integrator rod or a fly-eye lens, for homogenizing the laser light. It is understood that the light homogenizing device in the first light source 110, the red light emitting body 121, and the green light emitting body 122 is not necessary, especially in a miniaturized light source system, the light homogenizing device can be omitted.
  • a light homogenizing device such as an optical integrator rod or a fly-eye lens
  • FIG. 2 is a schematic top view of the color wheel 150 shown in FIG. 1.
  • the surface of the color wheel 150 includes a substrate 151, and a conversion region 152 and a filter unit 155 disposed on the substrate 151.
  • the substrate 151 is circular, and the conversion region 152 and the filter unit 155 are annularly arranged along the radial direction of the surface of the substrate 151.
  • the inner diameter of the filter unit 155 is greater than the outer diameter of the conversion region 152, that is,
  • the filter unit 155 is disposed on the edge of the substrate 151, and the conversion region 152 is disposed between the filter unit 155 and the geometric center of the substrate 151.
  • the conversion region 152 is disposed adjacent to the filter unit 155. In other embodiments, the positions of the conversion region 152 and the filter unit 155 may be interchanged, and the conversion region 152 and the filter unit 155 may be disposed at intervals.
  • the conversion region 152 includes a first segment R1, a second segment G1, and a third segment B1, a first segment R1, a second segment G1, and a third segment disposed along a circumferential direction of the surface of the color wheel 150.
  • B1 can be set adjacently or at intervals.
  • the first segment R1 is used to convert the excitation light into the first primary color light
  • the second segment G1 is used to convert the excitation light into the second primary color light
  • the third segment B1 is used to excite the excitation light as the third primary color light. Scattering is performed to change the angular distribution of the excitation light.
  • a wavelength conversion material for converting excitation light into red fluorescence is provided in the first segment R1
  • a wavelength conversion material for converting excitation light into green fluorescence is provided in the second segment G1
  • a third segment B1 is provided A scattering layer is provided therein.
  • the excitation light is ultraviolet light
  • a wavelength conversion material that converts the excitation light into blue fluorescence is provided in the third section B1.
  • the conversion region 152 is provided with a first section and a second section, wherein the first section is provided with a yellow phosphor for converting excitation light into yellow fluorescence, and the yellow fluorescence has red fluorescence and The green fluorescence component, the second segment is used to scatter the excitation light.
  • the filter unit 155 includes a first section R2, a second section G2, and a third section B2.
  • the first section R2, the second section G2, and the third section B2 are respectively provided with a red light filter, a green light filter, and a blue light filter.
  • the first section R2, the second section G2, and the third section B2 are respectively corresponding to the first section R1, the second section G1, and the third section B1.
  • each section in the filter unit 155 and The center angle formed with the geometric center of the substrate 151 is the same as the center angle formed by the corresponding color segment in the conversion region 152 and the geometric center of the substrate 151.
  • the center angle formed by the first segment R1 and the geometric center of the substrate 151 is 50 °
  • the central angle formed by the first segment R2 and the geometric center of the substrate 151 is also 50 °.
  • the color wheel 150 further includes a driving unit 159 provided on the bottom surface of the substrate 151.
  • the driving unit 159 drives the substrate 151 to periodically move, so that the first section R1, the second section G1, and the first section in the transition area 152 are moved.
  • the three sections B1 are periodically located on the optical path of the excitation light.
  • the conversion region 152 emits red fluorescence, green fluorescence, and scattered excitation light in a time series. Because the red fluorescence and the green fluorescence emitted by the conversion region 152 have a broad spectrum, the color purity is not high enough, and each area of the conversion region 152 is not high enough.
  • the light emitted from the segment needs to be emitted after filtering in the corresponding segment in the filtering unit 155, so as to obtain the first, second, and third primary color light emitted from the color wheel 150 in time sequence.
  • a first guiding device 130 is further provided between the first light source 110, the second light source 120, and the color wheel 150.
  • the first guiding device 130 is configured to guide the excitation light emitted by the first light source 110 to the conversion region 152, and guide the light emitted from the conversion region 152 and the second light emitted from the second light source 120 to irradiate the filter unit 155.
  • the first guiding device 130 includes a first light splitting and combining element 131, a second light splitting and combining element 132, and collection lens groups 133 and 134 disposed adjacent to the color wheel 150.
  • the collection lens group 133 is disposed adjacent to the conversion area 152 of the color wheel 150, and the collection lens group 134 is disposed adjacent to the filter unit 155 of the color wheel 150.
  • the first light splitting and combining element 131 is disposed between the first light source 110 and the collection lens group 133, and is used to guide the excitation light emitted by the first light source 110 to the conversion area 152.
  • the second light splitting and combining element 132 is provided in the second light source.
  • the collection lens group 134 is used to guide the second light emitted by the second light source 120 to the filter unit 155, and the light emitted from the conversion area 152 passes through the first light splitting and light combining element 131 and the second light splitting and light combining element in this order.
  • the guide of 132 is incident on the filter unit 155.
  • the first light splitting and combining element 131 is an area-coated spectroscopic filter.
  • An anti-reflection coating is provided in the coating area for transmitting excitation light.
  • a reflection film is provided in the area other than the coating area to convert the light.
  • the light emitted from the region 152 is reflected to the second light splitting and light combining element 132.
  • the second light splitting and combining element 132 is an area-coated spectroscopic filter.
  • An anti-reflection coating is provided in the coating area to transmit the second light to the filter unit 155.
  • a reflection film is provided in the area outside the coating area to transmit light from The light from the first light splitting and combining element 131 is reflected to the filter unit 155.
  • the collection lens groups 133 and 134 are used to converge the light incident on the color wheel 150 and to collimate the light emitted from the conversion region 152.
  • the color wheel 150 is a reflective color wheel. It can be understood that the color wheel 150 can also be a transmissive color wheel.
  • the filter unit 155 is disposed on the surface of the substrate 151 adjacent to the driving unit 159. Accordingly, The first light source 110 is disposed adjacent to the second light source 120, and the first guiding device 130 is omitted or necessary guiding elements are introduced.
  • the light source system 100 further includes a light homogenizing device 170 disposed downstream of the color wheel 150.
  • the light emitted by the filtering unit 155 is emitted from the light source system 100 after the light is uniformized by the light homogenizing device 170. Improve the uniformity of the color and brightness of the outgoing light.
  • the light homogenizing device 170 may be an optical integrator rod or a fly-eye lens.
  • the first light emitted by the light source system 100 is the light emitted by the filter unit 155 and includes three primary color components.
  • the three primary color light includes the first primary color light, the second primary color light, and the third primary color light.
  • the first primary color light is red fluorescence
  • the second primary color light is green fluorescence
  • the third primary color light is scattered blue laser light.
  • the third primary color light is blue fluorescence.
  • the primary color light is used to synthesize the white light on which the image light is based.
  • the second light emitted by the second light source 120 includes a fourth primary color light and a fifth primary color light, wherein the fourth primary color light is a red laser light, and the fifth primary color light is a green laser light.
  • the first primary color light and the fourth primary color light are metamerism light, that is, the first primary color light and the fourth primary color light are light with different spectral curves of the same color.
  • the fourth primary color light is a laser light, which is compared with the first primary color light spectrum. Narrow, wide color gamut coverage.
  • the fifth primary color light and the second primary color light are metamerism light, that is, the fifth primary color light and the second primary color light are light with different spectral curves of the same color.
  • the fifth primary color light is a laser, compared with the second primary color.
  • the light spectrum is narrow and covers a wide range of color gamuts.
  • the first primary color light, the second primary color light, and the third primary color light are used to modulate the image in the first color gamut.
  • the fourth primary color light and the fifth primary color light are used to modulate the image in the second color gamut.
  • the second color The gamut range covers the first gamut range and has a portion that exceeds the first gamut range
  • FIG. 3 is a schematic structural diagram of a display device 20 according to a second embodiment of the present invention.
  • the main difference between the display device 20 and the display device 10 is that the light source system 200 uses a second guidance device 240 instead of the first guidance device 130 in the display device 10, and the first light source 210 and the second light source in the display device 20
  • the light emitted from the light source 220 is incident on the conversion area 252 of the color wheel 250 under the guidance of the second guide device 240.
  • the light emitted from the conversion area 252 is incident on the uniform light through the filter unit 255 of the second guide device 240 and the color wheel 250 in sequence.
  • Device 270 is a schematic structural diagram of a display device 20 according to a second embodiment of the present invention.
  • the light source system 200 uses a second guidance device 240 instead of the first guidance device 130 in the display device 10
  • the first light source 210 and the second light source in the display device 20 The light emitted from the light source 220 is incident on the conversion area 252
  • the second guiding device 240 is configured to guide the excitation light emitted from the first light source 210 and the second light emitted from the second light source 220 to the conversion region 252.
  • the scattering material and the wavelength conversion material in the conversion region 252 are used for
  • the second light of Gaussian distribution is converted into Lambertian light and exits.
  • the second guiding device 240 is further configured to guide the first light and the second light emitted from the conversion region 252 to the filter unit 255.
  • the second guiding device 240 includes a third spectral light combining element 245, a fourth spectral light combining element 246, and a fifth spectral light combining element 247.
  • the excitation light emitted by the first light source 210 and the second light emitted by the second light source 220 are sequentially guided by the third spectral light combining element 245 and the fourth spectral light combining element 246 into the conversion area 252; the conversion area 252 is emitted
  • the light rays enter the filter unit 255 after being guided by the fourth light splitting and combining element 246 and the fifth light splitting and combining element 247 in this order.
  • the third light splitting and combining element 245 is a dichroic beam splitter plated with an anti-yellow blue film, and is used to transmit the fourth and fifth primary color light emitted by the second light source 220, and The third primary color light emitted from the first light source 210 is reflected.
  • the fourth spectral light combining element 246 is a spectral filter plated with an antireflection coating. An antireflection coating is plated in the coating area of the fourth spectral light combining element 246 to transmit the first light emitted from the third spectral light filtering element 245.
  • a reflection film is provided in the area other than the anti-reflection film for the three primary color light, the fourth primary color light, and the fifth primary color light to reflect the light emitted from the conversion area 252.
  • the fifth light splitting and combining element 247 is a reflector to reflect the light from the fourth light splitting and combining element 246 to the filter unit 255.
  • the light modulation device 700 may be an LCD (Liquid Crystal Display), an LCOS (Liquid Crystal On Silicon), that is, a liquid crystal with silicon, also called a silicon-based liquid crystal), or a DMD ( Digital Mirror Device, Digital Micromirror Device, etc., preferably, the light modulation device 700 is a monolithic DMD spatial light modulator.
  • the video information input to the display device 10 is original image data on which an image sequence composed of a plurality of frames of images to be displayed is based.
  • the light modulation device 700 is configured to control the light source light from the first primary color light to The five primary color lights composed of the fifth primary color light are modulated and output the image to be displayed in real time, and the modulation period of each frame of the image to be displayed is the display period of the image to be displayed in the frame.
  • the control device 800 is configured to divide the display period of each frame of the image to be displayed into a first period and a second period, and issue a light source control signal according to the original image data of each frame of the image to be displayed, and corresponding to any pixel in the frame of the image to be displayed.
  • the modulation signal includes first modulation data and second modulation data respectively applied to the first period and the second period.
  • the light source system 100 is configured to emit light source light according to a light source control signal.
  • the light source light includes a first light emitted in a first period and a second light emitted in a second period. That is, the control device 800 controls the light source system 100 to emit a first light in the first period. One light and emits the second light in the second period.
  • the first light source 110 emits light in the first period and is turned off in the second period
  • the second light source 120 emits light in the second period and is turned off in the first period.
  • control device 800 divides the first period into a first sub-period, a second sub-period, and a third sub-period for displaying the first primary color light, the second primary color light, and the third primary color light, respectively.
