WO2018214290A1 - 光源系统、投影设备及图像显示控制方法 - Google Patents

光源系统、投影设备及图像显示控制方法 Download PDF

Info

Publication number
WO2018214290A1
WO2018214290A1 PCT/CN2017/096515 CN2017096515W WO2018214290A1 WO 2018214290 A1 WO2018214290 A1 WO 2018214290A1 CN 2017096515 W CN2017096515 W CN 2017096515W WO 2018214290 A1 WO2018214290 A1 WO 2018214290A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image
region
data signal
color
Prior art date
Application number
PCT/CN2017/096515
Other languages
English (en)
French (fr)
Inventor
郭祖强
杜鹏
李屹
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2018214290A1 publication Critical patent/WO2018214290A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/04Arrangement of electric circuit elements in or on lighting devices the elements being switches
    • F21V23/0442Arrangement of electric circuit elements in or on lighting devices the elements being switches activated by means of a sensor, e.g. motion or photodetectors
    • F21V23/0457Arrangement of electric circuit elements in or on lighting devices the elements being switches activated by means of a sensor, e.g. motion or photodetectors the sensor sensing the operating status of the lighting device, e.g. to detect failure of a light source or to provide feedback to the device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0025Combination of two or more reflectors for a single light source
    • F21V7/0033Combination of two or more reflectors for a single light source with successive reflections from one reflector to the next or following
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/06Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for filtering out ultraviolet radiation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2046Positional adjustment of light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/08Sequential recording or projection

Definitions

  • the present invention relates to a light source system, a projection device, and an image display control method that can be used in a projection device.
  • laser sources are becoming more and more widely used in display (such as projection field) and illumination. Due to the high energy density and small optical expansion, laser sources have gradually replaced bulbs and LEDs in the field of high-intensity light sources. light source.
  • the light source system that uses the first light source to excite the phosphor to generate the desired light (such as the blue laser to excite the yellow phosphor to generate white light or a specific color of light) has the advantages of high luminous efficiency, good stability, low cost, and the like. Become the mainstream of the application.
  • the number of spatial modulators is mainly divided into a monolithic system and a three-chip system.
  • the light source needs to sequentially provide three colors of RGB light for illumination, and finally on the screen. A colorful picture appears on the top.
  • the three-chip system the light source needs to provide a white light source, and splits the light in the light machine, respectively illuminating three spatial modulators, and finally the combined light presents a color picture on the screen.
  • the blue light source is excited by the blue laser as the excitation light source, which has become the mainstream of the application because of its high luminous efficiency, good stability and low cost.
  • FIG. 1 is a schematic structural view of a prior art light source system 100
  • FIG. 2 is a schematic structural view of a region beam splitter 106 of the light source system 100 shown in FIG.
  • the light source system includes an excitation light source 101, a light homogenizing device 103, a regional beam splitter 106, a collecting lens 104, The scattering powder sheet 105, the relay lens 107, and the square bar 108.
  • the excitation light source 101 is generally a blue laser source that emits an excitation beam through the homogenizing device 103 and passes through the region beam splitter 106. As shown in FIG. 2, the center of the region beam splitter 106 The area coating is a blue-coated coating with a mirror outside the area.
  • the excitation light is collected by the collecting lens 104 and then incident on the scattering powder sheet 105.
  • the excitation light is scattered by the scattering powder sheet 105 and reflected in the form of Lambertian light, and there is 5 in the process of scattering.
  • the self-absorption loss of the scattering powder sheet of about %, the reflected excitation light is collected by the collecting lens 104 and is emitted.
  • the size of the collecting lens 104 is limited, the light of the Langbo divergence cannot be completely collected, and 5% is present. ⁇ 10% loss.
  • the excitation light is further reflected at the region beam splitter 106, and the excitation light is transmitted at the central region to lose 8% to 10% of energy (ie, regional loss), resulting in the light source system 100.
  • the light utilization rate is low.
  • the relay lens 107 is imaged to the entrance of the square bar 108, and finally exits from the square bar 108 outlet.
  • the center portion of the beam lacks the blue excitation light, and therefore, the light emitted from the exit of the square bar 108 has a color unevenness.
  • the utilization rate of the excitation light ie, blue light
  • the self-absorption loss of the scattering powder sheet 105 the loss of collection efficiency
  • the loss of the area coating film the loss of the area coating film. It also affects the uniformity of the light source system.
  • a light source system includes an excitation light source, an auxiliary light source, and a wavelength conversion device.
  • the excitation light source is for emitting excitation light
  • the wavelength conversion device includes a conversion region and a reflection region
  • the wavelength conversion device periodically moves such that the conversion region and the reflection region are periodically and periodically located in the excitation light.
  • the conversion area is for converting the excitation light into a laser light and emitting the light
  • the reflection area is for reflecting and emitting the excitation light
  • the laser light and the light emitted from the wavelength conversion device The excitation light is located on the same side of the wavelength conversion device but the optical axes do not coincide and are emitted from the wavelength conversion device
  • the received laser light and the excitation light are both directed to the light exit channel, the auxiliary light source is for emitting auxiliary light, the auxiliary light does not coincide with the spectrum of the received laser light, and the auxiliary light is also guided to The light exit channel.
  • a projection apparatus includes a light source system including an excitation light source, an auxiliary light source, and a wavelength conversion device.
  • the excitation light source is for emitting excitation light
  • the wavelength conversion device includes a conversion region and a reflection region, and the wavelength conversion device periodically moves such that the conversion region and the reflection region are periodically and periodically located in the excitation light.
  • the conversion area is for converting the excitation light into a laser light and emitting the light
  • the reflection area is for reflecting and emitting the excitation light
  • the laser light and the light emitted from the wavelength conversion device The excitation light is located on the same side of the wavelength conversion device but the optical axes do not coincide, and the laser light and the excitation light emitted from the wavelength conversion device are both guided to the light exit channel, and the auxiliary light source is used.
  • the auxiliary light is emitted, the auxiliary light does not coincide with the spectrum of the laser light, and the auxiliary light is also guided to the light exit channel.
  • a projection apparatus includes a light source system including an excitation light source, an infrared light source, and a wavelength conversion device.
  • the light source system includes an excitation light source, an auxiliary light source, and a wavelength conversion device.
  • the excitation light source is for emitting excitation light
  • the wavelength conversion device includes a conversion region and a reflection region, and the wavelength conversion device periodically moves such that the conversion region and the reflection region are periodically and periodically located in the excitation light.
  • the conversion area is for converting the excitation light into a laser light and emitting the light
  • the reflection area is for reflecting and emitting the excitation light
  • the laser light and the light emitted from the wavelength conversion device The excitation light is located on the same side of the wavelength conversion device but the optical axes do not coincide, and the laser light and the excitation light emitted from the wavelength conversion device are both guided to the light exit channel, and the infrared light source is used Infrared light is emitted, which is used to modulate an infrared image that does not coincide with the spectrum of the received laser light, which is also directed to the light exit channel.
  • An image display control method includes the following steps:
  • Receiving image data generating an image display data signal based on the image data
  • Image modulation of the infrared light based on an image display data signal produces infrared image light.
  • first, second, and third colors are respectively red, green, and blue primary colors.
  • the method further includes the following steps:
  • a fourth color light is provided, and the fourth color light is image-modulated based on the image display data signal to generate a fourth color image light.
  • the image display data signal includes a first color data signal, a second color data signal, a third color data signal, and a fourth color data signal
  • the method is based on The first color data signal performs image modulation on the first color light to generate first color image light, and image modulates the second color light based on the second color data signal to generate second color image light
  • the third color data signal performs image modulation on the third color light to generate third color image light
  • Infrared image light is generated by image modulating the infrared light based on at least one of the four color data signals.
  • the modulation period of one frame of image includes four different time segments, which are a first subframe image modulation period, a second subframe image modulation period, and a third subframe image modulation.
  • a period of time and a fourth sub-frame image modulation period in the method, the second color image light is generated by performing image modulation on the second color light based on the second color data signal in the first sub-frame image modulation period, Performing image modulation on the fourth color light based on the fourth color data signal to generate fourth color image light in the second subframe image modulation period, and based on the third in the third subframe image modulation period
  • the color data signal is image-modulated to generate the third color image light
  • the fourth sub-frame image modulation period is based on the first color data signal pair
  • the first color light and the infrared light are image modulated to generate first color image light and infrared image light.
  • the image display data signal includes a first color data signal, a second color data signal, a third color data signal, and an infrared data signal
  • the method based on the First color data signal image modulating the first color light to generate first color image light, image modulating the second color light based on the second color data signal to generate second color image light, based on The third color data signal performs image modulation on the third color light to generate third color image light, and image-modulates the infrared light based on the infrared data signal to generate infrared image light.
  • the method further includes: decoding the image data to obtain the first to third color data signals, and using one of the first to third color data signals as the infrared data signal.
  • the method further includes: using the first color data signal as the infrared data signal.
  • the modulation period of one frame of image includes four different time segments, which are a first subframe image modulation period, a second subframe image modulation period, and a third subframe image modulation. a period of time and a fourth sub-frame image modulation period, wherein, in the method, image-modulating the second color light based on the second color data signal in the first sub-frame image modulation period to generate a second color image Light, performing image modulation on the infrared light based on the infrared data signal to generate infrared image light during the second subframe image modulation period, and based on the third color data signal pair in the third subframe image modulation period Performing image modulation on the third color light to generate third color image light, and performing image modulation on the first color light based on the first color data signal in the fourth sub-frame image modulation period to generate a first color image Light.
  • the method further includes: providing a first modulation module and a second modulation module, performing image modulation on the first color light and the second color light by using the first modulation module, and using the second modulation module
  • the third color light and the infrared light are image modulated.
  • the method further includes:
  • the signal value of any one of the third data signals is A, B, C
  • the modulation period of one frame of image includes three different time segments, which are a first subframe image modulation period, a second subframe image modulation period, and a third subframe image modulation.
  • the third subframe image The modulation period is based on the third color data signal
  • the third color light is image-modulated to generate a third color image light
  • the first sub-frame image modulation period is based on the first color data signal to the first
  • the color light is image modulated to generate first color image light
  • the light modulation module further performs image modulation on the infrared light based on the infrared data signal in the first, second, and third subframe image modulation periods to generate infrared Image light.
  • the image data is decoded to obtain the first color data signal, the second color data signal, and the third color data signal, based on the first to
  • the third color data signal calculates an infrared data signal, and sets a signal value of any one of the first to third data signals as A, B, C, the first color light, the second color light, and the
  • the brightness of the infrared light in the first, second, and third sub-frame image modulation periods is L1, L2, and L3, respectively, and L3 ⁇ L1 ⁇ L2.
  • the first color light, the second color light, the third color light, and the infrared light are provided by a light source system, and the light source system includes excitation a light source, an infrared light source, a wavelength conversion device, and a region spectroscopic device, the region spectroscopic device comprising a first region and a second region, the wavelength conversion device comprising a reflective region and a conversion region, wherein:
  • the excitation light source is for emitting excitation light
  • the first region of the region spectroscopic device directs the excitation light to the reflection region and the conversion region, wherein the excitation light is obliquely incident to the reflection at a predetermined angle a region, the excitation light includes a first portion of excitation light incident to the reflective region and a second portion of excitation light incident to the conversion region;
  • the reflective area reflects the first partial excitation light to a second area of the area spectroscopic device, and the second area of the area spectroscopic device is used to direct the first partial excitation light to the light exit channel;
  • the conversion region converts the second partial excitation light into a laser light and reflects the laser light, the laser light is guided to the light exit channel, and the light path of the laser light in the light exit channel will
  • the first portion of the excitation light is surrounded by an optical path in the light exiting channel
  • the infrared light source is configured to emit the infrared light
  • the infrared light is guided to the light exiting channel
  • the received laser light includes a color and is different a first laser beam and a second laser beam, wherein the first partial excitation light, the first laser light, and the second laser light are respectively used as the first color light and the second color light
  • the third color light is
  • the optical path of the infrared light in the light exit channel coincides with the optical path of the first partial excitation light in the light exit channel.
  • the received laser light and the excitation light emitted from the wavelength conversion device are located on the same side of the wavelength conversion device but the optical axes do not coincide, that is, due to the reflective region After the reflection, the optical path of the excitation light is shifted from the incident optical path, so that the area of the excitation light returned from the wavelength conversion device is different from the incident area of the excitation light, and thus no additional
  • the loss generated by the incident region can be avoided, the light utilization efficiency of the light source system can be improved, and the unevenness of the light caused by the loss at the region coating can be reduced.
  • auxiliary light is further provided, the auxiliary light does not coincide with the spectrum of the received laser light, and is used for
  • the functions of infrared image modulation or ultraviolet light exposure increase the function of the projection device using the light source system, thereby improving user experience.
  • FIG. 1 is a schematic structural view of a prior art light source system.
  • FIG. 2 is a schematic structural view of a region beam splitter of the light source system shown in FIG. 1.
  • FIG 3 is a schematic structural view of a light source system according to a first embodiment of the present invention.
  • FIG. 4 is a plan view showing the planar structure of the area spectroscopic device of the light source system shown in FIG.
  • FIG. 5 is a schematic structural view of a wavelength conversion device and a scattering device of the light source system shown in FIG.
  • Fig. 6 is a timing chart of light emission of the light source system shown in Fig. 3.
  • Fig. 7 is a schematic structural view of a projection apparatus according to a first embodiment of the present invention.
  • Fig. 8 is a flow chart showing an image display control method of the projection apparatus shown in Fig. 7.
  • Fig. 9 is a view showing the configuration of a wavelength conversion device and a scattering device of a light source system according to a second embodiment of the present invention.
  • Fig. 10 is a timing chart of light emission of a light source system according to a second embodiment of the present invention.
  • FIG. 11 is a schematic structural view of a projection apparatus according to a second embodiment of the present invention.
  • Figure 12 is a block diagram showing the structure of a projection apparatus according to a third embodiment of the present invention.
  • Figure 13 is a block diagram showing the structure of a projection apparatus according to a fourth embodiment of the present invention.
  • Fig. 14 is a view showing the configuration of a light source system of a projection apparatus according to a fifth embodiment of the present invention.
  • Figure 15 is a partially enlarged schematic view of the light source system of Figure 14.
  • Fig. 16 is a view showing the configuration of a light source system of a projection apparatus according to a sixth embodiment of the present invention.
  • Fig. 17 is a view showing the configuration of a light source system of a projection apparatus according to a seventh embodiment of the present invention.
  • FIG. 18 is a schematic structural view of a light source system of a projection apparatus according to an eighth embodiment of the present invention.
  • FIG. 19 is a schematic structural view of a light source system of a projection apparatus according to a ninth embodiment of the present invention.
  • FIG. 20 is a schematic structural view of a light source system of a projection apparatus according to a tenth embodiment of the present invention.
  • Figure 21 is a block diagram showing the structure of a projection apparatus according to an eleventh embodiment of the present invention.
  • Fig. 22 is a timing chart of light emission of the light source system of the projection apparatus shown in Fig. 21.
  • Supplementary light source 203 1003, 1203
  • FIG. 3 is a schematic structural diagram of a light source system 200 according to a first embodiment of the present invention.
  • the light source system 200 includes an excitation light source 201, an auxiliary light source 202, a supplemental light source 203, a light combining device 212, a wavelength conversion device 207, a light homogenizing device 204, a region light splitting device 205, a guiding device 213, a scattering device 210, a light homogenizing device 211,
  • the first collection system 206a, the second collection system 206b, and the third collection system 206c The first collection system 206a, the second collection system 206b, and the third collection system 206c.
  • the excitation light source 201 is used to emit excitation light, and the excitation light source 201 may be a semiconductor diode or a semiconductor diode array.
  • the semiconductor diode array may be a laser diode (LD) or the like.
  • the excitation light may be blue light, purple light or ultraviolet light, etc., but is not limited to the above.
  • the excitation light source 201 is a blue light semiconductor laser diode for emitting blue laser light as the excitation light.
  • the auxiliary light source 202 is used to emit auxiliary light, such as infrared light, and the auxiliary light source 202 may be a semiconductor diode or a semiconductor diode array.
  • the semiconductor diode array may be a laser diode (LD) or the like.
  • the auxiliary light source 202 is an infrared light semiconductor laser diode for emitting infrared light laser as the infrared light, wherein the infrared light can be used to modulate an infrared image.
  • the auxiliary light source 202 can be an ultraviolet light source for emitting ultraviolet light as the auxiliary light, and the ultraviolet light can be used for ultraviolet light exposure.
  • the light combining device 212 is located on the optical path where the excitation light emitted by the excitation light source 201 and the auxiliary light (such as infrared light) emitted by the auxiliary light source 202 are located.
