WO2016161933A1 - 投影显示系统及其控制方法 - Google Patents

投影显示系统及其控制方法 Download PDF

Info

Publication number
WO2016161933A1
WO2016161933A1 PCT/CN2016/078534 CN2016078534W WO2016161933A1 WO 2016161933 A1 WO2016161933 A1 WO 2016161933A1 CN 2016078534 W CN2016078534 W CN 2016078534W WO 2016161933 A1 WO2016161933 A1 WO 2016161933A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary color
light
control signal
laser
image signal
Prior art date
Application number
PCT/CN2016/078534
Other languages
English (en)
French (fr)
Inventor
胡飞
郭祖强
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2016161933A1 publication Critical patent/WO2016161933A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor

Definitions

  • the present invention relates to the field of optical technology, and more particularly to a projection display system and a control method therefor.
  • the prior art provides a light-emitting device that emits light of different colors by laser excitation wavelength conversion device, and the light-emitting device has the advantages of high light efficiency and small optical expansion amount, and thus develops rapidly and becomes Ideal for illumination devices for projection display devices.
  • FIG. 1 is a simplified structural diagram of a monolithic DLP projection display device provided by the prior art.
  • the projection display device includes a light emitting device 11 , a light processing device 12 , a spatial light modulation device 13 , a control device 14 , and a projection lens 15 . . among them:
  • the light emitting device 11 includes a laser light source 101, a collecting lens 102, and a wavelength converting device 103.
  • the laser light source 101 can be an ultraviolet light or a blue laser light source.
  • the collecting lens 102 collects and emits laser light emitted from the laser light source 101 to the wavelength conversion device 103.
  • the wavelength conversion device 103 emits time-series color light under the irradiation of the laser light emitted from the laser light source 101.
  • the light processing device 12 includes a collection lens 104, a homogenizing assembly 105, an optical relay assembly 106, and a TIR prism 107.
  • the light emitted from the light-emitting device 11 is processed by the optical processing device 12 and then incident on the spatial light modulation device 13, such as DMD, etc., and the spatial light is adjusted to the light that is incident on the optical processing device 12 under the control of the control device 14. Modulation is performed and is emitted to the projection lens 15 via the optical processing device 12.
  • the wavelength conversion device 103 emits blue, green, and red light of a sequence under the illumination of the laser light emitted from the laser light source 101.
  • a red light wavelength conversion material or an orange light wavelength conversion material is generally used to generate red light, and the excitation efficiency of the red light wavelength conversion material or the orange light wavelength conversion material is low, and in order to achieve The red light of the required purity also needs to use a filter to perform short-wavelength filtering on the generated red or orange light, thereby further reducing the efficiency of red light, resulting in the red color of the projection display device using the above-described light-emitting device.
  • the prior art provides an improved light-emitting device for a projection display device, which generates a red or orange light wavelength conversion material generated by the red laser and the red light wavelength conversion material by adding a red laser.
  • the orange light combines light to improve the efficiency, brightness, and color coordinates of the red light, while the speckle of the laser is also within acceptable limits.
  • the control method of the projection display device based on the improved light-emitting device is as follows: the orange light generated by the red laser light and the orange light wavelength conversion material is used as two primary color lights, respectively corresponding to two basic color control signals independent of each other, through which the mutually independent
  • the two primary color control signals control the spatial light modulation device to modulate the orange light produced by the red laser and the orange light wavelength conversion material, respectively.
  • the orange light generated by the red laser and the orange light wavelength conversion material is used as the two primary colors, so that the red light required for the projection display device is provided by the red laser, which not only causes insufficient brightness, but also occurs very seriously. Speckle phenomenon.
  • the present invention provides a control method and a projection display device for a projection display device, which solve the problems of low brightness and severe speckle phenomenon existing in controlling the combination of laser and fluorescent light in the prior art.
  • a control method for a projection display system comprising a spatial light modulation device and a light emitting device capable of emitting timing light, the time series light comprising at least one laser of timing and at least one fluorescence of a timing, The at least one first laser of the at least one laser of the timing overlaps with at least one of the at least one of the at least one fluorescence of the timing, the control method comprising:
  • Converting the decoded source image signal into a modulation control signal, and controlling, by the modulation control signal, the spatial light modulation device to modulate the time series light, wherein the decoded source image signal is converted into modulation Controlling the signal and controlling the spatial light modulation device to modulate the time series light by using the modulation control signal specifically includes:
  • the luminance of the first laser and the first fluorescent mixture in which the spectral overlap exists is the same as the luminance of the corresponding primary color image signal in the decoded source image signal, and the first laser and the first The color coordinates of one fluorescence mixture are the same as the color coordinates of the corresponding primary color image signals in the decoded source image signal.
  • the converting at least one primary color image signal corresponding to the first laser and the first fluorescent light having the spectral overlap in the decoded source image signal into the first primary color control signal and the second primary color control signal Specifically include:
  • L C1 ' is the brightness when the first laser and the first fluorescence are overlapped
  • L C11 is the brightness when the first laser is overlapped
  • L C12 is present.
  • the brightness of the first fluorescence when the spectrum overlaps, C1, C11, and C12 are all primary color light marks;
  • the (x, y) is a color coordinate when the first laser light having a spectral overlap and the first fluorescent light are both fully open, and (x1, y1) is when the first laser light having a spectral overlap is fully open.
  • a color coordinate, (x2, y2) is a color coordinate when the first fluorescence of the spectral overlap is fully open;
  • a is a primary color image signal corresponding to the first laser and the first fluorescence in the decoded source image signal, wherein the a1 is the first primary color control signal, and the a2 is the The two primary color control signals, and a, a1, and a2 are integers greater than or equal to 0 and less than or equal to K, and the K is the maximum gray value that the spatial light modulation device can achieve.
  • the a1 and a2 are equal and equal to a, or the a1 and a2 are not equal.
  • the first laser is a red laser
  • the first fluorescent light is an orange light excited by an orange light wavelength conversion material
  • the at least one primary color image signal includes a red primary color image signal
  • the first primary color control The signal is a first red primary color control signal
  • the second primary color control signal is a second red primary color control signal, and/or
  • the first laser is a cyan laser
  • the first fluorescent light is green light excited by the green light wavelength converting material
  • the at least one primary color image signal includes a green primary color image signal
  • the first primary color control signal is A green primary color control signal
  • the second primary color control signal being a second green primary color control signal.
  • the at least one fluorescence of the timing comprises a second fluorescence and a third fluorescence that are time-series and have spectral overlap
  • the converting the decoded source image signal into a modulation control signal further comprises:
  • the brightness of the second fluorescence and the third fluorescence mixed in which the spectral overlap exists is the same as the brightness of the second fluorescent and third fluorescent corresponding primary color image signals in the decoded source image signal that overlap with the presence spectrum .
  • the at least one primary color image signal corresponding to the second fluorescent light and the third fluorescent light having the spectral overlap in the decoded source image signal is converted into a third primary color control signal and a fourth primary color control signal.
  • L C2 ' is the brightness when the second fluorescence and the third fluorescence are overlapped
  • L C21 is the brightness when the second fluorescence is overlapped
  • L C22 is the presence spectrum.
  • the brightness of the overlapped third fluorescent light when fully opened, C2, C21, C22 are all primary color light marks;
  • b is a primary color image signal corresponding to the second fluorescent light and the third fluorescent light in the decoded source image signal, wherein the b1 is the third primary color control signal, and the b2 is the The fourth primary color control signal, and b, b1, b2 are integers greater than or equal to 0 and less than or equal to K, and the K is the maximum gray value that the spatial light modulation device can achieve.
  • the L C21 and L C22 are equal or unequal.
  • the second fluorescent light and the third fluorescent light having the spectral overlap are all green light emitted after the green light wavelength conversion material is excited, and the at least one primary color image signal is a green primary color image signal.
  • a control method for a projection display system comprising a spatial light modulation device and a light emitting device capable of emitting timing light, the time series light comprising at least one laser of timing and at least one fluorescence of a timing, The at least one first laser of the at least one laser of the timing overlaps with at least one of the at least one of the at least one fluorescence of the timing, the control method comprising:
  • the first fluorescence is all used to correct the first laser according to a predetermined target color coordinate of the primary laser light corresponding to the first laser and the first fluorescent light that overlaps the existing spectrum.
  • the converting the decoded source image signal into a modulation control signal, and controlling the spatial light modulation device to modulate the time series light emitted by the light emitting device by using the modulation control signal comprises:
  • the first laser and the first fluorescence are modulated.
  • a projection display system including a spatial light modulation device, further comprising:
  • a light emitting device capable of emitting time-sequential light, the time-series light comprising at least one laser of timing and at least one fluorescence of a timing, wherein at least one of the at least one laser of the timing and at least one of the at least one of the timings a first fluorescence exists in a spectral overlap;
  • control device coupled to the spatial light modulation device, the control device converting the decoded source image signal into a modulation control signal, and controlling the spatial light modulation device to modulate the time series light by the modulation control signal
  • the control device includes:
  • a first control unit configured to convert, into the decoded source image signal, at least one primary color image signal corresponding to the first laser and the first fluorescent light having a spectral overlap, into a first primary color control signal and a second primary color Controlling a signal, and controlling, by the first primary color control signal and the second primary color control signal, the spatial light modulation device to respectively modulate the first laser and the first fluorescent light having a spectral overlap;
  • the luminance of the first laser and the first fluorescent mixture in which the spectral overlap exists is the same as the luminance of the corresponding primary color image signal in the decoded source image signal, and the first laser and the first The color coordinates of one fluorescence mixture are the same as the color coordinates of the corresponding primary color image signals in the decoded source image signal.
  • the first control unit comprises:
  • a first signal conversion module configured to convert at least one of the decoded primary image signals into a first primary color control signal and a second primary color control signal, wherein the first primary color control signal and the second The primary color control signal meets the following requirements:
  • L C1 ' is the brightness when the first laser and the first fluorescence are overlapped
  • L C11 is the brightness when the first laser is overlapped
  • L C12 is present.
  • the brightness of the first fluorescence when the spectrum overlaps, C1, C11, and C12 are all primary color light marks;
  • the (x, y) is a color coordinate when the first laser light having a spectral overlap and the first fluorescent light are both fully open, and (x1, y1) is when the first laser light having a spectral overlap is fully open.
  • a color coordinate, (x2, y2) is a color coordinate when the first fluorescence of the spectral overlap is fully open;
  • a is a primary color image signal corresponding to the first laser and the first fluorescence in the decoded source image signal, wherein the a1 is the first primary color control signal, and the a2 is the The two primary color control signals, and a, a1, and a2 are integers greater than or equal to 0 and less than or equal to K, and the K is the maximum gray value that the spatial light modulation device can achieve.
  • the first laser is a red laser
  • the first fluorescent light is an orange light excited by an orange light wavelength conversion material
  • the at least one primary color image signal includes a red primary color image signal
  • the first primary color control The signal is a first red primary color control signal
  • the second primary color control signal is a second red primary color control signal, and/or
  • the first laser is a cyan laser
  • the first fluorescent light is green light excited by the green light wavelength converting material
  • the at least one primary color image signal includes a green primary color image signal
  • the first primary color control signal is A green primary color control signal
  • the second primary color control signal being a second green primary color control signal.
  • the at least one fluorescence of the timing comprises a second fluorescence and a third fluorescence that are time-series and have spectral overlap
  • the control device further comprising:
  • a second control unit configured to convert at least one primary color image signal corresponding to the second fluorescent light and the third fluorescent light having a spectral overlap in the decoded source image signal into a third primary color control signal and a fourth primary color control And controlling, by the third primary color control signal and the fourth primary color control signal, the spatial light modulation device to respectively modulate the second fluorescence and the third fluorescence having a spectral overlap;
  • the brightness of the primary color image signal in which the second fluorescence and the third fluorescence are mixed after the spectral overlap and the second and third fluorescence corresponding to the presence of the spectral overlap in the decoded source image signal the same.
  • the second control unit comprises:
  • a second signal conversion unit configured to convert at least one primary color image signal corresponding to the second fluorescent light and the third fluorescent light having a spectral overlap in the decoded source image signal into a third primary color control signal and a fourth primary color a control signal, wherein the third primary color control signal and the fourth primary color control signal satisfy the following requirements:
  • L C2 ' is the brightness when the second fluorescence and the third fluorescence are overlapped
  • L C21 is the brightness when the second fluorescence is overlapped
  • L C22 is the presence spectrum.
  • the brightness of the overlapped third fluorescent light when fully opened, C2, C21, C22 are all primary color light marks;
  • b is a primary color image signal corresponding to the second fluorescent light and the third fluorescent light in the decoded source image signal, wherein the b1 is the third primary color control signal, and the b2 is the The fourth primary color control signal, and b, b1, b2 are integers greater than or equal to 0 and less than or equal to K, and the K is the maximum gray value that the spatial light modulation device can achieve.
  • a fourth aspect provides a projection display system, including a spatial light modulation device, further comprising:
  • a light emitting device capable of emitting time-sequential light, the time-series light comprising at least one laser of timing and at least one fluorescence of a timing, wherein at least one of the at least one laser of the timing and at least one of the at least one of the timings a first fluorescence exists in a spectral overlap;
  • control device coupled to the spatial light modulation device, the control device converting the decoded source image signal into a modulation control signal, and controlling, by the modulation control signal, the time-series light emitted by the spatial light modulation device to the illumination device Modulating, and using the first fluorescence to correct the first laser according to a preset target color coordinate of the primary laser light corresponding to the first laser and the first fluorescent light .
  • control device is specifically configured to convert the decoded source image signal into a modulation control signal including a first primary color modulation signal and a second primary color modulation signal, and control the first primary color modulation signal and the second primary color modulation signal.
  • the spatial light modulation device modulates the first laser and the first fluorescence in which the spectral overlap exists, respectively.
  • the present invention converts a primary color image signal into a first primary color control signal and a second primary color control signal in a decoded source image signal, and controls spatial light through the first primary color control signal and the second primary color control signal Adjusting to the first laser and the first fluorescence of the presence of spectral overlaps emitted by the illumination device capable of emitting time series light Modulating, combining the first laser and the first fluorescent timing, and combining the timing of the first laser and the first fluorescent light as a primary color light, thereby improving the luminous efficacy of the first fluorescent light and the first laser in the projection display device, Increase the brightness.
  • FIG. 1 is a structural diagram of a monolithic DLP projection display device provided by the prior art
  • FIG. 2 is a structural block diagram of a projection display device according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of distribution of segmentation regions of the wavelength conversion device of FIG. 2 according to an embodiment of the present invention
  • FIG. 4 is a diagram showing an example of distribution of segmentation regions of the wavelength conversion device of FIG. 2 according to another embodiment of the present invention.
  • FIG. 5 is a diagram showing an example of distribution of segmentation regions of the wavelength conversion device of FIG. 2 according to still another embodiment of the present invention.
  • FIG. 6 is a diagram showing an example of a distribution of a segmentation region of the wavelength conversion device of FIG. 2 according to still another embodiment of the present invention.
  • FIG. 7 is a diagram showing an example of a distribution of segmentation regions of the wavelength conversion device of FIG. 2 according to still another embodiment of the present invention.
  • FIG. 8 is a diagram showing an example of a structure of a projection display device according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of implementing a method for controlling a projection display device according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of implementing a method for controlling a projection display device according to another embodiment of the present invention.
  • the projection display apparatus includes a light-emitting device 21 that can emit time-series light, a light processing device 22, a spatial light modulation device 23, a control device 24, and a projection device 25. among them:
  • the illumination device 21 can emit time-series light including at least one laser and at least one fluorescence of the timing. At least one of the at least one laser of the time series has a spectral overlap with at least one of the at least one of the at least one of the fluorescences.
  • the fluorescent light may be a laser light emitted by the wavelength conversion material, such as red light generated by the red light wavelength conversion material excited by blue light, orange light generated by the orange light wavelength conversion material excited by blue light, and the like.
  • wavelength conversion materials include, but are not limited to, phosphors, quantum dots, and the like.
  • the first laser refers to a laser in which at least one of the at least one laser light in time series overlaps with a spectrum of at least one fluorescence of the time series.
  • the first fluorescence refers to fluorescence in at least one of the at least one fluorescence that overlaps with the at least one laser presence spectrum of the time series. For example, if the light-emitting device 11 emits time-series blue light, green fluorescent light, orange fluorescent light, and red laser light, there is spectral overlap between the orange fluorescent light and the red laser light. Therefore, the orange fluorescent light is the first fluorescent light, and the red laser light is the first laser light.
  • the illuminating device 21 emits time-series blue light, cyan laser light, orange fluorescent light, blue light, green fluorescent light, or red laser light, there is spectral overlap between the orange fluorescent light and the red laser light, and there is also a spectral overlap between the green fluorescent light and the cyan laser light.
  • orange and green fluorescence are the first fluorescence
  • both the red laser and the cyan laser are the first laser.
  • the light-emitting device 21 includes at least two light sources, respectively an excitation light source 211 that emits excitation light and a laser light source 212 that emits laser light, and further includes a wavelength conversion device 213.
  • the excitation light emitted by the excitation light source 211 is different from the spectral range of the laser light emitted by the laser light source 212.
  • the wavelength conversion device 213 is disposed in the transmission path of the excitation light emitted by the excitation light source 211 and the laser light emitted by the laser light source 212, and the wavelength conversion device 213 outputs the timing light under the alternate illumination of the excitation light source 211 and the laser light source 212.
  • the light includes at least one laser and at least one fluorescence of the timing. At least one of the at least one laser of the time series has a spectral overlap with at least one of the at least one of the at least one of the fluorescences.
  • the excitation light source 211 can be a blue light source, such as a blue laser source.
  • the laser light source 212 is associated with a wavelength conversion layer disposed on the wavelength conversion device 213, that is, the laser light source and wavelength conversion device emitted by the laser light source 212
  • the fluorescence emitted by the at least one wavelength conversion layer disposed on the 213 has a spectral overlap, such as when the wavelength conversion device 213 is provided with a red wavelength conversion layer or an orange wavelength conversion layer, then the laser source 212 is a red laser source;
  • the laser source is a green laser source, a cyan laser source or a cyan laser source, such as a laser source having a dominant wavelength in the range of 510 nm to 530 nm;
  • the red light wavelength conversion layer or the orange light wavelength conversion layer and the green light wavelength conversion layer are disposed on the 213, the laser light source 212 is a red light laser light source, and/or a green light