  • the second period is divided into a fourth sub-period, a fifth sub-period for emitting the fourth primary color light and a fifth primary-color light, and a sixth sub-period not used for emitting light, respectively.
  • the light source system 100 emits first to fifth primary color light to the light modulation device 700 during the first to fifth sub-periods respectively, and the light source system 100 does not emit light in the sixth sub-period. .
  • the first light source 110 emits excitation light.
  • the first section R1, the second section G1, and the third section B1 of the transition area 152 are respectively located in the excitation light.
  • the first light beam, the second light beam, and the third light beam are emitted in the first sub-period, the second sub-period, and the third sub-period respectively.
  • the first segment R2 in the filter unit 255 is located on the optical path of the second light source 220, the red light emitter 121 in the second light source 120 emits the fourth primary color light, and the green light emitter 122 is turned off, so that The light source system 100 emits the fourth primary color light in the fourth sub-period.
  • the second segment G2 in the filter unit 255 is located on the optical path of the second light source 220, the green light emitter 122 in the second light source 120 emits the fifth primary color light, and the red light emitter 121 is turned off, so that the light source The system 100 emits the fifth primary color light in the fifth sub-period.
  • the first period and the second period may correspondingly add multiple periods to emit the color wheel 150 respectively. Modulation of different primary colors of light.
  • the light modulating device 700 is configured to modulate the five primary colors of the light source light corresponding to the first to fifth sub-periods under the control of the modulation signal. In the sixth sub-period, the light modulating device 700 does not perform light modulation. .
  • the original image data of each pixel of the image to be displayed is in the RGB encoding format, but it can be understood that in the modified embodiment, the original image data of each pixel of the image to be displayed is not limited to the RGB encoding. Format, such as YUV encoding format.
  • the original image data of each pixel of the image to be displayed in each frame includes three primary color original image data, such as red original image data r s , green original image data g s, and blue original image data b s .
  • r s , g s , and b s may be characterized by grayscale values.
  • the three primary color original image data of one pixel r s , g s , and b s may be grayscale values of 100 and 120, respectively. , 150.
  • the original image data based on the three primary colors of each pixel of the image to be displayed in each frame includes the color gamut range to which it belongs, and the color gamut range information to which the original image data of each pixel in the image to be displayed belongs is known or Can be learned.
  • the original image data of each pixel of the image to be displayed in the frame may further include color gamut range information to which it belongs, and then the control device 800 receives any After the original image data of each pixel of the image to be displayed is framed, the color gamut range to which the original image data of each pixel of the image to be displayed belongs belongs according to the color gamut range information.
  • the original image data of each pixel of the image to be displayed in the frame may be image data within the range of the second color gamut.
  • the original image data of one pixel in the image to be displayed in the frame belongs to the color coordinates (x r , y r , Y r ) of the three primary color lights r 0 , g 0 , and b 0 in the xyY coordinate system, (x g , y g , Y g ), (x b , y g , Y g ) can be expressed by the following formula 1:
  • the xyY coordinate system can be defined by the CIE 1931 standard.
  • CIE 1931 defines a three-dimensional vector as an absolute color that can be distinguished by the human eye and the brightness of the color, which does not change with the transformation of the color gamut.
  • the color gamut range information of the original image data of each pixel of the image to be displayed in the frame is known or can be obtained, that is, the color gamut range of the original image data of one pixel in the image to be displayed in the frame belongs to the xyY coordinate.
  • the color coordinates (x r , y r , Y r ), (x g , y g , Y g ), (x b , y b , Y b ) of the three primary color lights r 0 , g 0 , and b 0 are Know or can learn.
  • the color conversion matrix C of the color gamut to which the image to be displayed corresponds to the color gamut information corresponding to the original image data, which is to calculate the corresponding tristimulus value X based on the original image data of the pixel and the color gamut range information to which it belongs.
  • Y, Z required conversion matrix which conforms to the following formula 3:
  • the color conversion matrix C is the color coordinates (x r , y r , Y) of the three primary color lights r 0 , g 0 , and b 0 in the color gamut range of the pixel's three primary color original image data in the xyY coordinate. r ), (x g , y g , Y g ), (x b , y b , Y b ).
  • the color gamut range information on which the original image data of the frame to be displayed is based may include a color conversion matrix C, that is, the original image of the image to be displayed in the frame is in addition to the three primary color original image data
  • the data may store the color conversion matrix C as the color gamut range information on which the original image data of the frame to be displayed is based, but in a modified embodiment, the color gamut range on which the original image data of the frame to be displayed is based
  • the information can also be the color coordinates (x r , y r , Y r ), (x g , y g , Y g ), (x b , y b , Y b ) of the three primary color lights r 0 , g 0 , and b 0 .
  • the information or specific characters or codes representing the color gamut range information is not limited to the above.
  • a color conversion matrix C 'based on the first to fifth primary color lights and a color conversion matrix C of the display device 10 are stored, wherein The color conversion matrix C 'is related to the coordinate values of the first to fifth primary color lights in the xyY coordinate system.
  • the color conversion matrix C "of the display device 10 is related to the default color gamut range of the image emitted by the display device 10, which is related to the light source.
  • the color gamut range of the light emitted by the system 100 is adapted.
  • the color conversion matrix C ′ and the color conversion matrix C ′′ may be the same or may be different.
  • the color coordinates of the five primary colors of light r 0 ′, g 0 ′, b 0 ′, rl 0 ′, gl 0 ′ provided to the light modulation device 700 by the light source system 100 are (x r ′, y r ′, Y r ′), respectively. , (X g ', y g ', Y g '), (x b ', y g ', Y g '), (x rl ', y rl ', Y rl '), (x gl ', y gl ', Y gl ').
  • the color gamut range to which the image modulated by the corrected image data belongs is also known, that is, what the primary color light emitted by the light source system 100 can Displayed color gamut range.
  • Primary color light r 0 ', g 0 ', b 0 ', rl 0 ', gl 0 'color coordinates (x r ', y r ', Y r '), (x g ', y g ', Y g ' ), (X b ', y g ', Y g '), (x rl ', y rl ', Y rl '), (x gl ', y gl ', Y gl ') can be emitted by the measurement light source system 100 The color gamut range of the primary color light is obtained.
  • the display device 10 stores a color gamut conversion matrix U ′ corresponding to the five primary color light color gamut ranges.
  • the control device 800 converts the received three primary color original image data into corrected image data based on the first to fifth primary color light using the color gamut conversion matrix U ′.
  • the color gamut conversion matrix U ′ of the display device 10 is also fixed.
  • the color gamut conversion matrix U ′ may be stored in advance during the manufacturing process of the display device 10 so that the display The device 10 may use the color gamut conversion matrix U ′ to generate corrected image data during normal operation.
  • the color coordinates (x r ′, y r ′, Y r ′), (x g ′) of the five primary colors of the light source system 100 r 0 ′, g 0 ′, b 0 ′, rl 0 ′, gl 0 ′ , y g ', Y g '), (x b ', y g ', Y g '), (x rl ', y rl ', Y rl '), (x gl ', y gl ', Y gl ' ) Can be expressed by the following formula 4:
  • the tristimulus values X, Y, and Z of the pixel are calculated according to the display device 10 using the corrected image data based on the first to fifth primary color light, as shown in Formula 5:
  • r ', g', b ', rl', gl ' are the first to fifth primary color data corresponding to each primary color light included in the corrected image data.
  • r', g ', b', rl 'and gl' are the grayscale values of the first to fifth primary color light corresponding to the color gamut range corresponding to the corrected image data.
  • the color conversion matrix C ′ based on the first to fifth primary color light is a color conversion matrix required to calculate the corresponding tristimulus values X, Y, and Z according to the corrected image data of any one pixel, which conforms to the following formula 6:
  • the color conversion matrix C ′ is determined by the color gamut range of the image formed by the five primary color lights emitted by the light source system 100, that is, determined by the color coordinates of the five primary color lights emitted by the light source system 100.
  • the light modulation device 700 calculates an adjustment signal according to the corrected image data r', g ', b', rl ', gl' and applies it to the first modulation data of the first period and the second period. Second modulation data.
  • the light modulation device 700 can accurately generate image light by modulating the light source light emitted by the light source system 100 according to the first modulation data and the second modulation data. It can be known from this that the color gamut conversion matrix U ′ stored in the control device 800 and converting the received original image data of any one pixel into the corrected image data can conform to Formula 8:
  • the control device 800 is based on the original image data based on the three primary colors of each pixel in the image to be displayed, the color conversion matrix C of the color gamut to which the image to be displayed belongs, and the light from the first to fifth primary colors.
  • the color conversion matrix C ′ can be calculated to obtain the corrected image data of each pixel in the image to be displayed.
  • the control device 800 can calculate and obtain the first to fifth primary color data r ', g of the corrected image data according to the color gamut conversion matrix U'. ', B', rl ', gl'.
  • Equation 7 the three primary color original image data r s , g s , b s of any pixel in the frame to be displayed is known, and the corresponding corrected image data r ', g', b ', rl', gl are solved.
  • two modulation data are randomly assigned, and then the other three modulation data are obtained.
  • the value range of the five modulation data is between 0 and 1.
  • the two randomly selected values may make the remaining three values solved beyond the value range, so the method of random selection is not good. Solution.
  • the preset conditions are added to solve each primary color data in the corrected image data.
  • the preset condition is that the sum of the squares of the brightness of the fourth primary light and the fifth primary light is the smallest, and solve min (rl ' 2 + gl' 2 ) to obtain the corrected image data r ', g', b ', rl', gl '.
  • the matrices A and B are determined by the color coordinates of the five primary colors of light and the tristimulus values X, Y, and Z of the corresponding pixels.
  • the color coordinates of the five primary colors of light are known or available, and the tristimulus values X, Y and Z can be obtained by formula 2, that is, both matrix A and matrix B can be calculated.
  • t 11 , t 12 , t 13 , t 14 , t 21 , t 22 , t 23 , and t 24 can be calculated according to the matrix A and the matrix B.
  • Equation 12 is substituted into the function f (rl ', gl'), and the condition is satisfied when the function f (rl ', gl') takes the minimum value.
  • the preset condition may be: the minimum sum of the squares of the brightness of the first primary light and the second primary light, or the maximum of the sum of the squares of the brightness of the fourth primary light and the fifth primary light.
  • the preset condition may be that the sum of the squares of the brightness of the first primary color light and the second primary color light is maximum.
  • the control device 800 calculates each pixel in the image to be displayed according to the corrected image data of each pixel in the image to be displayed, the color conversion matrix C "of the display device 10, and the color conversion matrix C 'corresponding to the color gamut range of the corrected image data.
  • the first modulation data and the second modulation data in the first period and the second period.
  • the light source system 100 emits the first light. Since the first light includes emitting the first primary color light, the second primary color light, and the third primary color light in sequence, the light modulation device 700 uses the first modulation data accordingly.
  • the modulation data r odd , g odd , and b odd used for modulating the first, second, and third primary light, respectively, to modulate the first light.
  • the color conversion matrix C ' is determined by the color coordinates of the five primary color lights in the color gamut of the corrected image data in the xyY coordinate system.
  • the light modulation device 700 is configured to use the elements r odd , g odd , and b odd in the first modulation data to modulate the first primary color light, the second primary color light, and the third primary color light.
  • the light source system 100 emits the second light. Since the second light includes the fourth primary color light and the fifth primary color light, the light modulation device 700 uses the elements r even , g even , and b in the second modulation data accordingly. even to modulate the second light.
  • the control device 800 corresponds to the fourth primary color data rl ′, the fifth primary color data gl ′ in the corrected image data of the corresponding pixel, the color conversion matrix C ”of the display device 10, and the color gamut range corresponding to the corrected image data.
  • the color conversion matrix C ' is solved to obtain the second modulation data, which conforms to Equation 17:
  • the third section B2 of the filter unit 155 of the color wheel 150 in the second period does not emit light.