  • the excitation light is combined with the auxiliary light (such as infrared light).
  • the light combining device 212 includes a light combining element 212b, and the light combining element 212b receives the auxiliary light emitted by the auxiliary light source 202 and the excitation light emitted by the excitation light source 201, and the auxiliary light and the excitation light.
  • the light combining device 212 further includes a guiding element 212a that guides (eg, reflects) the excitation light emitted by the excitation light source 201 to the light combining element 212b, and the light combining element 218 further The infrared light emitted by the auxiliary light source 202 is received such that the infrared light and the excitation light are combined at the light combining element 218.
  • the guiding element 212a can be a reflective element, such as a mirror, and the light combining element 212b can be combined with a light film.
  • the auxiliary light source 202 and the light combining device 212 may be omitted.
  • the light absorbing device 204 is located on the optical path of the excitation light and the infrared light emitted by the light combining device 212, and is configured to perform the excitation light and the infrared light emitted by the light combining device 212. Even light. It will be appreciated that in a modified embodiment, the light homogenizing device 204 can be omitted.
  • FIG. 4 is a schematic diagram showing the planar structure of the area spectroscopic device 205 of the light source system 200 shown in FIG.
  • the area splitting device 205 includes a first area 205a and a second area 205b.
  • the first area 205a is located on the optical path where the excitation light and the infrared light are emitted by the light-harvesting device 204, and the area is split.
  • the first region 205a of the device 205 directs (e.g., transmits) the excitation light to the wavelength conversion device 207, wherein the excitation light is obliquely incident to the wavelength conversion device 207 at a predetermined angle (e.g., an incident angle of 30 degrees). .
  • a predetermined angle e.g., an incident angle of 30 degrees
  • the area spectroscopic device 205 may be a spectroscopic film (such as a dichroic film), and the spectroscopic film is placed at a substantially 45 degree angle with respect to the direction of the excitation light.
  • the spectroscopic film may be substantially rectangular, and the second region 205b may be located at a periphery of the first region 205a.
  • the first region 205a may be located in the region.
  • One side of the domain spectroscopic device 205 is located substantially at the center of the region of the region spectroscopic device 205 and the side of the region spectroscopic device 205 (the side below).
  • the first region 205a is a coating region that can transmit excitation light and infrared light, and the first region 205a can also reflect other light having a wavelength longer than the excitation light and the infrared light, such as red light, green light, and yellow light.
  • the second region 205b is a coating region that can reflect excitation light and other light such as red light, green light, and yellow light.
  • the first collection system 206a is located between the area spectroscopic device 205 and the wavelength conversion device 207, and is used for collecting and collecting light between the area spectroscopic device 205 and the wavelength conversion device 207.
  • the first collection system 206a can include a collection lens, such as a convex lens.
  • the first collection system 206a may be disposed adjacent to the wavelength conversion device 207, and the excitation light and the infrared light emitted by the first region 205a are parallel to the optical axis of the first collection system 206a but The predetermined distance is such that the first collection system 206a collects the excitation light and the infrared light such that the excitation light and the infrared light are incident on the wavelength conversion device 207 along the predetermined angle.
  • FIG. 5 is a schematic structural diagram of the wavelength conversion device 207 and the scattering device 210 of the light source system 200 shown in FIG.
  • the wavelength conversion device 207 includes a reflective region 215 and a conversion region 214.
  • the reflective region 215 and the conversion region 214 may be segmented regions arranged in a circumferential direction.
  • the wavelength conversion The device 207 is rotated in the circumferential direction such that the reflective region 215 and the transition region 214 are sequentially located on the optical path of the excitation light emitted by the first collection system 206a.
  • the excitation light transmitted by the first region 205a may be obliquely incident to the reflective region 213 and the conversion region 214 along the predetermined angle (eg, a small angle: 30 degrees).
  • the excitation light is divided according to excitation light incident to different regions, the excitation light including a first portion of excitation light incident to the reflective region 215 and a second portion of excitation light incident to the conversion region 214. It can be understood that, since the wavelength conversion device 207 rotates in the circumferential direction, the first partial excitation light and the second partial excitation light are time-divisionally supplied to the reflective region 215 and the conversion region 214.
  • the reflective region 215 can include a specular reflective surface having a reflective material for Reflecting the first portion of the excitation light and the infrared light, wherein the first portion of the excitation light and the infrared light are obliquely incident to the reflective region 215 along the predetermined angle, such that the reflective region 215 is opposite to the first After a part of the excitation light and the infrared light are reflected by the mirror symmetrical angle, the optical paths of the first partial excitation light and the infrared light are offset from the incident optical path, so that the first partial excitation light and the infrared Light is reflected from the wavelength conversion device 207 back to the region 205a' of the region spectroscopic device 205 (ie, the second region 205b) and the excitation light and the incident region of the infrared light (ie, the first region 205a) It is different, and thus the loss generated by the incident region (i.e., the first region 205a) can be avoided without adding additional components, and the
  • the conversion region 214 may include a reflective surface provided with a fluorescent material and a scattering powder for receiving the second partial excitation light, converting the second partial excitation light into a laser light, and reflecting the laser light To the wavelength conversion device.
  • the number of the conversion regions 214 is three, which are the first conversion region 214a, the second conversion region 214b, and the third conversion region. 214c, each of the conversion regions 214 is for generating a laser of one color, and the laser light includes a first laser, a second laser, and a third laser.
  • the first conversion region 214a is provided with a first fluorescent material, such as a red fluorescent material, for receiving the second partial excitation light and generating the first received laser light (such as a red laser).
  • the second conversion region 214b is provided with a second fluorescent material, such as a green fluorescent material, for receiving the second partial excitation light and generating the second received laser light (such as a green laser).
  • the third conversion region 214c is provided with a third fluorescent material, such as a yellow fluorescent material, for receiving the second partial excitation light and generating the third received laser light (such as a red laser).
  • the first conversion region 214a, the second conversion region 214b, the third conversion region 214c, and the reflection region 215 are four segment regions that are arranged end to end in the circumferential direction.
  • the excitation light, the first received laser light, and the second received laser light are respectively red, green, and blue primary colors
  • the third received laser light is a fourth color light, such as yellow light.
  • the laser light generated by the conversion region 214 is reflected and emitted in the form of Lambertian light, that is, is emitted with a larger beam aperture, and the first portion of the reflection region 215 is reflected.
  • the excitation light and the infrared light are also reflected at a small angle due to incident from a small angle, such that the light path of the laser light emitted by the conversion region 214 and the first partial excitation light emitted by the reflection region 215 and the optical path of the infrared light
  • the optical path of the laser light has a larger aperture, located at a periphery of the first partial excitation light and the infrared light.
  • the first partial excitation light and the infrared light reflected by the reflective region 215 of the wavelength conversion device 207 are transmitted and collected via the first collection system 206a and then guided to the second region of the regional spectroscopic device 205.
  • the second region 205b is a region that reflects the excitation light (such as reflecting blue light), so the second region 205b guides the first portion of the excitation light reflected by the reflective region 215 of the wavelength conversion device (eg, Reflected) to the light exit channel 216.
  • the laser light emitted by the conversion region 214 of the wavelength conversion device 207 is transmitted and collected via the first collection system 206a and then guided to the region spectroscopic device 205, wherein the aperture of the optical path due to the laser is large Therefore, the laser light is also incident on the first portion of the excitation light of the area spectroscopic device 205 and the periphery of the infrared light incident region, and the area spectroscopic device 205 also guides (eg, reflects) the laser light to The light exit channel 216.
  • the optical path of the laser light in the light exit channel 216 surrounds the first partial excitation light and the optical path of the infrared light in the light exit channel 216, so that the light exit channel 216 of the light source system 200
  • the space can be relatively small, and the large volume of the light source system caused by the large space of the light exit channel is not conducive to miniaturization and miniaturization.
  • the light exit channel 216 includes a first light exit channel 216a and a second light exit channel 216b
  • the area splitting device 205 directs light emitted by the wavelength conversion device 207 via the first light exit channel 216a (eg, Reflecting) to the guiding device 213, the guiding device 213 directs (eg, reflects) light in the first light exiting channel 216a to the second light exiting channel 216b.
  • the second collection system 206b may be located in the first light exit channel between the regional light splitting device 205 and the guiding device 213, and configured to collect and concentrate the light in the first light exit channel 216a to provide The guiding device 213.
  • the second collection system 206b can include a collection lens, such as a convex lens.
  • the guiding device 213 is located at the light where the light emitted by the regional beam splitting device 205 is located On the way, the first partial excitation light, the infrared light, and the received laser light reflected by the area spectroscopic device 205 are received via the second collection system 206b.
  • the guiding device 213 may include a beam splitter 208 and a mirror 209, and the beam splitter 208 receives the laser beam emitted by the area spectroscopic device 205 via the first light exit channel 216a and the laser beam.
  • the mirror 209 receives the first partial excitation light emitted by the area spectroscopic device 205 via the first light exit channel 216a and reflects the first partial excitation light to the The second light exit channel 216b.
  • the reflective surface of the mirror 209 is a convex surface
  • the beam splitter 208 transmits the first partial excitation light in the first light exit channel 216a to the mirror 209, the mirror 209 The first portion of the excitation light is reflected and the first portion of the excitation light is transmitted to the second light exit channel 216b via the beam splitter.
  • the reflective surface of the convex surface of the mirror 209 is used to correct the optical path of the first partial excitation light (blue light) and the infrared light, specifically, because the optical path of the first partial excitation light and the infrared light is smaller Different from the optical path of the laser light (red light, green light, and yellow light), the optical path of the first partial excitation light and the infrared light is lengthened by providing a mirror 209 having a convex reflective surface, and thus the laser light-receiving The optical paths are substantially the same, such that the first partial excitation light and the laser-receiving spot that are imaged at the entrance of the light homogenizing device 211 avoid imaging out of focus of the first partial excitation light, thereby contributing to improvement
  • the coupling efficiency and color uniformity of the homogenizing device 211 are described.
  • the scattering device 210 is located on the optical path of the light emitted by the guiding device 213 for receiving the light of the light exiting channel 216 and scattering the light emitted by the light exiting channel 216.
  • the scattering device 210 can be collected by the third collection system 206c and then directed to the scattering device 210.
  • the third collection system 206c may also include a collection lens, such as a convex lens, and the third collection system 206c collects the light emitted by the light exit channel 216 through the scattering device 210 to the entrance of the light homogenizing device 211. .
  • the scattering device 210 includes a scattering region 217 and a filter region 218.
  • the scattering region 217 and the filter region 218 are circumferentially disposed.
  • the scattering region 217 Alternating with the filter region 218
  • the filter region 218 filters the laser light emitted from the light exit channel 216.
  • the filter region 218 includes a first filter region 218a, a second filter region 218b, and a third filter region 218c, the first filter region 218a, the second filter region 218b, and the first filter region 218a.
  • the three filter regions 218c and the scattering regions 217 are disposed in a circumferential direction, and the first filter region 218a is configured to filter the first laser light emitted from the light exit channel 216.
  • the second filter region 218b is configured to filter the second laser light emitted from the light exit channel 216, and the third filter region 218c is used to output the third light emitted from the light exit channel 216. Filtered by laser.
  • the first filter region 218a may be provided with a first filter material, such as a red filter material, for filtering the first laser light to make the first color light (such as red light). It passes through and is incident on the light homogenizing device 211.
  • the second filter region 218b may be disposed with a second filter material, such as a green filter material, for filtering the second laser beam, so that the second color of light (such as green light) passes through The light homogenizing device 211 is inserted.
  • a third filter material such as a yellow filter material, may be disposed on the third filter region 218c for filtering the third received laser light so that the third color light (such as yellow light) passes through the shot.
  • the light homogenizing device 211 is inserted.
  • the scattering device 210 and the wavelength conversion device 207 are integrated, and the scattering region 217 and the filter region 218 are located inside the reflection region 215 and the conversion region 214.
  • the scattering device 210 is disposed concentrically with the wavelength conversion device 207 and may have the same drive shaft located at the center of the circle for driving the scattering device 210 and the wavelength conversion device 207 to rotate in the circumferential direction.
  • the light homogenizing device 211 is configured to receive the light emitted by the scattering device 210 and to homogenize and combine the light emitted by the scattering device 210.
  • the light homogenizing device 211 may be a square rod, and the first partial excitation light collected by the third collecting system 206c is further scattered by the scattering region 217 and then guided to the light homogenizing device.
  • the inlet of 211, the laser received by the third collection system 206c is further filtered by the laser
  • the light region 218 is filtered and directed to the entrance of the light homogenizing device 211.
  • the first partial excitation light and the infrared light are simultaneously guided to the light homogenizing device 211, the first partial excitation light, the first a laser received, the second received laser, and the third received laser are sequentially directed to the light homogenizing device 211 (ie, directed to the light homogenizing device at different time periods), the homogenizing device 211 pair
  • the first partial excitation light, the first received laser light, the second received laser light, and the third received laser light are combined by time division multiplexing.
  • the supplemental light source 203 also emits supplemental light having at least partially the same color component as the received laser light for supplementing the laser light with a specific color of light.
  • the supplemental light may be red supplemental light
  • the supplemental light source 203 may include a semiconductor diode or a semiconductor diode array, which may be a laser diode (LD) or the like.
  • the supplemental light source 203 is a red semiconductor laser diode for emitting red laser light as the supplemental light. It will be understood that in a modified embodiment, the supplemental light source 203 may also include a green semiconductor laser diode for emitting a green laser light as the supplemental light.
  • the second area 205b further includes a third area 205c, which may transmit the supplemental light, and the third area 205c may be located at the center of the area splitting device 205
  • the supplemental light emitted by the supplemental light source 203 is transmitted to the wavelength conversion device 207 via the first collection system 206a after being transmitted through the third region 205c.
  • the optical path of the supplemental light may coincide with the optical axis of the first collection system 206a such that the supplemental light may be incident on the conversion region 214 of the wavelength conversion device 207 without changing direction.
  • the supplemental light is directed to the conversion region 214, the conversion region 214 scattering and reflecting the supplemental light such that the supplemental light is combined with the laser-receiving via the first collection system 206a is directed to the area spectroscopic device 205, which further directs (eg, reflects) the supplemental light and the received laser light to the light exit channel 216, wherein the supplemental light is in the light exit channel
  • the optical path in 216 coincides with the optical path of the laser in the light exit.
  • the supplemental light is the same color as the first received laser light, and the supplemental light source 203 may emit the same in the first conversion region 214a.
  • the first laser beam is turned on, so that the first conversion region 214a guides the generated first laser light and the complementary light to the region spectroscopic device 205, thereby guiding the light exit channel 216 and scattering.
  • Device 210 is turned on, so that the first conversion region 214a guides the generated first laser light and the complementary light to the region spectroscopic device
  • FIG. 6 is a timing chart of light emission of the light source system 200 shown in FIG.
  • the wavelength conversion device 207 sequentially emits the first laser, the third laser, the second laser, and the first portion during a wavelength conversion period T (also referred to as a color wheel period).
  • Excitation light wherein the infrared light is also emitted simultaneously with the first partial excitation light, that is, red light, yellow light, green light, and blue light (and infrared light) are sequentially separated.
  • the excitation light source 201 is always turned on during the entire wavelength conversion period T, and the auxiliary light source 202 is turned on during a period in which the wavelength conversion device 207 emits a first partial excitation light, and the supplementary light source 203 is at the wavelength. It is sufficient that the switching means emits a period of the first laser light (i.e., when the wavelength converting means 207 emits a laser light having a color component with the supplementary light).
  • FIG. 7 is a schematic structural diagram of a projection device 220 employing the above-described light source system 200.
  • the projection device 220 further includes a data processing module 230, a light modulation module 240, and a projection lens 250.
  • the data processing module 230 is configured to receive image data and generate an image display data signal based on the image data, where the light modulation module 240 is configured to perform image modulation on the first partial excitation light based on the image display data signal.
  • a color image light for image modulating the first received laser light based on the image display data signal to generate a second color image light (eg, red image light) for rendering based on the image Displaying a data signal to image modulate the second laser light to generate third color image light (such as green image light), and performing image modulation on the third laser light based on the image display data signal to generate a fourth color image Light (such as yellow image light), and also for image modulation of the infrared light based on the image display data signal produces infrared image light.
  • the first color, the second color, and the third color are respectively red, green, and blue
  • the fourth color is yellow.
  • the projection lens 250 is configured to receive the first color image light, the second color image light, the third color image light, the fourth color image light, and the infrared image light and perform projection display of the image.
  • the data processing module 230 may include a signal receiving unit 231, a signal decoding unit 232, and a fuser 233.