  • the wavelength conversion device 213 includes a plurality of segmented regions disposed along the circumferential direction, wherein the segmented region is provided with a wavelength conversion layer capable of emitting fluorescence under illumination of the excitation light source, and the first scattering layer is disposed on the partial segment region A second scattering layer is disposed on a portion of the segmented region.
  • the first scattering layer may be formed by performing a roughening optical treatment on the surface of the segmentation region of the wavelength conversion device, and the second scattering layer is formed by disposing an optical substance that has a diffusion effect on the surface of the segmentation region of the wavelength conversion device. .
  • a plurality of segmented regions disposed along the circumferential direction are periodically time-series in the excitation light emitted by the excitation light source 211 and the laser light source 212 emitting laser light in the transmission path, such that the wavelength
  • the conversion device 213 emits the time series light under the alternate illumination of the excitation light source 211 and the laser light source 212.
  • the wavelength conversion 213 may be a reflective wavelength conversion device, a transmissive wavelength conversion device, or a wavelength conversion device including a reflective portion and a transmissive portion.
  • 3 to 7 are diagrams showing an example of the distribution of the segmentation regions of the wavelength conversion device 213 of FIG. 2 according to an embodiment of the present invention, but the distribution of the segment regions of the wavelength conversion device 213 is not limited to the above illustration.
  • At least one of the at least one laser and the at least one fluorescence including the timing, and at least one of the at least one of the at least one laser of the timing and the at least one of the at least one of the timings may be emitted for alternate illumination of the excitation light source 211 and the laser light source 212
  • the first fluorescent light has any one of wavelength conversion devices in which the spectrally overlapping light is present.
  • the wavelength conversion device 213 includes four segmented regions disposed in the circumferential direction, respectively being segmented regions provided with a second diffusion layer (blue segment B in FIG. 3), and provided with green light. a segmented region of the wavelength conversion layer (such as the green segment G in FIG. 3), a segmented region having an orange light wavelength conversion layer (such as the orange segment O in FIG. 3), and a segment provided with the first diffusion layer Area (as in the diffuser section in Figure 3).
  • the segmented region B in which the second diffusion layer is provided scatters light incident thereon, such as scattering the excitation light incident thereto.
  • the segmented region G provided with the green light wavelength conversion layer converts the light incident thereto into green light, such as converting the excitation light incident thereto into green light.
  • the segmented region O provided with the orange-light wavelength conversion layer converts the light-converting layer incident thereon to orange light, such as converting the excitation light incident thereto into orange light.
  • a segmented region diffuser provided with a first diffusion layer scatters light incident thereon.
  • the diffuser segment is shown turning on the laser light source 212, turning off the excitation light
  • the source 211 is such that the wavelength conversion device 213 can emit excitation light, green light, orange light, and laser light emitted from the laser light source emitted by the timing excitation source. If the excitation light source is a blue light source and the laser light source is a red light laser source, the wavelength conversion device 213 can emit the BGOR light of the time sequence; if the excitation light source is a blue light source and the laser light source is a cyan light laser source, the wavelength conversion device 213 can The BGOG' light of the outgoing timing, where G' is the cyan light emitted by the laser light source.
  • the wavelength conversion device 213 includes six segmented regions disposed in the circumferential direction, respectively being segmented regions provided with a second diffusion layer (blue segment B in FIG. 4), and provided with green light.
  • a segmented region of the wavelength conversion layer such as the green segment G in FIG. 4
  • a segmented region having an orange light wavelength conversion layer such as the orange segment O in FIG. 4
  • another portion having the second diffusion layer a segment region (such as another blue segment B in FIG. 4), another segment region provided with a green light wavelength conversion layer (such as another green segment G in FIG. 4), and a segment having the first diffusion layer Segment area (such as the diffuser section in Figure 4).
  • the wavelength conversion device 213 turns on the excitation light source 211 and turns off the laser light source 212 under the alternating illumination of the excitation light source 211 and the laser light source 212, as shown in FIG. 4, two B segments, two G segments, and an O segment.
  • the laser light source 212 is turned on in the diffuser segment shown in FIG. 4, and the excitation light source 211 is turned off, so that the wavelength conversion device 213 can emit the excitation light, the green light, the orange light, the excitation light from the excitation light source, and the green light emitted by the excitation light source.
  • Light and laser light from a laser source If the excitation source is a blue light source and the laser source is a red laser source, the wavelength conversion device 213 can emit the timed BGOBGR light.
  • the wavelength conversion device 213 includes five segmented regions disposed in the circumferential direction, respectively being segmented regions provided with a second diffusion layer (blue segment B in FIG. 5), and provided with green light.
  • a segmented region of the wavelength conversion layer such as green segment G in FIG. 5
  • a segmented region having a yellow wavelength conversion layer such as yellow segment Y in FIG. 5
  • a segment having an orange wavelength conversion layer The area (such as the orange segment O in Fig. 5) and the segmented area provided with the first diffusion layer (such as the diffuser segment in Fig. 5).
  • the wavelength conversion device 213 turns on the excitation light source 211, and turns off the laser light source 212, in the B segment, the Y segment, the G segment, and the O segment shown in FIG. 5 under the alternate illumination of the excitation light source 211 and the laser light source 212.
  • the diffuser segment shown in FIG. 5 turns on the laser light source 212, and turns off the excitation light source 211, so that the wavelength conversion device 213 can emit excitation light, yellow light, green light, orange light, and laser light from the laser light source. .
  • the wavelength conversion device 213 can emit BGYOR light in time series; if the excitation light source is a blue light source and the laser light source is a cyan light laser source, the wavelength conversion device 213 can The BGYOG' light of the emission timing, wherein the G' light is a cyan laser emitted by a cyan laser light source.
  • the wavelength conversion device 213 includes eight segmented regions disposed in the circumferential direction, respectively being segmented regions provided with a second diffusion layer (such as blue segment B in FIG. 6), and provided with green light.
  • a segmented region of the wavelength conversion layer such as the green segment G in FIG. 6
  • a segmented region having a yellow wavelength conversion layer such as the yellow segment Y in FIG. 6
  • an orange wavelength conversion a segmented region of the layer (such as the orange segment O in FIG. 6)
  • another segment region provided with the second diffusion layer such as another blue segment B in FIG. 6
  • a green wavelength conversion layer Another segmented region (such as another green segment G in Fig.
  • the wavelength conversion device 213 turns on the excitation light source 211 under the alternating illumination of the excitation light source 211 and the laser light source 212, as shown in FIG. 6, two B segments, two Y segments, two G segments, and an O segment.
  • the laser light source 212 is turned off, the laser light source 212 is turned on in the diffuser segment shown in FIG.
  • the wavelength conversion device 213 can emit the excitation light, the yellow light, the green light, the orange light, and the excitation light from the time series.
  • the wavelength conversion device 213 can emit BGYOR light in time series; if the excitation light source is a blue light source and the laser light source is a cyan light laser source, the wavelength conversion device 213 can The BGYOBGYR light of the exit timing.
  • the wavelength conversion device 213 includes six segmented regions disposed in the circumferential direction, respectively, a segmented region provided with a second diffusion layer (such as blue segment B in FIG. 7), and is provided with green light.
  • a segmentation region of the wavelength conversion layer such as the green segment G in FIG. 7
  • a segment region provided with the first diffusion layer such as the diffuser segment in FIG. 7
  • another segment region provided with the second diffusion layer such as another blue segment B in Fig. 7
  • a segmented region provided with an orange light wavelength conversion layer such as orange segment O in Fig. 7
  • another segmented region provided with a first diffusion layer e.g. Another diffuser segment in Figure 7).
  • the wavelength conversion device 213 turns on the excitation light source 211 and turns off the laser light source 212 under the alternate illumination of the excitation light source 211 and the laser light source 212, as shown in the two B segments, the G segment, and the O segment shown in FIG.
  • the diffuser segment shown in FIG. 7 turns on the laser light source 212, and turns off the excitation light source 211, so that the wavelength conversion device 213 can emit the excitation light emitted by the excitation source of the time series, the laser light emitted by the laser light source, the orange light, the excitation light emitted by the excitation light source, Green light and laser light from a laser source.
  • the wavelength conversion device 213 can emit the timed BG'OBGR light under the alternate illumination of the blue light source, the red laser source, and the cyan laser source.
  • the light processing device 22 is disposed in a transmission path of light emitted from the light-emitting device 21 for processing light emitted from the light-emitting device 21, such as collecting, homogenizing, etc., and injecting the processed light into the spatial light modulation device 23.
  • the spatial light modulation device 23 modulates the light processed by the optical processing device 22 under the control of the control device 24 to obtain modulated light, which is incident on the projection device 25 through the optical processing device 22 and projected into a display image.
  • the spatial light modulation device 23 can be a DMD.
  • the control device 24 receives the decoded source image signal, converts the decoded source image signal into a modulation control signal, and controls the spatial light modulation device 23 based on the modulation control signal.
  • the decoded source image signal It refers to an image signal obtained by decoding an image that needs to be projected and displayed.
  • the decoded source image signal generally includes three primary color image signals, that is, a red (R) primary color image signal, a green (G) primary color image signal, and a blue (B) primary color image signal.
  • R red
  • G green
  • B blue
  • FIG. 8 is a view showing an example of the structure of the projection display device provided by the embodiment of the present invention.
  • the projection display device provided by the present invention is not limited to the one shown in FIG. .
  • the wavelength conversion device is a transmissive color wheel, it being understood that the wavelength conversion device may also be a reflective color wheel, including a transmissive portion and a reflective portion of the color wheel.
  • a person skilled in the art can directly design a reflective color wheel or a transmissive part according to the structural example of the light-emitting device using the transmissive color wheel shown in FIG. 8 in combination with the characteristics of the time-series light emitted by the light-emitting device of the present invention.
  • the projection display device of the light-emitting device of the color wheel of the reflection portion and therefore will not be exemplified herein.
  • FIG. 9 is a flowchart showing an implementation of a method for controlling a projection display device according to a first embodiment of the present invention. The method includes:
  • the primary color image signals included in the decoded source image signal are generally three primary color image signals, which are a red (R) primary color image signal, a green (G) primary color image signal, and a blue (B) primary color image signal, respectively.
  • the decoded source image signal can be converted into a modulation control signal including the first primary color control signal and the second primary color control signal.
  • the laser light that is included in the time series light and overlaps with the fluorescence presence spectrum is referred to as a first laser light
  • the fluorescence included in the time series light that overlaps with the laser light spectrum is referred to as a first fluorescence.
  • a primary color image signal corresponding to the first laser and the first fluorescent light having a spectral overlap in the decoded source image signal refers to a base in the decoded source image signal
  • the primary color corresponding to the color image signal is the same as the primary color corresponding to the first laser and the first fluorescent light having the spectral overlap, such as the red primary color image signal in the decoded source image signal and the light emitted by the light emitting device covering the red light spectral range
  • the green primary color image signal corresponds to light emitted by the light emitting device covering the green light spectral range (such as green light, cyan light, etc.), and the blue primary color image signal and the light emitting device emit the covered blue light.
  • the spectral range of light (such as blue light) corresponds.
  • At least one primary color image signal corresponding to the first laser and the first fluorescent light having the spectral overlap in the decoded source image signal is converted into a first primary color control signal and a second
  • the primary color control signal if the first laser light and the first fluorescent light which are present in the time series light emitted by the light emitting device overlap are red laser light and orange fluorescent light respectively, the red primary color image signal and the light emitting in the decoded source image signal
  • the light emitted by the device covering the red light spectral range corresponds to the red light image signal corresponding to the red laser and the orange fluorescent light having the spectral overlap in the decoded source image signal.
  • the red primary color image signal in the source image signal is converted into a first red primary color control signal and a second red primary color control signal;
  • the green primary color image signal in the decoded source image signal and the green light emitted by the light-emitting device is the green primary color image signal, and in this case, the decoded source image signal Converting the green primary color image signal into a first green primary color control signal and a second green primary color control signal;
  • the red primary color image in the decoded source image signal may be The signal is converted into a first red primary color control signal and a second red primary color control signal, and/or the green primary color image signal is converted into a first green primary color control signal and a second green primary color control signal.
  • the primary image signals of the decoded source image signals when converting at least one of the primary image signals of the decoded source image signals into the first primary color control signal and the second primary color control signal, it is necessary to mix the first laser and the first fluorescent light having the spectral overlap
  • the brightness is the same as the brightness of the primary image signal corresponding to the first laser and the first fluorescence in the decoded source image signal, and the color coordinates and decoding of the first laser and the first fluorescence mixed with the spectral overlap
  • the color coordinates of the primary image signal corresponding to the first laser and the first fluorescent light in the subsequent source image signal are the same.
  • the brightness of the primary color image signal corresponding to the first laser light and the first fluorescent light in the decoded source image signal is converted into the first primary color control signal and the second primary color control in the decoded source image signal.
  • the brightness of the primary color image signal of the signal, the brightness of the primary color image signal may be fully opened according to the gray value of the primary color image signal (eg, the maximum gray value of the primary color image signal) and the first laser and the first fluorescent light having the spectral overlap The brightness of the time is determined.
  • the primary color image signal is a red primary color image signal
  • the gray value is a
  • the first laser and the first fluorescence corresponding to the existing spectral overlap of the primary color image signal are respectively red laser and orange fluorescence, wherein red
  • the brightness when the laser is fully open is L R
  • the brightness when the orange fluorescence is fully open is L O
  • the red laser of the spectral overlap and the brightness L R ' when the orange fluorescence is fully open are L R +L O
  • the brightness of the image signal is Where K is the maximum gray value that the spatial light modulation device can achieve.
  • L C1 ' is the brightness when the first laser and the first fluorescence are overlapped
  • L C11 is the first laser with overlapping spectra Luminance at full opening
  • L C12 is the brightness of the first fluorescence when there is spectral overlap
  • C1, C11, C12 are the primary color light identification, such as C can be expressed as red (R), green (G) and blue ( B) and the like, wherein L C1 'is equal to the sum of the brightness L C11 when the first laser is fully open and the brightness L C12 when the first fluorescence is fully open;
  • (x, y) is the color coordinate when the first laser and the first fluorescence are overlapped, and (x1, y1) is the color coordinate when the first laser is overlapped, (x2, y2) Color coordinates when the first fluorescence of the spectral overlap is fully open;
  • a is a primary color image signal corresponding to the first laser and the first fluorescence in the decoded source image signal, and may be the maximum gray value of the primary color image
  • a1 is the first primary color control signal
  • a2 is The second primary color control signal
  • a, a1, a2 are integers greater than or equal to 0 and less than or equal to K, where K is the maximum gray value that the spatial light modulation device can achieve.
  • a1 and a2 may be set to equal values, and a1 and a2 are both equal to a.
  • the converted source image signal is converted into a modulation control signal, which is actually the first laser in the decoded source image signal overlapping the existing spectrum.
  • the primary color image signal corresponding to the first fluorescence is repeated once in time.
  • a1 and a2 may be set to different values while satisfying the above requirements.
  • the spatial light modulation device since the decoded source image signal is converted into a modulation control signal satisfying the above requirement, when the spatial control device is used to control the spatial light modulation device, the spatial light modulation device is in the same primary color image signal.
  • the first laser and the first fluorescent light having spectral overlap are respectively modulated in the two time-series primary color control signals converted so that the first laser and the first fluorescent light can be mixed in time series as a primary color light. Since the mixed light of the first laser and the first fluorescent timing is mixed as a primary color light, the problem of speckle existing by using the first laser alone as the primary color light is avoided, and the first fluorescent color alone is avoided as the primary color.
  • standard color coordinates such as REC709 or DIC
  • the time-series light emitted by the illuminating device is time-series blue light, green light, orange light and red light, wherein the blue light and the red light are laser light, and the green light and the orange light are respectively stimulated by the corresponding wavelength conversion materials.
  • the three primary color image signals BGR in the decoded source image signal are obtained, and the red light and the orange light in the time series light emitted by the light emitting device overlap, and the primary color image signals corresponding to the red and orange light having the spectral overlap are The red primary color image signal, therefore, the R primary color image signal in the three primary color image signals is converted into the first R primary color control signal R1 and the second R primary color control signal R2, and the remaining primary color image signals are unchanged, so that the decoded source can be
  • the image signal BGR is converted into a modulation control signal BGR1R2, and the spatial light modulation device is controlled by the modulation control signal BGR1R2 to sequentially modulate the blue, green, red, and orange light emitted from the light emitting device.
  • the blue light emitted by the light emitting device is modulated by the modulation control signal B, and the modulation is controlled.
  • the signal G modulates the green light emitted from the light-emitting device, modulates the red light emitted from the light-emitting device by the modulation control signal R1, and modulates the orange light emitted from the light-emitting device by the modulation control signal R2.
  • R1 and R2 satisfy the following requirements:
  • L R ' is the brightness when both the red and orange lights having the spectral overlap are fully open
  • L R is the brightness when the red light is fully open
  • L O is the brightness when the orange light is fully open
  • (x, y) is The color coordinates when the red and orange lights are fully open
  • (x1, y1) is the color coordinate when the red light is fully open
  • (x2, y2) is the color coordinate when the orange light is fully open
  • a is the decoded source image.
  • the red primary color image signal in the signal a1 is the first red primary color control signal
  • a2 is the second red primary color control signal
  • a, a1, a2 are all integers greater than or equal to 0 and less than or equal to K
  • K is spatial light.
  • a1 and a2 may both be a, so that the above requirements are simplified as:
  • the wavelength conversion device of the light-emitting device is as shown in FIG. 7, the time-series light emitted by the light-emitting device is the BG'OBGR of the time series.
  • the three primary color image signals BGR in the decoded source image signal are in the G
  • the primary color image signal is converted into a first G primary color control signal G1 and a second G primary color control signal G2
  • the R primary color image signal is converted into a first R primary color control signal R1 and a second R primary color control signal R2, thereby decoding the source
  • the three primary color image signals BGR in the image signal are converted into modulation control signals BG1G2R1R2, where G1 and G2, R1 and R2 satisfy the above requirements.
  • the DDP intrinsic program for modifying the spatial light modulation device can be modified so that the DDP intrinsic program will be the parsed source. Converting at least one primary color image signal corresponding to the first laser and the first fluorescent light having the spectral overlap into the first primary color control signal and the second primary color control signal in the image signal to obtain a modulation control signal (eg, converting the BGR into a modulation control) Signal BGR1R2), and the DDP intrinsic program controls the spatial light modulation device to sequentially modulate the time-series light emitted by the light source by modulating a control signal (such as BGR1R2), thereby using the first laser and the first fluorescence having spectral overlap as one kind The primary color light is processed.
  • a modulation control signal eg, converting the BGR into a modulation control
  • BGR1R2 modulation control signal