  • at least one of the third primary color light and / or the fourth primary color light and / or the fifth primary color light may be used as the illumination color.
  • the third section B2 of the wheel 150 improves the utilization efficiency of the light source system 100. The following uses the fifth basic color light emitted by the green light emitting body 122 in the second light source 120 to irradiate the third section B2 as an example in the second period.
  • the light source system 100 emits the first to fifth primary color light to the light modulation device 700 in the first to fifth sub-periods respectively, and emits the fifth primary color light in the sixth sub-period.
  • the ratio of the length of the fifth sub-period to the sixth sub-period is m: n, and the measured color coordinates of the fifth primary color light are (x gl , y gl , Y gl )
  • the second segment G2 and The color coordinates of the green laser light emitted from the third section B2 are (x gl , y gl , ) And (x gl , y gl , ).
  • the ratio of the length of the fifth sub-period to the sixth sub-period is the ratio of the angles of the center angles formed by the second section G2 and the third section B2 on the filter unit 155 to the geometric center of the substrate 151, respectively. That is, the ratios of the angles of the center angles formed by the second section G1 and the third section B1 in the conversion region 152 to the geometric center of the substrate 151, respectively.
  • the corrected image data r ', g', b ', rl', gl 'of the corresponding pixel can be calculated according to Formula 7.
  • the first modulation data and the emitted image signal of the display device 10 are the same as in the foregoing embodiment, and conform to Formula 16.
  • the light source system 100 emits the second light. Specifically, in the fourth sub-period, the fifth sub-period, and the sixth sub-period, the light source system 100 emits the fourth primary color light, the fifth primary color light, and the Five primary colors of light.
  • the light modulation device 700 modulates the second light by using the elements r even , g even , and b even in the second modulation data.
  • the control device 800 controls the fourth primary color data rl ′, the fifth primary color data gl ′, the ratio of the length of the fifth sub-period to the sixth sub-period, and the color conversion matrix C of the display device 10 according to the corrected image data.
  • the color conversion matrix C ′ corresponding to the color gamut information of the corrected image data is solved to obtain the second modulation data, which conforms to formula 18:
  • the control device 800 when the light source emits the third primary color light and / or the fourth primary color light and / or the fifth primary color light in the second period, the control device 800 according to the fourth primary color data rl ′ in the corrected image data.
  • the color conversion matrix C ′ corresponding to the data color gamut information is solved to obtain the second modulation data.
  • any A primary color light illuminates the third section B2 of the filter unit 155, thereby increasing the brightness of the emitted image light and improving the light efficiency of the light source system 100.
  • the intensity ratio configuration of the third, fourth, and fifth primary color lights emitted by the first light source 110 and the second light source 120 needs to meet, and the display device 10 can synthesize white light when the input original image data corresponds to white light.
  • the intensity of the fourth and fifth primary colors is always zero when the original image data is input to correspond to white light. Therefore, to maintain the white balance, the display device 10 only needs to ensure the relative examples of the first primary color light, the second primary color light, and the third primary color light.
  • the brightness of the fourth primary color light and the fifth primary color light which are incorporated in the first primary color light, the second primary color light, and the third primary color light, can be determined according to the brightness distribution of the solid red, green and green light in the display content.
  • FIG. 4 is a schematic diagram of the color gamut and color volume expansion of the output image of the display device 10 in the embodiment of the present invention.
  • the xoy plane surface in the figure represents the color gamut range of the image emitted by the display device 10, and the Y axis represents the brightness value corresponding to each color coordinate.
  • the middle solid part in the figure is the first color gamut range, and the peripheral transparent part is the part where the second color gamut range exceeds the first color gamut range.
  • the display brightness of the display device 10 is mainly determined by the first light in the range of the first color gamut, and the brightness of the second light is smaller than that of the first light. Theoretically, the brightness of the fourth primary color light and the fifth primary color light is the third primary color light.
  • the brightness of 5% to 100% is feasible.
  • the fourth and fifth primary colors of light with a brightness of 5% -40% relative to the brightness of the third primary color can meet the requirements of the general display color gamut.
  • the color gamut range of the display device 10 is significantly expanded, which is beneficial to improving the display quality of the display device 10.
  • An embodiment of the present invention further provides a method for controlling a display device, which is applied to the control device 800 of the display device 10 and includes the following steps:
  • the display period of each frame to be displayed is divided into a first period and a second period, and a light source control signal is generated and applied to the first period and the The first modulation data and the second modulation data in the second period.
  • the control device 800 divides the display period of each frame of the image to be displayed into a first period and a second period of equal length. It can be understood that, in order to improve the light output brightness of the display device 10, the length of the first period may be longer than the second period to increase the proportion of the first primary color light and the second primary color light emitted from the light source system 100; , The length of the first period may be set shorter than the second period to increase the proportion of the fourth primary color light and the fifth primary color light emitted from the light source system 100. In an embodiment in which the light source system 100 includes a periodically moving color wheel 150, the color wheel 150 moves an integer number of cycles in the first period and the second period, respectively.
  • the first period is divided into displaying the first primary color light, the second primary color light, and the third primary color light according to the original image data of each frame of the image to be displayed.
  • the control device 800 divides the first period into first sub-period, second sub-period, and In the three sub-periods, the control device 800 is further configured to divide the second period into a fourth sub-period for modulating the fourth primary color light, a fifth sub-period for modulating the fifth primary color light, and a sixth sub-period not for emitting light. Sub-period.
  • the second period is divided into a fourth sub-period, a first sub-period, and a third sub-period for displaying the fourth primary color light and the fifth primary color light, respectively, according to the original image data of each frame of the image to be displayed.
  • Five sub-periods and a sixth sub-period for displaying the third primary color light and / or the fourth primary color light and / or the fifth primary color light and / or other primary color light to increase the light output brightness of the display device 10.
  • the color conversion matrix C ′ based on the first to fifth primary color lights
  • the color conversion matrix C and The preset conditions are calculated to obtain corrected image data based on the first to fifth primary color light, wherein the corrected image data includes first to fifth primary color data corresponding to the first to fifth primary color light.
  • the original image data of each pixel of the image to be displayed includes the three primary color original image data of the pixel and the color gamut range to which the three primary color original image data belongs.
  • the original image data of each pixel includes a color conversion matrix C, or the three primary color light color coordinates of the color gamut to which it belongs, and the color conversion can be calculated according to formula 3 using the three primary color coordinates of the color gamut to which each pixel belongs Matrix C.
  • the color gamut range based on the first to fifth primary color lights is determined by the color coordinates of the five primary color lights emitted by the light source system 100 in the xyY coordinate system.
  • the color coordinates of the primary color light emitted by the light source system 100 can be measured.
  • a color conversion matrix C ′ corresponding to the tristimulus value of the corresponding pixel can be calculated by using the corrected image data in the range of the corresponding color gamut from the first primary color light to the fifth primary color light.
  • the corrected image data r ', g', b ', rl', and gl 'based on the color gamut range to which the first to fifth primary color light belongs can be calculated from the original image data of any one pixel.
  • the display device 10 For the display device 10 that does not perform light modulation in the sixth sub-period, according to the calculated corrected image data r ', g', b ', rl', and gl ', a color corresponding to the color gamut range of the corrected image data
  • the conversion matrix C ′ and the color conversion matrix C ”of the display device 10 can calculate the first modulation data and the second modulation data applied to the light modulation device 700 in the first period and the second period by using formulas 16 and 17, respectively.
  • the corrected image data r ', g', b ', rl', and gl ' the corrected image data r ', g', b ', rl', and gl '
  • the color conversion matrix C ′ corresponding to the color gamut of the corrected image data, the color conversion matrix C ”of the display device 10, the time length of the third sub-period and / or the fourth sub-period and / or the fifth sub-period and the sixth sub-period account for
  • the first modulation data and the second modulation data of the display device 10 in the first period and the second period are calculated, as shown in formulas 16 and 18.
  • the preset condition includes: a constraint condition that the minimum or maximum sum of the squares of the brightness of the fourth primary color light and the fifth primary color light is the minimum or the maximum constraint condition that is based on the sum of the squares of the brightness of the first primary color light and the second primary color light.
  • S2 According to the light source control signal, control the light source system 100 to emit the first light including the three primary color components in the first period; and control the light source system 100 to emit the second light including the laser in the second period.
  • step S2 is specifically: controlling the light source system 100 to emit the first light including the first primary color light, the second primary color light, and the third primary color light during the first period according to the light source control signal; and controlling the light source system 100 at The second period emits laser light including the fourth primary color light and the fifth primary color light.
  • controlling the light source system to respectively emit the first to fifth primary color light from the first to fifth sub-periods, and control the The light source system does not emit light during the sixth sub-period.
  • the control device 800 is configured to emit a light source control signal, and the light source system 100 emits a first light according to the light source control signal.
  • the light source system 100 includes a first light source 110, a second light source 120, and a color wheel 150.
  • the first light is generated by exciting the color wheel 150 with the excitation light emitted from the first light source 110.
  • the first light includes a first primary color light, a second primary color light, and a third primary color light.
  • the excitation light emitted by the first light source 110 is a blue laser light
  • the first primary color light is red fluorescence
  • the second primary color light is green fluorescence
  • the third primary color light is a scattered blue laser light.
  • the color gamut range of the image is smaller in the first color gamut range using fluorescence modulation.
  • the excitation light may be short-wave light of other colors
  • the third primary color light may be blue fluorescence.
  • the first light may further include yellow fluorescence and blue laser light after scattering.
  • the second light includes a fourth primary color light and a fifth primary color light, wherein the fourth primary color light is a red laser light emitted by the red light emitting body 121 in the second light source 120, and the fifth primary color light is generated by the first The green laser light emitted from the green light emitting body 122 in the two light sources 120.
  • the laser light included in the second light and at least part of the primary color light in the first light are metamerism light.
  • the fourth primary color light and the first primary color light are metamerism light
  • the fifth primary color light and the second primary color light are metamerism light.
  • the fourth primary color light and the fifth primary color light are both lasers, and the emitted light has high color purity.
  • the second color gamut range of the image light modulated by the laser is wider than the first color gamut range, that is, the second color gamut.
  • the range covers the first color gamut range and has a portion that exceeds the first color gamut range.
  • the control device 800 controls each primary color light to be emitted in a time sequence.
  • the light source system 100 is configured to emit the first to fifth primary color lights corresponding to the first to fifth sub-periods according to the light source control signal sent from the control device 800, and not to emit light during the sixth sub-period.
  • controlling the light source system to respectively emit the first to fifth primary color lights during the first to fifth sub-periods, And controlling the light source system to emit the third primary color light and / or the fourth primary color light and / or the fifth primary color light and / or other primary color light in the sixth sub-period to improve the display device 10 The brightness of the light.
  • S3 Modulate the first light and the second light respectively according to the first modulation data and the second modulation data, and generate a first image light and a second image light corresponding to an image to be displayed.
  • the light modulation device 700 is configured to time-modulate light emitted from the light source system 100 according to the first modulation data and the second modulation data in the modulation signal.
  • the control device 800 of the display device 10 may include a DDP (Data Processing Processor, DDP), a Central Processing Unit (CPU), or other general-purpose processors, digital signal processors (Digital Signal Processor, (DSP), application specific integrated circuit (ASIC), ready-made programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor.
  • the control device 800 is a control center of the display device 10, and uses various interfaces and lines to connect the light source system 100 and light modulation of the display device 10.
  • the device 700 sends light source control signals and modulation signals for controlling the light source system 100 and the light modulation device 700, respectively.
  • the display device 10 may further include a computer-readable storage device.
  • the storage device may be used to store programs and / or modules of the display device 10, the control device 800 may run or execute the computer programs and / or modules stored in the storage device, and call the storage device.
