WO2019024362A1 - 一种光源 - Google Patents

一种光源 Download PDF

Info

Publication number
WO2019024362A1
WO2019024362A1 PCT/CN2017/114720 CN2017114720W WO2019024362A1 WO 2019024362 A1 WO2019024362 A1 WO 2019024362A1 CN 2017114720 W CN2017114720 W CN 2017114720W WO 2019024362 A1 WO2019024362 A1 WO 2019024362A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
light source
color wheel
blue
Prior art date
Application number
PCT/CN2017/114720
Other languages
English (en)
French (fr)
Inventor
郭祖强
杜鹏
李屹
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2019024362A1 publication Critical patent/WO2019024362A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/08Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing coloured light, e.g. monochromatic; for reducing intensity of light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present invention relates to the field of optical technologies, and in particular, to a light source.
  • Illumination brightness and color rendering are important parameters for evaluating the quality of illumination sources.
  • the color rendering of light refers to the characteristics of different colors when the light sources of different spectra are illuminated on objects of the same color.
  • the degree to which a light source appears to the color of an object is called color rendering, which is the degree of color fidelity.
  • Color quality scale (CQS) is usually used to indicate the color rendering of a light source. The higher the color rendering index of the light source, the better the color rendering performance, and the closer the color seen by the human eye is to the natural primary color of the object.
  • the inventors of the present invention have found in the long-term research and development that currently existing light sources generally use three light-emitting diode (LED) light sources to synthesize white light, but the brightness of such a light source is low.
  • LED light-emitting diode
  • the laser has good monochromaticity and high brightness, but its spectral bandwidth is very narrow, the color rendering is very low, or the yellow laser is excited by the blue laser. It produces yellow fluorescence and is mixed with blue laser to form white light. Although the color rendering of this light source is improved, its spectrum is discontinuous and still cannot meet the color rendering requirements of many lighting applications.
  • the technical problem to be solved by the present invention is to provide a light source to improve illumination brightness and improve color rendering.
  • a technical solution adopted by the present invention is: providing a light source, which is applied to the field of illumination, comprising: a blue laser source for generating a blue laser; a green light conversion material, Producing a green laser under the action of a blue laser; a yellow light converting material for generating a yellow laser under the action of a blue laser; and a red light filter for filtering the yellow laser into a red laser, wherein The blue laser, the green laser, and the red laser are sequentially emitted by the laser.
  • a light source the light The source is applied to the field of projection, including: a blue laser source for generating a blue laser; a green light conversion material for generating a green laser under the action of a blue laser; a yellow light conversion material for the blue laser A yellow laser is generated under the action; a red filter is used to filter the yellow laser into a red laser, wherein the blue laser, the green laser, and the red laser are sequentially emitted.
  • the light source further includes a color wheel
  • the color wheel is at least divided into a first color wheel partition, a second color wheel partition, and a third color wheel partition, wherein the blue laser sequentially acts on the color wheel during the rotation process.
  • a first color wheel partition, a second color wheel partition, and a third color wheel partition wherein the first color wheel partition is set to emit blue laser light
  • the green light conversion material is disposed on the second color wheel partition
  • the filter is disposed on the third color wheel partition.
  • the blue laser light is a single dominant wavelength blue laser light.
  • the blue laser has a dominant wavelength of 455 nm.
  • the blue laser light comprises two or more different dominant wavelength blue lasers.
  • the dominant wavelengths of the two or more different dominant wavelength blue lasers are at least two of 445 nm, 455 nm, and 465 nm, respectively.
  • the light source further comprises a color wheel
  • the color wheel is divided into at least a first color wheel partition and a second color wheel partition, wherein the blue laser having the shortest dominant wavelength among the two or more dominant wavelength blue lasers
  • the first color wheel partition and the second color wheel partition are sequentially applied, wherein the green light conversion material is disposed in the first color wheel partition, and the yellow light conversion material and the red light filter are disposed in the second color.
  • the light source further comprises a blue LED light source, and the blue LED light source is used to provide blue complementary light
  • the light source further comprises a red laser source for providing red complementary light.
  • the light source of the embodiment of the present invention is composed of a blue laser light source, a green light conversion material, a yellow light conversion material, and a red light filter, wherein the blue light Laser
  • the light source generates a blue laser light
  • the green light conversion material generates a green laser light under the action of the blue laser light
  • the yellow light conversion material generates a yellow laser light by the blue laser light
  • the yellow light receiving laser passes through the red light.
  • the filter is filtered into a red laser, the blue laser, the green laser and the red laser are further mixed into white light
  • the blue laser can increase the illumination brightness of the light source
  • the green laser and the red laser are compared.
  • the wide spectrum has a high color rendering value for most of the reference color samples. Therefore, the light source of the embodiment of the invention can improve the illumination brightness and improve the color rendering property, and is generally required for projection and illumination requirements. High occasions.
  • FIG. 1 is a schematic structural view of a first embodiment of a light source according to the present invention.
  • FIG. 2A is a schematic diagram of the spectrum of the light source of the embodiment of FIG. 1;
  • FIG. 2B is a schematic diagram of CQS values of the light source of the embodiment of FIG. 1 and color rendering values of the reference color samples VS 1 -VS 15;
  • FIG. 3A is a schematic diagram of the spectrum of the second embodiment of the light source of the present invention.
  • FIG. 3B is a CQS value of a second embodiment of the light source of the present invention and a color rendering value for the reference color samples VS1-VS15; [0020] FIG.
  • FIG. 4 is a schematic structural view of a third embodiment of a light source according to the present invention.
  • FIG. 5A is a schematic diagram of the spectrum of the light source of the embodiment of FIG. 4;
  • FIG. 5B is a schematic diagram of a CQS value of a light source of the embodiment of FIG. 4 and a color rendering value of the reference color sample VS 1- VS 15;
  • FIG. 6 is a schematic structural view of a fourth embodiment of the light source of the present invention.
  • FIG. 7A is a schematic diagram of a spectrum of a light source of the embodiment of FIG. 6; [0025] FIG.
  • FIG. 7B is a schematic diagram of a CQS value of a light source of the embodiment of FIG. 6 and a color rendering value of the reference color sample VS 1- VS 15;
  • FIG. 8 is a schematic structural view of a fifth embodiment of the light source of the present invention.