  • the wavelength conversion device is set to a three-stage type, wherein the O segment and the R segment shown in FIG. 3 are taken as For a segment, the luminance and color coordinates of the mixed O segment and the R segment are respectively set to L R ', (x, y), where L R ' is the luminance of the mixed orange and red light, (x, y)
  • the improved DDP intrinsic program can convert the decoded source image signal BGR into the modulation control signal BGR1R2 in the above manner, thereby realizing the orange light and the red light as one.
  • the primary color light is processed such that a four-segment wavelength conversion device is used to obtain an image of the triangular color gamut.
  • converting the decoded source image signal into the modulation control signal further includes:
  • one of the fluorescences in the time-series light emitted by the light-emitting device is referred to as a second fluorescence
  • the other fluorescence is referred to as a third fluorescence.
  • the second fluorescence and the third fluorescence may be fluorescences in which the spectrum partially overlaps, or fluorescence in which the spectra are completely overlapped.
  • the brightness of the second fluorescent light and the third fluorescent light are not equal to each other, and may be completely equal.
  • the second fluorescent light and the third fluorescent light may be light emitted by the wavelength conversion layer respectively disposed on the two different segment regions on the wavelength conversion device, such as the second fluorescent light and the third fluorescent light respectively.
  • the second fluorescent light and the third fluorescent light having overlapping spectra may be green light emitted by the green light wavelength conversion material after excitation, or may be red light emitted by the red light wavelength conversion material after excitation, or Yellow light emitted from the yellow light wavelength conversion material after being stimulated.
  • the primary color image signal corresponding to the second fluorescent light and the third fluorescent light in the decoded source image signal refers to the second fluorescent color corresponding to the primary color corresponding to the primary color image signal in the decoded source image signal.
  • the primary color corresponding to the third fluorescent light is the same, for example, the red primary color image signal in the decoded source image signal corresponds to the light (such as red light, orange light, etc.) that covers the red light spectral range emitted by the light emitting device, and the green primary color image signal and
  • the light emitting device emits light corresponding to the spectral range of the green light (such as green light, cyan light, etc.), and the blue primary color image signal corresponds to light (such as blue light) that is emitted from the light emitting device and covers the blue light spectral range.
  • the decoded source image signal and the existing spectrum The primary color image signals corresponding to the overlapped first green light and the second green light are green primary color image signals; if the time-series light emitted by the light emitting device comprises the first blue light and the blue light wavelength conversion material excited by the blue wavelength conversion material, the laser light emitting material is excited and emitted In the second blue light, the primary color image signal corresponding to the first blue light and the second blue light having the spectral overlap in the decoded source image signal is a blue primary color image signal.
  • the decoded source image signal overlaps with the existing spectrum.
  • the primary color image signals corresponding to the first yellow light and the second yellow light are yellow primary color image signals.
  • a specific method in which the decoded source image signal including the three primary color image signals BGR is converted into a source image signal including the four primary color image signals BGRY belongs to the prior art (see, for example, the patent document published as CN101164096A). Let me repeat.
  • the first green-color image signal in the decoded source image signal overlaps with the existing spectrum.
  • the green fluorescence corresponds to the second green fluorescence, thereby converting the green primary color image signal in the decoded source image signal into a third green primary color control signal and a fourth green primary color control signal, wherein the first green fluorescent light and the second green fluorescent color may be All of the green wavelength conversion materials are excited to emit;
  • the decoded source image signal may be first converted, so that the converted source image signal includes the yellow primary color image signal. Since the yellow primary color image signal in the converted source image signal corresponds to the first yellow fluorescence and the second yellow fluorescence having the spectral overlap, the yellow primary color image signal in the converted source image signal is converted into the third yellow primary color control. a signal and a fourth yellow primary color control signal, wherein the first yellow fluorescent light and the second yellow fluorescent light may both be excited by the yellow light wavelength converting material;
  • the decoded In the source image signal Converting the green primary color image signal into a third green primary color control signal and a fourth green primary color control signal, and/or converting the yellow primary color image signal in the source image signal converted from the decoded source image signal into a third yellow primary color control Signal and fourth yellow primary control signal.
  • the brightness of the second fluorescent light and the third fluorescent mixed with the spectral overlap is the same as the brightness of the corresponding primary color image signal in the decoded source image signal.
  • L C2 ' is the brightness when the second fluorescence and the third fluorescence of the spectral overlap are both fully open
  • L C21 is the brightness of the second fluorescence when the spectrum overlaps
  • L C22 is the third fluorescence of the overlap of the spectrum.
  • the brightness at the time of opening, C2, C21, C22 are the primary color light identification, for example, C2 can be R, G, B, etc., where L C2 ' is equal to the brightness L C21 and the third fluorescence when the second fluorescence is completely open. The sum of the brightness L C22 when fully open;
  • b is a primary color image signal corresponding to the second fluorescence and the third fluorescence in which the spectrum overlaps in the decoded source image signal
  • b1 is a third primary color control signal
  • b2 is a fourth primary color control signal
  • b, b1 And b2 are integers greater than or equal to 0 and less than or equal to K
  • K is the maximum gray value that the spatial light modulation device can achieve.
  • L C21 and L C22 are equal or unequal.
  • the angle of the segmentation region of the wavelength conversion layer on which the second fluorescence can be emitted can be set to be the same as the angle of the segmentation region of the wavelength conversion layer provided with the third fluorescence.
  • L C21 and L C22 are equal.
  • the segmentation region of the green light wavelength conversion layer that can emit the first green light can be disposed on the wavelength conversion device.
  • the angle is the same as the angle of the segmented region provided with the green light wavelength conversion layer that can emit the second green light, so that the luminance L G1 of the first green light and the luminance L G2 of the second green light can be made the same.
  • the control method provided in this embodiment is a further improvement based on the first embodiment or the second embodiment.
  • the time-series light emitted by the light-emitting device further includes the second laser light and the third laser light that are time-series and have spectral overlap
  • converting the decoded source image signal into the modulation control signal further includes:
  • one of the time-series lights emitted by the light-emitting device has a spectral overlap
  • the other laser is referred to as a third laser.
  • the second laser and the third laser may be lasers whose spectra partially overlap, or lasers whose spectra completely overlap.
  • the luminances of the second laser and the third laser are not equal when fully opened, and may be completely equal.
  • the second laser and the third laser in which the spectral overlap exists may be light scattered by the scattering layer disposed on the two different segment regions on the wavelength conversion device, for example, the second laser and the third borrowed light may be separately set.
  • the scattering layer on the two different segmented regions scatters the emitted blue laser or the like.
  • the primary color image signal corresponding to the second laser and the third laser having the spectral overlap in the decoded source image signal refers to the second laser corresponding to the primary color corresponding to the primary image signal in the decoded source image signal
  • the primary color corresponding to the third laser is the same, for example, the red primary color image signal in the decoded source image signal corresponds to the light of the spectral range covering the red light emitted by the light emitting device, and the green primary color image signal and the covered green light spectrum emitted by the light emitting device
  • the range of light corresponds to the blue primary color image signal corresponding to the light emitted by the illumination device covering the blue spectral range.
  • the first of the decoded source image signals overlaps with the existing spectrum.
  • the primary color image signals corresponding to the blue light and the second blue light are blue primary color image signals.
  • the blue primary color image signal in the decoded source image signal overlaps with the existing spectral overlap.
  • the blue light corresponds to the second blue light, and thus the blue primary color image signal in the decoded source image signal is converted into a fifth blue primary color control signal and a fourth six primary color control signal.
  • the luminances of the primary color image signals corresponding to the second laser light and the third laser light having the overlapping of the spectra are the same.
  • the fifth primary color control signal and the sixth primary color control signal satisfy The following requirements:
  • L C3 ' is the brightness when the second laser and the third laser having the spectral overlap are both fully open
  • L C31 is the brightness when the second laser having the spectral overlap is fully open
  • L C32 is the third laser having the overlapping of the spectrum.
  • the brightness of the opening, C3, C31, C32 are the primary color light identification, such as C3 can be R, G, B, etc., where L C3 ' is equal to the brightness of the second laser when there is overlap of the spectrum L C31 and the third laser The sum of the brightness L C32 when fully open;
  • c is a primary color image signal corresponding to the second laser and the third laser having a spectral overlap in the decoded source image signal
  • c1 is a fifth primary color control signal
  • c2 is a sixth primary color control signal
  • c, c1, c2 All are integers greater than or equal to 0 and less than or equal to K
  • K is the maximum gray value that the spatial light modulation device can achieve.
  • L C31 and L C32 are equal or unequal.
  • the angle of the segment region on which the scattering layer capable of emitting the second laser light is disposed on the wavelength conversion device may be the same as the angle of the segment region in which the wavelength conversion layer capable of emitting the third laser light is disposed, thereby Let L C31 and L C32 be equal.
  • the angle of the segmented region of the wavelength conversion device provided with the scattering layer capable of emitting the first blue light may be set to be ejector.
  • the angles of the segmented regions of the second blue light scattering layer are the same, so that the brightness L B1 of the first blue light and the brightness L B2 of the second blue light can be made the same.
  • the time-series light emitted from the light-emitting device is the BGOBGR of the time series
  • the three primary color image signals BGR in the decoded source image signal are acquired, and the three primary color image signals BGR are converted into the modulation control signals B1G1R1B2G2R2.
  • the first R primary color control signal R1 and the second R primary color control signal R2 are required to satisfy the following requirements:
  • L R ' is the brightness when both the red and orange lights having the spectral overlap are fully open
  • L R is the brightness when the red light is fully open
  • L O is the brightness when the orange light is fully open
  • (x, y) is The color coordinates when the red and orange lights are fully open
  • (x1, y1) is the color coordinate when the red light is fully open
  • (x2, y2) is the color coordinate when the orange light is fully open
  • a is the decoded source image.
  • the red primary color image signal in the signal a1 is the first red primary color control signal
  • a2 is the second red primary color control signal
  • a, a1, a2 are all integers greater than or equal to 0 and less than or equal to K
  • K is spatial light.
  • the third G primary color control signal G1 and the fourth G primary color control signal G2 are required to satisfy the following requirements:
  • L G ' is the brightness when both green lights having spectral overlap are fully open
  • L G ' is the brightness when one of the green lights is fully open
  • L G is the brightness when the other green light is fully open
  • b is a green primary color image signal in the decoded source image signal
  • b1 is a third G primary color control signal
  • b2 is a fourth G primary color control signal
  • b, b1, b2 are integers greater than or equal to 0 and less than or equal to K
  • K is the maximum gray value that the spatial light modulation device can achieve.
  • the fifth B primary color control signal B1 and the sixth B primary color control signal B2 are required to meet the following requirements:
  • L B ' is the brightness when both blue lights having spectral overlap are fully open
  • L B ' is the brightness when one of the blue lights is fully open
  • L B is the brightness when the other blue light is fully open
  • c is the decoded
  • c1 is the fifth B primary color control signal
  • c2 is the sixth B primary color control signal
  • c, c1, c2 are integers greater than or equal to 0 and less than or equal to K
  • K is The maximum gray value that can be achieved by a spatial light modulation device.
  • the DDP intrinsic program of the existing six-segment color wheel or eight-segment color wheel can be directly used by modifying the wavelength conversion device to the wavelength conversion device shown in FIG. 4 or 6.
  • the R light and the O light are both made to correspond to the R signal, so that the R light and the O light timing are mixed to obtain the red primary light.
  • FIG. 10 is a flowchart showing an implementation of a method for controlling a projection display device according to another embodiment of the present invention. The method includes:
  • S1001 Acquire each primary color image signal in the decoded source image signal.
  • the primary color image signals included in the decoded source image signal are generally three primary color image signals, which are a red (R) primary color image signal, a green (G) primary color image signal, and a blue (B) primary color image signal, respectively.
  • S1002 Convert the decoded source image signal into a modulation control signal, and control the spatial light modulation device to modulate the timing light by the modulation control signal.
  • the first laser and the first fluorescence are modulated.
  • a specific process for converting the decoded source image signal into a modulation control signal including the first primary color modulation signal and the second primary color modulation signal belongs to the prior art. For details, refer to the patent document published as CN101164096A. An example is as follows:
  • the light-emitting device emits the BGOR light of the time sequence.
  • the decoded source image signal BGR is converted to include the first primary color modulation signal O and the second primary color modulation signal R.
  • a modulation control signal BGOR wherein the first primary color modulation signal O is used to control the spatial light modulation device to modulate the O light in the time series light emitted by the light emitting device, and the second primary color modulation signal R is used to control the spatial light modulation device to the light emitting device The R light in the emitted time-series light is modulated.
  • the modulation control signal BGOR the BGOR of the timing at which the light-emitting device emits is sequentially controlled by the modulation control signal BGOR.
  • the first fluorescence is all used to correct the first laser according to a preset target color coordinate of the primary laser light corresponding to the first laser and the first fluorescent light.
  • An algorithm in which one type of light is used to correct another light may be any color coordinate adjustment (CCA) algorithm provided by the prior art, such as a CCA correction algorithm in the DDP intrinsic program.
  • CCA color coordinate adjustment
  • control method provided by the embodiment of the present invention may be implemented by using the existing DDP intrinsic program and improving the CCA algorithm in the DDP intrinsic program, which is described in detail below.
  • the illustrated wavelength conversion device is an example:
  • the number of color wheel segments in the DDP intrinsic program and the angle of each segment are set according to the four-segment segmentation area actually included in the wavelength conversion device, and the DDP intrinsic program will decode the source.
  • the image signal BGR is converted into a modulation control signal BGRO, and the spatial light modulation device is controlled by the modulation control signal BGRO to sequentially modulate the BGRO light emitted by the light emitting device, thereby obtaining an image of the quadrangular color gamut, and then passing the improved DDP intrinsic program.
  • the CCA algorithm in the whole uses O light for correcting R light to achieve the purpose of using R light and O light as a primary color light, thereby obtaining an image of a triangular color gamut.
  • the spatial light modulation device by converting the decoded source image signal into a modulation control signal, and controlling the spatial light modulation device to modulate the time-series light emitted by the light-emitting device by the modulation control signal, and then overlapping with the existing spectrum according to the preset
  • the first laser and the target color coordinate of the primary color light corresponding to the first fluorescence are used to correct the first laser, thereby performing processing of the first fluorescent light and the first laser as a primary color light.
  • the control device includes a first control unit (not shown).
  • the first control unit is configured to convert at least one primary color image signal corresponding to the first laser light and the first fluorescent light having the spectral overlap in the decoded source image signal into the first primary color control signal and the second primary color control signal, and Controlling, by the first primary color control signal and the second primary color control signal, the spatial light modulation device respectively modulating the first laser and the first fluorescent light having the spectral overlap, wherein the brightness of the first laser and the first fluorescent light mixed with the spectral overlap
  • the brightness of the corresponding primary color image signal in the decoded source image signal is the same, and the color coordinates of the first laser and the first fluorescence mixed with the spectral overlap are the same as the color coordinates of the corresponding primary color image signal in the decoded source image signal.
  • the first control unit includes a first signal conversion module (not shown), and the first signal conversion module is configured to convert at least one primary color image signal of the decoded source image signals into a first primary color control. And a second primary color control signal, wherein the first primary color control signal and the second primary color control signal satisfy the following requirements:
  • L C1 ' is the brightness when the first laser having the spectral overlap and the first fluorescence are both fully open
  • L C11 is the brightness when the first laser having the spectral overlap is fully open
  • L C12 is the first fluorescence having the overlapping of the spectrum Brightness at full opening
  • C1, C11, C12 are basic color light marks
  • (x, y) is the color coordinate when the first laser and the first fluorescence are overlapped, and (x1, y1) is the color coordinate when the first laser is overlapped, (x2, y2) Color coordinates when the first fluorescence of the spectral overlap is fully open;
  • a is a primary color image signal corresponding to the first laser and the first fluorescence in the decoded source image signal
  • a1 is a first primary color control signal
  • a2 is a second primary color control signal
  • a, a1, a2 are For an integer greater than or equal to 0 and less than or equal to K
  • K is the maximum gray value that the spatial light modulation device can achieve.
  • the first laser light and the first fluorescent light included in the time series light emitted by the light emitting device are orange light excited by the red laser light and the orange light wavelength conversion material, respectively, and/or cyan laser light and green light.
  • the red primary color image signal in the decoded source image signal may be converted into the first red primary color control signal and the second red primary color control signal, and/or the decoded source is The green primary color image signal in the image signal is converted into a first green primary color control signal and a second green primary color control signal.
  • the control device further includes a second control unit (not shown) when the at least one fluorescence of the sequence comprises timed and there is a second fluorescence and a third fluorescence that are spectrally overlapping.
  • the second control unit is configured to convert at least one primary color image signal corresponding to the second fluorescent light and the third fluorescent light having a spectral overlap in the decoded source image signal into a third primary color control signal and a fourth primary color control And modulating, by the third primary color control signal and the fourth primary color control signal, the spatial light modulating device respectively modulating the second fluorescent light and the third fluorescent light having the spectral overlap, wherein the second fluorescent light and the third fluorescent light having the spectral overlap are mixed
  • the luminance is the same as the luminance of the primary color image signal corresponding to the second fluorescence and the third fluorescence in which the spectrum overlaps in the decoded source image signal.
  • the second control unit includes a second signal conversion unit (not shown) for using the second fluorescence and the third fluorescence in the decoded source image signal that overlap with the presence spectrum.
  • Corresponding at least one primary color image signal is converted into a third primary color control signal and a fourth primary color control signal, wherein the third primary color control signal and the fourth primary color control signal satisfy the following requirements:
  • L C2 is the brightness when the second fluorescence and the third fluorescence of the spectral overlap are both fully open
  • L C21 is the brightness of the second fluorescence when the spectrum overlaps
  • L C22 is the third fluorescence of the overlap of the spectrum.
  • the brightness at the time of opening, C2, C21, C22 are the primary color light marks;
  • b is a primary color image signal corresponding to the second fluorescence and the third fluorescence in which the spectrum overlaps in the decoded source image signal
  • b1 is a third primary color control signal
  • b2 is a fourth primary color control signal
  • b, b1, b2 All are integers greater than or equal to 0 and less than or equal to K
  • K is the maximum gray value that the spatial light modulation device can achieve.
  • the second fluorescent light and the third fluorescent light having the spectral overlap are both green light emitted by the green light wavelength converting material, and the green primary color image signal in the decoded source image signal is converted into the third green color.
  • the primary color control signal and the fourth green primary color control signal, and the third green primary color control signal and the fourth green primary color control signal are used to control the spatial light modulation device to respectively modulate the two green lights of the timing emitted by the illumination device.