  • the data and formulas in the storage device realize the steps of the control method of the display device and the corresponding functions of the display device.
  • the computer-readable storage device may mainly include a storage program area and a storage data area, where the storage program area may store an operating system, an application program required for at least one function, and the like; the storage data area may store data created according to the use of the display device 10 Data and formulas.
  • the storage device may include a high-speed random access storage device, and may also include a non-volatile storage device, such as a hard disk, a memory, a plug-in hard disk, a Smart Memory Card (SMC), a Secure Digital (Secure Digital, SD card, Flash card, at least one disk storage device, flash memory device, or other volatile solid-state storage device.
  • a non-volatile storage device such as a hard disk, a memory, a plug-in hard disk, a Smart Memory Card (SMC), a Secure Digital (Secure Digital, SD card, Flash card, at least one disk storage device, flash memory device, or other volatile solid-state storage device.
  • the embodiment of the present invention provides a display device 10, a display device control method, and a computer-readable storage device.
  • the display device 10 divides a display period of a frame of an image to be displayed into a first period and a second period, and controls the light source system 100 to The first light is emitted in the first period, and the second light is emitted in the second period.
  • the light modulation device 700 under the control of the control device 800, separately modulates the first light and the second light, using the temporary effect of the human eye.
  • the first image light emitted in the first period and the second image light emitted in the second period are superimposed.
  • the laser light in the second light and at least part of the first light are metamer light
  • the first image light and the second image light The color gamut range of the image light is different, which is beneficial to extending the color gamut range of the image emitted by the display device 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示设备、显示设备的控制方法及计算机可读存储介质,显示设备(10)包括:控制装置(800),用于将每帧待显示图像的显示时段分为第一时段及第二时段,并根据每帧待显示图像中的原始图像数据发出光源控制信号及对应待显示图像中每个像素的调制信号;光源系统(100),用于根据光源控制信号发出光源光,光源光包括:在第一时段出射的包括三基色成分的第一光;及在第二时段出射的包括激光的第二光,第二光包括的激光与第一光中的至少部分基色光为同色异谱光;及光调制装置(700),用于根据调制信号分别对所述第一光及所述第二光进行调制以产生待显示图像的第一图像光与第二图像光。

Description

显示设备、显示设备的控制方法及计算机可读存储介质 技术领域
本发明涉及显示技术领域,尤其涉及一种显示设备、显示设备的控制方法及计算机可读存储介质。
背景技术
本部分旨在为权利要求书中陈述的本发明的具体实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
一般地,显示设备的激光荧光光源中,采用蓝色激光光源既作为短波长的激发光源激发色轮上的波长转换材料以产生红绿基色光,蓝色激光光源本身又作为蓝色的基色光。由于光源中设置激光器的散热成本较高,其出射的激光散斑现象明显,另外光源出射的荧光覆盖色域范围相对较小,进而为利用低成本扩展显示设备的色域范围,将光源系统出射的激光荧光和RGB激光相结合,这种方式能够有效的发挥两者的优势并弥补各自的不足。比如,通过在激光荧光光源中加入少量的红和绿激光,能够有效拓展显示设备的色域范围。并且由于荧光的加入,能够大大的减弱纯激光的散斑效应,虽然不能完全消除散斑,但是荧光的加入使得散斑的对比度大大的降低而不被人眼所察觉。另外,由于不需要大功率的红绿激光,因而相比RGB激光光源不需要复杂的散热系统,因而也大大减低了系统的成本。
然而,采用空间分开的方法对光源出射的激光与荧光进行分开调制,需要引入额外的空间光调制器,从而提高了显示设备的成本,只适用于高端的投影设备。
发明内容
为解决现有技术中显示设备扩展色域导致提高系统成本的技术问题,本发明提供一种低成本实现扩展色域的显示设备,本发明还提供 一种显示设备的控制方法及计算机可读存储介质。
一种显示设备,包括:
控制装置,用于将每帧待显示图像的显示时段分为第一时段及第二时段,并根据每帧待显示图像中的原始图像数据发出光源控制信号及对应待显示图像中每个像素的调制信号;
光源系统,用于根据所述光源控制信号发出光源光,所述光源光包括:
在所述第一时段出射的包括三基色成分的第一光;及
在所述第二时段出射的包括激光的第二光,所述第二光包括的激光与所述第一光中的至少部分基色光为同色异谱光;
光调制装置,用于根据所述调制信号分别对所述第一光及所述第二光进行调制以产生待显示图像的第一图像光与第二图像光。
一种显示设备的控制方法,包括如下步骤:
根据每帧待显示图像的原始图像数据,将每帧待显示图像的显示时段分为第一时段及第二时段,并生成光源控制信号、及分别应用于所述第一时段与所述第二时段的第一调制数据与第二调制数据;
根据所述光源控制信号,控制光源系统在所述第一时段出射包括三基色成分的第一光;并且控制所述光源系统在所述第二时段出射包括激光的第二光,所述第二光包括的激光与所述第一光中的至少部分基色光为同色异谱光;以及
根据所述第一调制数据及所述第二调制数据分别对所述第一光及所述第二光进行调制并对应产生待显示图像的第一图像光与第二图像光。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的显示设备的控制方法的步骤。
本发明实施方式提供一种显示设备、显示设备的控制方法及计算机可读存储介质,所述显示设备通过将一帧待显示图像的显示时段分为第一时段及第二时段,并控制所述光源系统在第一时段出射所述第一光,并在第二时段出射所述第二光,由于所述第二光中的激光与所述第一光中的至少部分基色光为同色异谱光,因此所述第一光与所述 第二光所属色域范围不同,所述光调制装置在所述控制装置的控制下,分别对第一光及第二光进行调制,利用人眼暂留的效应将第一时段出射的第一图像光与第二时段出射的第二图像光进行叠加,从而有利于扩展所述显示设备出射图像的色域范围。
附图说明
为了更清楚地说明本发明实施方式/方式技术方案,下面将对实施方式/方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式/方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明第一实施方式提供的显示设备的结构示意图。
图2为图1所示的色轮的俯视结构示意图。
图3为本发明第二实施方式提供的显示设备的结构示意图。
图4为本发明实施方式中的显示设备出射图像色域和色彩体积扩展示意图。
主要元件符号说明
显示设备 10、20
光源系统 100、200
第一光源 110、210
第二光源 120、220
红色发光体 121
绿色发光体 122
分光合光元件 125
第一引导装置 130
第一分光合光元件 131
第二分光合光元件 132
收集透镜组 133、134
第二引导装置 240
第三分光合光元件 245
第四分光合光元件 246
第五分光合光元件 247
色轮 150、250
基板 151
转换区 152、252
滤光单元 155、255
第一区段 R1、R2
第二区段 G1、G2
第三区段 B1、B2
驱动单元 159
匀光装置 170、270
光调制装置 700
控制装置 800
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施方式及实施方式中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,所描述的实施方式仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。
请参阅图1,为本发明第一实施方式提供的显示设备10的结构示意图。本发明提供的显示设备10可以为教育投影仪、激光电视、微型投影仪、影院投影仪等设备,本发明实施方式中以投影设备为例进行说明,当然,显示设备10还可以是上述其他设备。
本发明提供一种显示设备10、显示设备10的控制方法及计算机可读存储介质。显示设备10用于将一帧待显示图像的显示时段分为第一时段与第二时段,并在第一时段出射第一色域范围内的第一图像光,在第二时段出射第二色域范围内的第二图像光,利用人眼暂留的特点,连续播放多帧图像时,只要帧率足够大,第一图像光与第二图像光交替显示就不会出现明显的闪烁。其中,第二色域范围覆盖第一色域范围并具有超出第一色域范围的部分,即第二色域范围相对于第一色域范围较宽,比如第一色域范围为DCI-P3,第二色域范围为REC.2020。由于每帧待显示图像是由第一图像光及第二图像光成像叠加形成,因而有利于扩展显示设备10的色域范围。
如图1所示,显示设备10包括光源系统100、光调制装置700及控制装置800。其中,控制装置800用于将每帧待显示图像的显示时段分为第一时段及第二时段,并根据每帧待显示图像的原始图像数据发出光源控制信号及调制信号,光源系统100用于根据光源控制信号出射光源光,光源光包括:在第一时段出射的包括三基色成分的第一光,及在第二时段出射的包括激光的第二光。光调制装置700用于根据调制信号分别对第一光及第二光进行调制并产生待显示图像的第一图像光与第二图像光。由第一图像光所属色域为第一色域,第二图像光所属色域为第二色域,由于第二光中的激光与第一光中的至少部分基色光为同色异谱光,因此第一色域与第二色域的范围不同,并且由于第二光包括激光,一般地,激光能够调制的色域范围较宽,因此基于第二光的第二色域范围能够覆盖第一色域范围,并具有超出第一色域范围的部分。
进一步地,光源系统100包括第一光源110、第二光源120及色轮150。在光源控制信号的作用下,第一光源110用于在第一时段发出激发光,色轮150用于将激发光转换为第一光,第二光源120用于 在第二时段出射第二光。第二光中的激光与第一光中的至少部分基色光为同色异谱光。