  • the light source of the present invention can be applied to the field of illumination such as stage lights, automobile headlights, and the like, and can also be applied to the field of projection.
  • FIG. 1 is a schematic structural view of a first embodiment of a light source according to the present invention.
  • the light source 101 of the present embodiment is applied to the field of illumination, and can also be applied to the field of projection.
  • the light source 101 of the embodiment comprises a blue laser light source 102, a green light conversion material 103, a yellow light conversion material 104 and a red light filter 105, and the blue light laser
  • the light source 102 generates a blue laser light
  • the green light converting material 103 generates a green light receiving laser under the action of the blue laser light
  • the yellow light converting material 104 generates a yellow light receiving laser under the action of the blue laser light
  • the yellow light receiving laser is red filtered.
  • the sheet 105 is filtered into a red laser, wherein the blue laser, the green laser, and the red laser are sequentially emitted, and the blue laser, the green laser, and the red laser are sequentially emitted to stimulate the human eye. Produces the effect of mixing and superimposed into white light.
  • the light source is used to illuminate the object, and the spectrum emitted by the light source is received by the human eye after being reflected by the object, so the authenticity of the color display of the light source to the object is inextricably linked with the spectral range thereof.
  • the color will produce a significant chromatic aberration.
  • the greater the degree of chromatic aberration the worse the color rendering of the color by the light source. Therefore, in order to improve the color rendering of the light source, it is necessary to make the spectrum of the light source cover the light of each color as much as possible.
  • Light of any color can be synthesized by three primary colors of red, green and blue. Among the three primary colors, the blue light has the shortest wavelength and the other two primary colors are most easily excited.
  • the light source 101 can be excited by the blue laser. The other two primary colors of light are produced, and the brightness of the light source can be increased.
  • the light source 101 of the present embodiment uses a blue laser to excite the green light converting material 103 to generate green light by the laser. Since the red conversion material has low excitation efficiency and is easy to cause white light blue shift of the mixed color, the white light spectrum of the yellow light mixed by the laser and the blue laser is discontinuous, and the color rendering property is poor. Therefore, the light source 101 of the embodiment is adopted.
  • the yellow light conversion material 104 generates a yellow laser light by the blue laser light, and the yellow laser light is filtered by the red color filter 105 into a red light receiving laser, and the blue laser light, the green light receiving laser light, and the red light receiving laser are sequentially Exposed, stimulating the human eye to produce a mixture of white light effects.
  • the green light conversion material 103 of the present embodiment may be, but not limited to, any one of a green fluorescent material, a green phosphor material, and a green quantum dot material; the yellow light conversion material 104 may be, but not limited to, a yellow fluorescent material. Any of yellow phosphorescent materials and yellow quantum dot materials.
  • the blue laser generated by the blue laser source 102 of the light source 101 of the embodiment can increase the illumination brightness of the light source 101, and the green laser and the red laser have a wide spectrum, so Most of the reference color samples have higher color rendering values, which can improve the color rendering by improving the brightness of the illumination.
  • the light source 101 of the embodiment further includes a color wheel 106, and the color wheel 106 is at least divided into a first color wheel partition 107, a second color wheel partition 108, and a third color wheel partition 109, wherein the blue laser light source 102 produced
  • the blue laser light sequentially acts on the first color wheel partition 107, the second color wheel partition 108, and the third color wheel partition 109 during the rotation of the color wheel 106, wherein the first color wheel partition 107 is arranged to emit a blue laser light
  • the color wheel 106 is a transmissive color wheel, and the first color wheel section 107 is set to transmit a blue laser; the color wheel 106 is a reflective color wheel, and the first color wheel section 107 is set to reflect a blue laser
  • the 103 is disposed on the second color wheel partition 108, and the yellow light conversion material 104 and the red light filter 105 are disposed on the third color wheel partition 109.
  • the first color wheel partition 107, the second color wheel partition 108, and the third color wheel partition 109 sequentially circulate blue, green, and red light, and different colors continuously stimulate the visual organs, ie, generate phases. Add mixed effects.
  • the order in which the blue laser light acts on the first color wheel partition 107, the second color wheel partition 108, and the third color wheel partition 109 can be varied by changing the direction of rotation of the color wheel 106.
  • the yellow light conversion material 104 and the red light filter 105 in this embodiment are respectively disposed on both sides of the third color wheel partition 109.
  • the yellow light converting material 104 and the red light filter 105 may be disposed on the light incident side of the third color wheel partition 109, that is, on the side close to the blue laser light source 102.
  • the color wheel 106 may be divided into a plurality of sets of first color wheel partitions 107, second color wheel partitions 108, and third color wheel partitions 109, and sequentially cycled, this setting may be Use the lower color wheel 060 to achieve the same lighting effect.
  • the light source 101 of the present embodiment has a CQS value Qa greater than 85.
  • the ability of a light source to develop an object is called color rendering and is obtained by comparing the color of the object with a color temperature reference light source (incandescent or daylight).
  • CQS is a common method for defining the color rendering of light sources.
  • CQS is to select 15 saturated colors uniformly distributed in the entire visible light spectrum of the reference light source as the reference color samples VS1-VS15
  • the C QS value Qa of the light source 101 is the color rendering value of the light source 101 for the 15 reference color samples VS1-VS15.
  • the color rendering index of the light source 101 can also be evaluated using a Color Rendering Index (CRl).
  • the blue laser of the embodiment is a single dominant wavelength blue laser, and the dominant wavelength is 455 nm.
  • the spectrum of the light source 101 of this embodiment is as shown in FIG. 2A, and the spectrum of the green laser is close to the cyan spectrum, and has a relatively pure green color, does not need to be filtered, has high excitation efficiency, and can further improve the illumination brightness of the light source 101, and Both the green laser and the red laser have a broad spectrum.
  • the color rendering value of the light source 101 of the present embodiment for each of the reference color samples is as shown in Fig. 2B. In the present embodiment, the light source 101 has a high color rendering value for most of the reference color samples, and Qa is 87.
  • the light source 101 of the embodiment can be well used for illumination, especially for illumination situations requiring high brightness and high color rendering.