Abstract

一种投影显示设备及其控制方法,该投影显示设备包括空间光调制装置,可出射时序光的发光装置,该时序光包括时序的至少一激光和时序的至少一荧光,时序的至少一激光中的至少一第一激光与时序的至少一荧光中的至少一第一荧光存在光谱重叠;与空间光调制装置连接的控制装置,该控制装置包括第一控制单元,用于将解码后的源图像信号中与存在光谱重叠的第一激光和第一荧光对应的至少一种基色图像信号转换成第一基色控制信号和第二基色控制信号,并通过第一基色控制信号和第二基色控制信号控制空间光调制装置分别对第一激光和第一荧光进行调制。该方法可提高第一荧光和第一激光的光效,进而提高投影显示设备的亮度。

Description

投影显示系统及其控制方法 技术领域
本发明涉及光学技术领域,更具体地说,涉及投影显示系统及其控制方法。
背景技术
目前,空间光调制装置(如DMD,LCOS,LCD等)在投影显示领域获得了广泛的应用,其中DMD由于其响应速度快,从而可以用时序切换的基色光来实现彩色投影显示,由此使得单片式DMD投影显示设备成为一种较为成熟的技术。单片式DMD投影显示设备以其结构简单,成本较低,在中低端市场广泛应用。在投影显示设备的发光装置方面,现有技术提供了一种激光激发波长转换装置而出射不同颜色光的发光装置,该发光装置具有光效高,光学扩展量小的优势,因此发展迅速,成为投影显示设备的发光装置的理想选择。
请参阅图1,为现有技术提供的单片式DLP投影显示设备的简化结构图,该投影显示设备包括发光装置11,光处理装置12,空间光调制装置13,控制装置14以及投影镜头15。其中:
发光装置11包括激光光源101,收集透镜102以及波长转换装置103。其中激光光源101可以为紫外光或者蓝光激光光源。收集透镜102将激光光源101发出的激光收集并入射至波长转换装置103。波长转换装置103在激光光源101发出的激光的照射下出射时序的颜色光。该光处理装置12包括收集透镜104,匀光组件105,光中继组件106以及TIR棱镜107。发光装置11发出的光经光处理装置12进行处理后入射至空间光调制装置13,如DMD等,空间光调至装置13在控制装置14的控制下对经光处理装置12处理后入射的光进行调制,并经光处理装置12出射至投影镜头15。其中波长转换装置103在激光光源101发出的激光的照射下出射时序的蓝、绿、红光。
在上述的投影显示设备的发光装置中,一般采用红光波长转换材料或者橙光波长转换材料来产生红光,由于红光波长转换材料或者橙光波长转换材料的激发效率较低,且为了达到所需纯度的红光,还需要采用滤光片对产生的红光或者橙光进行短波长过滤处理,从而进一步降低了红光的效率,导致采用上述发光装置的投影显示设备的红光的色坐标与色域标准(REC.709或者DCI)相比存在差距。
为了改善该问题,现有技术提供了一种投影显示设备用的改进发光装置,该发光装置通过添加红激光,将该红激光与红光波长转换材料产生的红光或者橙光波长转换材料产生的橙光合光,从而改善红光的效率、亮度以及色坐标,同时激光的散斑也在可以接受的范围内。基于该改进发光装置的投影显示设备的控制方法如下:将红激光和橙光波长转换材料产生的橙光作为两种基色光,分别对应于相互独立的两种基色控制信号,通过该相互独立的两种基色控制信号控制空间光调制装置分别对红激光和橙光波长转换材料产生的橙光进行调制。现有技术由于将红激光与橙光波长转换材料产生的橙光作为两种基色光,从而使得投影显示设备所需的红光均由红激光提供,不仅导致亮度不够,同时会出现非常严重的散斑现象。
发明内容
有鉴于此,本发明提供了一种投影显示设备的控制方法及投影显示设备,以解决现有技术存在的在控制激光与荧光合光时存在的亮度低、散斑现象严重的问题。
第一方面,提供一种投影显示系统的控制方法,所述投影显示系统包括空间光调制装置以及可出射时序光的发光装置,所述时序光包括时序的至少一激光和时序的至少一荧光,所述时序的至少一激光中的至少一第一激光与所述时序的至少一荧光中的至少一第一荧光存在光谱重叠,所述控制方法包括:
获取解码后的源图像信号中各基色图像信号;
将所述解码后的源图像信号转换为调制控制信号,并通过所述调制控制信号控制所述空间光调制装置对所述时序光进行调制,其中将所述解码后的源图像信号转换为调制控制信号并通过所述调制控制信号控制所述空间光调制装置对所述时序光进行调制具体包括:
将所述解码后的源图像信号中与存在光谱重叠的所述第一激光和第一荧光对应的至少一种基色图像信号转换成第一基色控制信号和第二基色控制信号,并通过所述第一基色控制信号和所述第二基色控制信号控制所述空间光调制装置分别对存在光谱重叠的所述第一激光和所述第一荧光进行调制;
其中存在光谱重叠的所述第一激光和所述第一荧光混合后的亮度与解码后的源图像信号中的对应基色图像信号的亮度相同,存在光谱重叠的所述第一激光和所述第一荧光混合后的色坐标与解码后的源图像信号中的对应基色图像信号的色坐标相同。
优选的,所述将所述解码后的源图像信号中与存在光谱重叠的所述第一激光和第一荧光对应的至少一种基色图像信号转换成第一基色控制信号和第二基色控制信号具体包括:
将解码后的源图像信号中的至少一种基色图像信号转换成第一基色控制信号和第二基色控制信号,其中所述第一基色控制信号和所述第二基色控制信号满足如下要求:
Figure PCTCN2016078534-appb-000001
Figure PCTCN2016078534-appb-000002
Figure PCTCN2016078534-appb-000003
其中,LC1’为存在光谱重叠的所述第一激光和所述第一荧光均全开时的亮度,LC11为存在光谱重叠的所述第一激光全开时的亮度,LC12为存在光谱重叠的所述第一荧光全开时的亮度,C1、C11、C12均为基色光标识;
所述(x,y)为存在光谱重叠的所述第一激光和所述第一荧光均全开时的色坐标,(x1,y1)为存在光谱重叠的所述第一激光全开时的色坐标,(x2,y2)为存在光谱重叠的所述第一荧光全开时的色坐标;
a为所述解码后的源图像信号中与存在光谱重叠的所述第一激光和第一荧光对应的基色图像信号,所述a1为所述第一基色控制信号,所述a2为所述第二基色控制信号,且a、a1、a2均为大于或等于0且小于或等于K的整数,所述K为所述空间光调制装置所能达到的最大灰度值。
优选的,所述a1和a2相等,且均等于a,或者所述a1和a2不相等。
优选的,所述第一激光为红激光,所述第一荧光为橙光波长转换材料受激发出的橙光,所述至少一种基色图像信号包括红基色图像信号,所述第一基色控制信号为第一红基色控制信号,所述第二基色控制信号为第二红基色控制信号,和/或,
所述第一激光为青绿激光,所述第一荧光为绿光波长转换材料受激发出的绿光,所述至少一种基色图像信号包括绿基色图像信号,所述第一基色控制信号为第一绿基色控制信号,所述第二基色控制信号为第二绿基色控制信号。
优选的,所述时序的至少一荧光包括时序的且存在光谱重叠的第二荧光和第三荧光,所述将所述解码后的源图像信号转换为调制控制信号还包括:
将解码后的源图像信号中的与存在光谱重叠的所述第二荧光和第三荧光对应的至少一种基色图像信号转换成第三基色控制信号和第四基色控制信号,并通过所述第三基色控制信号和所述第四基色控制信号控制所述空间光调制装置分别对存在光谱重叠的所述第二荧光和所述第三荧光进行调制;
其中存在光谱重叠的所述第二荧光和所述第三荧光混合后的亮度与解码后的源图像信号中的与存在光谱重叠的所述第二荧光和第三荧光对应基色图像信号的亮度相同。
优选的,所述将解码后的源图像信号中的与存在光谱重叠的所述第二荧光和第三荧光对应的至少一种基色图像信号转换成第三基色控制信号和第四基色控制信号具体包括:
将解码后的源图像信号中的与存在光谱重叠的所述第二荧光和第三荧光对应的至少一种基色图像信号转换成第三基色控制信号和第四基色控制信号,其中所述第三基色控制信号和所述第四基色控制信号满足如下要求:
Figure PCTCN2016078534-appb-000004
其中LC2’为存在光谱重叠的所述第二荧光和所述第三荧光均全开时的亮度,LC21为存在光谱重叠的所述第二荧光全开时的亮度,LC22为存在光谱重叠的所述第三荧光全开时的亮度,C2、C21、C22均为基色光标识;
b为所述解码后的源图像信号中的与存在光谱重叠的所述第二荧光和第三荧光对应的基色图像信号,所述b1为所述第三基色控制信号,所述b2为所述第四基色控制信号,且b、b1、b2均为大于或等于0且小于或等于K的整数,所述K为所述空间光调制装置所能达到的最大灰度值。
优选的,所述LC21和LC22相等或者不等。
优选的,所述存在光谱重叠的第二荧光和第三荧光均为绿光波长转换材料受激后出射的绿光,所述至少一种基色图像信号为绿基色图像信号。
第二方面,提供一种投影显示系统的控制方法,所述投影显示系统包括空间光调制装置以及可出射时序光的发光装置,所述时序光包括时序的至少一激光和时序的至少一荧光,所述时序的至少一激光中的至少一第一激光与所述时序的至少一荧光中的至少一第一荧光存在光谱重叠,所述控制方法包括:
获取解码后的源图像信号中各基色图像信号;
将解码后的源图像信号转换为调制控制信号,并通过所述调制控制信号控制所述空间光调制装置对发光装置出射的所述时序光进行调制;
根据预设的与存在光谱重叠的所述第一激光和所述第一荧光对应的基色光的目标色坐标,将所述第一荧光全部用于对所述第一激光进行校正。
优选的,所述将解码后的源图像信号转换为调制控制信号,并通过所述调制控制信号控制所述空间光调制装置对发光装置出射的所述时序光进行调制具体包括:
将解码后的源图像信号转换为包括第一基色调制信号和第二基色调制信号的调制控制信号,并通过第一基色调制信号和第二基色调制信号控制空间光调制装置分别对存在光谱重叠的第一激光和第一荧光进行调制。
第三方面,提供一种投影显示系统,包括空间光调制装置,还包括:
可出射时序光的发光装置,所述时序光包括时序的至少一激光和时序的至少一荧光,所述时序的至少一激光中的至少一第一激光与所述时序的至少一荧光中的至少一第一荧光存在光谱重叠;
与空间光调制装置连接的控制装置,所述控制装置将解码后的源图像信号转换为调制控制信号,并通过所述调制控制信号控制所述空间光调制装置对所述时序光进行调制,所述控制装置包括:
第一控制单元,用于将所述解码后的源图像信号中与存在光谱重叠的所述第一激光和第一荧光对应的至少一种基色图像信号转换成第一基色控制信号和第二基色控制信号,并通过所述第一基色控制信号和所述第二基色控制信号控制所述空间光调制装置分别对存在光谱重叠的所述第一激光和所述第一荧光进行调制;
其中存在光谱重叠的所述第一激光和所述第一荧光混合后的亮度与解码后的源图像信号中的对应基色图像信号的亮度相同,存在光谱重叠的所述第一激光和所述第一荧光混合后的色坐标与解码后的源图像信号中的对应基色图像信号的色坐标相同。
优选的,所述第一控制单元包括:
第一信号转换模块,用于将解码后的源图像信号中的至少一种基色图像信号转换成第一基色控制信号和第二基色控制信号,其中所述第一基色控制信号和所述第二基色控制信号满足如下要求:
Figure PCTCN2016078534-appb-000005
Figure PCTCN2016078534-appb-000006
Figure PCTCN2016078534-appb-000007
其中,LC1’为存在光谱重叠的所述第一激光和所述第一荧光均全开时的亮度,LC11为存在光谱重叠的所述第一激光全开时的亮度,LC12为存在光谱重叠的所述第一荧光全开时的亮度,C1、C11、C12均为基色光标识;
所述(x,y)为存在光谱重叠的所述第一激光和所述第一荧光均全开时的色坐标,(x1,y1)为存在光谱重叠的所述第一激光全开时的色坐标,(x2,y2)为存在光谱重叠的所述第一荧光全开时的色坐标;
a为所述解码后的源图像信号中与存在光谱重叠的所述第一激光和第一荧光对应的基色图像信号,所述a1为所述第一基色控制信号,所述a2为所述第二基色控制信号,且a、a1、a2均为大于或等于0且小于或等于K的整数,所述K为所述空间光调制装置所能达到的最大灰度值。
优选的,所述第一激光为红激光,所述第一荧光为橙光波长转换材料受激发出的橙光,所述至少一种基色图像信号包括红基色图像信号,所述第一基色控制信号为第一红基色控制信号,所述第二基色控制信号为第二红基色控制信号,和/或,
所述第一激光为青绿激光,所述第一荧光为绿光波长转换材料受激发出的绿光,所述至少一种基色图像信号包括绿基色图像信号,所述第一基色控制信号为第一绿基色控制信号,所述第二基色控制信号为第二绿基色控制信号。
优选的,所述时序的至少一荧光包括时序的且存在光谱重叠的第二荧光和第三荧光,所述控制装置还包括:
第二控制单元,用于将解码后的源图像信号中的与存在光谱重叠的所述第二荧光和第三荧光对应的至少一种基色图像信号转换成第三基色控制信号和第四基色控制信号,并通过所述第三基色控制信号和所述第四基色控制信号控制所述空间光调制装置分别对存在光谱重叠的所述第二荧光和所述第三荧光进行调制;
其中存在光谱重叠的所述第二荧光和所述第三荧光混合后的亮度与解码后的源图像信号中的与存在光谱重叠的所述第二荧光和第三荧光对应的基色图像信号的亮度相同。
优选的,所述第二控制单元包括:
第二信号转换单元,用于将解码后的源图像信号中的与存在光谱重叠的所述第二荧光和第三荧光对应的至少一种基色图像信号转换成第三基色控制信号和第四基色控制信号,其中所述第三基色控制信号和所述第四基色控制信号满足如下要求:
Figure PCTCN2016078534-appb-000008
其中LC2’为存在光谱重叠的所述第二荧光和所述第三荧光均全开时的亮度,LC21为存在光谱重叠的所述第二荧光全开时的亮度,LC22为存在光谱重叠的所述第三荧光全开时的亮度,C2、C21、C22均为基色光标识;
b为所述解码后的源图像信号中的与存在光谱重叠的所述第二荧光和第三荧光对应的基色图像信号,所述b1为所述第三基色控制信号,所述b2为所述第四基色控制信号,且b、b1、b2均为大于或等于0且小于或等于K的整数,所述K为所述空间光调制装置所能达到的最大灰度值。
第四方面,提供一种投影显示系统,包括空间光调制装置,还包括:
可出射时序光的发光装置,所述时序光包括时序的至少一激光和时序的至少一荧光,所述时序的至少一激光中的至少一第一激光与所述时序的至少一荧光中的至少一第一荧光存在光谱重叠;
与空间光调制装置连接的控制装置,所述控制装置将解码后的源图像信号转换为调制控制信号,并通过所述调制控制信号控制所述空间光调制装置对发光装置出射的所述时序光进行调制,并根据预设的与存在光谱重叠的所述第一激光和所述第一荧光对应的基色光的目标色坐标,将所述第一荧光全部用于对所述第一激光进行校正。
优选的,所述控制装置具体用于将解码后的源图像信号转换为包括第一基色调制信号和第二基色调制信号的调制控制信号,并通过第一基色调制信号和第二基色调制信号控制空间光调制装置分别对存在光谱重叠的第一激光和第一荧光进行调制。
与现有技术相比,本发明所提供的技术方案具有以下优点:
本发明通过将解码后的源图像信号中的照烧一种基色图像信号转换成第一基色控制信号和第二基色控制信号,并通过该第一基色控制信号和第二基色控制信号控制空间光调至装置分别对可发出时序光的发光装置发出的存在光谱重叠的第一激光和第一荧光进行 调制,实现第一激光和第一荧光时序合光,且将第一激光和第一荧光的时序合光作为一种基色光,从而提高投影显示设备中第一荧光和第一激光的光效,提高亮度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术提供的单片式DLP投影显示设备结构图;
图2为本发明实施例提供的投影显示设备的结构框图;
图3为本发明实施例提供的图2中的波长转换装置的分段区域的分布示例图;
图4为本发明另一实施例提供的图2中的波长转换装置的分段区域的分布示例图;
图5为本发明又一实施例提供的图2中的波长转换装置的分段区域的分布示例图;
图6为本发明再一实施例提供的图2中的波长转换装置的分段区域的分布示例图;
图7为本发明还一实施例提供的图2中的波长转换装置的分段区域的分布示例图;
图8为本发明实施例提供的投影显示设备的结构示例图;
图9为本发明实施例提供的投影显示设备的控制方法的实现流程图;
图10为本发明另一实施例提供的投影显示设备的控制方法的实现流程图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似应用,因此本发明不受下面公开的具体实施例的限制。且其中的“第一”、“第二”等次序用语并不代表次序,仅仅用于区分相近技术术语。
其次,本发明结合示意图进行详细描述,在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
下面通过几个实施例详细描述。
实施例一
请参阅图2,为本发明实施提供的投影显示设备的控制方法适用的投影显示设备的结构简图,其中仅示出了与本发明实施例相关的部分,未示出的部分可参照现有的投影显示设备。该投影显示设备包括可出射时序光的发光装置21,光处理装置22,空间光调制装置23,控制装置24和投影装置25。其中:
发光装置21可出射时序光,该时序光包括时序的至少一激光和至少一荧光。其中时序的至少一激光中的至少一第一激光与时序的至少一荧光中的至少一第一荧光存在光谱重叠。其中荧光可以为波长转换材料受激而发出的受激光,如红光波长转换材料在蓝光的激发下而产生的红光,橙光波长转换材料在蓝光的激发下而产生的橙光等。其中波长转换材料包括但不限于荧光粉、量子点等。
其中第一激光是指时序的至少一激光中的与时序的至少一荧光存在光谱重叠的激光。第一荧光是指时序的至少一荧光中的与时序的至少一激光存在光谱重叠的荧光。比如若发光装置11发出时序的蓝光、绿荧光、橙荧光和红激光,则橙荧光与红激光之间存在光谱重叠,因此,橙荧光为第一荧光,红激光为第一激光。若发光装置21发出时序的蓝光、青绿激光、橙荧光、蓝光、绿荧光、红激光,则橙荧光与红激光之间存在光谱重叠,且绿荧光与青绿激光之间也存在光谱重叠,因此,橙荧光和绿荧光均为第一荧光,红激光和青绿激光均为第一激光。
其中发光装置21包括至少两个光源,分别为发出激发光的激发光源211和发出激光的激光光源212,还包括波长转换装置213。其中激发光源211发出的激发光与激光光源212发出的激光的光谱范围不同。该波长转换装置213设置于激发光源211发出的激发光和激光光源212发出的激光的传输路径中,且该波长转换装置213在激发光源211和激光光源212的交替照射下输出时序光,该时序光包括时序的至少一激光和至少一荧光。其中时序的至少一激光中的至少一第一激光与时序的至少一荧光中的至少一第一荧光存在光谱重叠。
具体的,该激发光源211可以为蓝光光源,如蓝光激光光源等。该激光光源212与波长转换装置213上设置的波长转换层相关,即该激光光源212出射的激光与波长转换装置 213上设置的至少一个波长转换层出射的荧光存在光谱重叠,如当波长转换装置213上设置有红光波长转换层或者橙光波长转换层时,则该激光光源212为红光激光光源;当波长转换装置213上设置有绿光波长转换层时,则该激光光源为绿光激光光源、青绿激光光源或者青光激光光源,如主波长在510nm-530nm范围内的激光光源;当波长转换装置213上设置有红光波长转换层或者橙光波长转换层以及绿光波长转换层时,则该激光光源212为红光激光光源,和/或,绿光激光光源、青绿激光光源或者青光激光光源。
其中波长转换装置213包括沿圆周方向设置的多个分段区域,其中部分分段区域上设置有在激发光源的照射下可出射荧光的波长转换层,部分分段区域上设置有第一散射层,部分分段区域上设置有第二散射层。其中第一散射层可以为在波长转换装置的分段区域的表面实施粗糙化光学处理而形成,第二散射层为在波长转换装置的分段区域的表面配置带来扩散效应的光学物质而形成。在该波长转换装置213周期性运动过程中,沿圆周方向设置的多个分段区域周期性的分时序的位于激发光源211发出的激发光和激光光源212发出激光的传输路径中,使得该波长转换装置213在激发光源211和激光光源212的交替照射下出射时序光。该波长转换壮志213可以为反射式波长转换装置,透射式波长转换装置或者包括反射部分和透射部分的波长转换装置。
请参阅图3至7,为本发明实施例提供的图2中的波长转换装置213的分段区域的分布示例图,但波长转换装置213的分段区域的分布不以上述图示为限,还可以为在激发光源211和激光光源212的交替照射下出射包括时序的至少一激光和至少一荧光,且时序的至少一激光中的至少一第一激光与时序的至少一荧光中的至少一第一荧光存在光谱重叠的时序光的任意一种波长转换装置。
如图3所示,该波长转换装置213包括沿圆周方向设置的四个分段区域,分别为设有第二扩散层的分段区域(如图3中的蓝段B)、设有绿光波长转换层的分段区域(如图3中的绿段G)、设有橙光波长转换层的分段区域(如图3中的橙段O)、以及设有第一扩散层的分段区域(如图3中的diffuser段)。其中设有第二扩散层的分段区域B对入射至其的光线进行散射,如对入射至其的激发光进行散射。设有绿光波长转换层的分段区域G将入射至其的光线转换成绿光,如将入射至其的激发光转换为绿光。设有橙光波长转换层的分段区域O将入射至其的光线转换层橙光,如将入射至其的激发光转换为橙光。设有第一扩散层的分段区域diffuser对入射至其的光线进行散射。此时,该波长转换装置213在激发光源211和激光光源212的交替照射下,如在图3所示的B段、G段以及O段打开激发光源211,关闭激光光源212,在图3所示的diffuser段打开激光光源212,关闭激发光 源211,从而使得该波长转换装置213可以出射时序的激发光源发出的激发光、绿光、橙光、以及激光光源发出的激光。若激发光源为蓝光光源,激光光源为红光激光光源,则该波长转换装置213可以出射时序的BGOR光;若激发光源为蓝光光源,激光光源为青绿光激光光源,则该波长转换装置213可以出射时序的BGOG’光,其中G’为激光光源发出的青绿光。
如图4所示,该波长转换装置213包括沿圆周方向设置的六个分段区域,分别为设有第二扩散层的分段区域(如图4中的蓝段B)、设有绿光波长转换层的分段区域(如图4中的绿段G)、设有橙光波长转换层的分段区域(如图4中的橙段O)、设有第二扩散层的另一分段区域(如图4中的另一蓝段B)、设有绿光波长转换层的另一分段区域(如图4中的另一绿段G)、以及设有第一扩散层的分段区域(如图4中的diffuser段)。此时,该波长转换装置213在激发光源211和激光光源212的交替照射下,如在图4所示的两个B段、两个G段以及O段打开激发光源211,关闭激光光源212,在图4所示的diffuser段打开激光光源212,关闭激发光源211,从而使得该波长转换装置213可以出射时序的激发光源发出的激发光、绿光、橙光、激发光源发出的激发光、绿光以及激光光源发出的激光。若激发光源为蓝光光源,激光光源为红光激光光源,则该波长转换装置213可以出射时序的BGOBGR光。
如图5所述,该波长转换装置213包括沿圆周方向设置的五个分段区域,分别为设有第二扩散层的分段区域(如图5中的蓝段B)、设有绿光波长转换层的分段区域(如图5中的绿段G)、设有黄光波长转换层的分段区域(如图5中的黄段Y)、设有橙光波长转换层的分段区域(如图5中的橙段O)、以及设有第一扩散层的分段区域(如图5中的diffuser段)。此时,该波长转换装置213在激发光源211和激光光源212的交替照射下,如在图5所示的B段、Y段、G段以及O段打开激发光源211,关闭激光光源212,在图5所示的diffuser段打开激光光源212,关闭激发光源211,从而使得该波长转换装置213可以出射时序的激发光源发出的激发光、黄光、绿光、橙光、以及激光光源发出的激光。若激发光源为蓝光光源,激光光源为红光激光光源,则该波长转换装置213可以出射时序的BGYOR光;若激发光源为蓝光光源,激光光源为青绿光激光光源,则该波长转换装置213可以出射时序的BGYOG’光,其中G’光为青绿光激光光源发出的青绿激光。
如图6所示,该波长转换装置213包括沿圆周方向设置的八个分段区域,分别为设有第二扩散层的分段区域(如图6中的蓝段B)、设有绿光波长转换层的分段区域(如图6中的绿段G)、设有黄光波长转换层的分段区域(如图6中的黄段Y)、设有橙光波长转 换层的分段区域(如图6中的橙段O)、设有第二扩散层的另一分段区域(如图6中的另一蓝段B)、设有绿光波长转换层的另一分段区域(如图6中的另一绿段G)、设有黄光波长转换层的另一分段区域(如图6中的另一黄段Y)、以及设有第一扩散层的分段区域(如图6中的diffuser段)。此时,该波长转换装置213在激发光源211和激光光源212的交替照射下,如在图6所示的两个B段、两个Y段、两个G段以及O段打开激发光源211,关闭激光光源212,在图6所示的diffuser段打开激光光源212,关闭激发光源211,从而使得该波长转换装置213可以出射时序的激发光源发出的激发光、黄光、绿光、橙光、激发光源发出的激发光、黄光、绿光以及激光光源发出的激光。若激发光源为蓝光光源,激光光源为红光激光光源,则该波长转换装置213可以出射时序的BGYOR光;若激发光源为蓝光光源,激光光源为青绿光激光光源,则该波长转换装置213可以出射时序的BGYOBGYR光。
如图7所示,该波长转换装置213包括沿圆周方向设置的六个分段区域,分别为设有第二扩散层的分段区域(如图7中的蓝段B)、设有绿光波长转换层的分段区域(如图7中的绿段G)、设有第一扩散层的分段区域(如图7中的diffuser段)、设有第二扩散层的另一分段区域(如图7中的另一蓝段B)、设有橙光波长转换层的分段区域(如图7中的橙段O)、以及设有第一扩散层的另一分段区域(如图7中的另一diffuser段)。此时,该波长转换装置213在激发光源211和激光光源212的交替照射下,如在图7所示的两个B段、G段以及O段打开激发光源211,关闭激光光源212,在图7所示的diffuser段打开激光光源212,关闭激发光源211,从而使得该波长转换装置213可以出射时序的激发光源发出的激发光、激光光源出射的激光、橙光、激发光源发出的激发光、绿光以及激光光源发出的激光。若激发光源为蓝光光源,激光光源包括红光激光光源和青绿激光光源,则该波长转换装置213在蓝光光源、红光激光光源、青绿激光光源的交替照射下可以出射时序的BG’OBGR光。
光处理装置22设置于发光装置21发出的光的传输路径中,用于对发光装置21发出的光进行处理,如收集、均匀化等,并将处理后的光入射至空间光调制装置23。
空间光调制装置23在控制装置24的控制下对经光处理装置22处理并入射的光进行调制,得到调制光,该调制光经光处理装置22后入射至投影装置25而投影成显示图像。该空间光调制装置23可以为DMD。
其中控制装置24接收解码后的源图像信号,并将解码后的源图像信号转换为调制控制信号,根据该调制控制信号对空间光调制装置23进行控制。其中解码后的源图像信号 是指对需要投影显示的图像解码后得到的图像信号。该解码后的源图像信号一般包括三基色图像信号,即红(R)基色图像信号、绿(G)基色图像信号和蓝(B)基色图像信号。其中控制装置24的具体结构请参阅后续的详细说明。
为了便于理解,图8示出了本发明实施例提供的投影显示设备的结构示例图,但本发明提供的投影显示设备不以图8所示为限,其还可以为满足上述结构的任意变形。在本示例图中,波长转换装置为透射式色轮,可以理解,该波长转换装置也可以为反射式色轮,包括透射部分和反射部分的色轮。本领域技术人员依据图8所示的采用透射式色轮的发光装置的结构示例图,结合本发明中发光装置发出的时序光的特点,可以直接设计出采用反射式色轮或者采用包括透射部分和反射部分的色轮的发光装置的投影显示设备,故在此不再一一举例说明。
实施例二
图9示出了本发明第一实施例提供的投影显示设备的控制方法的实现流程,该方法包括:
S901,获取解码后的源图像信号中各基色图像信号。
其中解码后的源图像信号中包括的各基色图像信号一般为三基色图像信号,分别为红(R)基色图像信号、绿(G)基色图像信号和蓝(B)基色图像信号。
S902,将解码后的源图像信号转换为调制控制信号,并通过所述调制控制信号控制所述空间光调制装置对所述时序光进行调制。
其中将解码后的源图像信号转换为调制控制信号并通过所述调制控制信号控制所述空间光调制装置对所述时序光进行调制的具体过程如下:
将解码后的源图像信号中的与存在光谱重叠的所述第一激光和第一荧光对应的至少一种基色图像信号转换成第一基色控制信号和第二基色控制信号,并通过第一基色控制信号和第二基色控制信号控制空间光调制装置分别对存在光谱重叠的第一激光和第一荧光进行调制,且存在光谱重叠的第一激光和第一荧光混合后的亮度与解码后的源图像信号中的对应基色图像信号的亮度相同,存在光谱重叠的第一激光和第一荧光混合后的色坐标与解码后的源图像信号中的对应基色图像信号的色坐标相同。这样,可以将解码后的源图像信号转换成包含第一基色控制信号和第二基色控制信号的调制控制信号。
在本实施例中,将时序光中包括的与荧光存在光谱重叠的激光称为第一激光,将时序光中包括的与激光存在光谱重叠的荧光称为第一荧光。解码后的源图像信号中的与存在光谱重叠的所述第一激光和第一荧光对应的基色图像信号是指解码后的源图像信号中的基 色图像信号所对应的基色与存在光谱重叠的第一激光和第一荧光对应的基色相同,如解码后的源图像信号中的红基色图像信号与发光装置出射的覆盖红光光谱范围的光(如红光、橙光等)对应,绿基色图像信号与发光装置发出射的覆盖绿光光谱范围的光(如绿光、青绿光等)对应,而蓝基色图像信号与发光装置出射的覆盖蓝光光谱范围的光(如蓝光)对应。
在本实施例中,在将所述解码后的源图像信号中的与存在光谱重叠的所述第一激光和第一荧光对应的至少一种基色图像信号转换成第一基色控制信号和第二基色控制信号时,若发光装置发出的时序光中包括的存在光谱重叠的第一激光和第一荧光分别为红激光和橙荧光,则由于解码后的源图像信号中的红基色图像信号与发光装置出射的覆盖红光光谱范围的光对应,因此,解码后的源图像信号中与存在光谱重叠的红激光和橙荧光对应的基色图像信号即为红基色图像信号,此时,将解码后的源图像信号中的红基色图像信号转换成第一红基色控制信号和第二红基色控制信号;