具体地,第一光源110为蓝色光源,用于发出蓝光作为激发光。可以理解的是,第一光源110还可以为紫外光、红光、绿光等其他颜色光源,或者第一光源110用于发出蓝光、紫外光、红光、绿光等颜色光中的至少两种光。本发明实施方式中,第一光源110中的发光体为蓝色激光器,第一光源110可以包括一个、两个蓝色激光器或蓝色激光器阵列,具体其激光器的数量可以根据需要灵活选择。在一种实施方式中,第一光源110中的发光体为发光二极管或发光二极管阵列。
第二光源120用于发出至少一种颜色的第二光,所述第二光包括激光。本发明实施方式中,第二光源120包括红色发光体121、绿色发光体122及分光合光元件125。其中,红色发光体121与绿色发光体122均包括激光器或激光器阵列。分光合光元件125用于将红色发光体121发出的红色激光与绿色发光体122发出的绿色激光进行合光后得到自第二光源120出射的第二光。进一步地,分光合光元件125为反红透绿的二向色分光片,用于反射红色激光并透射绿色激光。在一种实施方式中,第二光源120包括红色发光体121或绿色发光体122以出射红色激光或绿色激光作为第二光,并省略分光合光元件125。在一种实施方式中,第二光源120包括红色发光体121、绿色发光体122及蓝色发光体(图未示)以发出三基色激光,相应地,第一光源110可以包括紫外激光器以发出紫外光激发色轮150产生第一光,第一光包括红色荧光、绿色荧光与蓝色荧光。
在一种实施方式中,第一光源110、及/或红色发光体121及/或绿色发光体122中还设置有用于对激光进行匀光的匀光器件,比如光学积分棒或复眼透镜,可以理解的是,第一光源110、红色发光体121及绿色发光体122中的匀光器件不是必须的,特别是在小型化光源系统中,匀光器件是可以省略的。
请结合图1参阅图2,图2为图1所示的色轮150的俯视结构示意图。色轮150表面包括基板151,及设置于基板151上的转换区152及滤光单元155。在本发明一种实施方式中,基板151呈圆形,转换 区152与滤光单元155均呈环形沿基板151表面的径向设置,滤光单元155的内径大于转换区152的外径,即滤光单元155设置于基板151的边缘,转换区152设置设于滤光单元155与基板151几何中心之间。在本发明实施方式中,转换区152与滤光单元155相邻设置。在其他实施方式中,转换区152与滤光单元155的位置可以互换,转换区152与滤光单元155也可以间隔设置。
进一步地,转换区152包括沿色轮150表面周向设置的第一区段R1、第二区段G1及第三区段B1,第一区段R1、第二区段G1及第三区段B1之间可以相邻设置也可以间隔设置。第一区段R1用于将激发光转换为第一基色光,第二区段G1用于将激发光转换为第二基色光,第三区段B1用于对作为第三基色光的激发光进行散射以改变激发光的角度分布。
具体地,第一区段R1中设置有用于将激发光转换为红色荧光的波长转换材料,第二区段G1中设置有用于将激发光转换为绿色荧光的波长转换材料,第三区段B1中设置有散射层。在激发光为紫外光的实施方式中,第三区段B1中设置有将激发光转换为蓝色荧光的波长转换材料。
在一种实施方式中,转换区152设置有第一区段及第二区段,其中,第一区段设置有黄色荧光粉用于将激发光转换为黄色荧光,黄色荧光中具有红色荧光及绿色荧光的成分,第二区段用于对激发光进行散射。
进一步地,滤光单元155包括第一区段R2、第二区段G2及第三区段B2。其中,第一区段R2、第二区段G2及第三区段B2分别设置有红光滤光片、绿光滤光片及蓝光滤光片。第一区段R2、第二区段G2及第三区段B2分别对应第一区段R1、第二区段G1及第三区段B1设置,具体地,滤光单元155中各个区段与与基板151几何中心形成的圆心角,与转换区152中对应颜色区段与基板151几何中心形成的圆心角大小相同,比如,第一区段R1与基板151几何中心形成的圆心角为50°,第一区段R2与基板151几何中心形成的圆心角也为50°。
如图1所示,色轮150还包括设置于基板151底面的驱动单元159,驱动单元159带动基板151周期性运动,使得转换区152中的第一区段R1、第二区段G1及第三区段B1周期性位于激发光的光路上。在激发光的激发下,转换区152时序出射红色荧光、绿色荧光及散射后的激发光,由于转换区152出射的红色荧光与绿色荧光的光谱较宽,色纯度不够高,转换区152各个区段出射的光线还需经过滤光单元155中对应区段的滤光后出射,从而得到自色轮150时序出射的第一基色光、第二基色光及第三基色光。
第一光源110、第二光源120与色轮150之间还设置有第一引导装置130。第一引导装置130用于将第一光源110发出的激发光引导至转换区152,以及引导转换区152出射的光线、以及第二光源120出射的第二光照射至滤光单元155。
具体地,第一引导装置130包括第一分光合光元件131、第二分光合光元件132,以及邻近色轮150设置的收集透镜组133、134。其中,收集透镜组133邻近色轮150的转换区152设置,收集透镜组134邻近色轮150的滤光单元155设置。第一分光合光元件131设置于第一光源110及收集透镜组133之间,用于将第一光源110发出的激发光引导至转换区152,第二分光合光元件132设置于第二光源120及收集透镜组134之间,用于将第二光源120发出的第二光引导至滤光单元155,转换区152出射的光线依次经过第一分光合光元件131、第二分光合光元件132的引导入射至滤光单元155。
在本发明实施方式中,第一分光合光元件131为区域镀膜的分光滤光片,镀膜区域设置有增透膜用于透射激发光,镀膜区域以外的区域设置有反射膜,用于将转换区152出射的光线反射至第二分光合光元件132。第二分光合光元件132为区域镀膜的分光滤光片,镀膜区域设置有增透膜用于将第二光透射至滤光单元155,镀膜区域以外的区域设置有反射膜,用于将来自第一分光合光元件131的光线反射至滤光单元155。
收集透镜组133、134用于将入射至色轮150的光线进行会聚,以及用于对转换区152出射的光线进行准直。
在本实施方式中,色轮150为反射式色轮,可以理解的是,色轮150还可以为透射式色轮,滤光单元155设置于基板151上邻近驱动单元159的表面,相应地,第一光源110与第二光源120邻近设置,同时省略第一引导装置130或引入必要的引导元件。
如图1所示,光源系统100还包括设置于色轮150下游的匀光装置170,经过滤光单元155过滤后出射的光线经过匀光装置170的匀光后自光源系统100出射,有利于提高出射光线的颜色及亮度的均匀性。匀光装置170可以是光学积分棒或复眼透镜。
综上,光源系统100出射的第一光为滤光单元155出射的光线,其包括三基色成分,三基色光包括第一基色光、第二基色光及第三基色光。本发明实施方式中,第一基色光为红色荧光、第二基色光为绿色荧光,第三基色光为散射后的蓝色激光,在变更实施方式中,第三基色光为蓝色荧光,三基色光用于合成图像光所基于的白光。第二光源120出射的第二光包括第四基色光与第五基色光,其中第四基色光为红色激光,第五基色光为绿色激光。
第一基色光与第四基色光为同色异谱光,即第一基色光与第四基色光为颜色相同光谱曲线不同的光线,第四基色光为激光,相较于第一基色光光谱较窄,覆盖的色域范围较广。同样地,第五基色光与第二基色光为同色异谱光,即第五基色光与第二基色光为颜色相同光谱曲线不同的光线,第五基色光为激光,相较于第二基色光光谱较窄,覆盖的色域范围较广。第一基色光、第二基色光及第三基色光用于调制第一色域范围内的图像,第四基色光与第五基色光用于调制第二色域范围内的图像,第二色域范围覆盖第一色域范围并具有超出第一色域范围的部分。
请参阅图3,为本发明第二实施方式提供的显示设备20的结构示意图。本实施方式中,显示设备20与显示设备10的主要区别在于,光源系统200采用第二引导装置240代替显示设备10中的第一引导装置130,显示设备20中的第一光源210及第二光源220出射的光线在第二引导装置240的引导下入射至色轮250的转换区252,转换区252出射的光线依次通过第二引导装置240、色轮250的滤光单元255入 射至匀光装置270。
进一步地,第二引导装置240用于将第一光源210发出的激发光与第二光源220发出的第二光引导至转换区252,转换区252中的散射材料及波长转换材料用于将符合高斯分布的第二光转换为朗伯光出射。第二引导装置240还用于将转换区252出射的第一光及第二光引导至滤光单元255。
具体地,第二引导装置240包括第三分光合光元件245、第四分光合光元件246及第五分光合光元件247。其中,第一光源210发出的激发光及第二光源220发出的第二光依次经过第三分光合光元件245及第四分光合光元件246的引导后入射至转换区252;转换区252出射的光线依次经过第四分光合光元件246及第五分光合光元件247的引导入射至滤光单元255。在本发明实施方式中,第三分光合光元件245为镀设有反黄透蓝膜的二向色分光片,用于透射第二光源220发出的第四基色光与第五基色光,并反射第一光源210出射的第三基色光。第四分光合光元件246为镀设有增透膜的分光滤光片,第四分光合光元件246的镀膜区域中镀设有增透膜,以透射第三分光滤光元件245出射的第三基色光、第四基色光及第五基色光,增透膜以外的区域设置有反射膜以反射转换区252出射的光线。第五分光合光元件247为反射镜以将来自第四分光合光元件246的光线反射至滤光单元255。
需要说明的是,在本发明的精神或基本特征的范围内,适用于第一实施方式中的各具体方案也可以相应的适用于第二实施方式中,为节省篇幅及避免重复起见,在此就不再赘述。
请再次参阅图1,在本发明实施方式中,光调制装置700可以是LCD(Liquid Crystal Display,液晶显示器)、LCOS(Liquid Crystal on Silicon,即液晶附硅,也叫硅基液晶)、DMD(Digital Mirror Device,Digital Micromirror Device,数字微镜元件)等,优选地,光调制装置700为单片式DMD空间光调制器。输入至显示设备10的视频信息为由多帧待显示图像组成的图像序列所依据的原始图像数据,光调制装置700用于在控制装置800的控制下对光源光中的由第一基色光至第 五基色光组成的五种基色光进行调制并实时出射待显示图像,每帧待显示图像的调制时段即为该帧待显示图像的显示时段。
控制装置800用于将每帧待显示图像的显示时段分为第一时段及第二时段,并根据每帧待显示图像的原始图像数据发出光源控制信号及对应该帧待显示图像中任意一像素的调制信号,所述调制信号包括分别应用于第一时段及第二时段的第一调制数据与第二调制数据。
光源系统100用于根据光源控制信号发出光源光,光源光包括在第一时段出射的第一光及在第二时段出射的第二光,即控制装置800控制光源系统100在第一时段出射第一光并在第二时段出射第二光。具体地,在光源控制信号的作用下,第一光源110在第一时段发光,并在第二时段关闭;第二光源120在第二时段发光,并在第一时段关闭。
进一步地,控制装置800将第一时段分为分别用于显示第一基色光、第二基色光及第三基色光的第一子时段、第二子时段及第三子时段,控制装置800将第二时段分为分别用于出射第四基色光及第五基色光的第四子时段、第五子时段,以及不用于出射光线第六子时段。在光源控制信号的控制下,光源系统100在第一子时段至第五子时段分别对应出射第一基色光至第五基色光至光调制装置700,在第六子时段中光源系统100不发光。即在第一时段中,第一光源110发出激发光,以色轮150运动一周期为例,转换区152的第一区段R1、第二区段G1及第三区段B1分别位于激发光的光路上,以在第一子时段、第二子时段及第三子时段分别出射第一基色光、第二基色光及第三基色光。在第四子时段中,滤光单元255中的第一区段R2位于第二光源220的光路上,第二光源120中的红色发光体121发出第四基色光,绿色发光体122关闭,从而光源系统100在第四子时段出射第四基色光。在第五时段中,滤光单元255中的第二区段G2位于第二光源220的光路上,第二光源120中的绿色发光体122发出第五基色光,红色发光体121关闭,从而光源系统100在第五子时段出射第五基色光。在第六时段中,光源系统100中的全部发光体均关闭不发光。可以理解的是,在第一时段及第二时段中,色轮150旋转大于1的整数个周 期的实施方式中,第一时段及第二时段可以对应增加多个时段以分别对色轮150出射的不同基色光进行调制。
光调制装置700用于在调制信号的控制下,对应第一子时段至第五子时段,对光源光中的五基色光分别进行调制;在第六子时段,光调制装置700不进行光线调制。
进一步地,本发明实施方式中,每帧待显示图像的各像素的原始图像数据为RGB编码格式,但是可以理解,在变更实施方式中,待显示图像的各像素的原始图像数据不限于RGB编码格式,如也可以为YUV编码格式等。进一步地,每帧待显示图像的各像素的原始图像数据包括三基色原始图像数据,如红色原始图像数据r s、绿色原始图像数据g s及蓝色原始图像数据b s。在一种实施方式中,r s、g s、b s可以由灰阶值来表征,如其中一个像素的三基色原始图像数据r s、g s、b s可以分别为灰阶值100、120、150。
进一步地,每帧待显示图像的各像素的基于三基色的原始图像数据包括其所属的色域范围,并且每帧待显示图像的各像素的原始图像数据所属的色域范围信息是已知或可以获知的。具体地,在一种实施方式中,除了各像素的三基色图像数据外,该帧待显示图像的各像素的原始图像数据还可以包括其所属的色域范围信息,进而控制装置800接收任意一帧待显示图像的各像素的原始图像数据后,依据其色域范围信息可以获知该帧待显示图像的各像素的原始图像数据所属的色域范围。本实施方式中,该帧待显示图像的各像素的原始图像数据可以为第二色域范围之内的图像数据。