  • the dominant wavelength of the single dominant wavelength blue laser may be other wavelengths, such as any of 445 ⁇ m-465 nm, or other wavelengths outside of the range.
  • the present invention further provides a light source of the second embodiment, and the light source disclosed in the embodiment is described on the basis of the light source of the above embodiment.
  • the blue laser of this embodiment is a multi-principal wavelength blue laser to expand the overall spectrum of the blue light band, thereby improving the color rendering of the light source 101.
  • the dominant wavelengths of the blue laser of the present embodiment are 445 nm, 455 nm, and 465 nm, respectively.
  • the spectrum of the light source (not shown) is as shown in FIG. 3A.
  • the color rendering values of the light source for each reference color sample in this embodiment are as shown in FIG. 3B.
  • the light source of the present embodiment significantly improves the CQS value Q9-Q11 of the color sample V S9-VS11 (blue cyan), and Q9-Q11 are increased to 88, 81, 82, respectively, thereby increasing the color quality index Qa to 88.
  • the light source 101 illuminates the color of each of the reference color samples VS1 - VS15 and the color difference is further reduced compared with the color development of the reference color sample.
  • the light source 101 of the present embodiment has excellent illumination color development effects for various reference color samples. .
  • the blue laser may comprise any two dominant wavelengths of 445 nm, 455 nm, and 465 nm, or include more than three dominant wavelengths.
  • the present invention further provides a light source of the third embodiment, and the light source disclosed in the embodiment is described on the basis of the light source of the above embodiment.
  • the light source 401 of this embodiment further includes a blue LED light source 402 for providing blue complementary light (specifically, the blue LED light source 402 and the blue laser light source 403
  • the blue LED light source 402 and the blue laser light source 403 are controlled to emit blue light to the first color wheel partition only in the blue light section, and the blue light laser is controlled in the green light and the red light.
  • the light source 403 emits blue light to the second color wheel partition and the third color wheel partition; of course, the blue LED light source 402 can also emit light beams not in the same optical path as the blue laser light source 403, such as vertical, as long as the blue LED light source 402 is controlled in the blue light section.
  • the blue laser light source 403 emits blue light in the same manner, and realizes the light emitted by the blue LED light source and the blue laser light combined from the first color wheel partition by the splitting and combining device; the blue complementary light has a wavelength ranging from 465 nm to 475 nm.
  • the blue LED source 402 has a wider spectrum relative to the blue laser source 403, and its wavelength just compensates for the 450-480 nm gap between the blue laser spectrum and the green laser spectrum (as shown in FIG. 5A).
  • the light source 401 of the embodiment can significantly improve the CQS value of the VS7-VS12 (green, blue cyan) Q7-Q12, Q7-Q12 respectively Raised to 94, 94, 95, 92, 90, 98, and Qa is increased to 91 (as shown in FIG. 5B).
  • the projection source 401 for illumination of this embodiment illuminates the color and reference color samples of the reference color samples VS1-VS15.
  • the projection source 401 of the embodiment of the present embodiment has excellent illumination color development effects for various reference color samples.
  • the blue laser of the present embodiment has a dominant wavelength of 445 nm, which is a higher brightness.
  • the present invention further provides a light source of the fourth embodiment, and the light source disclosed in the embodiment is described on the basis of the light source of the above embodiment.
  • the light source 601 and the color wheel may further include a light splitting unit, not shown), and FIG. 7A and FIG. 7B.
  • the light source 601 of the embodiment further includes a red laser source 602 for Red supplement light is provided (specifically, the red laser light source 60 2 can be controlled to emit red laser light and the red laser light combined from the third color wheel partition of the color wheel) in the red light section to raise the reference color sample by VS1 ( The dark red) CQS value Ql, as can be seen from FIG.
  • the light source 601 is basically colored for each reference color sample and each reference color sample is basically No color difference. It will be appreciated that in other embodiments, such as in some cases where the brightness of the red light is slightly lower, a red LED light source may be added to provide red supplemental light to reduce cost.
  • the present invention further provides a light source of the fifth embodiment, and the light source disclosed in the embodiment is described on the basis of the light source of the above embodiment.
  • the dominant wavelengths of the blue laser light of the light source 801 of the present embodiment are 445 nm, 455 nm, and 465 nm, respectively, and the color wheel 802 is divided into at least a first color wheel partition 803 and a second color wheel partition 804, wherein the minimum dominant wavelength is
  • the blue laser light a (445 nm, the light having a smaller wavelength, the higher the excitation efficiency) acts on the first color wheel partition 803 and the second color wheel partition 804 in sequence during the rotation of the color wheel 802, wherein the green light conversion material 805 is set In the first color wheel partition 803, the yellow light conversion material 806 and the red light filter 80 7 are disposed on the second color wheel partition 804.
  • the blue laser light b (455 nm and/or 465 nm) with a longer wavelength is controlled in the blue light segment, and the blue laser light a having the shortest wavelength in the green light segment is emitted to the color.
  • the first section 803 of the wheel 802 emits the blue laser light a having the shortest wavelength in the red light section to the second section 804 of the color wheel 802, thereby sequentially obtaining blue light, green light and red light.
  • Two or more different dominant wavelength blue lasers and received laser light can be guided by providing a spectroscopic unit in the optical path.
  • the color wheel 802 may be employed instead of the color wheel 802 to obtain the blue, green, and red light that is sequentially obtained.
  • the blue laser a is guided to two different optical paths, and then the green light and the red light are respectively obtained through the two different optical paths, and the blue laser b itself has another optical path. By controlling these three different light paths, blue, green and red light can be obtained in sequence.
  • the blue laser source of the light source of the embodiment of the invention can increase the illumination brightness of the light source, and the green laser and the red laser have a wide spectrum, so that most of the reference color samples have A higher color rendering value enables improved color rendering while improving illumination brightness.
  • the illumination brightness of the light source can be improved by the multi-principal wavelength blue laser, the blue light spectrum is broadened, and the color rendering property is increased.
  • the blue light spectrum can be widened, and the color spectrum can be increased by adding a blue LED.
  • the embodiment of the invention can provide red complementary light, widen the red light spectrum, and increase color rendering.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)
  • Semiconductor Lasers (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种光源(101),可应用于投影领域和照明领域,包括蓝光激光光源(102),用于产生蓝色激光;绿光转换材料(103),用于在蓝色激光的作用下产生绿色受激光;黄光转换材料(104),用于在蓝色激光的作用下产生黄色受激光;红光滤光片(105),用于将黄色受激光过滤成红色受激光,其中蓝色激光、绿色受激光以及红色受激光时序地出射。通过这种方式,能够提高照明亮度,且提升其显色性。