  • the signal receiving unit 231 and the signal decoding unit 232 are electrically connected to the fuser 233 in sequence.
  • the signal receiving unit 231 receives image data to be displayed and sequentially supplies the image data to be displayed to the signal decoding unit 232, and the signal decoding unit 232 decodes the image data to obtain the image display data.
  • the fuser 233 receives the image display data signal obtained by the signal decoding unit 232 and provides the image display data signal to the light modulation module 240.
  • the image display data signal includes a first color data signal, a second color data signal, a third color data signal, and a fourth color data signal.
  • the light modulation module 240 performs image modulation on the first partial excitation light and the infrared light based on the first color data signal to generate first color image light and infrared image light, based on the second Color data signal image-modulating the first laser light to generate second color image light, image-modulating the second laser light based on the third color data signal to generate third color image light, based on the fourth The color data signal image modulates the third received laser to produce a fourth color image light.
  • the optical modulation module 240 performs image modulation on the infrared light based on the first color data signal to generate the infrared image light.
  • the optical modulation module 240 may also image the infrared light based on at least one of the second, third, and fourth color data signals to produce infrared image light.
  • the optical modulation module 240 performs modulation of one frame of image.
  • the wavelength conversion period T can also be regarded as a modulation period of one frame of image. (or the modulation period of one frame of image), the modulation period of the one-frame image includes four different time segments, respectively being the first subframe image modulation period T1, the second subframe image modulation period T2, and the third sub- The frame image modulation period T3 and the fourth subframe image modulation period T4.
  • the four time periods may be continuously set.
  • the wavelength conversion device 207 sequentially emits the first laser, the third laser, and the second during the four time periods (ie, four subframe image modulation periods).
  • the laser light and the first portion of the excitation light, wherein the infrared light is also emitted simultaneously with the first partial excitation light, that is, the red light, the yellow light, the green light, and the blue light (and the infrared light) are sequentially separated.
  • the excitation light source is The entire wavelength conversion period (ie, four sub-frame image modulation periods) is always turned on, and the infrared light source is turned on when the wavelength conversion device emits the first partial excitation light period (ie, the fourth sub-frame image modulation period T4).
  • the supplementary light source 203 may be turned on at a period in which the wavelength conversion device 207 emits the first laser light (i.e., the first sub-frame image modulation period T1).
  • the light modulation module 240 performs image modulation on the first received laser light based on the second color data signal to generate second color image light in the first subframe image modulation period T1, in the second
  • the sub-frame image modulation period T2 is image-modulated for the third received laser light based on the fourth color data signal to generate fourth color image light, and based on the third color data in the third sub-frame image modulation period T3
  • the signal is image-modulated to generate the third color image light, and the first partial excitation light and the infrared light are based on the first color data signal in the fourth sub-frame image modulation period T4
  • Image modulation is performed to generate first color image light and infrared image light.
  • the light modulation module 240 includes a modulation module that sequentially modulates light emitted by the light source system to generate image light in four time periods based on the image display data signal.
  • the light modulation module 240 can include a controller 242 and a modulator 243.
  • the controller 242 receives the image display data signal and converts the image display data signal into a modulation timing control signal, and provides the modulation timing control signal to the modulator 243.
  • the modulator 243 includes a plurality of modulation units (such as mirror units), wherein each modulation unit is used to generate image light of one pixel of an image to be displayed, and the modulation timing control signal can control the degree of opening of the modulation unit
  • the light emitted by the light source system 200 is modulated (e.g., on time) to reveal the brightness that the corresponding pixel should exhibit.
  • the modulator 243 sequentially modulates the light emitted by the light source system 200, thereby sequentially generating image light of four sub-frame images, which are respectively second color image lights of the second sub-frame.
  • the modulator 243 can also generate a light source control signal to the light source system 200 for controlling the timing of the four color lights and the infrared light emitted by the light source system 200 such that the light of the light source system 200 is timed. It coincides with the image modulation timing of the modulator 243.
  • the controller 242 can be a DDP
  • the The modulator 243 can be a DMD.
  • the optical modulation module 240 is a monolithic DMD modulation module and supports RGBY signals. The DMD does not need to separately control the IR, and the IR image is synchronized with the blue light image.
  • FIG. 8 is a flowchart of an image display control method used when the projection device 220 shown in FIG. 7 operates.
  • the image display control method includes the following steps S1, S2, S3, S4, S5, and S6.
  • step S1 image data is received, and an image display data signal is generated based on the image data.
  • the step S1 can be completed by the data processing module 230.
  • the data processing module 230 receives one frame of image data and generates an image display data signal based on the one frame of image data.
  • the signal receiving unit 231 receives image data to be displayed and supplies each frame of image data to the signal decoding unit 232, and the signal decoding unit 232 decodes the image data to obtain the image display data signal,
  • the fuser 233 receives the image display data signal obtained by the signal decoding unit 232 and provides the image display data signal to the light modulation module 240.
  • the image display data signal includes a first color data signal, a second color data signal, a third color data signal, and a fourth color data signal.
  • step S2 first color light, second color light, third color light, and infrared light are provided. It can be understood that the step S2 can be completed by the light source system 200, wherein the first partial excitation light, the first laser light and the second laser light emitted by the light source system 200 can be respectively used as the first a color light, the second color light, and the third color light. In an embodiment, the step S2 may further comprise the step of providing a fourth color light, wherein the third received laser light emitted by the light source system 200 may be the fourth color light.
  • Step S3 performing image modulation on the first color light based on the image display data signal to generate first color image light.
  • Step S4 performing image modulation on the second color light based on the image display data signal to generate second color image light.
  • Step S5 performing image modulation on the third color light based on the image display data signal to generate third color image light.
  • Step S6 performing image modulation on the infrared light based on the image display data signal to generate infrared image light.
  • the image display control method may further include the step S7: displaying the data signal based on the fourth The color light is image modulated to produce a fourth color image light.
  • the steps S3 to S7 may be completed by the light modulation module 240.
  • the light modulation module 240 may perform image modulation on the first color light and infrared light based on the first color data signal to generate first color image light, and the second color light based on the second color data signal Performing image modulation to generate second color image light, performing image modulation on the third color light based on the third color data signal to generate third color image light, and based on the fourth color data signal on the fourth color light Image modulation is performed to produce fourth color image light.
  • the light modulation module 240 performs image modulation on the second color light based on the second color data signal in the first subframe image modulation period T1.
  • Second color image light image-modulating the fourth color light based on the fourth color data signal in the second sub-frame image modulation period T2 to generate fourth color image light, in the third sub-frame image
  • the modulation period T3 performs image modulation on the third color light based on the third color data signal to generate third color image light, and may be based on the first color data signal pair in the fourth subframe image modulation period T4
  • the first color light and the infrared light are image modulated to generate first color image light and infrared image light.
  • the area spectroscopic device 205 controls the excitation light to be obliquely incident to the reflective area 215 at a predetermined angle via the first region 205a and the a conversion region 214 that reflects the first portion of excitation light to the second region 205b such that the second region 205b directs the first portion of excitation light to the light exit channel 216 due to
  • the optical path of the first partial excitation light is shifted from the incident optical path, so that the first partial excitation light returns from the wavelength conversion device 207 to the
  • the region 205a' of the region spectroscopic device 205 is different from the incident region (the first region 205a) of the excitation light, thereby avoiding loss caused by the incident region without adding additional components, and improving the light source The light utilization rate of system 200.
  • the blue excitation light is scattered by the surface scattering powder of the wavelength conversion device 207, and is combined with the other laser light by the expansion amount, due to the absorption of the scattering powder, the collection efficiency loss of the collecting lens, and the region.
  • the loss of coating can only reach 60%.
  • the beam angle is very small, and the surface of the reflection region 215 of the wavelength conversion device 207 is specularly reflected, and there is no loss of reflectance and collection efficiency, which can be completely reflected when incident on the surface of the region spectroscopic device 205, and the efficiency is very high. High, can reach more than 80%, compared with the existing light source by 33%, so that the color of the light emitted by the light source system 200 is greatly improved.
  • the infrared light is the same as the first part of the excitation light, and the efficiency can be the same or even higher than the excitation light efficiency.
  • Other lasers except for the red-receiving laser with a small amount of transmission loss in the third region 205c, such as green light, which plays a major role in brightness, can be improved by 8% because there is no area coating.
  • the light source system 200 provided by the present invention is an efficient light source.
  • the auxiliary light source 202 further provides infrared light, so that the infrared light can be modulated according to the image display data signal to generate infrared image light.
  • the infrared display function is added to make night vision possible. By wearing night vision goggle (NVG), the infrared light image projected by the projector can be viewed, so that the related projection device 220 can be applied to some nighttime simulations and the like. In special occasions, such as military combat and training pilot training simulators, the functions are better and richer, and the application fields are more extensive.
  • FIG. 9 is a schematic structural view of a wavelength conversion device 307 and a scattering device 310 of a light source system according to a second embodiment of the present invention
  • FIG. 10 is a timing chart of light emission of the light source system according to the second embodiment of the present invention.
  • the light source system has substantially the same structure as the light source system of the first embodiment, that is, the above description of the light source system can be basically applied to the light source system, and the difference between the two is mainly: the wavelength conversion device 307 Different from the structure of the scattering device 310, the light-emitting timing of the light source system is different.
  • the conversion area of the wavelength conversion device 307 includes a first conversion area 314a and a second conversion area 314b, and the first conversion area 314a is configured to convert the received excitation light into the a first received laser (such as a red received laser), the second conversion region 314b is configured to convert the received excitation light into the second received laser (such as a green received laser), wherein the first and second conversions
  • the regions 314a, 314b are substantially the same as the first and second transition regions 214a, 214b in the first embodiment, and the structure thereof will not be described herein.
  • the reflective area includes a first reflective area 315a that reflects the first partial excitation light to a second area of the area spectroscopic device, and a second reflective area 315b that reflects the infrared
  • the light is reflected to the second region of the area spectroscopic device, that is, the first portion of the excitation light and the infrared light are incident on different reflection regions of the area spectroscopic device.
  • the first conversion area 314a, the second conversion area 314b, the first reflection area 315a, and the second reflection area 315b may be four segmented areas that are arranged end to end in a circumferential direction, wherein the first conversion The region 314a is disposed opposite to the second conversion region 314b, and the first reflection region 315a is disposed opposite to the second reflection region 315b.
  • the filter region includes a first filter region 318a and a second filter region 318b, and the scattering region includes a first scattering region 317a and a second scattering region 317b.
  • the first filter region 318a is configured to filter the first laser light emitted from the light exit channel
  • the second filter region 318b is configured to perform the second laser light emitted from the light exit channel.
  • Filtering the first scattering region 317a is for scattering a first portion of the excitation light emitted by the light exit channel
  • the second scattering region 317b is for scattering the infrared light.
  • the first filter region 318a, the first scattering region 317a, the second filter region 318b, and the second scattering region 317b are four end regions that are arranged end to end in the circumferential direction, wherein The first filter region 318a is disposed opposite to the second filter region 318b, and the first scattering region 317a is disposed opposite to the second scattering region 317b.
  • the light source system having the wavelength conversion device 307 and the scattering device 310 operates during a wavelength conversion period T (also referred to as a color wheel period or a modulation period of one frame of image)
  • the wavelength conversion device sequentially emits the first laser light, the infrared light, the second laser light, and the first partial excitation light, that is, the red light, the infrared light, the green light, and the blue light are sequentially separated.
  • the excitation light source is always turned on during the entire wavelength conversion period T, and the infrared light source is turned on during a period in which the wavelength conversion device emits the first partial excitation light, and the supplementary light source emits the first laser light receiving period in the wavelength conversion device ( That is, when the wavelength conversion device 307 emits a laser light having a color component with the supplementary light, it may be turned on.
  • FIG. 11 is a schematic structural diagram of a projection device 320 according to a second embodiment of the present invention.
  • the projection device 320 employs the light source system 300 having the wavelength conversion device 307 and the scattering device 310 of the second embodiment described above.
  • the optical modulation module 340 performs modulation of one frame of image. It can be understood that the wavelength conversion period T can also be regarded as a modulation period of one frame of image (or a modulation period of one frame of image).
  • the modulation period of the one-frame image includes four different time segments, which are a first subframe image modulation period T1, a second subframe image modulation period T2, a third subframe image modulation period T3, and a fourth subframe, respectively.
  • Image modulation period T4 The four time periods can be set continuously.
  • the wavelength conversion device 307 sequentially emits the first laser light, the infrared light, the second laser light, and the first partial excitation light in the four time periods (ie, four sub-frame image modulation periods), that is, sequentially Red, infrared, green and blue light.
  • the excitation light source is always turned on during the entire wavelength conversion period T (ie, four sub-frame image modulation periods), and the infrared light source is turned on in the second sub-frame image modulation period T2, and the supplementary light source is issued in the wavelength conversion device 307.
  • a period of the laser light i.e., the first sub-frame image modulation period T1 may be turned on.
  • the light modulation module 240 performs image modulation on the first laser beam based on the second color data signal in the first subframe image modulation period T1.
  • a second color image light image-modulating the infrared light based on the infrared data signal in the second sub-frame image modulation period T2 to generate infrared image light, and based on the third color data in the third sub-frame image modulation period T3
  • modulating the third color light to generate a third color image light
  • the outer data signal may be any one of the first color data signal, the second color data signal, and the third color data signal.
  • the infrared data signal is mainly described as a third color data signal (ie, a green data signal).
  • the controller 342 of the light modulation module 340 can also generate a light source control signal to the light source system 300 for controlling the timing of the three color lights and the infrared light emitted by the light source system 300, such that the light source system 300 The timing of the emitted light coincides with the image modulation timing of the modulator 343.
  • the optical modulation module 340 of the projection apparatus of the present embodiment is a monolithic DMD module, and the optical modulation module 340 is required to support an RGBY signal, wherein the infrared data signal is connected to the Y channel of the DDP, as shown in FIG. Show. In this case, due to the characteristics of the DDP processing of the controller 342, the infrared light image can be displayed only when a still image is displayed.
  • FIG. 12 is a schematic structural diagram of a projection apparatus 420 according to a third embodiment of the present invention.
  • the projection device 420 has substantially the same structure as the projection device 320 of the second embodiment. That is to say, the above description of the projection device 320 can be basically applied to the projection device 420, and the difference between the two is mainly as follows:
  • the structure of the light modulation module 440 is different.
  • the optical modulation module 440 includes a first modulation module 441a and a second modulation module 441b, where the first modulation module 441a is configured to perform image modulation on the first partial excitation light and the second received laser.
  • the second modulation module 441b is configured to perform image modulation on the first laser and the infrared light.
  • Each of the modulation modules 441 includes a controller 442 (such as a DDP) and a modulator 443 (such as a DMD).
  • the controller 442 of the first modulation module 441a receives the first color data signal and the third color data signal, and the controller 442 of the first modulation module 441a generates the first color data signal and the third color data signal.
  • the first timing control signal controls the modulator 443 of the first modulation module 441a such that the modulator 443 of the first modulation module 441a modulates the first partial excitation light and the second based on the first timing control signal
  • the first color image light and the third color image light are generated by a laser.
  • the controller 442 of the second modulation module 441b receives the second color data signal and the infrared data signal, and the controller 442 of the second modulation module 441b generates the second image based on the second color data signal and the infrared data signal.
  • a timing control signal controls the modulator 443 of the second modulation module 441b such that The modulator 443 of the second modulation module 441b modulates the first laser light and the infrared light to generate the second color image light and the infrared image light based on the second timing control signal.
  • the controller 442 is a DDP controller supporting RGB signals, and each controller 442 includes three RGB signal input channels.
  • Two of the three signal input channels of the controller 442 of the first modulation module 441a can receive the third color data signal (such as a green data signal), and another channel
  • the first color data signal (such as a blue data signal) can be received (e.g., a B channel).
  • Two of the three signal input channels of the controller 442 of the second modulation module 441b (such as the R channel and the G channel) can receive the second color data signal (such as a red data signal), and another channel
  • the infrared data signal can be received (e.g., B channel).
  • the infrared data signal may adopt any one of the first color data signal, the second color data signal, and the third color data signal.
  • the third color data signal is mainly used as the infrared data signal.
  • the projection device 420 adopts a two-chip DMD modulation module, and each modulator 443 requires that the RBG signal can be processed, so that the infrared data signal can be combined with other three color data signals (such as blue).
  • the color, red, and green data signals are independent of each other and do not interfere with each other.
  • FIG. 13 is a schematic structural diagram of a projection apparatus 520 according to a fourth embodiment of the present invention.