其中,该帧待显示图像中一像素的原始图像数据所属的色域范围在xyY坐标系下的三基色光r 0、g 0、b 0的色坐标(x r,y r,Y r)、(x g,y g,Y g)、(x b,y g,Y g)可以利用以下公式1表示:
Figure PCTCN2019100478-appb-000001
可以理解,xyY坐标系可以以CIE 1931标准定义,CIE 1931以一个三维向量定义了任意人眼可以分辨的绝对颜色和颜色的亮度,其不 随色域的变换而变换。如前,该帧待显示图像的各像素的原始图像数据所属的色域范围信息是已知或可以获知的,即该帧待显示图像中一像素的原始图像数据所属的色域范围在xyY坐标下的三基色光r 0、g 0、b 0的色坐标(x r,y r,Y r)、(x g,y g,Y g)、(x b,y b,Y b)是已知或可以获知的。
进一步地,依据该帧待显示图像中一像素的原始图像数据r s、g s、b s计算的像素的三刺激值X,Y,Z如公式2所示:
Figure PCTCN2019100478-appb-000002
其中,待显示图像所属色域的颜色转换矩阵C与原始图像数据对应的色域信息相对应,其为依据该像素的原始图像数据及其所属的色域范围信息计算对应的三刺激值X,Y,Z所需的转换矩阵,其符合以下公式3:
Figure PCTCN2019100478-appb-000003
由公式3可知,颜色转换矩阵C是该像素的三基色原始图像数据所属的色域范围在xyY坐标下的三基色光r 0、g 0、b 0的色坐标(x r,y r,Y r)、(x g,y g,Y g)、(x b,y b,Y b)决定。具体地,在一种实施方式中,该帧待显示图像的原始图像数据所基于的色域范围信息可以包括颜色转换矩阵C,即除了三基色原始图像数据外,该帧待显示图像的原始图像数据可以存储有颜色转换矩阵C作为该帧待显示图像的原始图像数据所基于的色域范围信息,但是在一种变更实施方式中,该帧待显示图像的原始图像数据所基于的色域范围信息也可以为三基色光r 0、g 0、b 0的色坐标(x r,y r,Y r)、(x g,y g,Y g)、(x b,y b,Y b)信息或者代表色域范围信息的特定字符或编码等,并不限于上述。
进一步地,依据上述公式1、2、3可知,依据该像素的三基色原始图像数据r s、g s、b s及其所属的色域范围信息,即三基色光r 0、g 0、b 0的色坐标(x r,y r,Y r)、(x g,y g,Y g)、(x b,y b,Y b),可以计算获得该像素 的三刺激值X,Y,Z。
对于显示设备10来说,其存储有基于第一基色光至第五基色光的颜色转换矩阵C'及显示设备10的颜色转换矩阵C”,其中,基于第一基色光至第五基色光的颜色转换矩阵C'与第一基色光至第五基色光在xyY坐标系下的坐标值相关。显示设备10的颜色转换矩阵C”与显示设备10出射图像的默认色域范围相关,其与光源系统100出射光的色域范围相适应,颜色转换矩阵C'与颜色转换矩阵C”可以相同,也有可能不同。
光源系统100提供至光调制装置700的五基色光r 0'、g 0'、b 0'、rl 0'、gl 0'的色坐标分别为(x r',y r',Y r')、(x g',y g',Y g')、(x b',y g',Y g')、(x rl',y rl',Y rl')、(x gl',y gl',Y gl')。可以理解,对于显示设备10,其光源系统100发出的基色光固定不变时,利用校正图像数据调制得到的图像所属的色域范围也是已知的,即为光源系统100发出的基色光所能显示的色域范围。基色光r 0'、g 0'、b 0'、rl 0'、gl 0'的色坐标(x r',y r',Y r')、(x g',y g',Y g')、(x b',y g',Y g')、(x rl',y rl',Y rl')、(x gl',y gl',Y gl')可以通过测量光源系统100发出的基色光的色域范围来获得。
显示设备10存储与五种基色光色域范围对应的色域转换矩阵U'。控制装置800将接收到的三基色原始图像数据利用色域转换矩阵U'转换为基于第一基色光至第五基色光的校正图像数据。在光源系统100出射基色光固定不变的情况下,显示设备10色域转换矩阵U'也是固定不变的,如可以在显示设备10的制造过程中预先存储色域转换矩阵U',使得显示设备10在正常工作时可以使用色域转换矩阵U'产生校正图像数据。进一步地,光源系统100的五基色光r 0'、g 0'、b 0'、rl 0'、gl 0'的色坐标(x r',y r',Y r')、(x g',y g',Y g')、(x b',y g',Y g')、(x rl',y rl',Y rl')、(x gl',y gl',Y gl')可以利用以下公式4表示:
Figure PCTCN2019100478-appb-000004
进一步地,依据显示设备10的利用基于第一基色光至第五基色光 的校正图像数据计算像素的三刺激值X,Y,Z如公式5所示:
Figure PCTCN2019100478-appb-000005
其中,r'、g'、b'、rl'、gl'为校正图像数据中包括的对应各基色光的第一基色数据至第五基色数据,具体地,r'、g'、b'、rl'、gl'分别为校正图像数据对应色域范围的第一基色光至第五基色光的灰度值。基于第一基色光至第五基色光的颜色转换矩阵C'为根据任意一个像素的校正图像数据计算对应的三刺激值X,Y,Z所需的颜色转换矩阵,其符合以下公式6:
Figure PCTCN2019100478-appb-000006
由公式6可知,颜色转换矩阵C'是由光源系统100出射五种基色光形成图像的色域范围决定的,即由光源系统100出射的五基色光的色坐标决定。由于无论任意一个像素的原始图像数据对应的色域范围为何,像素的三刺激值X,Y,Z保持不变,因此依据上述公式1-6,任意一个像素的基于三基色的原始图像数据r s、g s、b s与显示设备10的基于第一基色光至第五基色光的校正图像数据r'、g'、b'、rl'、gl'之间的关系满足以下公式7:
Figure PCTCN2019100478-appb-000007
依据上述描述可知,对于一个显示设备,需将光调制装置700接收到的原始图像数据(如三基色原始图像数据r s、g s、b s)转换为校正图像数据r'、g'、b'、rl'、gl',进一步光调制装置700依据校正图像数据r'、g'、b'、rl'、gl'计算得到调整信号应用于第一时段与第二时段的 第一调制数据与第二调制数据。光调制装置700根据第一调制数据与第二调制数据调制光源系统100发出的光源光即可以准确产生图像光。由此可知,控制装置800中存储的将接收到的任意一个像素的原始图像数据转换为校正图像数据的色域转换矩阵U'可以符合公式8:
U'=C' -1C(公式8)。
依据上述公式7-8,控制装置800根据待显示图像中每个像素的基于三基色的原始图像数据、待显示图像所属色域的颜色转换矩阵C,及基于第一基色光至第五基色光的颜色转换矩阵C',即可计算得到待显示图像中每个像素的校正图像数据。原始图像数据r s、g s、b s输入至控制装置800后,控制装置800依据色域转换矩阵U'即可计算获得校正图像数据中的第一基色数据至第五基色数据r'、g'、b'、rl'、gl'。
由于公式7中,已知该帧待显示图像中任意一像素的三基色原始图像数据r s、g s、b s,求解对应的校正图像数据r'、g'、b'、rl'、gl',由于只有三个方程求解五个未知数,有无穷多个解。在一种实施方式中,随机指定其中两个调制数据,再求其他三个调制数据。一般地,五个调制数据的取值范围都在0和1之间,随机选取的两个值可能使得求解到的其余三个值超出取值的范围,所以随机选取的方法并不是很好的解决方法。另一种实施方式中,利用增加预设条件来求解校正图像数据中的各个基色数据。比如,预设条件为:第四基色光与第五基色光的亮度平方和最小,求解min(rl' 2+gl' 2),从而得到基于五基色光的校正图像数据r'、g'、b'、rl'、gl'。将公式5变换为:
Figure PCTCN2019100478-appb-000008
其中,
Figure PCTCN2019100478-appb-000009
Figure PCTCN2019100478-appb-000010
即矩阵A与B均由五基色光的色坐标及对应像素的三刺激值X、Y、Z决定,其中,五基色光的色坐标为已知或可获知,对应像素的三刺激值X、Y、Z可以通过公式2求得,即矩阵A与矩阵B均为可以通过计算得到。
将公式10-11带入公式9,从而得到公式12:
Figure PCTCN2019100478-appb-000011
其中,
Figure PCTCN2019100478-appb-000012
t 11、t 12、t 13、t 14、t 21、t 22、t 23、t 24均为可以根据矩阵A与矩阵B计算得到。
为求解min(rl' 2+gl' 2),定义函数:
Figure PCTCN2019100478-appb-000013
将公式12代入函数f(rl',gl'),在函数f(rl',gl')取得最小值时,满足条件
Figure PCTCN2019100478-appb-000014
从而得到公式14:
Figure PCTCN2019100478-appb-000015
其中,
Figure PCTCN2019100478-appb-000016
Figure PCTCN2019100478-appb-000017
由于矩阵D及d均可由矩阵T中的元素计算得出,从而可以根据公式12及公式14求得r'、g'、b'、rl'及gl'。
可以理解的是,在变更实施方式中,还可以采用添加其他预设条件以求解校正图像数据中的五个基色数据。为扩展显示设备10色域,预设条件可以是:第一基色光与第二基色光亮度平方和最小,或第四基色光与第五基色光亮度平方和最大,为提高显示设备10亮度,预设条件可以是第一基色光与第二基色光亮度平方和最大。
控制装置800根据待显示图像中每个像素的校正图像数据、显示设备10的颜色转换矩阵C”以及与校正图像数据色域范围对应的颜色转换矩阵C',计算得到待显示图像中每个像素在第一时段与第二时段的第一调制数据及第二调制数据。
具体地,在第一时段中,光源系统100出射第一光,由于第一光包括时序出射第一基色光、第二基色光及第三基色光,光调制装置700相应利用第一调制数据中的分别用于调制第一基色光、第二基色光及第三基色光的调制数据r odd、g odd、b odd来调制第一光。颜色转换矩阵C'由校正图像数据的色域范围内的五基色光在xyY坐标系下的色坐标决定。
在第一时段,光调制装置700用于采用第一调制数据中的元素r odd、g odd、b odd来调制第一基色光、第二基色光与第三基色光,控制装置800根据对应像素的校正图像数据中的第一基色数据r'、第二基色数据g'、第三基色数据b'、显示设备的颜色转换矩阵C”,及与校正图像数据色域范围对应的颜色转换矩阵C'求解得到第一调制数据,其符合公式16:
Figure PCTCN2019100478-appb-000018
在第二时段中,光源系统100出射第二光,由于第二光包括时序 出射第四基色光及第五基色光,光调制装置700相应利用第二调制数据中元素r even、g even、b even来调制第二光。
在第二时段,控制装置800根据对应像素的校正图像数据中的第四基色数据rl'、第五基色数据gl'、显示设备10的颜色转换矩阵C”,及与校正图像数据色域范围对应的颜色转换矩阵C',求解得到第二调制数据,其符合公式17:
Figure PCTCN2019100478-appb-000019
在这种实施方式中,第二时段中色轮150的滤光单元155的第三区段B2不发光。在另一种实施方式中,为了提高光源系统100的效率和亮度,在第二时段,可以采用第三基色光和/或第四基色光和/或第五基色光中的至少一种照射色轮150的第三区段B2以提高光源系统100的利用效率。下面以在第二时段采用第二光源120中的绿色发光体122发出的第五基色光照射第三区段B2为例进行说明。
在光源控制信号的控制下,光源系统100在第一子时段至第五子时段分别对应出射第一基色光至第五基色光至光调制装置700,并在第六子时段发出第五基色光,其中第五子时段与第六子时段的时间长度之比为m:n,测量到的第五基色光的色坐标为(x gl,y gl,Y gl),则第二区段G2和第三区段B2出射的绿激光的色坐标分别为(x gl,y gl,
Figure PCTCN2019100478-appb-000020
)和(x gl,y gl,
Figure PCTCN2019100478-appb-000021
)。需要说明的是,第五子时段与第六子时段的时间长度之比即为滤光单元155上第二区段G2与第三区段B2分别与基板151几何中心形成的圆心角角度之比,也即是转换区152中第二区段G1与第三区段B1分别与基板151几何中心形成的圆心角角度之比。第三区段B1及第三区段B2所对应的圆心角越大,在色轮150周期性运动速度不变的情况下,第六子时段时间相对越长。
本实施方式中,可以根据公式7计算出对应像素的校正图像数据r'、g'、b'、rl'、gl'。在第一时段,显示设备10的第一调制数据及出射的图像信号与前述实施方式中相同,符合公式16。
在第二时段中,光源系统100出射第二光,具体地,在第四子时段、第五子时段及第六子时段,光源系统100分别时序出射第四基色光、第五基色光及第五基色光。
光调制装置700相应利用第二调制数据中的元素r even、g even、b even来调制第二光。