若发光装置发出的时序光中包括的存在光谱重叠的第一激光和第一荧光分别为青绿激光和绿荧光,则由于解码后的源图像信号中的绿基色图像信号与发光装置出射的覆盖绿光光谱范围的光对应,因此,解码后的源图像信号中与存在光谱重叠的青绿激光和绿荧光对应的基色图像信号即为绿基色图像信号,此时,将解码后的源图像信号中的绿基色图像信号转换成第一绿基色控制信号和第二绿基色控制信号;
若发光装置发出的时序光中包括的存在光谱重叠的第一激光和第一荧光分别为青绿激光和绿荧光,以及红激光和橙荧光,则可以将解码后的源图像信号中的红基色图像信号转换成第一红基色控制信号和第二红基色控制信号,和/或,将绿基色图像信号转换成第一绿基色控制信号和第二绿基色控制信号。
具体的,在将解码后的源图像信号中的至少一种基色图像信号转换成第一基色控制信号和第二基色控制信号时,需要使得存在光谱重叠的第一激光和第一荧光混合后的亮度与解码后的源图像信号中的与存在光谱重叠的第一激光和第一荧光对应的基色图像信号的亮度相同,且存在光谱重叠的第一激光和第一荧光混合后的色坐标与解码后的源图像信号中的与存在光谱重叠的第一激光和第一荧光对应的基色图像信号的色坐标相同。
其中解码后的源图像信号中的与存在光谱重叠的第一激光和第一荧光对应的基色图像信号的亮度是指解码后的源图像信号中被转换成第一基色控制信号和第二基色控制信号的基色图像信号的亮度,该基色图像信号的亮度可以根据该基色图像信号的灰度值(如该基色图像信号的最大灰度值)和存在光谱重叠的第一激光和第一荧光全开时的亮度确定,如假设基色图像信号为红基色图像信号,其灰度值为a,该基色图像信号对应的存在 光谱重叠的第一激光和第一荧光分别为红激光和橙荧光,其中红激光全开时的亮度为LR,橙荧光全开时的亮度为LO,则存在光谱重叠的红激光和橙荧光全开时的亮度LR’为LR+LO,则该红基色图像信号的亮度即为
Figure PCTCN2016078534-appb-000009
其中K为空间光调制装置所能达到的最大灰度值。
在本发明优选实施例中,在将解码后的源图像信号中的一种基色图像信号转换成第一基色控制信号和第二基色控制信号时,其中第一基色控制信号和第二基色控制信号满足如下要求:
Figure PCTCN2016078534-appb-000010
Figure PCTCN2016078534-appb-000011
Figure PCTCN2016078534-appb-000012
其中
Figure PCTCN2016078534-appb-000013
为解码后的源图像信号中的与存在光谱重叠的第一激光和第一荧光对应的基色图像信号的亮度,
Figure PCTCN2016078534-appb-000014
为存在光谱重叠的第一激光和第一受激光混合后的亮度;LC1’为存在光谱重叠的第一激光和第一荧光均全开时的亮度,LC11为存在光谱重叠的第一激光全开时的亮度,LC12为存在光谱重叠的第一荧光全开时的亮度,C1、C11、C12均为基色光标识,如C可以表示为红(R),绿(G)和蓝(B)等,其中LC1’等于存在光谱重叠的第一激光全开时的亮度LC11与第一荧光全开时的亮度LC12之和;
(x,y)为存在光谱重叠的第一激光和第一荧光均全开时的色坐标,(x1,y1)为存在光谱重叠的第一激光全开时的色坐标,(x2,y2)为存在光谱重叠的第一荧光全开时的色坐标;
a为解码后的源图像信号中的与存在光谱重叠的第一激光和第一荧光对应的基色图像信号,如可以为该基色图像的最大灰度值,a1为第一基色控制信号,a2为第二基色控制信号,且a、a1、a2均为大于或等于0且小于或等于K的整数,其中K为空间光调制装置所能达到的最大灰度值。
可选的,可以将a1、a2设置为相等的值,且a1、a2均等于a,此时,第一基色控制信号和第二基色控制信号要满足的要求简化如下:
LC1'=LC11+LC12
Figure PCTCN2016078534-appb-000015
Figure PCTCN2016078534-appb-000016
当将a1、a2设置为相等的值,且a1、a2均等于a时,解码后的源图像信号转换成调制控制信号实际就是将解码后的源图像信号中的与存在光谱重叠的第一激光和第一荧光对应的基色图像信号在时序上重复一次。
可选的,也可以将a1、a2在满足上述要求的同时设置为不同的值。
在本发明实施例中,由于将解码后的源图像信号转换成满足上述要求的调制控制信号,采用这种调制控制信号来控制空间光调制装置时,空间光调制装置在由同一个基色图像信号转换成的两个时序的基色控制信号内分别对存在光谱重叠的第一激光和第一荧光进行调制处理,使得第一激光和第一荧光可以在时序上混合而作为一种基色光。由于将第一激光和第一荧光时序上混合后的混合光作为一种基色光,从而避免了单独采用第一激光作为基色光而存在的散斑的问题,避免了单独采用第一荧光作为基色光而存在的该基色光的色坐标与标准色坐标之间存在差异的问题,通过将第一激光和第一荧光在时序上混合后的混合光作为一种基色光,从而避免了激光带来的散斑现象,同时在保证荧光的效率的同时,改善了基色光的色坐标,使基色光的色坐标可以达到标准色坐标(如REC709或者DIC)的要求。
为了更清楚的说明本发明实施例提供的投影显示系统的控制方法,以下以一个具体的示例进行更为详细的说明,其中发光装置的波长转换装置采用图3所示的波长转换装置:
发光装置出射的时序光为时序的蓝光、绿光、橙光和红光,其中蓝光和红光为激光,绿光和橙光分别为相应的波长转换材料受激产生的。则获取解码后的源图像信号中的三基色图像信号BGR,由于发光装置出射的时序光中的红光和橙光存在光谱重叠,且存在光谱重叠的红光和橙光对应的基色图像信号为红基色图像信号,因此,将三基色图像信号中的R基色图像信号转换成第一R基色控制信号R1和第二R基色控制信号R2,其余基色图像信号不变,从而可以将解码后的源图像信号BGR转换成调制控制信号BGR1R2,通过该调制控制信号BGR1R2控制空间光调制装置依次对发光装置出射的蓝光、绿光、红光和橙光进行调制。具体的,通过调制控制信号B对发光装置出射的蓝光进行调制,通过调制控 制信号G对发光装置出射的绿光进行调制,通过调制控制信号R1对发光装置出射的红光进行调制,通过调制控制信号R2对发光装置出射的橙光进行调制。其中R1、R2满足如下要求:
Figure PCTCN2016078534-appb-000017
Figure PCTCN2016078534-appb-000018
Figure PCTCN2016078534-appb-000019
其中,LR’为存在光谱重叠的红光和橙光均全开时的亮度,LR为红光全开时的亮度,LO为橙光全开时的亮度;(x,y)为红光和橙光均全开时的色坐标,(x1,y1)为红光全开时的色坐标,(x2,y2)为橙光全开时的色坐标;a为解码后的源图像信号中的红基色图像信号,a1为第一红基色控制信号,a2为第二红基色控制信号,且a、a1、a2均为大于或等于0且小于或等于K的整数,K为空间光调制装置所能达到的最大灰度值。
具体的,a1和a2可以均为a,从而上述要求简化为:
LR'=LR+LO
Figure PCTCN2016078534-appb-000020
Figure PCTCN2016078534-appb-000021
同理,若发光装置的波长转换装置如图7所示,则该发光装置出射的时序光为时序的BG’OBGR,此时,将解码后的源图像信号中的三基色图像信号BGR中G基色图像信号转换成第一G基色控制信号G1和第二G基色控制信号G2,将R基色图像信号转换成第一R基色控制信号R1和第二R基色控制信号R2,从而将解码后的源图像信号中的三基色图像信号BGR转换成调制控制信号BG1G2R1R2,其中G1和G2,R1和R2满足如上要求。
在本发明优选实施例中,可以通过对现有的用于对空间光调制装置进行调制控制的DDP本征程序(DLP Data processor,DDP)进行修改,使该DDP本征程序将解析后的源 图像信号中与存在光谱重叠的第一激光和第一荧光对应的至少一种基色图像信号转换成第一基色控制信号和第二基色控制信号,以得到调制控制信号(如将BGR转换成调制控制信号BGR1R2),且该DDP本征程序通过调制控制信号(如BGR1R2)来控制空间光调制装置依次对光源出射的时序光进行调制,从而将存在光谱重叠的第一激光和第一荧光作为一种基色光进行处理。
具体的,以图3所示的波长转换装置为例,在改进后的DDP本征程序的初始化设置中,将波长转换装置设置成三段式,其中图3所示的O段和R段作为一段,并将O段和R段时序混合后的亮度和色坐标分别设置为LR’、(x,y),其中LR’为橙光和红光混合后的亮度,(x,y)为橙光和红光混合后的色坐标,这样改进后的DDP本征程序即可将解码后的源图像信号BGR按照上述方式转换成调制控制信号BGR1R2,从而实现将橙光与红光作为一种基色光进行处理,使得采用四段式波长转换装置而得到三角形色域的图像。
实施例三
该实施例是在上述实施例二的基础上所做的进一步改进,在该实施例中未详细说明的部分请参阅上述实施例二。当发光装置出射的时序光中还包括时序的且存在光谱重叠的第二荧光和第三荧光时,将解码后的源图像信号转换为调制控制信号还包括:
将解码后的源图像信号中的与存在光谱重叠的第二荧光和第三荧光对应的至少一种基色图像信号转换成第三基色控制信号和第四基色控制信号,并通过第三基色控制信号和第四基色控制信号控制空间光调制装置分别对存在光谱重叠的第二荧光和第三荧光进行调制,其中存在光谱重叠的第二荧光和第三荧光混合后的亮度与解码后的源图像信号中的与存在光谱重叠的第二荧光和第三荧光对应的基色图像信号的亮度相同。
在本实施例中,将发光装置发出的时序光中存在光谱重叠的其中一种荧光称为第二荧光,另一种荧光称为第三荧光。其中第二荧光与第三荧光可以为光谱部分重叠的荧光,也可以为光谱完全重叠的荧光。该第二荧光与第三荧光全开时的发光亮度不相等,也可以完全相等。其中存在光谱重叠的第二荧光和第三荧光可以为波长转换装置上的分别设置在两个不同分段区域上的波长转换层受激后出射的光,如第二荧光和第三荧光分别为设置在两个不同分段区域上的绿光波长转换层出射的光,或者分别为设置在两个不同分段区域上的红光波长转换层出射的光,或者分别为设置在两个不同分段区域上的黄光波长转换层出射的光等。举例说明如下:存在光谱重叠的第二荧光和第三荧光可以均为绿光波长转换材料受激后出射的绿光,也可以均为红光波长转换材料受激后出射的红光,或者为黄光波长转换材料受激后出射的黄光等。
其中解码后的源图像信号中与存在光谱重叠的第二荧光和第三荧光对应的基色图像信号是指解码后的源图像信号中的基色图像信号所对应的基色与存在光谱重叠的第二荧光和第三荧光对应的基色相同,如解码后的源图像信号中的红基色图像信号与发光装置出射的覆盖红光光谱范围的光(如红光、橙光等)对应,绿基色图像信号与发光装置发出射的覆盖绿光光谱范围的光(如绿光、青绿光等)对应,而蓝基色图像信号与发光装置出射的覆盖蓝光光谱范围的光(如蓝光)对应。如:若发光装置发出的时序光中包括绿光波长转换材料受激出射的第一绿光和绿光波长转换材料受激出射的第二绿光时,解码后的源图像信号中与存在光谱重叠的第一绿光和第二绿光对应的基色图像信号为绿基色图像信号;若发光装置出射的时序光包括蓝光波长转换材料受激出射的第一蓝光和蓝光波长转换材料受激出射的第二蓝光时,解码后的源图像信号中与存在光谱重叠的第一蓝光和第二蓝光对应的基色图像信号为蓝基色图像信号。
同理,若发光装置出射的时序光包括黄光波长转换材料受激出射的第一黄光和黄光波长转换材料受激出射的第二黄光时,解码后的源图像信号中与存在光谱重叠的第一黄光和第二黄光对应的基色图像信号为黄基色图像信号。此时,需要先将解码后的包括三基色图像信号BGR的源图像信号转换成包括四基色图像信号BGRY的源图像信号。其中将解码后的包括三基色图像信号BGR的源图像信号转换成包括四基色图像信号BGRY的源图像信号的具体方法属于现有技术(如可参见公开号为CN101164096A的专利文献),在此不再赘述。
在本实施例中,当发光装置出射的时序光中包括存在光谱重叠的第一绿荧光和第二绿荧光时,由于解码后的源图像信号中的绿基色图像信号与存在光谱重叠的第一绿荧光和第二绿荧光对应,因此将解码后的源图像信号中的绿基色图像信号转换成第三绿基色控制信号和第四绿基色控制信号,其中第一绿荧光和第二绿荧光可以均为绿光波长转换材料受激出射的;
当发光装置出射的时序光中包括存在光谱重叠的第一黄荧光和第二黄荧光时,可以先对解码后的源图像信号进行转换,使转换后的源图像信号中包含黄基色图像信号,由于转换后的源图像信号中的黄基色图像信号与存在光谱重叠的第一黄荧光和第二黄荧光对应,因此将转换后的源图像信号中的黄基色图像信号转换成第三黄基色控制信号和第四黄基色控制信号,其中第一黄荧光和第二黄荧光可以均为黄光波长转换材料受激出射的;
当发光装置出射的时序光中包括的存在光谱重叠的第二荧光和第三荧光分别为第一绿荧光和第二绿荧光,以及第一黄荧光和第二黄荧光,则可以将解码后的源图像信号中的 绿基色图像信号转换成第三绿基色控制信号和第四绿基色控制信号,和/或,将由解码后的源图像信号转换得到的源图像信号中的黄基色图像信号转换成第三黄基色控制信号和第四黄基色控制信号。
具体的,在将解码后的源图像信号中的一种基色图像信号转换成第三基色控制信号和第四基色控制信号时,需要使得存在光谱重叠的第二荧光和第三荧光混合后的亮度与解码后的源图像信号中的对应基色图像信号的亮度相同。
在本发明优选实施例中,在将解码后的源图像信号中的一种基色图像信号转换成第三基色控制信号和第四基色控制信号时,其中第三基色控制信号和第四基色控制信号满足如下要求:
Figure PCTCN2016078534-appb-000022
其中
Figure PCTCN2016078534-appb-000023
为解码后的源图像信号中的与存在光谱重叠的第二荧光和第三荧光对应的基色图像信号的亮度,
Figure PCTCN2016078534-appb-000024
为存在光谱重叠的第二荧光和第三荧光混合后的亮度;
其中LC2’为存在光谱重叠的第二荧光和第三荧光均全开时的亮度,LC21为存在光谱重叠的第二荧光全开时的亮度,LC22为存在光谱重叠的第三荧光全开时的亮度,C2、C21、C22均为基色光标识,如C2可以为R、G、B等,其中LC2’等于存在光谱重叠的第二荧光全开时的亮度LC21与第三荧光全开时的亮度LC22之和;
b为所述解码后的源图像信号中的与存在光谱重叠的第二荧光和第三荧光对应的基色图像信号,b1为第三基色控制信号,b2为第四基色控制信号,且b、b1、b2均为大于或等于0且小于或等于K的整数,K为空间光调制装置所能达到的最大灰度值。