  • the projection device 520 has substantially the same structure as the projection device 420 of the third embodiment, that is, the above description of the projection device 420 can be basically applied to the projection device 520, and the difference between the two is mainly as follows:
  • the data processing module 530 differs in that the infrared data signal employs a data signal calculated based on the first color data signal, the second color data signal, and the third color data signal.
  • the data processing module 530 further includes a signal processing unit 534, and the signal processing unit 534 receives the first color data signal, the second color data signal, and the third color data signal output by the signal decoding unit 532, and is based on The first color data signal, the second color data signal, and the third color data signal are calculated to obtain the infrared data signal, that is, the infrared data signal is the first color data signal, the second color data signal, and the third Color data letter The composite signal of the number.
  • the signal value of any one of the first to third data signals is A, B, and C
  • the signal value IR of the infrared data signal of any one of the pixels conforms to the following formula:
  • IR (A*a + B * b + C * c) / Y max ;
  • a, b, and c represent the brightness of the first partial excitation light, the first laser received light, and the second received laser light respectively supplied to the light modulation module 540, and in any one of the pixels
  • the signal value IR of the infrared data signal of any one of the pixels may be rounded up by (A*a+B*b+C*c)/Y max , and rounded off.
  • the infrared data signal can be obtained by calculating the infrared data signal value for each pixel of an image by such an algorithm.
  • the infrared data signal is a composite signal of the first color data signal, the second color data signal, and the third color data signal
  • each pixel value in the infrared light image is compared with the first color.
  • the black and white image of the composite of the data signal, the second color data signal and the third color data signal has the same gray scale, so that the infrared light image is not distorted, that is, the infrared light image is fidelity.
  • FIG. 14 is a schematic structural view of a light source system 600 of a projection apparatus according to a fifth embodiment of the present invention
  • FIG. 15 is a partially enlarged schematic view of the light source system 600 of FIG.
  • the light source system 600 has substantially the same structure as the light source system 200 of the first embodiment. That is to say, the above description of the light source system 200 can be basically applied to the light source system 600, and the difference between the two is mainly as follows: The structure of the wavelength conversion device 607 is different, and the structure of the guiding device 713 is different.
  • the reflective region 615 of the wavelength conversion device 607 can include a reflective surface 615c that includes a semi-curved convex surface for correcting the optical axis and light of the first portion of the excitation light (eg, blue light) and the infrared light. Cheng. Further, the first partial excitation light and the reflected light converted by the wavelength conversion device 607 The optical axis of the infrared light is coincident with the laser light received by the laser (such as the red laser and the green laser), and then the angular distribution of the laser is similar after being scattered by the scattering device 610 at the entrance of the light homogenizing device 611 (such as a square bar). Improve uniformity.
  • the laser such as the red laser and the green laser
  • the guiding device 613 may not be provided with a curved mirror.
  • the guiding device 713 may be a reflective diaphragm, which may be reflectively excited. The light, the supplemental light, the laser and the infrared light, the reflective film receives the light of the first light exit channel 616a and reflects the light of the first light exit channel 616a to the second light exit channel 616b.
  • FIG. 16 is a schematic structural diagram of a light source system 700 of a projection apparatus according to a sixth embodiment of the present invention.
  • the light source system 700 has substantially the same structure as the light source system 200 of the first embodiment. That is to say, the above description of the light source system 200 can be basically applied to the light source system 700, and the difference between the two is mainly as follows: The structure of the area spectroscopic device 705 is different.
  • the area spectroscopic device 705 includes a beam splitter 708 and a mirror 709.
  • the beam splitter 708 is disposed corresponding to the first region, and the mirror 709 is disposed corresponding to the second region, and the beam splitter of the first region is disposed.
  • 708 receiving the excitation light and transmitting the excitation light to a wavelength conversion device 707, the wavelength conversion device 707 reflecting the first partial excitation light to the mirror 709, the mirror 709 to the first portion
  • the excitation light is reflected to the first light exit channel 716a, and the beam splitter of the first region also reflects the laser light to the first light exit channel 716a.
  • the reflective surface of the mirror 709 is concave, and at least a portion of the received laser light is transmitted through the mirror 709 to the beam splitter 708, so that the beam splitter 708 sends the wavelength conversion device 707
  • the laser light is reflected to the first light exit passage 716a.
  • the concave surface of the mirror 709 is designed to correct the optical path of the first partial excitation light (such as blue light) and the infrared light for conforming to the optical path of the laser light, thereby improving incidence to the light homogenizing device 711.
  • the guiding device 712 may not be provided with a curved mirror.
  • the guiding device 712 may be a reflective diaphragm, which may reflect excitation light, supplemental light, received laser light, and infrared light, and the reflective film receives the The light of the first light exit passage 716a reflects the light of the first light exit passage 716a to the second light exit passage 716b.
  • FIG. 17 is a schematic structural diagram of a light source system 800 of a projection apparatus according to a seventh embodiment of the present invention.
  • the light source system 800 has substantially the same structure as the light source system 200 of the first embodiment. That is to say, the above description of the light source system 200 can be basically applied to the light source system 800, and the difference between the two is mainly as follows: The structure of the area spectroscopic device 805 is different.
  • the area spectroscopic device 805 includes a beam splitter 808 and a mirror 809.
  • the beam splitter 808 is disposed corresponding to the first region, and the mirror 809 is disposed corresponding to the second region, and the beam splitter of the first region is disposed.
  • 808 receiving the excitation light and transmitting the excitation light to the wavelength conversion device 807, the wavelength conversion device 807 reflecting the first partial excitation light to the mirror 809, the mirror 809 will The first portion of the excitation light is reflected to the first light exit channel 816a, and the beam splitter 808 of the first region also reflects the laser light to the first light exit channel 816a.
  • the reflective surface of the mirror 809 is convex, and the wavelength conversion device 807 reflects the first partial excitation light to the mirror 809 via the beam splitter 808, and the mirror 809 reflects the The first portion of the excitation light and the infrared light enter the first light exit channel 816a via the beam splitter.
  • the convex surface of the mirror 809 is designed to correct the optical path of the first partial excitation light (such as blue light) and the infrared light for conforming to the optical path of the laser light, thereby improving incidence to the light homogenizing device 811.
  • the guiding device 813 may not be provided with a curved mirror.
  • the guiding device 813 may be a reflective film, which may reflect excitation light, supplemental light, received laser light, and infrared light, and the reflective film receives the The light of the first light exit passage 816a reflects the light of the first light exit passage 816a to the second light exit passage 816b.
  • FIG. 18 is a schematic structural diagram of a light source system 900 of a projection apparatus according to an eighth embodiment of the present invention.
  • the light source system 900 has substantially the same structure as the light source system 200 of the first embodiment, that is, the above description of the light source system 200 can be basically applied to the light source system 900, and the difference between the two is mainly:
  • the structure of the guiding device 913 is different.
  • the guiding device 913 includes a beam splitter 908 and a mirror 908, and the beam splitter 908 receives the laser beam emitted from the area light splitting device 905 via the first light exit channel 916a and reflects the laser light to the second light output.
  • Channel 916b the opposite The mirror 909 receives the first partial excitation light emitted by the area spectroscopic device 905 via the first light exit passage 916a and reflects the first partial excitation light to the second light exit passage 916b.
  • the reflective surface of the mirror 909 is a concave surface, and at least a portion of the received laser light in the first light exit passage 916a is transmitted to the splitter 908 via the mirror 909, and the splitter 908 The at least a portion of the received laser light is transmitted to the second light exit passage 916b via the mirror 909.
  • the concave surface of the mirror 909 is designed to correct the optical path of the first partial excitation light (such as blue light) and the infrared light for conforming to the optical path of the laser light, thereby improving incidence to the light homogenizing device 911. The uniformity of light.
  • FIG. 19 is a schematic structural diagram of a light source system 1000 of a projection apparatus according to a ninth embodiment of the present invention.
  • the light source system 1000 has substantially the same structure as the light source system 200 of the first embodiment. That is to say, the above description of the light source system 200 can be basically applied to the light source system 1000, and the difference between the two is mainly as follows:
  • the configuration of the area spectroscopic device 1005, the wavelength conversion device 1007, and the scattering device 1010 is different, and the light exit channel 1116 is also slightly different.
  • the area spectroscopic device 1005 includes a beam splitter 1008 and a mirror 1009.
  • the beam splitter 1008 is disposed corresponding to the first region, and the mirror 1009 is disposed corresponding to the second region, and the beam splitter 1008 of the first region is A first surface receives the excitation light and reflects the excitation light to the wavelength conversion device 1007, the wavelength conversion device 1007 reflecting the first partial excitation light to a mirror 1009 of the second region, The mirror 1009 reflects the first partial excitation light to a second surface of the beam splitter 1008 of the first region opposite to the first surface, and the second surface of the beam splitter 1008 of the first region The first portion of the excitation light is reflected to the light exit channel 1116, and the wavelength conversion device 1007 is also reflected by the laser light to the light exit channel 1116.
  • the area spectroscopic device 1005 further includes a guiding element 1113 that reflects supplemental light emitted by the supplemental light source 1003 to the wavelength conversion device 1007 such that the wavelength conversion device 1007 combines the supplemental light with The laser light is reflected together to the light exit channel 1116.
  • the scattering device 1110 and the wavelength conversion device 1007 are two separate components disposed separately, and the scattering device 1110 is configured to receive the light-passing device
  • the light of the track 116 provides the scattered light to the entrance of the light homogenizing device 1111, and the third collecting system 1006c is configured to collect the light of the light exiting channel 1116 such that the light of the light exiting channel 1116 passes through the scattering device 1110.
  • An entrance to the light homogenizing device 1111 is imaged.
  • FIG. 20 is a schematic structural diagram of a light source system 1200 of a projection apparatus according to a tenth embodiment of the present invention.
  • the light source system 1200 has substantially the same structure as the light source system 200 of the first embodiment. That is to say, the above description of the light source system 200 can be basically applied to the light source system 1200, and the difference between the two is mainly as follows:
  • the supplemental light source 1203 is different.
  • the supplemental light includes a first supplemental light and a second supplemental light
  • the supplemental light source 1203 includes a first supplemental light source 1203a for emitting the first supplemental light and a second supplemental light for emitting the second supplemental light.
  • the first supplemental light and the second supplemental light may be combined and provided to a third region 1205c of the regional beam splitting device 1205, and the third region 1205c may transmit the first supplemental light With the second supplemental light.
  • the first supplemental light and the first received laser have at least partially the same color component, such as red, and the first supplemental light source may be the same as the complementary light source structure of the first embodiment, and details are not described herein again.
  • the second supplemental light and the second received laser have at least partially the same color component, such as green.
  • the second supplemental light sources 1203b each include a green excitation photodiode.
  • the first supplemental light and the second supplemental light are both lasers. Specifically, the second supplemental light source 1203b is turned on when the wavelength conversion device 1207 emits the second laser light, and the second supplemental light source 1203b emits the first laser light and the first partial excitation light in the wavelength conversion device 1207. Closed when.
  • FIG. 21 is a schematic diagram showing the structure of a projection apparatus 1320 according to an eleventh embodiment of the present invention
  • FIG. 22 is a timing chart of illumination of the light source system 1300 of the projection apparatus 1320 shown in FIG.
  • the projection device 1320 and the light source system 1300 are substantially the same as the projection device 220 of the first embodiment and the light source system 200, that is, the above description of the projection device 220 and the light source system 200 can be basically applied to
  • the projection device 1320 and the light source system 1300 are mainly different in that the guiding device 1308 of the light source system 1300 and the infrared light source 1302, the light emitting timing of the light source system 1300, the data processing module 1330, and the control and modulation mode of the light modulation module 1340 are both It is different.
  • the infrared light source 1302 is disposed adjacent to the guiding device 1308,
  • the guiding device 1308 is a beam splitting film that reflects the first partial excitation light, the laser light but transmits infrared light emitted by the infrared light source.
  • the guiding device 1308 can reflect visible light transmitting infrared light.
  • the guiding device 1308 receives the infrared light and transmits the infrared light to the second light exiting channel 1316b, and the optical path of the received laser light in the second light exiting channel 1316b will be the first A part of the excitation light and the optical path of the infrared light in the second light-emitting channel 1316b are surrounded.
  • the infrared light does not pass through the area spectroscopic device 1305 and the wavelength conversion device 1307, but directly
  • the two light exit channels 1316b ie, before the entrance of the light homogenizing device 1311) are combined with other light.
  • the light source system 1300 further includes a light source controller 1319 for controlling the luminous intensity of the infrared light source 1302.
  • the image display control method of the projection device 1320 will be described below. It is to be understood that the differences from the first embodiment will be mainly described below, and the same portions will not be described again.
  • the modulation period of the one-frame image by the optical modulation module 1340 (ie, one wavelength conversion period T) includes three different time periods, which are a first subframe image modulation period T1 and a second subframe image modulation period T2, respectively.
  • the light modulation module 1340 performs image modulation on the first laser-receiving image based on the second color data signal to generate a second color image light in the first sub-frame image modulation period T1 And performing image modulation on the second received laser light based on the third color data signal to generate third color image light in the second subframe image modulation period T2, and based on the third subframe image modulation period T3
  • the first color data signal performs image modulation on the first partial excitation light to generate first color image light
  • the light modulation module 1340 is further in the first, second and third subframe image modulation periods T1, T2 and T3 (ie, the modulation period T of the entire frame image) image-modulates the infrared light based on the infrared data signal to generate infrared image light.
  • the data processing module 1330 decodes the received image data to obtain the first color data signal, the second color data signal, and the third color data signal, and the data processing module 1330 is further based on the first to the first
  • the three-color data signal is used to calculate an infrared data signal, and the signal values of any one of the first to third data signals are A, B, and C, and the first portion of the excitation light is supplied to the light modulation module 1340.
  • the brightness of the received laser and the second received laser are respectively a, b, c, and the light source controller 1319 controls the brightness of the infrared light such that the infrared light supplied to the light modulation module 1340 is in the three sub-
  • the brightness corresponding to the light is ⁇ times of the visible light, so that the brightness value of each pixel is ⁇ times of the RGB visible light image, so the light source controller 1319 can be used to control the inf
  • the green light (ie, the second received laser) brightness of the wavelength conversion device is > red light (ie, first received laser light) brightness > blue light (ie, excitation light) brightness, and b > a > c
  • the light source controller 1319 can control the brightness of the infrared light to be the highest when the wavelength conversion device is turned to the green light segment (ie, the second sub-frame image modulation period), and the blue light segment (ie, the third sub-frame image modulation period)
  • the luminance L3 is the lowest, and the luminance L1 at the time of the red light segment (ie, the first subframe image modulation period) is between L3 and L2, that is, L3 ⁇ L1 ⁇ L2.