在第二时段控制装置800根据校正图像数据中的第四基色数据rl'、第五基色数据gl'、第五子时段与第六子时段的时间长度比例、显示设备10的颜色转换矩阵C”、及与校正图像数据色域信息对应的颜色转换矩阵C'求解得到第二调制数据,符合公式18:
Figure PCTCN2019100478-appb-000022
其中,
Figure PCTCN2019100478-appb-000023
由于根据公式7已求得第五基色数据gl',从而gl 1'、gl 2'也是可以计算得到的。
可以理解,在其他实施方式中,第二时段中光源出射第三基色光和/或第四基色光和/或第五基色光,则控制装置800根据校正图像数据中的第四基色数据rl'、第五基色数据gl'、第三子时段和/或第四子时段和/或第五子时段与第六子时段的时间长度比例、显示设备10的颜色转换矩阵C”、及与校正图像数据色域信息对应的颜色转换矩阵C'求解得到第二调制数据。
由此,根据该帧待显示图像的该像素的校正图像数据r'、g'、b'、rl'、gl',以及第五子时段及第六子时段的时段长度之比,可以利用任意一种基色光照射滤光单元155的第三区段B2,从而提高出射图像光的亮度,提高光源系统100的光效。
另外,第一光源110及第二光源120发出的第三基色光、第四基色光及第五基色光的强度比例配置需要满足,当输入原始图像数据对应白光的情况下显示设备10能够合成白光。在采用第四基色光与第五基色光亮度平方和最小原则的条件下,输入原始图像数据对应白光时第四基色光与第五基色光的强度恒为零。因而显示设备10为保持白平 衡只需要保证第一基色光、第二基色光及第三基色光的相对例即可。即可以通过调整色轮150上转换区152中第一区段R1、第二区段G1及第三区段B1与基板151几何中心形成的角度比例来实现。在第一基色光、第二基色光、第三基色光中掺入的第四基色光与第五基色光的亮度可以根据显示内容中纯色红绿光的亮度分布来确定。
请参阅图4,为本发明实施方式中显示设备10出射图像色域和色彩体积扩展示意图。图中xoy平面表面表示显示设备10出射图像的色域范围,Y轴表示各色坐标对应的亮度值。图中中间实心部分为第一色域范围,外围透明部分为第二色域范围超出第一色域范围的部分。显示设备10的显示亮度主要由第一色域范围内的第一光决定,第二光的亮度相对第一光较小,理论上第四基色光与第五基色光的亮度为第三基色光亮度的5%到100%都是可行的,一般加入相对第三基色光亮度5%-40%的第四基色光与第五基色光即能满足一般显示色域的要求。另外,第一图像光与第二图像光叠加后,显示设备10的色域范围明显得到了扩展,有利于提高显示设备10的显示质量。
本发明实施方式还提供一种显示设备的控制方法,应用于显示设备10的控制装置800中,包括以下步骤:
S1:根据每帧待显示图像的原始图像数据,将每帧待显示图像的显示时段分为第一时段及第二时段,并生成光源控制信号、及分别应用于所述第一时段与所述第二时段的第一调制数据与第二调制数据。
在一种实施方式中,控制装置800将每帧待显示图像的显示时段分为时间等长的第一时段与第二时段。可以理解的是,为提高显示设备10的出光亮度,第一时段的时间长度可以大于第二时段以增加光源系统100中出射第一基色光与第二基色光的占比;若考虑提高出光纯度,则可以设置第一时段的时间长度小于第二时段以增加光源系统100中出射第四基色光与第五基色光的占比。在光源系统100中包括周期性运动色轮150的实施方式中,第一时段与第二时段中色轮150分别运动整数个周期。
在一种实施方式中,根据每帧待显示图像的原始图像数据,将所述第一时段分为用于分别显示所述第一基色光、所述第二基色光及所 述第三基色光的第一子时段、第二子时段及第三子时段;根据每帧待显示图像的原始图像数据,将所述第二时段分为用于分别显示所述第四基色光及所述第五基色光的第四子时段、第五子时段,以及不用于出射光线的第六子时段。
控制装置800根据每帧待显示图像的原始图像数据,将第一时段分为用于分别调制第一基色光、第二基色光及第三基色光的第一子时段、第二子时段及第三子时段,控制装置800还用于将第二时段分为用于调制第四基色光的第四子时段、用于调制第五基色光的第五子时段,以及不用于出射光线的第六子时段。
在一种实施方式中,根据每帧待显示图像的原始图像数据,将所述第二时段分为用于分别显示所述第四基色光及所述第五基色光的第四子时段、第五子时段,以及用于显示所述第三基色光和/或第四基色光和/或第五基色光和/或其他基色光的第六子时段,以提高显示设备10的出光亮度。
另一方面,根据待显示图像中每个像素的基于三基色的原始图像数据、基于第一基色光至第五基色光的颜色转换矩阵C'、待显示图像所属色域的颜色转换矩阵C及预设条件,计算得到基于第一基色光至第五基色光的校正图像数据,其中,校正图像数据包括分别对应第一基色光至第五基色光的第一基色数据至第五基色数据。
具体地,待显示图像各像素的原始图像数据包括像素的三基色原始图像数据,以及三基色原始图像数据所属的色域范围。在一种实施方式中,各像素原始图像数据包括颜色转换矩阵C,或包括其所属色域的三基色光色坐标,利用各像素所属色域的三基色坐标根据公式3的可以计算得到颜色转换矩阵C。
对于显示设备10而言,基于第一基色光至第五基色光的色域范围是由光源系统100出射五种基色光在xyY坐标系下的色坐标决定的。并且,在光源系统100出射基色光为固定不变的情况下,光源系统100出射的基色光的色坐标是可以测得的。根据公式6可以计算得到在第一基色光至第五基色光对应色域范围内利用校正图像数据计算对应像素三刺激值的颜色转换矩阵C'。进一步地,根据公式7,可以根据任 意一个像素的原始图像数据计算基于第一基色光至第五基色光所属色域范围的校正图像数据r'、g'、b'、rl'及gl'。
对于在第六子时段不进行光线调制的显示设备10来说,根据计算得到的校正图像数据r'、g'、b'、rl'及gl'、与校正图像数据的色域范围对应的颜色转换矩阵C'及显示设备10的颜色转换矩阵C”,即可通过公式16及17分别计算出第一时段与第二时段中应用于光调制装置700的第一调制数据与第二调制数据。
在第六时段出射第三基色光和/或第四基色光和/或第五基色光的实施方式中,根据计算得到的校正图像数据r'、g'、b'、rl'及gl'、校正图像数据对应色域的颜色转换矩阵C'、显示设备10的颜色转换矩阵C”、第三子时段和/或第四子时段和/或第五子时段与第六子时段的时间长度占比以,计算得到显示设备10在第一时段及第二时段的第一调制数据及第二调制数据,如公式16及18所示。
其中,预设条件包括:根据第四基色光与第五基色光亮度平方和最小或最大的约束条件,或者根据第一基色光与第二基色光的亮度平方和最小或最大的约束条件。
S2:根据光源控制信号,控制光源系统100在第一时段出射包括三基色成分的第一光;并且控制光源系统100在第二时段出射包括激光的第二光。
本实施方式中,步骤S2具体为:根据光源控制信号,控制光源系统100在第一时段出射包括第一基色光、第二基色光及第三基色光的第一光;并且控制光源系统100在第二时段出射包括第四基色光与第五基色光的激光。
进一步地,根据所述光源控制信号,控制所述光源系统在所述第一子时段至所述第五子时段分别对应出射所述第一基色光至所述第五基色光,以及控制所述光源系统在所述第六子时段不发光。
控制装置800用于发出光源控制信号,光源系统100根据光源控制信号发出第一光。光源系统100中包括第一光源110、第二光源120及色轮150。其中,第一光由第一光源110发出的激发光激发色轮150产生,第一光包括第一基色光、第二基色光及第三基色光。本发明实 施方式中,第一光源110发出的激发光为蓝色激光,第一基色光为红色荧光、第二基色光为绿色荧光,第三基色光为散射后的蓝色激光。由于荧光的光谱覆盖范围光,颜色纯度不高,采用荧光调制的第一色域范围内图像色域范围较小。在其他实施方式中,激发光还可以是其他颜色的短波长光线,第三基色光可以为蓝色荧光。另外,第一光还可以包括黄色荧光与散射后的蓝色激光。本发明实施方式中,第二光包括第四基色光与第五基色光,其中,第四基色光是由第二光源120中的红色发光体121发出的红色激光,第五基色光是由第二光源120中的绿色发光体122发出的绿色激光。
第二光包括的激光与第一光中的至少部分基色光为同色异谱光。本实施方式中,第四基色光与第一基色光为同色异谱光,第五基色光与第二基色光为同色异谱光。第四基色光与第五基色光均为激光,出射光线颜色纯度高,采用激光调制而成的图像光所属的第二色域范围相较于第一色域范围较广,即第二色域范围覆盖第一色域范围并具有超出第一色域范围的部分。
控制装置800控制各基色光按时序出射。光源系统100用于根据控制装置800发出的光源控制信号,在第一子时段至第五子时段分别对应出射第一基色光至第五基色光,并在第六子时段不发光。
在一种实施方式中,根据所述光源控制信号,控制所述光源系统在所述第一子时段至所述第五子时段分别对应出射所述第一基色光至所述第五基色光,以及控制所述光源系统在所述第六子时段出射所述第三基色光和/或所述第四基色光和/或所述第五基色光和/或其他基色光,以提高显示设备10的出光亮度。
S3:根据所述第一调制数据及所述第二调制数据分别对所述第一光及所述第二光进行进行调制并对应产生待显示图像的第一图像光与第二图像光。
光调制装置700用于根据调制信号中的第一调制数据与第二调制数据,分时调制光源系统100出射的光线。
可以理解的是,以上步骤标号S1-S3不用于限定步骤之间的顺序,步骤之间还可以加入或删除相应的步骤。
显示设备10的控制装置800可以包括DDP(DMD Data Processor,分布式数据处理器)、中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,控制装置800是显示设备10的控制中心,利用各种接口和线路连接显示设备10的光源系统100及光调制装置700,并发出分别用于控制光源系统100及光调制装置700的光源控制信号及调制信号。
显示设备10还可以包括计算机可读存储装置,存储装置可用于存储显示设备10的程序和/或模块,控制装置800通过运行或执行存储在存储装置内的计算机程序和/或模块,以及调用存储在存储装置内的数据及公式,实现显示设备的控制方法的步骤及显示设备的相应功能。计算机可读存储装置可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等;存储数据区可存储根据显示设备10的使用所创建的数据及公式等。此外,存储装置可以包括高速随机存取存储装置,还可以包括非易失性存储装置,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储装置件、闪存器件、或其他易失性固态存储装置件。
本发明实施方式提供显示设备10、显示设备的控制方法及计算机可读存装置,显示设备10通过将一帧待显示图像的显示时段分为第一时段及第二时段,并控制光源系统100在第一时段出射第一光,并在第二时段出射第二光,光调制装置700在控制装置800的控制下,对第一光及第二光进行分别进行调制,利用人眼暂存的效应将第一时段出射的第一图像光与第二时段出射的第二图像光进行叠加,由于第二光中的激光与至少部分第一光为同色异谱光,从而第一图像光与第二图像光的色域范围不同,从而有利于扩展显示设备10出射图像的色域范围。
对于本领域技术人员而言,显然本发明不限于上述示范性实施方式的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施方式看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。装置权利要求中陈述的多个装置也可以由同一个装置或系统通过软件或者硬件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。
最后应说明的是,以上实施方式仅用以说明本发明的技术方案而非限制,尽管参照较佳实施方式对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。

Claims (12)

  1. 一种显示设备,其特征在于,包括:
    控制装置,用于将每帧待显示图像的显示时段分为第一时段及第二时段,并根据每帧待显示图像中的原始图像数据发出光源控制信号及对应待显示图像中每个像素的调制信号;
    光源系统,用于根据所述光源控制信号发出光源光,所述光源光包括:
    在所述第一时段出射的包括三基色成分的第一光;及
    在所述第二时段出射的包括激光的第二光,所述第二光包括的激光与所述第一光中的至少部分基色光为同色异谱光;及
    光调制装置,用于根据所述调制信号分别对所述第一光及所述第二光进行调制以产生待显示图像的第一图像光与第二图像光。
  2. 如权利要求1所述的显示设备,其特征在于,所述第一光包括第一基色光、第二基色光及第三基色光,所述第二光包括第四基色光与第五基色光,其中,所述第一基色光与所述第四基色光为同色异谱光,所述第二基色光与所述第五基色光为同色异谱光,所述光调制装置根据所述调制信号对所述第一基色光至所述第五基色光进行调制。
  3. 如权利要求2所示的显示设备,其特征在于,
    所述第一时段包括用于分别显示所述第一基色光、所述第二基色光及所述第三基色光的第一子时段、第二子时段及第三子时段;
    所述第二时段包括用于分别显示所述第四基色光与所述第五基色光的第四子时段与第五子时段,所述第二时段还包括不用于出射光线的第六子时段;
    所述光源系统根据所述光源控制信号,在所述第一子时段至所述第五子时段分别对应出射所述第一基色光至所述第五基色光,所述光源系统在所述第六子时段不发光。
  4. 如权利要求3所述的显示设备,其特征在于,