Description

一种光源 技术领域
[0001] 本发明涉及光学技术领域, 特别是涉及一种光源。
背景技术
[0002] 照明亮度及显色性是评价照明光源优劣的重要参数, 光的显色性是指不同光谱 的光源照射在同一颜色的物体上吋, 所呈现不同颜色的特性。 光源对物体颜色 呈现的程度称为显色性, 也就是颜色的逼真程度。 通常用色质指数 (Color Quality Scale, CQS) 来表示光源的显色性。 光源的显色指数愈高, 其显色性能 愈好, 人眼所看到的颜色也就越接近物体的自然原色。
技术问题
[0003] 本发明的发明人在长期的研发中发现, 目前现有的光源一般采用三种单基色发 光二极管 (Light Emitting Diode, LED) 光源合成白光, 但这种光源的亮度较低
, 或者使用三种单基色纯激光混合形成白光, 激光具有很好的单色性, 亮度较 高, 但其光谱带宽都非常窄, 显色性很低, 再或者由蓝光激光激发黄光荧光粉 产生黄光荧光, 并与蓝光激光混合成白光, 虽然这种光源的显色性有所提高, 但其光谱是非连续的, 仍然不能满足很多照明场合的显色性要求。
问题的解决方案
技术解决方案
[0004] 本发明主要解决的技术问题是提供一种光源, 以提高照明亮度, 且提高其显色 性。
[0005] 为解决上述技术问题, 本发明采用的一个技术方案是: 提供一种光源, 该光源 应用于照明领域, 包括: 蓝光激光光源, 用于产生蓝色激光; 绿光转换材料, 用于在蓝色激光的作用下产生绿色受激光; 黄光转换材料, 用于在蓝色激光的 作用下产生黄色受激光; 红光滤光片, 用于将黄色受激光过滤成红色受激光, 其中蓝色激光、 绿色受激光以及红色受激光吋序地出射。
[0006] 为解决上述技术问题, 本发明采用的另一个技术方案是: 提供一种光源, 该光 源应用于投影领域, 包括: 蓝光激光光源, 用于产生蓝色激光; 绿光转换材料 , 用于在蓝色激光的作用下产生绿色受激光; 黄光转换材料, 用于在蓝色激光 的作用下产生黄色受激光; 红光滤光片, 用于将黄色受激光过滤成红色受激光 , 其中蓝色激光、 绿色受激光以及红色受激光吋序地出射。
[0007] 其中, 上述光源进一步包括色轮, 该色轮至少划分成第一色轮分区、 第二色轮 分区和第三色轮分区, 其中蓝色激光在色轮的转动过程中依次作用于第一色轮 分区、 第二色轮分区和第三色轮分区, 其中第一色轮分区设置成出射蓝色激光 , 绿光转换材料设置于第二色轮分区, 黄光转换材料和红光滤光片设置于第三 色轮分区。
[0008] 其中, 上述蓝色激光为单主波长蓝色激光。
[0009] 其中, 上述蓝色激光的主波长为 455nm。
[0010] 其中, 上述蓝色激光包括两个以上不同主波长蓝色激光。
[0011] 其中, 上述两个以上不同主波长蓝色激光的主波长分别为 445nm、 455nm和 465 nm中的至少两个。
[0012] 其中, 上述光源进一步包括色轮, 该色轮至少划分成第一色轮分区和第二色轮 分区, 其中所述两个以上不同主波长蓝色激光中主波长最短的蓝色激光在色轮 的转动过程中依次作用于第一色轮分区、 第二色轮分区, 其中绿光转换材料设 置于第一色轮分区, 黄光转换材料和红光滤光片设置于第二色轮分区; 所述两 个以上不同主波长蓝色激光中除主波长最短的蓝色激光外的其他蓝色激光、 经 所述第一色轮分区后出射的绿色受激光、 经所述第二色轮分区后出射的红色受 激光吋序地出射。
[0013] 其中, 上述光源进一步包括蓝光 LED光源, 蓝光 LED光源用于提供蓝色补充光
[0014] 其中, 上述光源进一步包括红光激光光源, 用于提供红色补充光。
发明的有益效果
有益效果
[0015] 本发明实施例的有益效果是: 区别于现有技术, 本发明实施例的光源由蓝光激 光光源、 绿光转换材料、 黄光转换材料及红光滤光片组成, 其中, 该蓝光激光 光源产生蓝色激光, 该绿光转换材料在该蓝色激光的作用下产生绿色受激光, 该黄光转换材料在该蓝色激光的作用下产生黄色受激光, 且该黄色受激光经该 红色滤光片过滤成红色受激光, 该蓝色激光、 该绿色受激光以及该红色受激光 进一步混色成白光, 该蓝色激光能够增加光源的照明亮度, 且该绿色受激光及 红色受激光具有较宽的光谱, 对绝大多数的基准色样都有较高的显色值, 因此 , 本发明实施例的光源能够提高照明亮度, 且提高其显色性, 通用在需要投影 的场合及照明要求高的场合。
对附图的简要说明
附图说明
[0016] 图 1是本发明光源第一实施例的结构示意图;
[0017] 图 2A是图 1实施例光源的光谱示意图;
[0018] 图 2B是图 1实施例光源的 CQS值及对基准色样 VS 1 -VS 15的显色值的示意图; [0019] 图 3A是本发明光源第二实施例的光谱示意图;
[0020] 图 3B是本发明光源第二实施例的 CQS值及对基准色样 VS1-VS15的显色值的示 意图;
[0021] 图 4是本发明光源第三实施例的结构示意图;
[0022] 图 5A是图 4实施例光源的光谱示意图;
[0023] 图 5B是图 4实施例光源的 CQS值及对基准色样 VS 1- VS 15的显色值的示意图; [0024] 图 6是本发明光源第四实施例的结构示意图;