  • the light source controller 1319 can receive the infrared data signal or the controller of the light modulation module 1340 controls the driving of the infrared light source 1302 based on the light source timing control signal generated by the infrared data signal. Current is used to adjust the brightness of the infrared light.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种光源系统、投影设备及图像显示控制方法。光源系统(200)包括激发光源(201)、辅助光源(202)及波长转换装置(207)。激发光源(201)发出激发光,波长转换装置(207)包括转换区域(214)和反射区域(215),波长转换装置(207)周期性运动,使转换区域(214)和反射区域(215)分时地周期性位于激发光的光路上;转换区域(214)将激发光转换为受激光并出射,反射区域(215)将激发光反射后出射;从波长转换装置(207)出射的受激光及激发光位于波长转换装置(207)的同一侧但光轴不重合,且从波长转换装置(207)出射的受激光及激发光均被引导至出光通道(216)。辅助光源(202)用于发出辅助光,辅助光与受激光的光谱不重合,辅助光也被引导至出光通道(216)。

Description

光源系统、投影设备及图像显示控制方法 技术领域
本发明涉及一种光源系统、投影设备及可用于投影设备的图像显示控制方法。
背景技术
目前,在显示(如投影领域)以及照明领域都开始越来越广泛的应用激光源,由于具有能量密度高,光学扩展量小的优势,在高亮度光源领域,激光源已经逐渐取代灯泡和LED光源。而在这其中,采用第一光源激发荧光粉产生所需光线(如蓝光激光激发黄色荧光粉产生白光或特定颜色的光)的光源系统,以其光效高、稳定性好、成本低等优点成为应用的主流。
特别是在投影技术中,以空间调制器的数量主要分为单片式系统和三片式系统,在单片式系统中,光源需要时序地提供RGB三种颜色的光进行照明,最终在屏幕上呈现出彩色的画面。而在三片式系统中,光源需要提供白光源,并在光机中进行分光,分别照射三片空间调制器,最终合光在屏幕上呈现出彩色的画面。在使用激光作为光源的三片式投影技术中,采用蓝光激光作为激发光源激发黄色荧光粉产生的白光源,以其光效高、稳定性好、成本低等优点成为应用的主流。
在光源系统构成中,可以采用区域镀膜的形式,在区域镀膜处透射或者反射蓝光,激发黄色荧光粉后产生蓝光+黄光得到的白光,经收集的白光经过区域镀膜,部分蓝光会损失,最终形成的白光束角方向上中心缺少蓝光,在应用中会对光束的质量造成影响。请参阅图1及图2,图1是一种现有技术的光源系统100的结构示意图,图2是图1所示的光源系统100的区域分光片106的结构示意图。所述光源系统包括激发光源101、匀光装置103、区域分光片106、收集透镜104、 散射粉片105、中继透镜107及方棒108。
具体地,所述激发光源101一般为蓝光激光光源,其发出激发光束经过所述匀光装置103匀光后,通过所述区域分光片106,如图2所示,所述区域分光片106中心区域镀膜为透蓝镀膜,区域外为反射镜。所述激发光经过所述收集透镜104收集后入射到所述散射粉片105上,所述激发光经过所述散射粉片105散射后以朗伯光的形式反射,在散射的过程中存在5%左右的散射粉片的自吸收损失,反射的激发光光经所述收集透镜104收集后出射,由于所述收集透镜104的大小有限,因此无法将郎伯发散的光线完全收集,存在5%~10%的损失。所述激发光进一步在所述区域分光片106处被反射,所述激发光在所述中心区域处会透射而损失掉8%~10%的能量(即区域损失),造成所述光源系统100的光利用率较低。此外,经过所述中继透镜107成像到所述方棒108入口,最终从所述方棒108出口出射。由于入射到所述方棒108的光束中,由于上述区域损失的存在,光束中心部分缺少蓝色激发光,因此,在从方棒108出口出射的光存在颜色不均匀的现象。综上所述,在现有的光源系统100中,激发光(即蓝色光)的利用率较低,有散射粉片105自吸收损失、收集效率的损失以及区域镀膜的损失,并且区域镀膜损失对光源系统的均匀性也造成影响。
发明内容
针对以上技术问题,有必要提供一种可改善上述问题的光源系统及投影设备,也有必要提供一种可用于投影设备的图像显示控制方法。
一种光源系统,其包括激发光源、辅助光源、及波长转换装置。所述激发光源用于发出激发光,所述波长转换装置包括转换区域和反射区域,所述波长转换装置周期性运动,使得所述转换区域和反射区域分时地周期性位于所述激发光的光路上;所述转换区域用于将所述激发光转换为受激光并出射,所述反射区域用于将所述激发光反射后出射;从所述波长转换装置出射的所述受激光及所述激发光位于所述波长转换装置的同一侧但光轴不重合,且从所述波长转换装置出射的 所述受激光及所述激发光均被引导至所述出光通道,所述辅助光源用于发出辅助光,所述辅助光与所述受激光的光谱不重合,所述辅助光也被引导至所述出光通道。
一种投影设备,所述投影设备包括光源系统,所述光源系统包括激发光源、辅助光源、及波长转换装置。所述激发光源用于发出激发光,所述波长转换装置包括转换区域和反射区域,所述波长转换装置周期性运动,使得所述转换区域和反射区域分时地周期性位于所述激发光的光路上;所述转换区域用于将所述激发光转换为受激光并出射,所述反射区域用于将所述激发光反射后出射;从所述波长转换装置出射的所述受激光及所述激发光位于所述波长转换装置的同一侧但光轴不重合,且从所述波长转换装置出射的所述受激光及所述激发光均被引导至所述出光通道,所述辅助光源用于发出辅助光,所述辅助光与所述受激光的光谱不重合,所述辅助光也被引导至所述出光通道。
一种投影设备,所述投影设备包括光源系统,所述光源系统包括激发光源、红外光源、及波长转换装置。所述光源系统包括激发光源、辅助光源、及波长转换装置。所述激发光源用于发出激发光,所述波长转换装置包括转换区域和反射区域,所述波长转换装置周期性运动,使得所述转换区域和反射区域分时地周期性位于所述激发光的光路上;所述转换区域用于将所述激发光转换为受激光并出射,所述反射区域用于将所述激发光反射后出射;从所述波长转换装置出射的所述受激光及所述激发光位于所述波长转换装置的同一侧但光轴不重合,且从所述波长转换装置出射的所述受激光及所述激发光均被引导至所述出光通道,所述红外光源用于发出红外光,所述红外光被用于调制红外图像,所述红外光与所述受激光的光谱不重合,所述红外光也被引导至所述出光通道。
一种图像显示控制方法,其包括如下步骤:
接收图像数据,基于图像数据产生图像显示数据信号;
提供第一颜色光、第二颜色光、第三颜色光及红外光;
基于图像显示数据信号对所述第一颜色光进行图像调制产生第一 颜色图像光;
基于图像显示数据信号对所述第二颜色光进行图像调制产生第二颜色图像光;
基于图像显示数据信号对所述第三颜色光进行图像调制产生第三颜色图像光;及
基于图像显示数据信号对所述红外光进行图像调制产生红外图像光。
进一步地,所述第一、第二及第三颜色分别为红绿蓝三基色。
进一步地,所述方法还包括如下步骤:
提供第四颜色光,基于图像显示数据信号对所述第四颜色光进行图像调制产生第四颜色图像光。
进一步地,所述图像显示控制方法中,所述图像显示数据信号包括第一颜色数据信号、第二颜色数据信号、第三颜色数据信号及第四颜色数据信号,其中,所述方法中,基于所述第一颜色数据信号对所述第一颜色光进行图像调制产生第一颜色图像光、基于所述第二颜色数据信号对所述第二颜色光进行图像调制产生第二颜色图像光、基于所述第三颜色数据信号对所述第三颜色光进行图像调制产生第三颜色图像光、基于所述第四颜色数据信号对所述第四颜色光进行图像调制产生第四颜色图像光、及基于所述四个颜色数据信号其中的至少一个对所述红外光进行图像调制产生红外图像光。
进一步地,所述图像显示控制方法中,进行一帧图像的调制时段包括四个不同的时间段,分别为第一子帧图像调制时段、第二子帧图像调制时段、第三子帧图像调制时段及第四子帧图像调制时段,所述方法中,在所述第一子帧图像调制时段基于所述第二颜色数据信号对所述第二颜色光进行图像调制产生第二颜色图像光、在所述第二子帧图像调制时段基于所述第四颜色数据信号对所述第四颜色光进行图像调制产生第四颜色图像光、在所述第三子帧图像调制时段基于所述第三颜色数据信号对所述第三颜色光进行图像调制产生第三颜色图像光、及在所述第四子帧图像调制时段基于所述第一颜色数据信号对所 述第一颜色光及所述红外光进行图像调制产生第一颜色图像光及红外图像光。
进一步地,所述图像显示控制方法中,所述图像显示数据信号包括第一颜色数据信号、第二颜色数据信号、第三颜色数据信号及红外数据信号,其中,所述方法中,基于所述第一颜色数据信号对所述第一颜色光进行图像调制产生第一颜色图像光、基于所述第二颜色数据信号对所述第二颜色光进行图像调制产生第二颜色图像光、基于所述第三颜色数据信号对所述第三颜色光进行图像调制产生第三颜色图像光、及基于所述红外数据信号对所述红外光进行图像调制产生红外图像光。
进一步地,所述方法还包括:对所述图像数据进行解码获得所述第一至第三颜色数据信号,且将所述第一至第三颜色数据信号中的一个数据信号作为所述红外数据信号。
进一步地,所述方法还包括:将所述第一颜色数据信号作为所述红外数据信号。
进一步地,所述图像显示控制方法中,进行一帧图像的调制时段包括四个不同的时间段,分别为第一子帧图像调制时段、第二子帧图像调制时段、第三子帧图像调制时段及第四子帧图像调制时段,其中,所述方法中,在所述第一子帧图像调制时段基于所述第二颜色数据信号对所述第二颜色光进行图像调制产生第二颜色图像光、在所述第二子帧图像调制时段基于所述红外数据信号对所述红外光进行图像调制产生红外图像光、在所述第三子帧图像调制时段基于所述第三颜色数据信号对所述第三颜色光进行图像调制产生第三颜色图像光、及在所述第四子帧图像调制时段基于所述第一颜色数据信号对所述第一颜色光进行图像调制产生第一颜色图像光。
进一步地,所述方法还包括:提供第一调制模块及第二调制模块,利用所述第一调制模块对所述第一颜色光及第二颜色光进行图像调制,利用第二调制模块用于对所述第三颜色光及所述红外光进行图像调制。
进一步地,所述方法还包括:
对所述图像数据进行解码获得所述第一颜色数据信号、第二颜色数据信号及第三颜色数据信号,基于所述第一至第三颜色数据信号计算红外数据信号,设所述第一至第三数据信号中任意一个像素的信号值为A、B、C,所述任意一个像素的红外数据信号值IR=(A*a+B*b+C*c)/Ymax,其中所述a、b、c分别代表所述第一、第二及第三颜色光的亮度,Ymax=a+b+c。
进一步地,所述图像显示控制方法中,进行一帧图像的调制时段包括三个不同的时间段,分别为第一子帧图像调制时段、第二子帧图像调制时段、第三子帧图像调制时段,所述方法中,在所述第二子帧图像调制时段基于所述第二颜色数据信号对所述第二颜色光进行图像调制产生第二颜色图像光、在所述第三子帧图像调制时段基于所述第三颜色数据信号对所述第三颜色光进行图像调制产生第三颜色图像光、在所述第一子帧图像调制时段基于所述第一颜色数据信号对所述第一颜色光进行图像调制产生第一颜色图像光,所述光调制模块还在所述第一、第二及第三子帧图像调制时段基于所述红外数据信号对所述红外光进行图像调制产生红外图像光。
进一步地,所述图像显示控制方法中,所述方法中,对所述图像数据进行解码获得所述第一颜色数据信号、第二颜色数据信号及第三颜色数据信号,基于所述第一至第三颜色数据信号计算红外数据信号,设所述第一至第三数据信号中任意一像素的信号值为A、B、C,所述第一颜色光、所述第二颜色光及所述第三颜色光的亮度分别为a、b、c,控制所述红外光在所述三个子帧图像调制时段的亮度分别为d、e及f,其中d=α*a;e=α*b;f=α*c,即所述红外光在所述三个子帧像调制时段的亮度分别为所述第一至第三颜色光的亮度的α倍。
进一步地,所述图像显示控制方法中,所述红外光在所述第一、第二及第三子帧图像调制时段亮度分别为L1、L2及L3,L3<L1<L2。
进一步地,所述图像显示控制方法中,通过光源系统提供所述第一颜色光、第二颜色光、第三颜色光及红外光,该光源系统包括激发 光源、红外光源、波长转换装置、及区域分光装置,所述区域分光装置包括第一区域与第二区域,所述波长转换装置包括反射区域及转换区域,其中:
所述激发光源用于发出激发光,所述区域分光装置的第一区域将所述激发光引导至所述反射区域及所述转换区域,其中所述激发光沿预定角度倾斜入射至所述反射区域,所述激发光包括入射到所述反射区域的第一部分激发光及入射到所述转换区域的第二部分激发光;
所述反射区域将所述第一部分激发光反射至所述区域分光装置的第二区域,所述区域分光装置的第二区域用于将所述第一部分激发光引导至出光通道;及
所述转换区域将所述第二部分激发光转换为受激光并将所述受激光反射,所述受激光被引导至所述出光通道,所述受激光在所述出光通道中的光路通道将所述第一部分激发光在所述出光通道中的光路通道包围,所述红外光源用于发出所述红外光,所述红外光被引导至所述出光通道,所述受激光包括颜色而不同的第一受激光及第二受激光,所述出光通道中的所述第一部分激发光、所述第一受激光、所述第二受激光分别作为所述第一颜色光、第二颜色光及所述第三颜色光。
进一步地,所述图像显示控制方法中,所述红外光在所述出光通道中的光路通道与所述第一部分激发光在所述出光通道中的光路通道重合。
与现有技术相比较,所述光源系统中,从所述波长转换装置出射的所述受激光和激发光位于所述波长转换装置的同一侧但光轴不重合,即由于经所述反射区域反射后,所述激发光的光路相较于入射光路发生了偏移,从而所述激发光从所述波长转换装置返回的区域与所述激发光的入射区域是不同的,进而在不增加额外元件的情况下可以避免所述入射区域产生的损耗,提高所述光源系统的光利用率以及减少区域镀膜处损失造成的出光不均。
进一步地,所述光源系统、投影设备及图像显示控制方法中,进一步提供辅助光,所述辅助光与所述受激光的光谱不重合,且被用于 红外图像调制或紫外光曝光等作用,增加使用所述光源系统的投影设备的功能,提高用户体验性。
附图说明
图1是一种现有技术的光源系统的结构示意图。
图2是图1所示的光源系统的区域分光片的结构示意图。
图3是本发明第一实施方式的光源系统的结构示意图。
图4是图3所示光源系统的区域分光装置的平面结构示意图。
图5是图3所示光源系统的波长转换装置及散射装置的结构示意图。
图6是图3所示光源系统的发光时序图。
图7是本发明第一实施方式的投影设备的结构示意图。
图8是图7所示投影设备的图像显示控制方法的流程图。
图9是本发明第二实施方式的光源系统的波长转换装置及散射装置的结构示意图。
图10是本发明第二实施方式的光源系统的发光时序图。
图11是本发明第二实施方式的投影设备的结构示意图。
图12是本发明第三实施方式的投影设备的结构示意图。
图13是本发明第四实施方式的投影设备的结构示意图。
图14是本发明第五实施方式的投影设备的光源系统的结构示意图。
图15是图14所示光源系统的部分放大示意图.