可选的,LC21和LC22相等或者不等。在本实施例中,可以通过将波长转换装置上设置有可出射第二荧光的波长转换层的分段区域的角度与设置有可出射第三荧光的波长转换层的分段区域的角度相同,从而使得LC21和LC22相等。举例说明如下:当第二荧光为第一绿光,第三荧光为第二绿光时,可以将波长转换装置上的设置有可出射第一绿光的绿光波长转换层的分段区域的角度与设置有可出射第二绿光的绿光波长转换层的分段区域的角度相同,从而可以使得第一绿光的亮度LG1和第二绿光的亮度LG2相同。
当将LC21和LC22设置成相等时,上述的第三基色控制信号和第四基色控制信号满足的要求简化成:
2b=b1+b2
实施例四
本实施例提供的控制方法是在上述实施例一或者实施例二的基础上所做的进一步改进,其中未详细描述的部分请参照上述实施例一和实施例二。当发光装置出射的时序光中还包括时序的且存在光谱重叠的第二激光和第三激光时,将解码后的源图像信号转换为调制控制信号还包括:
将解码后的源图像信号中的与存在光谱重叠的第二激光和第三激光对应的至少一种基色图像信号转换成第五基色控制信号和第六基色控制信号,并通过第五基色控制信号和第六基色控制信号控制空间光调制装置分别对存在光谱重叠的第二激光和第三激光进行调制,其中存在光谱重叠的第二激光和第三激光混合后的亮度与解码后的源图像信号中的与存在光谱重叠的第二激光和第三激光对应的基色图像信号的亮度相同。
在本实施例中,将发光装置发出的时序光中存在光谱重叠的其中一种激光称为第二激光,另一种激光称为第三激光。其中第二激光和第三激光可以为光谱部分重叠的激光,也可以为光谱完全重叠的激光。该第二激光和第三激光全开时的发光亮度不相等,也可以完全相等。其中存在光谱重叠的第二激光和第三激光可以为波长转换装置上的分别设置在两个不同分段区域上的散射层散射出射的光,如该第二激光和第三借光可以为分别设置在两个不同分段区域上的散射层散射出射的蓝激光等。
其中解码后的源图像信号中与存在光谱重叠的第二激光和第三激光对应的基色图像信号是指解码后的源图像信号中的基色图像信号所对应的基色与存在光谱重叠的第二激光和第三激光对应的基色相同,如解码后的源图像信号中的红基色图像信号与发光装置出射的覆盖红光光谱范围的光对应,绿基色图像信号与发光装置发出射的覆盖绿光光谱范围的光对应,而蓝基色图像信号与发光装置出射的覆盖蓝光光谱范围的光对应。如:若发光装置发出的时序光中包括分别设置在两个不同分段区域上的散射层散射出射的第一蓝光和第二蓝光时,解码后的源图像信号中与存在光谱重叠的第一蓝光和第二蓝光对应的基色图像信号为蓝基色图像信号。
在本实施例中,当发光装置出射的时序光中包括存在光谱重叠的第一蓝激光和第二蓝激光时,由于解码后的源图像信号中的蓝基色图像信号与存在光谱重叠的第一蓝光和第二蓝光对应,因此将解码后的源图像信号中的蓝基色图像信号转换成第五蓝基色控制信号和第四六基色控制信号。
具体的,在将解码后的源图像信号中的一种基色图像信号转换成第五基色控制信号和第六基色控制信号时,需要使得存在光谱重叠的第二激光和第三激光混合后的亮度与解码 后的源图像信号中的与存在光谱重叠的第二激光和第三激光对应的基色图像信号的亮度相同。
在本发明优选实施例中,在将解码后的源图像信号中的一种基色图像信号转换成第五基色控制信号和第六基色控制信号时,第五基色控制信号和第六基色控制信号满足如下要求:
Figure PCTCN2016078534-appb-000025
其中
Figure PCTCN2016078534-appb-000026
为解码后的源图像信号中的与存在光谱重叠的第二激光和第三激光对应的基色图像信号的亮度,
Figure PCTCN2016078534-appb-000027
为存在光谱重叠的第二激光和第三激光混合后的亮度;
其中LC3’为存在光谱重叠的第二激光和第三激光均全开时的亮度,LC31为存在光谱重叠的第二激光全开时的亮度,LC32为存在光谱重叠的第三激光全开时的亮度,C3、C31、C32均为基色光标识,如C3可以为R、G、B等,其中LC3’等于存在光谱重叠的第二激光全开时的亮度LC31与第三激光全开时的亮度LC32之和;
c为解码后的源图像信号中的与存在光谱重叠的第二激光和第三激光对应的基色图像信号,c1为第五基色控制信号,c2为第六基色控制信号,且c、c1、c2均为大于或等于0且小于或等于K的整数,K为空间光调制装置所能达到的最大灰度值。
可选的,LC31和LC32相等或者不等。在本实施例中,可以通过将波长转换装置上设置有可出射第二激光的散射层的分段区域的角度与设置有可出射第三激光的波长转换层的分段区域的角度相同,从而使得LC31和LC32相等。举例说明如下:当第二激光为第一蓝光,第三激光为第二蓝光时,可以将波长转换装置上的设置有可出射第一蓝光的散射层的分段区域的角度与设置有可出射第二蓝光的散射层的分段区域的角度相同,从而可以使得第一蓝光的亮度LB1和第二蓝光的亮度LB2相同。
当将LC31和LC32设置成相等时,上述的第五基色控制信号和第六基色控制信号满足的要求简化成:
2c=c1+c2
为了更清楚的说明本发明实施例提供的投影显示系统的控制方法,以下以一个具体的示例进行更为详细的说明,其中发光装置的波长转换装置采用图4所示的波长转换装置:
发光装置出射的时序光为时序的BGOBGR,则获取解码后的源图像信号中的三基色图像信号BGR,将该三基色图像信号BGR转换成调制控制信号B1G1R1B2G2R2。其具体过程如下:
将三基色图像信号中的R基色图像信号转换成第一R基色控制信号R1和第二R基色控制信号R2,将三基色图像信号中的G基色图像信号转换成第三G基色控制信号G1和第四G基色控制信号G2,将三基色图像信号中的B基色图像信号转换成第五B基色控制信号B1和第六B基色控制信号B2。
第一R基色控制信号R1和第二R基色控制信号R2需满足如下要求:
Figure PCTCN2016078534-appb-000028
Figure PCTCN2016078534-appb-000029
Figure PCTCN2016078534-appb-000030
其中,LR’为存在光谱重叠的红光和橙光均全开时的亮度,LR为红光全开时的亮度,LO为橙光全开时的亮度;(x,y)为红光和橙光均全开时的色坐标,(x1,y1)为红光全开时的色坐标,(x2,y2)为橙光全开时的色坐标;a为解码后的源图像信号中的红基色图像信号,a1为第一红基色控制信号,a2为第二红基色控制信号,且a、a1、a2均为大于或等于0且小于或等于K的整数,K为空间光调制装置所能达到的最大灰度值。
第三G基色控制信号G1和第四G基色控制信号G2需满足如下要求:
Figure PCTCN2016078534-appb-000031
其中,LG’为存在光谱重叠的两个绿光均全开时的亮度,LG’为其中一个绿光全开时的亮度,LG为另一个绿光全开时的亮度;b为解码后的源图像信号中的绿基色图像信号,b1为第三G基色控制信号,b2为第四G基色控制信号,且b、b1、b2均为大于或等于0且小于或等于K的整数,K为空间光调制装置所能达到的最大灰度值。
其中第五B基色控制信号B1和第六B基色控制信号B2需满足如下要求:
Figure PCTCN2016078534-appb-000032
其中,LB’为存在光谱重叠的两个蓝光均全开时的亮度,LB’为其中一个蓝光全开时的亮度,LB为另一个蓝光全开时的亮度;c为解码后的源图像信号中的蓝基色图像信号,c1为第五B基色控制信号,c2为第六B基色控制信号,且c、c1、c2均为大于或等于0且小于或等于K的整数,K为空间光调制装置所能达到的最大灰度值。
在本发明优选实施例中,可以通过将波长转换装置改进为图4或者6所示波长转换装置,从而可以直接使用现有的六段式色轮或者八段式色轮的DDP本征程序,使得R光和O光均对应R信号,从而实现R光和O光时序混合得到红基色光。
实施例五
图10示出了本发明另一实施例提供的投影显示设备的控制方法的实现流程,该方法包括:
S1001,获取解码后的源图像信号中各基色图像信号。
其中解码后的源图像信号中包括的各基色图像信号一般为三基色图像信号,分别为红(R)基色图像信号、绿(G)基色图像信号和蓝(B)基色图像信号。
S1002,将解码后的源图像信号转换为调制控制信号,并通过该调制控制信号控制空间光调制装置对时序光进行调制。
其中将解码后的源图像信号转换为调制控制信号,并通过该调制控制信号控制空间光调制装置对时序光进行调制的具体过程如下:
将解码后的源图像信号转换为包括第一基色调制信号和第二基色调制信号的调制控制信号,并通过第一基色调制信号和第二基色调制信号控制空间光调制装置分别对存在光谱重叠的第一激光和第一荧光进行调制。其中将解码后的源图像信号转换为包括第一基色调制信号和第二基色调制信号的调制控制信号的具体过程属于现有技术,具体可参见公开号为CN101164096A的专利文献。举例说明如下:
假设发光装置的波长转换装置如图3所示,则该发光装置出射时序的BGOR光,此时,将解码后的源图像信号BGR转换为包括第一基色调制信号O和第二基色调制信号R的调制控制信号BGOR,其中第一基色调制信号O用于控制空间光调制装置对发光装置出射的时序光中的O光进行调制,第二基色调制信号R用于控制空间光调制装置对发光装置出射的时序光中的R光进行调制。通过该调制控制信号BGOR控制空间光调制装置的调制时,通过该调制控制信号BGOR依次控制发光装置出射的时序的BGOR。
S1003,根据预设的与存在光谱重叠的第一激光和第一荧光对应的基色光的目标色坐标,将所述第一荧光全部用于对所述第一激光进行校正。
其中将一种光全部用于对另一种光进行校正的算法可采用现有技术提供的任意一种色坐标校正(Color Coordinate Adjustment,CCA)算法,如DDP本征程序中的CCA校正算法。
在本发明优选实施例中,可以采用现有的DDP本征程序并通过对DDP本征程序中的CCA算法进行改进来实现本发明实施例提供的控制方法,详述如下,以采用图3所示的波长转换装置为例:
在DDP本征程序的初始化设置中,按照波长转换装置实际包括的四段式分段区域设置DDP本征程序中的色轮段数以及每个分段的角度,DDP本征程序将解码后的源图像信号BGR转换成调制控制信号BGRO,并通过该调制控制信号BGRO控制空间光调制装置依次对发光装置出射的BGRO光进行调制,从而得到四边形色域的图像,再通过改进后的DDP本征程序中的CCA算法将O光全部用于校正R光,以实现将R光和O光作为一种基色光的目的,从而得到三边形色域的图像。
在本实施例中,通过将解码后的源图像信号转换为调制控制信号,并通过该调制控制信号控制空间光调制装置对发光装置出射的时序光进行调制,再根据预设的与存在光谱重叠的第一激光和第一荧光对应的基色光的目标色坐标,将第一荧光全部用于对第一激光进行校正,从而实现将第一荧光和第一激光作为一种基色光进行处理。
实施例六
本实施例提供了上述图2所示的控制装置的结构简介。该控制装置包括第一控制单元(图未示出)。该第一控制单元用于将解码后的源图像信号中与存在光谱重叠的第一激光和第一荧光对应的至少一种基色图像信号转换为第一基色控制信号和第二基色控制信号,并通过第一基色控制信号和第二基色控制信号控制空间光调制装置分别对存在光谱重叠的第一激光和第一荧光进行调制,其中存在光谱重叠的第一激光和第一荧光混合后的亮度与解码后的源图像信号中的对应基色图像信号的亮度相同,存在光谱重叠的第一激光和第一荧光混合后的色坐标与解码后的源图像信号中的对应基色图像信号的色坐标相同。
具体的,该第一控制单元包括第一信号转换模块(图未示出),该第一信号转换模块用于将解码后的源图像信号中的至少一种基色图像信号转换成第一基色控制信号和第二基色控制信号,其中第一基色控制信号和第二基色控制信号满足如下要求:
Figure PCTCN2016078534-appb-000033
Figure PCTCN2016078534-appb-000034
Figure PCTCN2016078534-appb-000035
其中,LC1’为存在光谱重叠的第一激光和第一荧光均全开时的亮度,LC11为存在光谱重叠的第一激光全开时的亮度,LC12为存在光谱重叠的第一荧光全开时的亮度,C1、C11、C12均为基色光标识;
(x,y)为存在光谱重叠的第一激光和第一荧光均全开时的色坐标,(x1,y1)为存在光谱重叠的第一激光全开时的色坐标,(x2,y2)为存在光谱重叠的第一荧光全开时的色坐标;
a为解码后的源图像信号中与存在光谱重叠的第一激光和第一荧光对应的基色图像信号,a1为第一基色控制信号,a2为第二基色控制信号,且a、a1、a2均为大于或等于0且小于或等于K的整数,K为空间光调制装置所能达到的最大灰度值。
其中在本实施例中,当发光装置发出的时序光中包括的第一激光和第一荧光分别为红激光和橙光波长转换材料受激发出的橙光,和/或,青绿激光和绿光波长转换材料受激产生的绿光时,可以将解码后的源图像信号中的红基色图像信号转换成第一红基色控制信号和第二红基色控制信号,和/或,将解码后的源图像信号中的绿基色图像信号转换成第一绿基色控制信号和第二绿基色控制信号。
在本发明优选实施例中,当时序的至少一荧光包括时序的且存在光谱重叠的第二荧光和第三荧光时,该控制装置还包括第二控制单元(图未示出)。该第二控制单元用于将解码后的源图像信号中的与存在光谱重叠的所述第二荧光和第三荧光对应的至少一种基色图像信号转换成第三基色控制信号和第四基色控制信号,并通过第三基色控制信号和第四基色控制信号控制空间光调制装置分别对存在光谱重叠的第二荧光和第三荧光进行调制,其中存在光谱重叠的第二荧光和第三荧光混合后的亮度与解码后的源图像信号中的与存在光谱重叠的第二荧光和第三荧光对应的基色图像信号的亮度相同。
具体的,该第二控制单元包括第二信号转换单元(图未示出),该第二信号转换单元用于将解码后的源图像信号中的与存在光谱重叠的第二荧光和第三荧光对应的至少一种基色图像信号转换成第三基色控制信号和第四基色控制信号,其中第三基色控制信号和第四基色控制信号满足如下要求:
Figure PCTCN2016078534-appb-000036
其中LC2’为存在光谱重叠的第二荧光和第三荧光均全开时的亮度,LC21为存在光谱重叠的第二荧光全开时的亮度,LC22为存在光谱重叠的第三荧光全开时的亮度,C2、C21、C22均为基色光标识;
b为解码后的源图像信号中的与存在光谱重叠的第二荧光和第三荧光对应的基色图像信号,b1为第三基色控制信号,b2为第四基色控制信号,且b、b1、b2均为大于或等于0且小于或等于K的整数,K为空间光调制装置所能达到的最大灰度值。
具体的,该存在光谱重叠的第二荧光和第三荧光均为绿光波长转换材料受激后出射的绿光,此时将解码后的源图像信号中的绿基色图像信号转换为第三绿基色控制信号和第四绿基色控制信号,并通过第三绿基色控制信号和第四绿基色控制信号控制空间光调制装置分别对发光装置发出的时序的两种绿光进行调制。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或者直接、间接运用在其他相关的技术领域,均视为包括在本发明的专利保护范围内。