[0025] 图 7A是图 6实施例光源的光谱示意图;
[0026] 图 7B是图 6实施例光源的 CQS值及对基准色样 VS 1- VS 15的显色值的示意图; [0027] 图 8是本发明光源第五实施例的结构示意图。
本发明的实施方式
[0028] 本发明的光源可应用于舞台灯、 汽车大灯等照明领域, 也可应用于投影领域。
[0029] 请参阅图 1, 图 1是本发明光源第一实施例的结构示意图。 本实施例的光源 101 即应用于照明领域, 也可以应用于投影领域。 本实施例光源 101包括蓝光激光光 源 102、 绿光转换材料 103、 黄光转换材料 104及红光滤光片 105组成, 蓝光激光 光源 102产生蓝色激光, 绿光转换材料 103在蓝色激光的作用下产生绿色受激光 , 黄光转换材料 104在蓝色激光的作用下产生黄色受激光, 且该黄色受激光经红 色滤光片 105过滤成红色受激光, 其中该蓝色激光、 该绿色受激光以及该红色受 激光吋序地出射, 该蓝色激光、 该绿色受激光以及该红色受激光吋序地出射, 刺激人眼产生混合叠加成白光的效果。
[0030] 在照明系统中, 光源用于对物体进行照明, 光源发出的光谱经过物体反射后被 人眼所接收, 因此光源对物体的色彩显示的真实性与其光谱范围有着必然的联 系。 当光源光谱中很少或缺乏物体在基准光源下所反射的主波吋, 会使颜色产 生明显的色差。 色差程度愈大, 光源对该色的显色性愈差。 因此, 为提高光源 的显色性, 就需要使光源的光谱尽可能覆盖各颜色光。
[0031] 任何颜色的光都可以由红、 绿、 蓝三基色光合成, 在该三基色中, 蓝光波长最 短, 最容易激发其它两种基色光, 本实施例光源 101采用蓝色激光不仅能激发产 生其它两种基色光, 而且能够提高光源的亮度。 本实施例光源 101采用蓝色激光 激发绿光转换材料 103产生绿色光受激光。 因红色转换材料的激发效率低, 且容 易造成混色成的白光蓝移, 而黄光受激光与蓝色激光混色成的白光光谱不连续 , 显色性较差, 因此, 本实施例光源 101采用黄光转换材料 104在蓝色激光的作 用下产生黄色受激光, 该黄色受激光经红色滤光片 105过滤成红色受激光, 该蓝 色激光、 该绿色受激光以及该红色受激光吋序地出射, 刺激人眼产生混合叠加 成白光的效果。
[0032] 本实施例的绿光转换材料 103可以是但不局限于绿色荧光材料、 绿色磷光材料 、 绿色量子点材料中的任意一种; 黄光转换材料 104可以是但不局限于黄色荧光 材料、 黄色磷光材料、 黄色量子点材料中的任意一种。
[0033] 区别于现有技术, 本实施例光源 101的蓝光激光光源 102产生的蓝色激光能够增 加光源 101的照明亮度, 且绿色受激光及红色受激光具有较宽的光谱, 因此对绝 大多数的基准色样都有较高的显色值, 从而能够在提高照明亮度的同吋, 提高 显色性。
[0034] 可选地, 本实施例光源 101进一步包括色轮 106, 色轮 106至少划分成第一色轮 分区 107、 第二色轮分区 108和第三色轮分区 109, 其中蓝色激光光源 102所产生 的蓝色激光在色轮 106的转动过程中依次作用于第一色轮分区 107、 第二色轮分 区 108和第三色轮分区 109, 其中第一色轮分区 107设置成出射蓝色激光 (色轮 10 6采用透射式色轮, 则第一色轮分区 107设置为透射蓝激光; 色轮 106采用反射式 色轮, 则第一色轮分区 107设置为反射蓝激光) , 绿光转换材料 103设置于第二 色轮分区 108, 黄光转换材料 104和红光滤光片 105设置于第三色轮分区 109。 随 着色轮 106的转动, 第一色轮分区 107、 第二色轮分区 108和第三色轮分区 109会 依次循环出射蓝光、 绿光及红光, 不同的颜色连续刺激视觉器官, 即产生相加 混合的效果。 在其它实施例中, 可以通过改变色轮 106的旋转方向来改变蓝色激 光作用于第一色轮分区 107、 第二色轮分区 108和第三色轮分区 109的顺序。
[0035] 本实施例中的黄光转换材料 104及红光滤光片 105分别设置在第三色轮分区 109 的两侧。 当然, 在其它实施例中, 可以将黄光转换材料 104及红光滤光片 105均 设置与第三色轮分区 109的入光侧, 即靠近蓝色激光光源 102的一侧。
[0036] 当然, 在其它实施例中, 可将色轮 106分成多组第一色轮分区 107、 第二色轮分 区 108和第三色轮分区 109, 并依次循环设置, 这种设置方式可以用更低的色轮 1 06的转速来获得相同的照明效果。
[0037] 其中, 本实施例的光源 101的 CQS值 Qa大于 85。 光源对物体的显色能力称为显 色性, 是通过与同色温基准光源 (白炽灯或日光) 下物体外观颜色的比较而获 得的。 CQS为目前定义光源显色性评价的普遍方法。 CQS是选取 15种平均分布 于基准光源的整个可见光光谱中的饱和色作为基准色样 VS1-VS15 , 光源 101的 C QS值 Qa是光源 101对这 15种基准色样 VS1-VS15的显色值 Q1-Q5的均方根值。 当 然, 在其它实施例中, 还可以采用显色指数 (Color Rendering Index, CRl) 来评 价光源 101的显色性。