图16是本发明第六实施方式的投影设备的光源系统的结构示意图。
图17是本发明第七实施方式的投影设备的光源系统的结构示意图。
图18是本发明第八实施方式的投影设备的光源系统的结构示意图。
图19是本发明第九实施方式的投影设备的光源系统的结构示意 图。
图20是本发明第十实施方式的投影设备的光源系统的结构示意图。
图21是本发明第十一实施方式的投影设备的结构示意图。
图22是图21所示投影设备的光源系统的发光时序图。
主要元件符号说明
光源系统             200、300、600、700、800、900、1000、1200、
                     1300
激发光源             201
辅助光源             202、1302
补充光源             203、1003、1203
合光装置             212
波长转换装置         207、307、607、707、807、1007、1207
匀光器件             204
区域分光装置         205、705、805、905、1005
引导装置             213、612、713、813、913、1308
散射装置             210、310、610、710、810、910、1010
匀光装置             211、611、711、811、911、1111、1311
合光元件             212b
第一收集系统         206a
第二收集系统         206b
第三收集系统         206c、1006c
第一区域             205a
第二区域             205b
第三区域             205c、1205c
反射区域             215、615
第一反射区域         315a
第二反射区域         315b
反射表面             615c
转换区域             214
第一转换区域         214a、314a
第二转换区域         214b、314b
第三转换区域         214c
散射区域             217
第一散射区域         317a
第二散射区域         317b
第一滤光区域         218a、318a
第二滤光区域         218b、318b
第三滤光区域         218c
出光通道             216、1116
反射镜               209、709、809、909、1009
分光片               208、708、808、908、1008
第一出光通道         216a、616a、716a、816a、916a、1316a
第二出光通道         216b、616b、716b、816b、916b、1316b
投影设备             220、320、420、520、1320
数据处理模块         230、1330
光调制模块           240、340、440、540、1340
投影镜头             250
信号接收单元         231
信号解码单元         232、532
融合器               233
控制器               242、342、442
调制器               243、343、443
步骤                 S1、S2、S3、S4、S5、S6、S7
波长转换周期         T
子帧图像调制时段     T1、T2、T3、T4
第一调制模块         441a
第二调制模块         441b
信号处理单元         534
引导元件             212a、1113
第一补充光源         1203a
第二补充光源         1203b
光源控制器           1319
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
请参阅图3,图3是本发明第一实施方式的光源系统200的结构示意图。该光源系统200包括激发光源201、辅助光源202、补充光源203、合光装置212、波长转换装置207、匀光器件204、区域分光装置205、引导装置213、散射装置210、匀光装置211、第一收集系统206a、第二收集系统206b及第三收集系统206c。
所述激发光源201用于发出激发光,所述激发光源201可以为半导体二极管或者半导体二极管阵列。所述半导体二极管阵列可以为激光二极管(LD)等。该激发光可以为蓝色光、紫色光或者紫外光等,但并不以上述为限。本实施方式中,所述激发光源201为蓝色光半导体激光二极管,用于发出蓝色激光作为所述激发光。
所述辅助光源202用于发出辅助光,如红外光,所述辅助光源202可以为半导体二极管或者半导体二极管阵列。所述半导体二极管阵列可以为激光二极管(LD)等。本实施方式中,所述辅助光源202为红外光半导体激光二极管,用于发出红外光激光作为所述红外光,其中所述红外光可以被用于调制红外图像。在另一种实施方式中,所述辅助光源202可以为紫外光源,用于发出紫外光作为所述辅助光,所述紫外光可以被用于紫外光曝光。
所述合光装置212位于所述激发光源201发出的所述激发光及所述辅助光源202发出的辅助光(如红外光)所在的光路上,用于将所 述激发光与所述辅助光(如红外光)进行合光。所述合光装置212包括合光元件212b,所述合光元件212b接收所述辅助光源202发出的辅助光及所述激发光源201发出的激发光,并将所述辅助光及所述激发光中的一种透射以及将所述辅助光及所述激发光中的另外一种反射从而将所述辅助光及所述激发光合光,所述合光后的辅助光及所述激发光被提供至所述波长转换装置207,其中所述合光后的辅助光及所述激发光的光路通道重合。
具体地,所述合光装置212还包括引导元件212a,所述引导元件212a将所述激发光源201发出的激发光引导(如反射)至所述合光元件212b,所述合光元件218还接收所述辅助光源202发出的所述红外光,从而所述红外光与所述激发光在所述合光元件218处合光。可以理解,所述引导元件212a可以为反射元件,如反射镜,所述合光元件212b可以合光膜片。可以理解,在变更实施方式中,在不需要红外光的光源系统100及投影设备中,所述辅助光源202及所述合光装置212均可以被省略。
所述匀光器件204位于所述合光装置212发出的所述激发光及所述红外光所在的光路上,用于对所述合光装置212发出的所述激发光及所述红外光进行匀光。可以理解,在变更实施方式中,所述匀光器件204可以被省略。
请参阅图4,图4是图3所示光源系统200的区域分光装置205的平面结构示意图。所述区域分光装置205包括第一区域205a与第二区域205b,所述第一区域205a位于所述匀光器件204发出的所述激发光及所述红外光所在的光路上,所述区域分光装置205的第一区域205a将所述激发光引导(如透射)至所述波长转换装置207,其中所述激发光沿预定角度(如30度的入射角)倾斜入射至所述波长转换装置207。具体地,所述区域分光装置205可以为分光膜片(如二向色片),所述分光膜片相较于所述激发光的方向大致呈45度放置。平面上,所述分光膜片可以大致呈矩形,所述第二区域205b可以位于所述第一区域205a的外围,具体地,所述第一区域205a可以位于所述区 域分光装置205的一侧,大致位于所述区域分光装置205的中心与所述区域分光装置205其中一侧边(如下侧边)的中央位置。所述第一区域205a为可透射激发光及红外光的镀膜区域,所述第一区域205a还可以反射波长长于所述激发光及所述红外光的其他光,如红色光、绿色光、黄色光。所述第二区域205b为可以反射激发光及其他光(如红色光、绿色光、黄色光)的镀膜区域。
所述第一收集系统206a位于所述区域分光装置205及所述波长转换装置207之间,用于对所述区域分光装置205及所述波长转换装置207之间的光进行汇聚、收集处理。具体地,所述第一收集系统206a可以包括收集透镜,如凸透镜。所述第一收集系统206a可以邻近所述波长转换装置207设置,且所述第一区域205a发出的激发光及所述红外光的光路相较于所述第一收集系统206a的光轴平行但是具有预定距离,从而所述第一收集系统206a对所述激发光及所述红外光进行收集后使得所述激发光及所述红外光沿所述预设角度入射至所述波长转换装置207。
请参阅图5,图5是图3所示光源系统200的波长转换装置207及散射装置210的结构示意图。所述波长转换装置207包括反射区域215及转换区域214,所述反射区域215与所述转换区域214可以为圆周方向依序设置的分段区域,所述光源系统200工作时,所述波长转换装置207沿圆周方向转动使得所述反射区域215与所述转换区域214依序位于所述第一收集系统206a发出的所述激发光所在的光路上。所述第一区域205a透射的激发光可以沿所述预定角度(如较小的角度:30度)倾斜入射至所述反射区域213及所述转换区域214。按照入射到不同区域的激发光做划分,所述激发光包括入射到所述反射区域215的第一部分激发光及入射到所述转换区域214的第二部分激发光。其中,可以理解,由于所述波长转换装置207沿圆周方向转动,所述第一部分激发光与所述第二部分激发光是分时提供到所述反射区域215与所述转换区域214的。
所述反射区域215可以包括具有反射材料的镜面反射表面,用于 将所述第一部分激发光及所述红外光反射,由于所述第一部分激发光及所述红外光沿所述预定角度倾斜入射至所述反射区域215,使得所述反射区域215对所述第一部分激发光及所述红外光进行镜像对称角度的反射后,所述第一部分激发光及所述红外光的光路相较于入射光路发生了偏移,从而所述第一部分激发光及所述红外光从所述波长转换装置207反射回所述区域分光装置205的区域205a’(即所述第二区域205b)与所述激发光及所述红外光的入射区域(即所述第一区域205a)是不同的,进而在不增加额外元件的情况下可以避免所述入射区域(即所述第一区域205a)产生的损耗,提高所述光源系统200的光利用率。
所述转换区域214可以包括设置有荧光材料与散射粉的反射表面,用于接收所述第二部分激发光、并将所述第二部分激发光转换为受激光、以及将所述受激光反射至所述波长转换装置。其中,所述受激光与所述辅助光的光谱不重合,本实施方式中,所述转换区域214的数量为三个,分别为第一转换区域214a、第二转换区域214b及第三转换区域214c,每个转换区域214用于产生一种颜色的受激光,所述受激光包括第一受激光、第二受激光及第三受激光。具体地,所述第一转换区域214a设置有第一荧光材料,如红色荧光材料,用于接收所述第二部分激发光并产生所述第一受激光(如红色受激光)。所述第二转换区域214b设置有第二荧光材料,如绿色荧光材料,用于接收所述第二部分激发光并产生所述第二受激光(如绿色受激光)。所述第三转换区域214c设置有第三荧光材料,如黄色荧光材料,用于接收所述第二部分激发光并产生所述第三受激光(如红色受激光)。本实施方式中,所述第一转换区域214a、所述第二转换区域214b、所述第三转换区域214c及所述反射区域215为沿圆周方向首尾相接设置的四个分段区域。如前所述,所述激发光、所述第一受激光及所述第二受激光分别为红绿蓝三基色光,所述第三受激光为第四颜色光,如黄色光。
其中,所述转换区域214产生的受激光以朗伯光的形式反射射出,即以较大的光束孔径出射,而所述反射区域215反射的所述第一部分 激发光及所述红外光由于由小角度入射而也以小角度反射,使得所述转换区域214发出的受激光的光路与所述反射区域215发出的第一部分激发光及所述红外光的光路不同,其中所述受激光的光路的孔径较大,位于所述第一部分激发光及所述红外光的外围。进一步地,所述波长转换装置207的反射区域215反射的所述第一部分激发光及所述红外光经由所述第一收集系统206a透射与收集后被引导至所述区域分光装置205的第二区域205b。所述第二区域205b为反射所述激发光(如反射蓝色光)的区域,故,所述第二区域205b将所述波长转换装置的反射区域215反射的所述第一部分激发光引导(如反射)至出光通道216。所述波长转换装置207的转换区域214发出的所述受激光经由所述第一收集系统206a透射与收集后被引导至所述区域分光装置205,其中由于所述受激光的光路的孔径较大,故所述受激光还入射至所述区域分光装置205的所述第一部分激发光及所述红外光入射区域的外围,所述区域分光装置205还将所述受激光引导(如反射)至所述出光通道216。其中,所述受激光在所述出光通道216中的光路通道将所述第一部分激发光及所述红外光在所述出光通道216中的光路通道包围,从而所述光源系统200的出光通道216的空间可以相对较小,改善出光通道空间较大造成的光源系统体积较大不利于小型化微型化等问题。
本实施方式中,所述出光通道216包括第一出光通道216a及第二出光通道216b,所述区域分光装置205将所述波长转换装置207发出的光经由所述第一出光通道216a引导(如反射)至所述引导装置213,所述引导装置213将所述第一出光通道216a中的光引导(如反射)至所述第二出光通道216b。
所述第二收集系统206b可以位于所述区域分光装置205与所述引导装置213之间的第一出光通道中,用于对所述第一出光通道216a中的光进行收集与汇聚后提供至所述引导装置213。所述第二收集系统206b可以包括收集透镜,如凸透镜。
所述引导装置213位于所述区域分光装置205发出的光所在的光 路上,其经由所述第二收集系统206b接收所述区域分光装置205反射的所述第一部分激发光、所述红外光及所述受激光。具体地,所述引导装置213可以包括分光片208及反射镜209,所述分光片208接收所述区域分光装置205经由所述第一出光通道216a出射的所述受激光并将所述受激光反射至所述第二出光通道216b,所述反射镜209接收所述区域分光装置205经由所述第一出光通道216a出射的所述第一部分激发光并将所述第一部分激发光反射至所述第二出光通道216b。
本实施方式中,所述反射镜209的反射表面为凸面,所述分光片208将所述第一出光通道216a中的所述第一部分激发光透射至所述反射镜209,所述反射镜209将所述第一部分激发光反射且所述第一部分激发光经由所述分光片透射至所述第二出光通道216b。所述反射镜209的凸面的反射表面用于校正所述第一部分激发光(蓝色光)与红外光的光程,具体来说,由于所述第一部分激发光与红外光的光程较所述受激光(红色光、绿色光及黄色光)的光程不同,通过设置具有凸面反射表面的反射镜209使得所述第一部分激发光与红外光的光程加长,进而可与所述受激光的光程基本相同,从而使得所述第一部分激发光与所述受激光在所述匀光装置211的入口均成像对焦的光斑,避免所述第一部分激发光的成像离焦,有助于提高所述匀光装置211的耦合效率及颜色均匀性。
所述散射装置210位于所述引导装置213发出的光所在的光路上,用于接收所述出光通道216的光并对所述出光通道216出射的光进行散射。具体地,所述散射装置210可以经由所述第三收集系统206c收集汇聚后被引导至所述散射装置210。其中,所述第三收集系统206c也可以包括收集透镜,如凸透镜,所述第三收集系统206c将所述出光通道216发出的光经由所述散射装置210收集至所述匀光装置211的入口。
请参阅图5,所述散射装置210包括散射区域217与滤光区域218,所述散射区域217与所述滤光区域218沿圆周方向设置,所述光源系统200工作时,所述散射区域217与所述滤光区域218交替位于所述 出光通道216射出的所述第一部分激发光(及所述红外光)与所述受激光所在的光路上,使得所述散射区域217对所述出光通道216出射的激发光及红外光进行散射,所述滤光区域218对所述出光通道216出射的所述受激光进行过滤。
本实施方式中,所述滤光区域218包括第一滤光区域218a、第二滤光区域218b及第三滤光区域218c,所述第一滤光区域218a、第二滤光区域218b及第三滤光区域218c及所述散射区域217共四个分段区域沿圆周方向相接设置,所述第一滤光区域218a用于对所述出光通道216出射的所述第一受激光进行过滤,所述第二滤光区域218b用于对所述出光通道216出射的所述第二受激光进行过滤,所述第三滤光区域218c用于对所述出光通道216出射的所述第三受激光进行过滤。可以理解,所述第一滤光区域218a上可以设置有第一滤光材料,如红色滤光材料,用于对所述第一受激光进行过滤,使得第一颜色的光(如红色光)通过并射入所述匀光装置211。所述第二滤光区域218b上可以设置有第二滤光材料,如绿色滤光材料,用于对所述第二受激光进行过滤,使得第二颜色的光(如绿色光)通过并射入所述匀光装置211。所述第三滤光区域218c上可以设置有第三滤光材料,如黄色滤光材料,用于对所述第三受激光进行过滤,使得第三颜色的光(如黄色光)通过并射入所述匀光装置211。
本实施方式中,所述散射装置210与所述波长转换装置207为一体结构,所述散射区域217及所述滤光区域218位于所述反射区域215及所述转换区域214的内侧。所述散射装置210与所述波长转换装置207同心设置且可以具有同一个位于圆心的驱动轴,用于带动所述散射装置210与所述波长转换装置207沿圆周方向转动。
所述匀光装置211用于接收所述散射装置210出射的光并对所述散射装置210出射的光进行匀光及合光。所述匀光装置211可以为方棒,经所述第三收集系统206c收集后的所述第一部分激发光、所述红外光进一步经所述散射区域217散射后被引导至所述匀光装置211的入口,经所述第三收集系统206c收集后的所述受激光进一步经所述滤 光区域218过滤后被引导至所述匀光装置211的入口。可以理解,基于以上波长转换装置207及散射装置210的结构可知,所述第一部分激发光与所述红外光是同时被引导至所述匀光装置211,所述第一部分激发光、所述第一受激光、所述第二受激光及所述第三受激光是顺序被引导至所述匀光装置211(即在不同时段被引导至所述匀光装置),所述匀光装置211对所述第一部分激发光、所述第一受激光、所述第二受激光及所述第三受激光是通过时分复用的方式合光。