Claims (20)

  1. 一种投影显示系统的控制方法,所述投影显示系统包括空间光调制装置以及可出射时序光的发光装置,所述时序光包括时序的至少一激光和时序的至少一荧光,所述时序的至少一激光中的至少一第一激光与所述时序的至少一荧光中的至少一第一荧光存在光谱重叠,其特征在于,所述控制方法包括:
    获取解码后的源图像信号中各基色图像信号;
    将所述解码后的源图像信号转换为调制控制信号,并通过所述调制控制信号控制所述空间光调制装置对所述时序光进行调制,其中将所述解码后的源图像信号转换为调制控制信号并通过所述调制控制信号控制所述空间光调制装置对所述时序光进行调制具体包括:
    将所述解码后的源图像信号中与存在光谱重叠的所述第一激光和第一荧光对应的至少一种基色图像信号转换成第一基色控制信号和第二基色控制信号,并通过所述第一基色控制信号和所述第二基色控制信号控制所述空间光调制装置分别对存在光谱重叠的所述第一激光和所述第一荧光进行调制;
    其中存在光谱重叠的所述第一激光和所述第一荧光混合后的亮度与解码后的源图像信号中的对应基色图像信号的亮度相同,存在光谱重叠的所述第一激光和所述第一荧光混合后的色坐标与解码后的源图像信号中的对应基色图像信号的色坐标相同。
  2. 如权利要求1所述的投影显示系统的控制方法,其特征在于,所述将所述解码后的源图像信号中与存在光谱重叠的所述第一激光和第一荧光对应的至少一种基色图像信号转换成第一基色控制信号和第二基色控制信号具体包括:
    将解码后的源图像信号中的至少一种基色图像信号转换成第一基色控制信号和第二基色控制信号,其中所述第一基色控制信号和所述第二基色控制信号满足如下要求:
    Figure PCTCN2016078534-appb-100001
    Figure PCTCN2016078534-appb-100002
    Figure PCTCN2016078534-appb-100003
    其中,LC1’为存在光谱重叠的所述第一激光和所述第一荧光均全开时的亮度,LC11为存在光谱重叠的所述第一激光全开时的亮度,LC12为存在光谱重叠的所述第一荧光全开时的亮度,C1、C11、C12均为基色光标识;
    所述(x,y)为存在光谱重叠的所述第一激光和所述第一荧光均全开时的色坐标,(x1,y1)为存在光谱重叠的所述第一激光全开时的色坐标,(x2,y2)为存在光谱重叠的所述第一荧光全开时的色坐标;
    a为所述解码后的源图像信号中与存在光谱重叠的所述第一激光和第一荧光对应的基色图像信号,所述a1为所述第一基色控制信号,所述a2为所述第二基色控制信号,且a、a1、a2均为大于或等于0且小于或等于K的整数,所述K为所述空间光调制装置所能达到的最大灰度值。
  3. 如权利要求2所述的投影显示系统的控制方法,其特征在于,所述a1和a2相等,且均等于a,或者所述a1和a2不相等。
  4. 如权利要求3所述的投影显示系统的控制方法,其特征在于,所述第一激光为红激光,所述第一荧光为橙光波长转换材料受激发出的橙光,所述至少一种基色图像信号包括红基色图像信号,所述第一基色控制信号为第一红基色控制信号,所述第二基色控制信号为第二红基色控制信号,和/或,
    所述第一激光为青绿激光,所述第一荧光为绿光波长转换材料受激发出的绿光,所述至少一种基色图像信号包括绿基色图像信号,所述第一基色控制信号为第一绿基色控制信号,所述第二基色控制信号为第二绿基色控制信号。
  5. 如权利要求3所述的投影显示系统的控制方法,其特征在于,所述时序光包括时序的蓝光、绿光、红激光、橙光,所述将所述解码后的源图像信号转换为调制控制信号具体包括:
    将所述解码后的源图像信号BGR中的R基色图像信号转换成第一R基色控制信号R1和第二R基色控制信号R2,以将所述源图像信号BGR转换成调制控制信号BGR1R2,通过所述调制控制信号BGR1R2控制所述空间光调制装置依次对所述蓝光、绿光、红激光、橙光进行调制。
  6. 如权利要求1至5任一项所述的投影显示系统的控制方法,其特征在于,所述时序的至少一荧光包括时序的且存在光谱重叠的第二荧光和第三荧光,所述将所述解码后的源图像信号转换为调制控制信号还包括:
    将解码后的源图像信号中的与存在光谱重叠的所述第二荧光和第三荧光对应的至少一种基色图像信号转换成第三基色控制信号和第四基色控制信号,并通过所述第三基色控制信号和所述第四基色控制信号控制所述空间光调制装置分别对存在光谱重叠的所述第二荧光和所述第三荧光进行调制;
    其中存在光谱重叠的所述第二荧光和所述第三荧光混合后的亮度与解码后的源图像信号中的与存在光谱重叠的所述第二荧光和第三荧光对应基色图像信号的亮度相同。
  7. 如权利要求6所述的投影显示系统的控制方法,其特征在于,所述将解码后的源图像信号中的与存在光谱重叠的所述第二荧光和第三荧光对应的至少一种基色图像信号转换成第三基色控制信号和第四基色控制信号具体包括:
    将解码后的源图像信号中的与存在光谱重叠的所述第二荧光和第三荧光对应的至少一种基色图像信号转换成第三基色控制信号和第四基色控制信号,其中所述第三基色控制信号和所述第四基色控制信号满足如下要求:
    Figure PCTCN2016078534-appb-100004
    其中LC2’为存在光谱重叠的所述第二荧光和所述第三荧光均全开时的亮度,LC21为存在光谱重叠的所述第二荧光全开时的亮度,LC22为存在光谱重叠的所述第三荧光全开时的亮度,C2、C21、C22均为基色光标识;
    b为所述解码后的源图像信号中的与存在光谱重叠的所述第二荧光和第三荧光对应的基色图像信号,所述b1为所述第三基色控制信号,所述b2为所述第四基色控制信号,且b、b1、b2均为大于或等于0且小于或等于K的整数,所述K为所述空间光调制装置所能达到的最大灰度值。
  8. 如权利要求7所述的投影显示系统的控制方法,其特征在于,所述LC21和LC22相等或者不等。
  9. 如权利要求8所述的投影显示系统的控制方法,其特征在于,所述存在光谱重叠的第二荧光和第三荧光均为绿光波长转换材料受激后出射的绿光,所述至少一种基色图像信号为绿基色图像信号。
  10. 如权利要求7所述的投影显示系统的控制方法,其特征在于,所述时序光包括时序的第一蓝光、第一绿光、红激光、第二蓝光、第二绿光、橙光,其中所述第一蓝光与所述第二蓝光存在光谱重叠,所述第一绿光与所述第二绿光存在光谱重叠,所述红激光与所述橙光存在光谱重叠,所述将所述解码后的源图像信号转换为调制控制信号具体包括:
    将所述解码后的源图像信号BGR中的B基色图像信号转换成第一B基色控制信号B1和第二B基色控制信号B2,将G基色图像信号转换成第一G基色控制信号G1和第二G基色控制信号G2,将R基色图像信号转换成第一R基色控制信号R1和第二R基色控制 信号R2,以将所述源图像信号BGR转换成B1G1R1 B2G2R2,通过所述基色图像信号B1G1R1 B2G2R2控制所述空间光调制装置依次对所述第一蓝光、第一绿光、红激光、第二蓝光、第二绿光、橙光进行调制。
  11. 一种投影显示系统的控制方法,所述投影显示系统包括空间光调制装置以及可出射时序光的发光装置,所述时序光包括时序的至少一激光和时序的至少一荧光,所述时序的至少一激光中的至少一第一激光与所述时序的至少一荧光中的至少一第一荧光存在光谱重叠,其特征在于,所述控制方法包括:
    获取解码后的源图像信号中各基色图像信号;
    将解码后的源图像信号转换为调制控制信号,并通过所述调制控制信号控制所述空间光调制装置对发光装置出射的所述时序光进行调制;
    根据预设的与存在光谱重叠的所述第一激光和所述第一荧光对应的基色光的目标色坐标,将所述第一荧光全部用于对所述第一激光进行校正。
  12. 如权利要求11所述的投影显示系统的控制方法,其特征在于,所述将解码后的源图像信号转换为调制控制信号,并通过所述调制控制信号控制所述空间光调制装置对发光装置出射的所述时序光进行调制具体包括:
    将解码后的源图像信号转换为包括第一基色调制信号和第二基色调制信号的调制控制信号,并通过第一基色调制信号和第二基色调制信号控制空间光调制装置分别对存在光谱重叠的第一激光和第一荧光进行调制。
  13. 一种投影显示系统,包括空间光调制装置,其特征在于,还包括:
    可出射时序光的发光装置,所述时序光包括时序的至少一激光和时序的至少一荧光,所述时序的至少一激光中的至少一第一激光与所述时序的至少一荧光中的至少一第一荧光存在光谱重叠;
    与空间光调制装置连接的控制装置,所述控制装置将解码后的源图像信号转换为调制控制信号,并通过所述调制控制信号控制所述空间光调制装置对所述时序光进行调制,所述控制装置包括:
    第一控制单元,用于将所述解码后的源图像信号中与存在光谱重叠的所述第一激光和第一荧光对应的至少一种基色图像信号转换成第一基色控制信号和第二基色控制信号,并通过所述第一基色控制信号和所述第二基色控制信号控制所述空间光调制装置分别对存在光谱重叠的所述第一激光和所述第一荧光进行调制;
    其中存在光谱重叠的所述第一激光和所述第一荧光混合后的亮度与解码后的源图像信号中的对应基色图像信号的亮度相同,存在光谱重叠的所述第一激光和所述第一荧光混合后的色坐标与解码后的源图像信号中的对应基色图像信号的色坐标相同。
  14. 如权利要求13所述的投影显示系统,其特征在于,所述第一控制单元包括:
    第一信号转换模块,用于将解码后的源图像信号中的至少一种基色图像信号转换成第一基色控制信号和第二基色控制信号,其中所述第一基色控制信号和所述第二基色控制信号满足如下要求:
    Figure PCTCN2016078534-appb-100005
    Figure PCTCN2016078534-appb-100006
    Figure PCTCN2016078534-appb-100007
    其中,LC1’为存在光谱重叠的所述第一激光和所述第一荧光均全开时的亮度,LC11为存在光谱重叠的所述第一激光全开时的亮度,LC12为存在光谱重叠的所述第一荧光全开时的亮度,C1、C11、C12均为基色光标识;
    所述(x,y)为存在光谱重叠的所述第一激光和所述第一荧光均全开时的色坐标,(x1,y1)为存在光谱重叠的所述第一激光全开时的色坐标,(x2,y2)为存在光谱重叠的所述第一荧光全开时的色坐标;
    a为所述解码后的源图像信号中与存在光谱重叠的所述第一激光和第一荧光对应的基色图像信号,所述a1为所述第一基色控制信号,所述a2为所述第二基色控制信号,且a、a1、a2均为大于或等于0且小于或等于K的整数,所述K为所述空间光调制装置所能达到的最大灰度值。
  15. 如权利要求14所述的投影显示系统,其特征在于,所述第一激光为红激光,所述第一荧光为橙光波长转换材料受激发出的橙光,所述至少一种基色图像信号包括红基色图像信号,所述第一基色控制信号为第一红基色控制信号,所述第二基色控制信号为第二红基色控制信号,和/或,
    所述第一激光为青绿激光,所述第一荧光为绿光波长转换材料受激发出的绿光,所述至少一种基色图像信号包括绿基色图像信号,所述第一基色控制信号为第一绿基色控制信号,所述第二基色控制信号为第二绿基色控制信号。
  16. 如权利要求13至15任一项所述的投影显示系统,其特征在于,所述时序的至少一荧光包括时序的且存在光谱重叠的第二荧光和第三荧光,所述控制装置还包括:
    第二控制单元,用于将解码后的源图像信号中的与存在光谱重叠的所述第二荧光和第三荧光对应的至少一种基色图像信号转换成第三基色控制信号和第四基色控制信号,并通过所述第三基色控制信号和所述第四基色控制信号控制所述空间光调制装置分别对存在光谱重叠的所述第二荧光和所述第三荧光进行调制;
    其中存在光谱重叠的所述第二荧光和所述第三荧光混合后的亮度与解码后的源图像信号中的与存在光谱重叠的所述第二荧光和第三荧光对应的基色图像信号的亮度相同。
  17. 如权利要求16所述的投影显示系统,其特征在于,所述第二控制单元包括:
    第二信号转换单元,用于将解码后的源图像信号中的与存在光谱重叠的所述第二荧光和第三荧光对应的至少一种基色图像信号转换成第三基色控制信号和第四基色控制信号,其中所述第三基色控制信号和所述第四基色控制信号满足如下要求:
    Figure PCTCN2016078534-appb-100008
    其中LC2’为存在光谱重叠的所述第二荧光和所述第三荧光均全开时的亮度,LC21为存在光谱重叠的所述第二荧光全开时的亮度,LC22为存在光谱重叠的所述第三荧光全开时的亮度,C2、C21、C22均为基色光标识;
    b为所述解码后的源图像信号中的与存在光谱重叠的所述第二荧光和第三荧光对应的基色图像信号,所述b1为所述第三基色控制信号,所述b2为所述第四基色控制信号,且b、b1、b2均为大于或等于0且小于或等于K的整数,所述K为所述空间光调制装置所能达到的最大灰度值。
  18. 如权利要求17所述的投影显示系统,其特征在于,所述存在光谱重叠的第二荧光和第三荧光均为绿光波长转换材料受激后出射的绿光,所述至少一种基色图像信号为绿基色图像信号。
  19. 一种投影显示系统,包括空间光调制装置,其特征在于,还包括:
    可出射时序光的发光装置,所述时序光包括时序的至少一激光和时序的至少一荧光,所述时序的至少一激光中的至少一第一激光与所述时序的至少一荧光中的至少一第一荧光存在光谱重叠;
    与空间光调制装置连接的控制装置,所述控制装置将解码后的源图像信号转换为调制控制信号,并通过所述调制控制信号控制所述空间光调制装置对发光装置出射的所述时序光进行调制,并根据预设的与存在光谱重叠的所述第一激光和所述第一荧光对应的基色光的目标色坐标,将所述第一荧光全部用于对所述第一激光进行校正。
  20. 如权利要求19所述的投影显示系统,其特征在于,所述控制装置具体用于将解码后的源图像信号转换为包括第一基色调制信号和第二基色调制信号的调制控制信号,并通过第一基色调制信号和第二基色调制信号控制空间光调制装置分别对存在光谱重叠的第一激光和第一荧光进行调制。
PCT/CN2016/078534 2015-04-09 2016-04-06 投影显示系统及其控制方法 WO2016161933A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510165839.5 2015-04-09
CN201510165839.5A CN106162116B (zh) 2015-04-09 2015-04-09 投影显示系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2016161933A1 true WO2016161933A1 (zh) 2016-10-13

Family

ID=57072499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078534 WO2016161933A1 (zh) 2015-04-09 2016-04-06 投影显示系统及其控制方法

Country Status (2)

Country Link
CN (1) CN106162116B (zh)
WO (1) WO2016161933A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111240144A (zh) * 2018-11-29 2020-06-05 青岛海信激光显示股份有限公司 实现投影成像中数字微反射镜片驱动控制的方法
CN111381420A (zh) * 2018-12-27 2020-07-07 深圳光峰科技股份有限公司 显示设备及其控制方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106353956B (zh) * 2015-07-13 2019-02-01 深圳光峰科技股份有限公司 投影显示系统的控制方法及投影显示系统
CN108957923B (zh) 2017-05-17 2021-07-23 深圳光峰科技股份有限公司 激发光强度控制系统、方法及投影系统
CN108957922B (zh) * 2017-05-17 2020-12-18 深圳光峰科技股份有限公司 激发光强度控制系统及投影系统
CN110058478B (zh) 2018-01-19 2022-01-18 中强光电股份有限公司 照明系统与投影装置
CN110277040B (zh) * 2018-03-16 2023-08-29 深圳光峰科技股份有限公司 显示设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110310349A1 (en) * 2010-06-17 2011-12-22 Seiko Epson Corporation Light source device and projector
CN102662301A (zh) * 2012-03-11 2012-09-12 深圳市光峰光电技术有限公司 光源系统及相关投影系统
CN202674975U (zh) * 2012-07-19 2013-01-16 深圳市绎立锐光科技开发有限公司 半导体光源和发光装置
CN103913937A (zh) * 2013-01-01 2014-07-09 深圳市光峰光电技术有限公司 发光装置及其相关投影系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006111926A1 (en) * 2005-04-21 2006-10-26 Koninklijke Philips Electronics N.V. Converting a three-primary input color signal into an n-primary color drive signal
CN102418905B (zh) * 2010-12-30 2014-06-04 深圳市绎立锐光科技开发有限公司 多色发光装置
TWI467242B (zh) * 2012-05-29 2015-01-01 Delta Electronics Inc 提供複數視角影像之投影裝置
CN103576439A (zh) * 2012-07-23 2014-02-12 深圳市亿思达显示科技有限公司 一种3d激光投影机
CN103713455B (zh) * 2012-09-28 2016-12-21 深圳市绎立锐光科技开发有限公司 光源系统及相关投影系统
CN103809350B (zh) * 2013-09-03 2017-01-11 杨毅 显示系统和显示设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110310349A1 (en) * 2010-06-17 2011-12-22 Seiko Epson Corporation Light source device and projector
CN102662301A (zh) * 2012-03-11 2012-09-12 深圳市光峰光电技术有限公司 光源系统及相关投影系统
CN202674975U (zh) * 2012-07-19 2013-01-16 深圳市绎立锐光科技开发有限公司 半导体光源和发光装置
CN103913937A (zh) * 2013-01-01 2014-07-09 深圳市光峰光电技术有限公司 发光装置及其相关投影系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111240144A (zh) * 2018-11-29 2020-06-05 青岛海信激光显示股份有限公司 实现投影成像中数字微反射镜片驱动控制的方法
CN111381420A (zh) * 2018-12-27 2020-07-07 深圳光峰科技股份有限公司 显示设备及其控制方法
CN111381420B (zh) * 2018-12-27 2022-04-22 深圳光峰科技股份有限公司 显示设备及其控制方法

Also Published As

Publication number Publication date
CN106162116A (zh) 2016-11-23
CN106162116B (zh) 2018-03-20

Similar Documents

Publication Publication Date Title
WO2016161933A1 (zh) 投影显示系统及其控制方法
WO2016161934A1 (zh) 一种投影系统及其色域控制方法
JP6596505B2 (ja) 発光装置及び投影表示デバイス
US10139713B2 (en) Light source system and projection system
US8840267B2 (en) High luminance multicolor illumination devices and related methods and projection system using the same
CN109634041B (zh) 一种光源系统及投影系统
KR101502679B1 (ko) 광원 장치 및 프로젝터
JP2007218956A (ja) 投射型画像表示装置
EP2683160B1 (en) Light source apparatus and image projection apparatus
US9033518B2 (en) Illumination system comprising a rotation wheel with transmissive and reflective regions and a phosphor used for converting a light beam of a first color from the reflective or transmissive region to a second color and projection apparatus
TWI584049B (zh) 合光控制系統
CN106200217B (zh) 拼接投影显示系统一致性校正方法及装置
TW201541180A (zh) 一種光源系統及投影系統與投影方法
JP2011191602A (ja) プロジェクター
WO2018214290A1 (zh) 光源系统、投影设备及图像显示控制方法
WO2016161935A1 (zh) 一种空间光调制器调制数据的方法及投影系统
CN106353956B (zh) 投影显示系统的控制方法及投影显示系统
JP2011175000A (ja) プロジェクタ
US10795247B2 (en) Light source module and projector using the same
WO2020057296A1 (zh) 显示设备、显示设备的控制方法及计算机可读存储介质
CN102650815B (zh) 投影装置、光源系统及其改良方法
JP5798216B2 (ja) 青色光合成方法及び青色光合成装置
EP3467584B1 (en) Light source device and projection display device
CN110737162B (zh) 显示设备及投影系统
WO2019024362A1 (zh) 一种光源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776108

Country of ref document: EP

Kind code of ref document: A1