[0038] 其中, 本实施例的蓝色激光为单主波长蓝色激光, 该主波长为 455nm。 本实施 例光源 101的光谱如图 2A所示, 绿色受激光的光谱靠近青光光谱, 且本身具有较 纯的绿色, 不需要进行滤波, 激发效率高, 能进一步提高光源 101的照明亮度, 且绿色受激光及红色受激光均具有较宽的光谱。 本实施例光源 101对各基准色样 的显色值如图 2B所示, 本实施例照光源 101对绝大多数的基准色样有较高的显色 值, Qa为 87。 本实施例光源 101对基准色样 VS1-VS15的显色与基准色样的显色 相比, 颜色差异很小。 因此, 本实施例光源 101能够很好地用于照明, 特别是一 些高亮度、 高显色性要求的照明场合。
[0039] 当然, 在其它实施例中, 单主波长蓝色激光的主波长可以是其他波长, 如 445η m-465nm中的任意波长, 或该范围外的其它波长。
[0040] 本发明进一步提供第二实施例的光源, 本实施例所揭示的光源在上述实施例的 光源的基础上进行描述。 本实施例的蓝色激光为多主波长蓝色激光, 以扩展蓝 光波段的整体光谱, 进而提升光源 101的显色性。 本实施例的蓝色激光的主波长 分别为 445nm、 455nm及 465nm, 此吋, 光源 (未标示) 光谱如图 3A所示, 本实 施例光源对各基准色样的显色值如图 3B所示, 本实施例光源明显提升了对色样 V S9-VS11 (蓝青色) 的 CQS值 Q9-Q11 , Q9-Q11分别提高到了 88、 81、 82, 从而 使色质指数 Qa提高到 88。 本实施例光源 101照明各基准色样 VS1-VS15的显色与 基准色样的显色相比, 颜色差异进一步缩小, 本实施例光源 101对各种基准色样 均具有优良的照明显色效果。
[0041] 当然在其它实施例中, 蓝色激光可以包含 445nm、 455nm及 465nm中任意两种 主波长, 或包括三个以上的主波长。
[0042] 本发明进一步提供第三实施例的光源, 本实施例所揭示的光源在上述实施例的 光源的基础上进行描述。 请一并参阅图 4、 图 5A及图 5B, 本实施例光源 401进一 步包括蓝光 LED光源 402, 蓝光 LED光源 402用于提供蓝色补充光 (具体地, 蓝光 LED光源 402可以和蓝光激光光源 403平行设置以同一光路发射光束, 且只在蓝光 吋段控制蓝光 LED光源 402和蓝光激光光源 403同吋发射蓝光至第一色轮分区, 而 在绿光吋段和红光吋段, 控制蓝光激光光源 403发射蓝光至第二色轮分区和第三 色轮分区; 当然, 蓝光 LED光源 402也可以和蓝光激光光源 403不以同一光路发射 光束, 如垂直, 只要在蓝光吋段控制蓝光 LED光源 402和蓝光激光光源 403同吋发 射蓝光, 并通过分光合光装置实现蓝光 LED光源发射的光和从第一色轮分区出射 的蓝激光合光) ; 蓝色补充光的波长范围为 465nm-475nm。 蓝光 LED光源 402相 对于蓝光激光光源 403而言, 具有较宽的光谱, 且其波长刚好可以弥补蓝色激光 光谱与绿色受激光光谱之间 450-480nm的空缺 (如图 5A所示) , 因此本实施例光 源 401能明显提升了 VS7-VS12 (绿色、 蓝青色) 的 CQS值 Q7-Q12, Q7-Q12分别 提高到了 94、 94、 95、 92、 90、 98, Qa提升为 91 (如图 5B所示) , 本实施例用 于照明的投影源 401照明基准色样 VS1-VS15的显色与基准色样的显色相比, 颜色 差异很小, 本实施例的本实施例照明的投影源 401对各种基准色样均具有优良的 照明显色效果。 本实施例的蓝激激光的主波长为 445nm, 以现实更高的亮度。
[0043] 本发明进一步提供第四实施例的光源, 本实施例所揭示的光源在上述实施例的 光源的基础上进行描述。 请一并参阅图 6 (光源 601和色轮之间还可以包括分光 合光装置, 图中没有示出) 、 图 7A及图 7B, 本实施例光源 601进一步包括红光激 光光源 602, 用于提供红色补充光 (具体可以只在红光吋段控制红光激光光源 60 2发射红激光与从色轮第三色轮分区出射的红色受激光合光) , 以提升基准色样 升了 VS1 (暗红色) 的 CQS值 Ql, 从图 7B中可以看出, 加入红激光 602后, Q1提 升至 99, Qa达到 95, 本实施例光源 601对各基准色样的显色与各基准色样基本无 色差。 可以理解, 在其他实施例中, 比如在一些对红光亮度要求稍低一点的场 合, 也可以加入红色 LED光源提供红色补充光, 以降低成本。
[0044] 本发明进一步提供第五实施例的光源, 本实施例所揭示的光源在上述实施例的 光源的基础上进行描述。 请参阅图 8, 本实施例光源 801的蓝色激光的主波长分 别为 445nm、 455nm及 465nm, 色轮 802至少划分成第一色轮分区 803和第二色轮 分区 804, 其中最小主波长的蓝色激光 a (445nm, 波长越小的光, 激发效率越高 ) 在色轮 802的转动过程中依次作用于第一色轮分区 803及第二色轮分区 804, 其 中绿光转换材料 805设置于第一色轮分区 803, 黄光转换材料 806和红光滤光片 80 7设置于第二色轮分区 804。 通过吋序控制不同波长的蓝色激光出射, 在蓝光吋 段控制波长较长的蓝色激光 b (455nm和 /或 465nm) 出射, 在绿光吋段控制波长 最短的蓝色激光 a出射到色轮 802的第一分区 803, 在红光吋段控制波长最短的蓝 色激光 a出射到色轮 802的第二分区 804, 从而吋序地得到蓝光、 绿光及红光。