    所述控制装置根据输入的基于三基色的原始图像数据、待显示图像所属色域的颜色转换矩阵、基于所述第一基色光至所述第五基色光 的颜色转换矩阵,以及预设条件,计算得到待显示图像的校正图像数据;
    所述调制信号包括应用于第一时段的第一调制数据及应用于第二时段的第二调制数据;
    所述控制装置还根据所述校正图像数据、所述校正图像数据对应色域的颜色转换矩阵、所述显示设备的颜色转换矩阵,计算得到基于所述校正图像数据的第一调制数据与第二调制数据。
  5. 如权利要求2所述的显示设备,其特征在于,所述第一时段包括用于分别显示所述第一基色光、所述第二基色光及所述第三基色光的第一子时段、第二子时段及第三子时段;
    所述第二时段包括用于分别显示所述第四基色光与所述第五基色光的第四子时段与第五子时段,所述第二时段还包括用于显示所述第三基色光和/或所述第四基色光和/或所述第五基色光的第六子时段;
    所述光源系统根据所述光源控制信号,在所述第一子时段至所述第五子时段分别对应出射所述第一基色光至所述第五基色光,所述光源系统在所述第六子时段出射所述第三基色光和/或所述第四基色光和/或所述第五基色光。
  6. 如权利要求5所述的显示设备,其特征在于,
    所述控制装置根据输入的基于三基色的原始图像数据、待显示图像所属色域的颜色转换矩阵、基于所述第一基色光至所述第五基色光的颜色转换矩阵,以及预设条件,计算得到待显示图像的校正图像数据;
    所述调制信号包括应用于第一时段的第一调制数据及应用于第二时段的第二调制数据;
    所述控制装置还根据所述校正图像数据、所述校正图像数据对应色域的颜色转换矩阵、所述显示设备的颜色转换矩阵,计算得到基于所述校正图像数据的第一调制数据;并根据所述校正图像数据、所述校正图像数据对应色域的颜色转换矩阵、所述显示设备的颜色转换矩阵、以及所述第三子时段和/或第四子时段和/或所述第五子时段与所述第六子时段的时间长度比例,计算得到基于所述校正图像数据的第 二调制数据。
  7. 如权利要求4或6所述的显示设备,其特征在于,所述预设条件包括根据所述第四基色光与所述第五基色光亮度平方和最小或最大的约束条件,或者包括根据所述第一基色光与所述第二基色光的亮度平方和最小或最大的约束条件。
  8. 如权利要求2-6任意一项所述的显示设备,其特征在于,所述光源系统包括第一光源、第二光源及色轮,在所述光源控制信号的作用下,所述第一光源用于在第一时段发出激发光,所述色轮用于将所述激发光转换为所述第一基色光、所述第二基色光、所述第三基色光,所述第二光源用于在所述第二时段出射所述第四基色光、所述第五基色光。
  9. 如权利要求8所示的显示设备,其特征在于,所述第一基色光与所述第二基色光分别为红色荧光与绿色荧光;所述第三基色光为蓝色激光或蓝色荧光;所述第四基色光与所述第五基色光分别为红色激光与绿色激光。
  10. 一种显示设备的控制方法,其特征在于,包括如下步骤:
    将每帧待显示图像的显示时段分为第一时段及第二时段,并根据每帧待显示图像的原始图像数据生成光源控制信号、及分别应用于所述第一时段与所述第二时段的第一调制数据与第二调制数据;
    根据所述光源控制信号,控制光源系统在所述第一时段出射包括三基色成分的第一光;并且控制所述光源系统在所述第二时段出射包括激光的第二光,所述第二光包括的激光与所述第一光中的至少部分基色光为同色异谱光;以及
    根据所述第一调制数据及所述第二调制数据分别对所述第一光及所述第二光进行调制并对应产生待显示图像的第一图像光与第二图像光。
  11. 如权利要求10所述的显示设备的控制方法,其特征在于,所述第一光包括红色荧光、绿色荧光及蓝色激光或蓝色荧光;所述第二光包括红色激光与绿色激光。
  12. 一种计算机可读存储介质,其上存储有计算机程序,其特征在 于,所述计算机程序被处理器执行时实现如权利要求10或11中任意一项所述的显示设备的控制方法的步骤。
PCT/CN2019/100478 2018-09-21 2019-08-14 显示设备、显示设备的控制方法及计算机可读存储介质 WO2020057296A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/278,046 US11404010B2 (en) 2018-09-21 2019-08-14 Display apparatus, method for controlling same, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811109862.2 2018-09-21
CN201811109862.2A CN110941134B (zh) 2018-09-21 2018-09-21 显示设备、显示设备的控制方法及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2020057296A1 true WO2020057296A1 (zh) 2020-03-26

Family

ID=69888239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100478 WO2020057296A1 (zh) 2018-09-21 2019-08-14 显示设备、显示设备的控制方法及计算机可读存储介质

Country Status (3)

Country Link
US (1) US11404010B2 (zh)
CN (1) CN110941134B (zh)
WO (1) WO2020057296A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110874002B (zh) * 2018-08-31 2021-12-21 深圳光峰科技股份有限公司 动态调节显示系统色域的系统、方法及显示系统
CN114967289B (zh) * 2022-06-16 2023-09-26 苏州华星光电技术有限公司 色轮模组、显示面板的亮度矫正装置、方法及存储介质
CN115951552B (zh) * 2023-03-09 2023-06-02 深圳市橙子数字科技有限公司 一种发光装置及光源系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202615106U (zh) * 2012-01-14 2012-12-19 深圳市光峰光电技术有限公司 发光装置及投影系统
CN204595411U (zh) * 2015-04-09 2015-08-26 深圳市光峰光电技术有限公司 发光装置和投影显示设备
CN204595412U (zh) * 2014-12-08 2015-08-26 深圳市光峰光电技术有限公司 发光装置和投影系统
CN106154712A (zh) * 2015-04-09 2016-11-23 深圳市光峰光电技术有限公司 发光装置和投影显示设备
CN108227355A (zh) * 2016-12-15 2018-06-29 深圳市光峰光电技术有限公司 光源系统及投影装置
US20180252993A1 (en) * 2017-03-06 2018-09-06 Seiko Epson Corporation Illuminator and projector

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004070017A (ja) * 2002-08-07 2004-03-04 Mitsubishi Electric Corp 投写装置の照明光学系構造及び投写装置
US9262990B2 (en) * 2011-04-27 2016-02-16 Nec Corporation Projector spatially modulating incident light to display images of different colors
JP6086282B2 (ja) * 2012-07-05 2017-03-01 株式会社リコー 画像投影装置
CN108279548B (zh) * 2017-01-06 2021-02-02 深圳光峰科技股份有限公司 投影系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202615106U (zh) * 2012-01-14 2012-12-19 深圳市光峰光电技术有限公司 发光装置及投影系统
CN204595412U (zh) * 2014-12-08 2015-08-26 深圳市光峰光电技术有限公司 发光装置和投影系统
CN204595411U (zh) * 2015-04-09 2015-08-26 深圳市光峰光电技术有限公司 发光装置和投影显示设备
CN106154712A (zh) * 2015-04-09 2016-11-23 深圳市光峰光电技术有限公司 发光装置和投影显示设备
CN108227355A (zh) * 2016-12-15 2018-06-29 深圳市光峰光电技术有限公司 光源系统及投影装置
US20180252993A1 (en) * 2017-03-06 2018-09-06 Seiko Epson Corporation Illuminator and projector

Also Published As

Publication number Publication date
CN110941134B (zh) 2021-11-12
CN110941134A (zh) 2020-03-31
US20210383766A1 (en) 2021-12-09
US11404010B2 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
US10139713B2 (en) Light source system and projection system
US9667929B2 (en) Display uniformity compensation method, optical modulation apparatus, signal processor, and projection system
JP6367365B2 (ja) 光源システム及び投影表示装置
US8398247B2 (en) Light source device having first light source, second light source, and control section to control drive timing of first light source and second light source such that drive pattern of second light source is inversion of drive pattern of second light source, and projection apparatus and projection method which utilize said light source device
WO2016161934A1 (zh) 一种投影系统及其色域控制方法
US20100328554A1 (en) Light source device, video projector and video projection method
WO2020057296A1 (zh) 显示设备、显示设备的控制方法及计算机可读存储介质
WO2016161935A1 (zh) 一种空间光调制器调制数据的方法及投影系统
JP2007504514A (ja) 複数のカラーセグメントのサブセットを有するカラーホイールが設けられたイメージャをもつ画像投影システム、及び対応する投影機器
WO2019174271A1 (zh) 显示设备
WO2019174274A1 (zh) 显示设备及显示方法
JP2006330177A (ja) 表示装置及びプロジェクタ
JP6057397B2 (ja) プロジェクタ、色補正装置および投写方法
US10965918B2 (en) Projection system and image modulation method
JP2009237240A (ja) 画像調整装置、画像表示システム及び画像調整方法
WO2020015364A1 (zh) 显示设备及投影系统
WO2020052227A1 (zh) 投影装置、白平衡的预设方法及实现方法
JP2018013541A (ja) 投写型映像表示装置
JP2008026355A (ja) 光源制御装置
WO2020135292A1 (zh) 显示设备及其控制方法
WO2020157843A1 (ja) 色度調整方法及びプロジェクタ
WO2019174273A1 (zh) 图像处理装置、显示设备、图像处理与显示装置及方法
WO2022017277A1 (zh) 光机照明系统
WO2020211587A1 (zh) 波长转换装置、光源系统与显示设备
WO2021008333A1 (zh) 一种照明系统的颜色校正方法及照明系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863512

Country of ref document: EP

Kind code of ref document: A1