本实施方式中,所述补充光源203还发出补充光,所述补充光与所述受激光具有至少部分相同的颜色成分,用于对所述受激光进行特定颜色光的补充。所述补充光可以为红色补充光,所述补充光源203可以包括半导体二极管或者半导体二极管阵列,所述半导体二极管可以为激光二极管(LD)等。本实施方式中,所述补充光源203为红光半导体激光二极管,用于发出红色激光作为所述补充光。可以理解,在变更实施方式中,所述补充光源203也可以包括绿色半导体激光二极管,用于发出绿色激光作为所述补充光。
所述区域分光装置205中,所述第二区域205b进一步包括第三区域205c,所述第三区域205c可以透射所述补充光,所述第三区域205c可以位于所述区域分光装置205的中心,所述补充光源203发出的所述补充光经由所述第三区域205c透射后经由所述第一收集系统206a被引导至所述波长转换装置207。其中所述补充光的光路可以与所述第一收集系统206a的光轴重合使得所述补充光可以不改变方向入射至所述波长转换装置207的转换区域214。具体地,所述补充光被引导至所述转换区域214,所述转换区域214将所述补充光散射及反射,使得所述补充光与所述受激光一并被经由所述第一收集系统206a引导至所述区域分光装置205,所述区域分光装置205进一步将所述补充光及所述受激光一起引导(如反射)至所述出光通道216,其中所述补充光在所述出光通道216中的光路通道与所述受激光在所述出光通道中的光路通道重合。本实施方式中,所述补充光与所述第一受激光颜色相同,所述补充光源203可以在所述第一转换区域214a发出所 述第一受激光时开启,使得所述第一转换区域214a将产生的第一受激光及接收到所述补充光一并引导至所述区域分光装置205,进而引导至所述出光通道216及散射装置210。
请参阅图6,图6是图3所示光源系统200的发光时序图。从所述时序图可以看出,在一个波长转换周期T(也称色轮周期)内,所述波长转换装置207依序发出第一受激光、第三受激光、第二受激光及第一部分激发光,其中所述红外光还与所述第一部分激发光同时发出,即依序分出红色光、黄色光、绿色光及蓝色光(与红外光)。具体地,所述激发光源201在整个波长转换周期T内始终开启,所述辅助光源202在所述波长转换装置207发出第一部分激发光的时段开启即可,所述补充光源203在所述波长转换装置发出第一受激光的时段(即在所述波长转换装置207发出与所述补充光具有颜色成分的受激光时)开启即可。
请参阅图7,图7是采用上述光源系统200的投影设备220的结构示意图。除了所述光源系统200外,所述投影设备220还包括数据处理模块230、光调制模块240及投影镜头250。所述数据处理模块230用于接收图像数据并基于所述图像数据产生图像显示数据信号,所述光调制模块240用于基于所述图像显示数据信号对所述第一部分激发光进行图像调制产生第一颜色图像光(如蓝色图像光)、用于基于所述图像显示数据信号对所述第一受激光进行图像调制产生第二颜色图像光(如红色图像光)、用于基于所述图像显示数据信号对所述第二受激光进行图像调制产生第三颜色图像光(如绿色图像光)、用于基于所述图像显示数据信号对所述第三受激光进行图像调制产生第四颜色图像光(如黄色图像光)、及还用于基于所述图像显示数据信号对所述红外光进行图像调制产生红外图像光。如前所述,所述第一颜色、所述第二颜色及所述第三颜色分别为红绿蓝三基色,所述第四颜色为黄色。所述投影镜头250用于接收所述第一颜色图像光、第二颜色图像光、第三颜色图像光、第四颜色图像光及红外图像光并进行图像的投影显示。
具体来说,所述数据处理模块230可以包括信号接收单元231、信号解码单元232及融合器233,所述信号接收单元231、所述信号解码单元232与所述融合器233依序电连接,所述信号接收单元231接收待显示的图像数据并将所述待显示的图像数据依次提供至所述信号解码单元232,所述信号解码单元232对所述图像数据进行解码获得所述图像显示数据信号,所述融合器233接收所述信号解码单元232解码获得的所述图像显示数据信号并将所述图像显示数据信号提供至所述光调制模块240。所述图像显示数据信号包括第一颜色数据信号、第二颜色数据信号、第三颜色数据信号及第四颜色数据信号。
本实施方式中,所述光调制模块240基于所述第一颜色数据信号对所述第一部分激发光及所述红外光进行图像调制产生第一颜色图像光及红外图像光、基于所述第二颜色数据信号对所述第一受激光进行图像调制产生第二颜色图像光、基于所述第三颜色数据信号对所述第二受激光进行图像调制产生第三颜色图像光、基于所述第四颜色数据信号对所述第三受激光进行图像调制产生第四颜色图像光。可以理解,本实施方式中,所述光调制模块240基于所述第一颜色数据信号对所述红外光进行图像调制产生所述红外图像光,但是,在变更实施方式中,所述光调制模块240也可以基于所述第二、第三及第四颜色数据信号其中的至少一个对所述红外光进行图像调制产生红外图像光。
进一步地,请参阅图6,在所述波长转换周期T内,所述光调制模块240进行一帧图像的调制,可以理解,所述波长转换周期T也可以被看做一帧图像的调制时段(或者说一帧图像的调制周期),所述一帧图像的调制时段包括四个不同的时间段,分别为第一子帧图像调制时段T1、第二子帧图像调制时段T2、第三子帧图像调制时段T3及第四子帧图像调制时段T4。所述四个时间段可以连续设置,具体地,所述波长转换装置207在所述四个时间段(即四个子帧图像调制时段)依序发出第一受激光、第三受激光、第二受激光及第一部分激发光,其中所述红外光还与所述第一部分激发光同时发出,即依序分出红色光、黄色光、绿色光及蓝色光(与红外光)。具体地,所述激发光源在 整个波长转换周期(即四个子帧图像调制时段)内始终开启,所述红外光源在所述波长转换装置发出第一部分激发光的时段(即第四子帧图像调制时段T4)开启即可,所述补充光源203在所述波长转换装置207发出第一受激光的时段(即第一子帧图像调制时段T1)开启即可。
进一步地,所述光调制模块240在所述第一子帧图像调制时段T1基于所述第二颜色数据信号对所述第一受激光进行图像调制产生第二颜色图像光、在所述第二子帧图像调制时段T2基于所述第四颜色数据信号对所述第三受激光进行图像调制产生第四颜色图像光、及在所述第三子帧图像调制时段T3基于所述第三颜色数据信号对所述第三颜色光进行图像调制产生第三颜色图像光、及在所述第四子帧图像调制时段T4基于所述第一颜色数据信号对所述第一部分激发光及所述红外光进行图像调制产生第一颜色图像光及红外图像光。
本实施方式中,所述光调制模块240包括一调制模块,所述调制模块基于所述图像显示数据信号在四个时间段顺序调制所述光源系统发出的光来产生图像光。所述光调制模块240可以包括控制器242及调制器243。所述控制器242接收所述图像显示数据信号并对所述图像显示数据信号转换为调制时序控制信号,并将所述调制时序控制信号提供至所述调制器243。所述调制器243包括多个调制单元(如反射镜单元),其中每个调制单元用于产生待显示图像的一个像素的图像光,所述调制时序控制信号可以控制所述调制单元的开启程度(如开启时间)对所述光源系统200发出的光进行调制,从而展现对应的像素应该展现的亮度。其中,在所述波长转换周期T内,所述调制器243顺序调制所述光源系统200发出的光,从而顺序产生四子帧图像的图像光,分别为第二子帧的第二颜色图像光、第四子帧的第四颜色图像光、第三子帧的第三颜色图像光、及第一子帧的第一颜色图像光与红外光。可以理解,所述调制器243还可以产生光源控制信号至所述光源系统200,用于控制光源系统200发出的四种颜色光及红外光的时序,使得所述光源系统200发出的光的时序与所述调制器243的图像调制时序一致。在一种实施例中,所述控制器242可以为DDP,所述 调制器243可以DMD,可以理解,所述光调制模块240为单片式DMD调制模块,且支撑RGBY信号,DMD不需要对IR进行单独的控制,IR图像与蓝色光图像同步。
以下对所述投影设备的工作原理进行介绍,请参阅图8,图8是图7所示投影设备220工作时采用的图像显示控制方法的流程图。所述图像显示控制方法包括如下步骤S1、S2、S3、S4、S5、及S6。
步骤S1,接收图像数据,基于图像数据产生图像显示数据信号。可以理解,所述步骤S1可以由所述数据处理模块230完成。具体地,所述数据处理模块230接收一帧图像数据并基于所述一帧图像数据产生图像显示数据信号。所述信号接收单元231接收待显示的图像数据并将每帧图像数据提供至所述信号解码单元232,所述信号解码单元232对所述图像数据进行解码获得所述图像显示数据信号,所述融合器233接收所述信号解码单元232解码获得的所述图像显示数据信号并将所述图像显示数据信号提供至所述光调制模块240。所述图像显示数据信号包括第一颜色数据信号、第二颜色数据信号、第三颜色数据信号及第四颜色数据信号。
步骤S2,提供第一颜色光、第二颜色光、第三颜色光及红外光。可以理解,所述步骤S2可以由所述光源系统200完成,其中所述光源系统200发出的所述第一部分激发光、所述第一受激光及所述第二受激光可以分别作为所述第一颜色光、所述第二颜色光及所述第三颜色光。在一种实施方式中,所述步骤S2可以进一步包括提供第四颜色光步骤,则所述光源系统200发出的所述第三受激光可以作为所述第四颜色光。
步骤S3,基于图像显示数据信号对所述第一颜色光进行图像调制产生第一颜色图像光。
步骤S4,基于图像显示数据信号对所述第二颜色光进行图像调制产生第二颜色图像光。
步骤S5,基于图像显示数据信号对所述第三颜色光进行图像调制产生第三颜色图像光。
步骤S6,基于图像显示数据信号对所述红外光进行图像调制产生红外图像光。
进一步地,在一种实施方式中,当所述步骤S2进一步包括提供所述第四颜色光的步骤,所述图像显示控制方法还可以进一步包括步骤S7:基于图像显示数据信号对所述第四颜色光进行图像调制产生第四颜色图像光。
具体地,所述方法中,所述步骤S3至S7可以由所述光调制模块240完成。所述光调制模块240可以基于所述第一颜色数据信号对所述第一颜色光及红外光进行图像调制产生第一颜色图像光、基于所述第二颜色数据信号对所述第二颜色光进行图像调制产生第二颜色图像光、基于所述第三颜色数据信号对所述第三颜色光进行图像调制产生第三颜色图像光、基于所述第四颜色数据信号对所述第四颜色光进行图像调制产生第四颜色图像光。
如图6所示,所述步骤S3至S7中,所述光调制模块240在所述第一子帧图像调制时段T1基于所述第二颜色数据信号对所述第二颜色光进行图像调制产生第二颜色图像光、在所述第二子帧图像调制时段T2基于所述第四颜色数据信号对所述第四颜色光进行图像调制产生第四颜色图像光、在所述第三子帧图像调制时段T3基于所述第三颜色数据信号对所述第三颜色光进行图像调制产生第三颜色图像光、可以在所述第四子帧图像调制时段T4基于所述第一颜色数据信号对所述第一颜色光及所述红外光进行图像调制产生第一颜色图像光及红外图像光。
与现有技术相比较,所述光源系统200及投影设备220中,所述区域分光装置205控制所述激发光经由所述第一区域205a沿预定角度倾斜入射至所述反射区域215及所述转换区域214,所述反射区域215将所述第一部分激发光反射至所述第二区域205b,以使所述第二区域205b将所述第一部分激发光引导至所述出光通道216,由于经所述反射区域215反射后,所述第一部分激发光的光路相较于入射光路发生了偏移,从而所述第一部分激发光从所述波长转换装置207返回至所 述区域分光装置205的区域205a’与所述激发光的入射区域(第一区域205a)是不同的,进而在不增加额外元件的情况下可以避免所述入射区域产生的损耗,提高所述光源系统200的光利用率。
具体来说,在现有的光源中,蓝色激发光经过波长转换装置207表面散射粉散射,与其他受激光通过扩展量合光,由于存在散射粉的吸收、收集透镜的收集效率损失、区域镀膜的损失,效率最高只能达到60%。在本发明中,第一部分激发光(如蓝色激光)与红外光的光路与受激光(如红绿黄等其他颜色的光)在所述出光通道216中走不同的光路,第一部分激发光的光束角度非常小,在所述波长转换装置207的反射区域215的表面镜面反射,没有反射率和收集效率的损失,在入射到所述区域分光装置205的表面时可以被完全反射,效率非常高,可以达到80%以上,相对于现有光源提高了33%,从而对光源系统200发出的光的颜色有很大的提升。而红外光与第一部分激发光的光路相同,效率可以做到与激发光效率相同甚至更高。其他受激光(除了红色受激光在第三区域205c有少量透射损失外),如对亮度起主要作用的绿色光,因为没有区域镀膜,效率可以提高8%。综合上述优点,本发明提供的光源系统200是一种高效的光源。
进一步地,本实施方式中,所述光源系统200、投影设备220及图像显示控制方法中,所述辅助光源202进一步提供红外光,使得可以依据图像显示数据信号调制所述红外光产生红外图像光,增加红外显示功能,让夜间视觉变为可能,通过佩戴夜视眼镜(night vision goggle,NVG),可以观看投影仪投出的红外光图像,使得相关投影设备220可以应用于夜间模拟等某些特殊场合,例如军事作战、训练飞行员的训练模拟器中,即功能更佳丰富,应用领域更为广泛。
请参阅图9及图10,图9是本发明第二实施方式的光源系统的波长转换装置307及散射装置310的结构示意图,图10是本发明第二实施方式的光源系统发光时序图。所述光源系统与第一实施方式的光源系统的结构基本相同,也就是说,上述对所述光源系统的描述基本上可以应用于所述光源系统,二者的差别主要在于:波长转换装置307 及散射装置310的结构不同,所述光源系统的发光时序有所不同。
具体来说,本实施方式中,所述波长转换装置307的转换区域包括第一转换区域314a及第二转换区域314b,所述第一转换区域314a用于将接收到的激发光转换为所述第一受激光(如红色受激光),所述第二转换区域314b用于将接收到的激发光转换为所述第二受激光(如绿色受激光),其中所述第一、第二转换区域314a、314b与第一实施方式中的第一、第二转换区域214a、214b基本相同,此处就不再赘述其结构。反射区域包括第一反射区域315a与第二反射区域315b,所述第一反射区域315a将所述第一部分激发光反射至区域分光装置的第二区域,所述第二反射区域315b将所述红外光反射至区域分光装置的第二区域,即所述第一部分激发光及所述红外光入射至所述区域分光装置的不同的反射区域。其中,所述第一转换区域314a、第二转换区域314b、第一反射区域315a、第二反射区域315b可以为沿圆周方向设置首尾相接的四个分段区域,其中,所述第一转换区域314a与所述第二转换区域314b相对设置,所述第一反射区域315a与所述第二反射区域315b相对设置。
与上述波长转换装置307对应地,所述散射装置310中,滤光区域包括第一滤光区域318a及第二滤光区域318b,散射区域包括第一散射区域317a及第二散射区域317b。所述第一滤光区域318a用于对所述出光通道出射的所述第一受激光进行过滤,所述第二滤光区域318b用于对所述出光通道出射的所述第二受激光进行过滤,所述第一散射区域317a用于对所述出光通道出射的第一部分激发光进行散射,所述第二散射区域317b用于对所述红外光进行散射。所述第一滤光区域318a、所述第一散射区域317a、所述第二滤光区域318b、及所述第二散射区域317b沿圆周方向首尾相接设置的四个分段区域,其中,所述第一滤光区域318a与所述第二滤光区域318b相对设置,所述第一散射区域317a与所述第二散射区域317b相对设置。
具有所述波长转换装置307及散射装置310的光源系统工作时,在一个波长转换周期T(也称色轮周期或者说一帧图像的调制时段) 内,所述波长转换装置依序发出第一受激光、红外光、第二受激光及第一部分激发光,即依序分出红色光、红外光、绿色光及蓝色光。具体地,激发光源在整个波长转换周期T内始终开启,红外光源在所述波长转换装置发出第一部分激发光的时段开启即可,补充光源在所述波长转换装置发出第一受激光的时段(即在所述波长转换装置307发出与所述补充光具有颜色成分的受激光时)开启即可。
进一步地,请参阅图11,图11是本发明第二实施方式的投影设备320的结构示意图。所述投影设备320采用上述第二实施方式的具有所述波长转换装置307及散射装置310的光源系统300。
在所述波长转换周期T内,光调制模块340进行一帧图像的调制,可以理解,所述波长转换周期T也可以被看做一帧图像的调制时段(或者说一帧图像的调制周期),所述一帧图像的调制时段包括四个不同的时间段,分别为第一子帧图像调制时段T1、第二子帧图像调制时段T2、第三子帧图像调制时段T3及第四子帧图像调制时段T4。所述四个时间段可以连续设置。具体地,所述波长转换装置307在所述四个时间段(即四个子帧图像调制时段)依序发出第一受激光、红外光、第二受激光及第一部分激发光,即依序分出红色光、红外光、绿色光及蓝色光。具体地,激发光源在整个波长转换周期T(即四个子帧图像调制时段)内始终开启,红外光源在第二子帧图像调制时段T2开启即可,补充光源在所述波长转换装置307发出第一受激光的时段(即第一子帧图像调制时段T1)开启即可。
进一步地,所述投影设备320及其图像显示控制方法中,所述光调制模块240在所述第一子帧图像调制时段T1基于第二颜色数据信号对所述第一受激光进行图像调制产生第二颜色图像光、在所述第二子帧图像调制时段T2基于红外数据信号对所述红外光进行图像调制产生红外图像光、在所述第三子帧图像调制时段T3基于第三颜色数据信号对所述第三颜色光进行图像调制产生第三颜色图像光、及在所述第四子帧图像调制时段T4基于第一颜色数据信号对所述第一部分激发光进行图像调制产生第一颜色图像光及红外图像光。其中所述红 外数据信号可以是所述第一颜色数据信号、第二颜色数据信号及第三颜色数据信号中任意一个数据信号。本实施方式中,主要以所述红外数据信号为第三颜色数据信号(即绿色数据信号)进行说明。