[0045] 两种以上不同主波长的蓝色激光及受激光可以通过在光路中设置分光合光装置 来进行引导。
[0046] 当然, 在其它实施例中, 可以采用其它方法或装置来代替色轮 802得到吋序得 到的蓝光、 绿光及红光。 如将蓝色激光 a引导到两个不同的光路上, 然后通过这 两个不同的光路分别获得绿光及红光, 且蓝色激光 b本身还具有另一个光路, 通 过控制这三个不同的光路, 就能吋序的得到蓝光、 绿光及红光。
[0047] 区别于现有技术, 本发明实施例光源的蓝光激光光源能够增加光源的照明亮度 , 且绿色受激光及红色受激光具有较宽的光谱, 因此对绝大多数的基准色样都 有较高的显色值, 从而能够在提高照明亮度的同吋, 提高显色性。
[0048] 此外, 本发明实施例通过多主波长蓝光激光能够提升光源的照明亮度, 扩宽蓝 光光谱, 增加显色性; 本发明实施例通过增加蓝光 LED,能够扩宽蓝光光谱, 增 加显色性; 本发明实施例通过增加红光激光光源, 能够提供红色补充光,扩宽红 光光谱, 增加显色性。
[0049] 以上所述仅为本发明的实施方式, 并非因此限制本发明的专利范围, 凡是利用 本发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运用 在其他相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权利要求书
[权利要求 1] 1.一种光源, 其特征在于, 所述光源应用于照明领域, 包括:
蓝光激光光源, 用于产生蓝色激光;
绿光转换材料, 用于在所述蓝色激光的作用下产生绿色受激光; 黄光转换材料, 用于在所述蓝色激光的作用下产生黄色受激光; 红光滤光片, 用于将所述黄色受激光过滤成红色受激光, 其中所述蓝 色激光、 所述绿色受激光以及所述红色受激光吋序地出射。
[权利要求 2] 2.—种光源, 其特征在于, 所述光源应用于投影领域, 包括:
蓝光激光光源, 用于产生蓝色激光;
绿光转换材料, 用于在所述蓝色激光的作用下产生绿色受激光; 黄光转换材料, 用于在所述蓝色激光的作用下产生黄色受激光; 红光滤光片, 用于将所述黄色受激光过滤成红色受激光, 其中所述蓝 色激光、 所述绿色受激光以及所述红色受激光吋序地出射。
[权利要求 3] 3.根据权利要求 1或 2所述的光源, 其特征在于, 所述光源进一步包括 色轮, 所述色轮至少划分成第一色轮分区、 第二色轮分区和第三色轮 分区, 其中所述蓝色激光在所述色轮的转动过程中依次作用于所述第 一色轮分区、 第二色轮分区和第三色轮分区, 其中所述第一色轮分区 设置成出射所述蓝色激光, 所述绿光转换材料设置于所述第二色轮分 区, 所述黄光转换材料和所述红光滤光片设置于所述第三色轮分区。
[权利要求 4] 4.根据权利要求 1或 2所述的光源, 其特征在于, 所述蓝色激光为单主 波长蓝色激光。
[权利要求 5] 5.根据权利要求 4所述的光源, 其特征在于, 所述蓝色激光的主波长 为 455nm。
[权利要求 6] 6.根据权利要求 1或 2所述的光源, 其特征在于, 所述蓝色激光包括两 个以上不同主波长蓝色激光。
[权利要求 7] 7.根据权利要求 6所述的光源, 其特征在于, 所述两个以上不同主波 长蓝色激光的主波长分别为 445nm、 455nm和 465nm中的至少两个。
[权利要求 8] 8.根据权利要求 6所述的光源, 其特征在于, 所述光源进一步包括色 轮, 所述色轮至少划分成第一色轮分区和第二色轮分区, 其中所述两 个以上不同主波长蓝色激光中主波长最短的蓝色激光在所述色轮的转 动过程中依次作用于所述第一色轮分区、 第二色轮分区, 其中所述绿 光转换材料设置于所述第一色轮分区, 所述黄光转换材料和所述红光 滤光片设置于所述第二色轮分区;
所述两个以上不同主波长蓝色激光中除主波长最短的蓝色激光外的其 他蓝色激光、 经所述第一色轮分区后出射的绿色受激光、 经所述第二 色轮分区后出射的红色受激光吋序地出射。
[权利要求 9] 9.根据权利要求 1或 2所述的光源, 其特征在于, 所述光源进一步包括 蓝光 LED光源, 所述蓝光 LED光源用于提供蓝色补充光。
[权利要求 10] 10.根据权利要求 1或 2所述的光源, 其特征在于, 所述光源进一步包 括红光激光光源, 用于提供红色补充光。
PCT/CN2017/114720 2017-07-31 2017-12-06 一种光源 WO2019024362A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710644830.1 2017-07-31
CN201710644830.1A CN109539188A (zh) 2017-07-31 2017-07-31 一种光源

Publications (1)

Publication Number Publication Date
WO2019024362A1 true WO2019024362A1 (zh) 2019-02-07

Family

ID=65232331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114720 WO2019024362A1 (zh) 2017-07-31 2017-12-06 一种光源

Country Status (2)

Country Link
CN (1) CN109539188A (zh)
WO (1) WO2019024362A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021219442A1 (en) * 2020-04-30 2021-11-04 Signify Holding B.V. High intensity light source with high cri for low ctt using green laser pumped phosphor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114815484A (zh) * 2019-06-20 2022-07-29 青岛海信激光显示股份有限公司 激光投影设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650812A (zh) * 2011-11-07 2012-08-29 深圳市光峰光电技术有限公司 光源组件、光源系统及投影装置
CN103424837A (zh) * 2012-05-18 2013-12-04 台达电子工业股份有限公司 荧光剂色轮及其所适用的光源系统
US20140211169A1 (en) * 2013-01-28 2014-07-31 Panasonic Corporation Lighting device and image display device
CN104298059A (zh) * 2014-10-20 2015-01-21 海信集团有限公司 一种激光光源和投影显示装置
CN104375351A (zh) * 2013-08-13 2015-02-25 欧司朗股份有限公司 进行波长转换的光模块和方法和提供波长转换元件的方法
CN104597698A (zh) * 2013-10-31 2015-05-06 中强光电股份有限公司 波长转换滤光模块与光源系统
TW201544891A (zh) * 2014-05-26 2015-12-01 Delta Electronics Inc 光源系統及其適用之投影設備

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103246145B (zh) * 2012-02-09 2015-02-18 台达电子工业股份有限公司 光源系统
DE102012213036A1 (de) * 2012-07-25 2014-01-30 Osram Gmbh Beleuchtungsvorrichtung mit leuchtstoffrad
CN104020632B (zh) * 2013-02-28 2016-08-24 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN105446005A (zh) * 2015-12-21 2016-03-30 南京先进激光技术研究院 量子点背光源及液晶显示装置
CN106154719B (zh) * 2016-07-10 2017-10-10 中山市捷信科技服务有限公司 一种多光源投影仪
CN106125482A (zh) * 2016-09-12 2016-11-16 海信集团有限公司 激光光源及激光投影设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650812A (zh) * 2011-11-07 2012-08-29 深圳市光峰光电技术有限公司 光源组件、光源系统及投影装置
CN103424837A (zh) * 2012-05-18 2013-12-04 台达电子工业股份有限公司 荧光剂色轮及其所适用的光源系统
US20140211169A1 (en) * 2013-01-28 2014-07-31 Panasonic Corporation Lighting device and image display device
CN104375351A (zh) * 2013-08-13 2015-02-25 欧司朗股份有限公司 进行波长转换的光模块和方法和提供波长转换元件的方法
CN104597698A (zh) * 2013-10-31 2015-05-06 中强光电股份有限公司 波长转换滤光模块与光源系统
TW201544891A (zh) * 2014-05-26 2015-12-01 Delta Electronics Inc 光源系統及其適用之投影設備
CN104298059A (zh) * 2014-10-20 2015-01-21 海信集团有限公司 一种激光光源和投影显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021219442A1 (en) * 2020-04-30 2021-11-04 Signify Holding B.V. High intensity light source with high cri for low ctt using green laser pumped phosphor

Also Published As

Publication number Publication date
CN109539188A (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
US8840267B2 (en) High luminance multicolor illumination devices and related methods and projection system using the same
JP5253176B2 (ja) 複数セットの光源を備えた照明システム
KR102088741B1 (ko) 발광 장치 및 프로젝션 시스템
TWI567472B (zh) 一種光源系統及投影系統與投影方法
US6273589B1 (en) Solid state illumination source utilizing dichroic reflectors
CN105652572B (zh) 光源系统及投影设备
CN107430319B (zh) 投影仪和图像光投射方法
US20090187234A1 (en) Colored and white light generating lighting device
US20160366745A1 (en) A light emitting module, a lamp, a luminaire and a method of illuminating an object
CN107479311A (zh) 光源系统及投影设备
WO2016161933A1 (zh) 投影显示系统及其控制方法
TWI610457B (zh) 白光光源裝置
JP2009054633A (ja) Led照明灯具
WO2019024362A1 (zh) 一种光源
TWI397192B (zh) 白色發光二極體
CN102650815B (zh) 投影装置、光源系统及其改良方法
TWI526770B (zh) 藍光合成方法及系統
EP3467584B1 (en) Light source device and projection display device
KR20040019177A (ko) 백색광 발광 다이오드의 제조 방법
CN111198475A (zh) 一种蓝光产生方法及照明系统
CN210090899U (zh) 一种混合投影光源
CN209962081U (zh) 一种投影机光源
CN111163556A (zh) 一种实现任意色彩led光源的配光方法
CN215982095U (zh) 一种激光照明装置、设备
CN104009029B (zh) 固态发光装置和投影显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920031

Country of ref document: EP

Kind code of ref document: A1