可以理解,所述光调制模块340的控制器342还可以产生光源控制信号至所述光源系统300,用于控制光源系统300发出的三种颜色光及红外光的时序,使得所述光源系统300发出的光的时序与所述调制器343的图像调制时序一致。另外,可以理解,本实施方式的投影设备的光调制模块340为单片式DMD模块,并且所述光调制模块340要求支持RGBY信号,其中红外数据信号接入DDP的Y通道,如图11所示。在这种情况下,由于控制器342的DDP处理的特性,只有在显示静态图像时,才能够显示红外光图像。
请参阅图12,图12是本发明第三实施方式的投影设备420的结构示意图。所述投影设备420与第二实施方式的投影设备320的结构基本相同,也就是说,上述对所述投影设备320的描述基本上可以应用于所述投影设备420,二者的差别主要在于:光调制模块440的结构有所不同。具体地,所述光调制模块440包括第一调制模块441a及第二调制模块441b,所述第一调制模块441a用于对所述第一部分激发光及第二受激光进行图像调制,所述第二调制模块441b用于对所述第一受激光及所述红外光进行图像调制。其中每个调制模块441都包括控制器442(如DDP)与调制器443(如DMD)。所述第一调制模块441a的控制器442接收第一颜色数据信号及第三颜色数据信号,所述第一调制模块441a的控制器442基于所述第一颜色数据信号及第三颜色数据信号产生第一时序控制信号控制所述第一调制模块441a的调制器443,使得所述第一调制模块441a的调制器443基于所述第一时序控制信号调制所述第一部分激发光及所述第二受激光产生所述第一颜色图像光及所述第三颜色图像光。所述第二调制模块441b的的控制器442接收第二颜色数据信号及红外数据信号,所述第二调制模块441b的的控制器442基于所述第二颜色数据信号及红外数据信号产生第二时序控制信号控制所述第二调制模块441b的调制器443,使得 所述第二调制模块441b的调制器443基于所述第二时序控制信号调制所述第一受激光及所述红外光产生所述第二颜色图像光及所述红外图像光。本实施方式中,所述控制器442为支持RGB信号的DDP控制器,每个控制器442包括RGB三个信号输入通道。所述第一调制模块441a的控制器442的三个信号输入通道中的其中两个通道(如R通道与G通道)可以接收所述第三颜色数据信号(如绿色数据信号),另外一个通道(如B通道)可以接收所述第一颜色数据信号(如蓝色数据信号)。所述第二调制模块441b的控制器442的三个信号输入通道中的其中两个通道(如R通道与G通道)可以接收所述第二颜色数据信号(如红色数据信号),另外一个通道(如B通道)可以接收所述红外数据信号。其中所述红外数据信号可以采用所述第一颜色数据信号、第二颜色数据信号及第三颜色数据信号中的任意一个数据信号,本实施方式主要以所述红外数据信号采用第三颜色数据信号为例进行说明。
所述第三实施方式中,所述投影设备420采用双片式DMD调制模块,每个调制器443要求可处理RBG信号即可,这样使得红外数据信号可以与其他三种颜色数据信号(如蓝色、红色、绿色数据信号)相互独立,互不干扰。
请参阅图13,图13是本发明第四实施方式的投影设备520的结构示意图。所述投影设备520与第三实施方式的投影设备420的结构基本相同,也就是说,上述对所述投影设备420的描述基本上可以应用于所述投影设备520,二者的差别主要在于:数据处理模块530有所不同,其中红外数据信号采用基于第一颜色数据信号、第二颜色数据信号及第三颜色数据信号计算获得的数据信号。具体来说,所述数据处理模块530还包括信号处理单元534,所述信号处理单元534接收信号解码单元532输出的第一颜色数据信号、第二颜色数据信号及第三颜色数据信号,并基于所述第一颜色数据信号、第二颜色数据信号及第三颜色数据信号计算获得所述红外数据信号,即所述红外数据信号为所述第一颜色数据信号、第二颜色数据信号及第三颜色数据信 号的复合信号。设所述第一至第三数据信号中任意一个像素的信号值为A、B、C,所述任意一个像素的红外数据信号的信号值IR符合如下公式:
IR=(A*a+B*b+C*c)/Ymax
其中所述a、b、c分别代表提供到光调制模块540的所述第一部分激发光、所述第一受激光及所述第二受激光的亮度,当所述任意一个像素中,所述第一颜色数据信号、第二颜色数据信号及第三颜色数据信号均为(255,255,255),此时图像亮度最大,即图像最大亮度Ymax=a+b+c。具体地,所述任意一个像素的红外数据信号的信号值IR可以为(A*a+B*b+C*c)/Ymax的结果取整,如四舍五入的方式取整。举例来说,若所述任意一个像素的第一、第二及第三颜色数据信号值为(50,60,80),则此时所述任意一个像素的对应的红外数据信号的信号值应该为(50*a+60*b+80*c)/Ymax的结果取整。因此,本实施方式的投影设备中,可以通过这种算法对一幅图像的每一个像素点进行红外数据信号值的计算获得所述红外数据信号。
本实施方式中,由于所述红外数据信号为所述第一颜色数据信号、第二颜色数据信号及第三颜色数据信号的复合信号,使得红外光图像中每个像素值与所述第一颜色数据信号、第二颜色数据信号及第三颜色数据信号复合的黑白图像灰阶一致,这样红外光图像不会失真,即红外光图像得以保真。
请参阅图14及图15,图14是本发明第五实施方式的投影设备的光源系统600的结构示意图,图15是图14所示光源系统600的部分放大示意图。所述光源系统600与第一实施方式的光源系统200的结构基本相同,也就是说,上述对所述光源系统200的描述基本上可以应用于所述光源系统600,二者的差别主要在于:波长转换装置607的结构不同,引导装置713的结构不同。具体地,所述波长转换装置607的反射区域615可以包括反射表面615c,所述反射表面615c包括半弧形凸面,用于校正第一部分激发光(如蓝色光)与红外光的光轴与光程。进而所述波长转换装置607反射后的所述第一部分激发光和 红外光的光轴与所述受激光(如红色受激光及绿色受激光)重合,进而在匀光装置611(如方棒)的入口出经散射装置610散射后与受激光的角度分布相近,提高均匀性。进一步地,由于所述波长转换装置607的反射区域615可以包括反射表面615c,所述引导装置613可以不设置曲面的反射镜,具体地,所述引导装置713可以为反射膜片,可以反射激发光、补充光、受激光及红外光,所述反射膜片接收所述第一出光通道616a的光并将所述第一出光通道616a的光反射至第二出光通道616b。
请参阅图16,图16是本发明第六实施方式的投影设备的光源系统700的结构示意图。所述光源系统700与第一实施方式的光源系统200的结构基本相同,也就是说,上述对所述光源系统200的描述基本上可以应用于所述光源系统700,二者的差别主要在于:区域分光装置705的结构不同。
本实施方式中,所述区域分光装置705包括分光片708及反射镜709,所述分光片708对应第一区域设置,所述反射镜709对应第二区域设置,所述第一区域的分光片708接收所述激发光并将所述激发光透射至波长转换装置707,所述波长转换装置707将所述第一部分激发光反射至所述反射镜709,所述反射镜709将所述第一部分激发光反射至第一出光通道716a,所述第一区域的分光片还将所述受激光反射至所述第一出光通道716a。具体地,所述反射镜709的反射表面为凹面,至少部分的所述受激光经所述反射镜709透射至所述分光片708,以使所述分光片708将所述波长转换装置707发出的受激光反射至所述第一出光通道716a。可以理解,所述反射镜709的凹面设计用于校正第一部分激发光(如蓝色光)与红外光的光程,用于与所述受激光的光程一致,从而提高入射至匀光装置711的光的均匀性。进一步地,引导装置712可以不设置曲面的反射镜,具体地,所述引导装置712可以为反射膜片,可以反射激发光、补充光、受激光及红外光,所述反射膜片接收所述第一出光通道716a的光并将所述第一出光通道716a的光反射至第二出光通道716b。
请参阅图17,图17是本发明第七实施方式的投影设备的光源系统800的结构示意图。所述光源系统800与第一实施方式的光源系统200的结构基本相同,也就是说,上述对所述光源系统200的描述基本上可以应用于所述光源系统800,二者的差别主要在于:区域分光装置805的结构不同。
本实施方式中,所述区域分光装置805包括分光片808及反射镜809,所述分光片808对应第一区域设置,所述反射镜809对应第二区域设置,所述第一区域的分光片808接收所述激发光并将所述激发光透射至所述波长转换装置807,所述波长转换装置807将所述第一部分激发光反射至所述反射镜809,所述反射镜809将所述第一部分激发光反射至第一出光通道816a,所述第一区域的分光片808还将所述受激光反射至所述第一出光通道816a。具体地,所述反射镜809的反射表面为凸面,所述波长转换装置807将所述第一部分激发光经由所述分光片808反射至所述反射镜809,所述反射镜809反射的所述第一部分激发光及所述红外光经由所述分光片进入所述第一出光通道816a。可以理解,所述反射镜809的凸面设计用于校正第一部分激发光(如蓝色光)与红外光的光程,用于与所述受激光的光程一致,从而提高入射至匀光装置811的光的均匀性。进一步地,引导装置813可以不设置曲面的反射镜,具体地,所述引导装置813可以为反射膜片,可以反射激发光、补充光、受激光及红外光,所述反射膜片接收所述第一出光通道816a的光并将所述第一出光通道816a的光反射至第二出光通道816b。
请参阅图18,图18是本发明第八实施方式的投影设备的光源系统900的结构示意图。所述光源系统900与第一实施方式的光源系统200的结构基本相同,也就是说,上述对所述光源系统200的描述基本上可以应用于所述光源系统900,二者的差别主要在于:引导装置913的结构不同。具体地,所述引导装置913包括分光片908及反射镜909,所述分光片908接收区域分光装置905经由第一出光通道916a出射的所述受激光并将所述受激光反射至第二出光通道916b,所述反 射镜909接收所述区域分光装置905经由所述第一出光通道916a出射的所述第一部分激发光并将所述第一部分激发光反射至所述第二出光通道916b。
本实施方式中,所述反射镜909的反射表面为凹面,所述第一出光通道916a中的至少部分所述受激光经由所述反射镜909透射至所述分光片908,所述分光片908将所述至少部分所述受激光经由所述反射镜909透射至所述第二出光通道916b。可以理解,所述反射镜909的凹面设计用于校正第一部分激发光(如蓝色光)与红外光的光程,用于与所述受激光的光程一致,从而提高入射至匀光装置911的光的均匀性。
请参阅图19,图19是本发明第九实施方式的投影设备的光源系统1000的结构示意图。所述光源系统1000与第一实施方式的光源系统200的结构基本相同,也就是说,上述对所述光源系统200的描述基本上可以应用于所述光源系统1000,二者的差别主要在于:区域分光装置1005、波长转换装置1007、散射装置1010的结构不同,从而出光通道1116也稍有不同。具体地,所述区域分光装置1005包括分光片1008及反射镜1009,所述分光片1008对应第一区域设置,所述反射镜1009对应第二区域设置,所述第一区域的分光片1008的第一表面接收所述激发光并将所述激发光反射至所述波长转换装置1007,所述波长转换装置1007将所述第一部分激发光反射至所述第二区域的反射镜1009,所述反射镜1009将所述第一部分激发光反射至所述第一区域的分光片1008的与所述第一表面相背的第二表面,所述第一区域的分光片1008的第二表面将所述第一部分激发光反射至所述出光通道1116,所述波长转换装置1007还将受激光反射至所述出光通道1116。所述区域分光装置1005还包括引导元件1113,所述引导元件1113将补充光源1003用于发出的补充光反射至所述波长转换装置1007,以使所述波长转换装置1007将所述补充光与所述受激光一起反射至所述出光通道1116。所述散射装置1110与所述波长转换装置1007是分体设置的两个独立元件,所述散射装置1110用于接收所述出光通 道116的光并将散射后光提供至匀光装置1111的入口,第三收集系统1006c用于对所述出光通道1116的光进行收集以使所述出光通道1116的光经由所述散射装置1110成像到所述匀光装置1111的入口。
请参阅图20,图20是本发明第十实施方式的投影设备的光源系统1200的结构示意图。所述光源系统1200与第一实施方式的光源系统200的结构基本相同,也就是说,上述对所述光源系统200的描述基本上可以应用于所述光源系统1200,二者的差别主要在于:补充光源1203有所不同。本实施方式中,补充光包括第一补充光与第二补充光,所述补充光源1203包括用于发出所述第一补充光的第一补充光源1203a及用于发出所述第二补充光的第二补充光源1203b,所述第一补充光与所述第二补充光可以被合光后提供至区域分光装置1205的第三区域1205c,所述第三区域1205c可以透射所述第一补充光与第二补充光。所述第一补充光与第一受激光具有至少部分相同的颜色成分,如红色,所述第一补充光源与第一实施方式的补充光源结构可以相同,此处不再赘述。所述第二补充光与第二受激光具有至少部分相同的颜色成分,如绿色。所述第二补充光源1203b均包括绿色激发光二极管。所述第一补充光与所述第二补充光均为激光。具体地,所述第二补充光源1203b在波长转换装置1207发出所述第二受激光时开启,且所述第二补充光源1203b在所述波长转换装置1207发出第一受激光、第一部分激发光时关闭。
请参阅图21与图22,图21是本发明第十一实施方式的投影设备1320的结构示意图,图22是图21所示投影设备1320的光源系统1300的发光时序图。所述投影设备1320与光源系统1300与第一实施方式的投影设备220与光源系统200的结构基本相同,也就是说,上述对所述投影设备220与光源系统200的描述基本上可以应用于所述投影设备1320与光源系统1300,二者的差别主要在于:光源系统1300的引导装置1308与红外光源1302、光源系统1300的发光时序、数据处理模块1330及光调制模块1340的控制及调制方式均有所不同。
具体地,所述红外光源1302邻近所述引导装置1308设置,所述 引导装置1308为分光膜片,其反射所述第一部分激发光、所述受激光但透射所述红外光源发出的红外光,具体地,所述引导装置1308可以反射可见光透射红外光。具体地,所述引导装置1308接收所述红外光,并将所述红外光透射至所述第二出光通道1316b,所述受激光在所述第二出光通道1316b中的光路通道将所述第一部分激发光与所述红外光在所述第二出光通道1316b中的光路通道包围,可见,本实施方式中,所述红外光不经过区域分光装置1305与波长转换装置1307,而是直接在第二出光通道1316b(即匀光装置1311的入口前)与其他光进行合光。所述光源系统1300还包括光源控制器1319,所述光源控制器1319用于控制所述红外光源1302的发光强度。
以下对所述投影设备1320的图像显示控制方法进行介绍,其中,可理解,以下主要对与第一实施方式中不同的部分进行介绍,相同的部分不再赘述。
具体地,光调制模块1340进行一帧图像的调制时段(即一个波长转换周期T)包括三个不同的时间段,分别为第一子帧图像调制时段T1、第二子帧图像调制时段T2、第三子帧图像调制时段T3,所述光调制模块1340在所述第一子帧图像调制时段T1基于所述第二颜色数据信号对所述第一受激光进行图像调制产生第二颜色图像光、在所述第二子帧图像调制时段T2基于所述第三颜色数据信号对所述第二受激光进行图像调制产生第三颜色图像光、在所述第三子帧图像调制时段T3基于所述第一颜色数据信号对所述第一部分激发光进行图像调制产生第一颜色图像光,所述光调制模块1340还在所述第一、第二及第三子帧图像调制时段T1、T2及T3(即整帧图像的调制时段T)基于所述红外数据信号对所述红外光进行图像调制产生红外图像光。
进一步地,数据处理模块1330将接收到的图像数据进行解码获得所述第一颜色数据信号、第二颜色数据信号及第三颜色数据信号,所述数据处理模块1330还基于所述第一至第三颜色数据信号计算红外数据信号,设所述第一至第三数据信号中任意一像素的信号值为A、B、C,提供到所述光调制模块1340的所述第一部分激发光、所述第 一受激光及所述第二受激光的亮度分别为a、b、c,所述光源控制器1319控制所述红外光的亮度使得提供到所述光调制模块1340的红外光在所述三个子帧图像调制时段的亮度分别为d、e及f,其中d=α*a;e=α*b;f=α*c,即所述提供到所述光调制模块1340的红外光在所述三个子帧像调制时段T1、T2及T3的亮度分别为所述第一至第三颜色光的亮度的α倍,使得以上各参数能够满足以下公式:(A*a/255+B*b/255+C*c/255)=α(A*d/255+B*e/255+C*f/255),即(A*a+B*b+C*c)=α(A*d+B*e+C*f),从而使得产生的红外光图像与可见光图像的灰阶相匹配。
举例来说,设所述第一至第三数据信号中任意一像素的信号值A、B、C为(50,40,30),则其预计亮度为Y=50*a/255+40*b/255+30*c/255。若利用所述信号值(50,40,30)来控制红外光,为保证像素亮度不失真,需要保证像素实际亮度值Y’=50*d/255+40*e/255+30*f/255,并且d=αa,e=αb,f=αc,如此得到,所述实际像素亮度值Y’=α(50*a/255+40*b/255+30*c/255),即红外光对应的亮度为可见光的α倍,这样可使得每个像素的亮度值均为RGB可见光图像的α倍,因此可以利用光源控制器1319对红外光源进行控制,保持其在所述三个子帧像调制时段T1、T2及T3的亮度为d,e,f。
在一种实施例中,由于波长转换装置的绿光(即第二受激光)亮度>红光(即第一受激光)亮度>蓝光(即激发光)亮度,及b>a>c,所以所述光源控制器1319可控制所述红外光在波长转换装置转至绿光段时(即第二子帧图像调制时段)亮度L2最高,在蓝光段时(即第三子帧图像调制时段)亮度L3最低,在红光段时(即第一子帧图像调制时段)的亮度L1在L3与L2之间,即L3<L1<L2。
具体地,可以理解,所述光源控制器1319可以接收所述红外数据信号或者所述光调制模块1340的控制器基于所述红外数据信号产生的光源时序控制信号来控制所述红外光源1302的驱动电流来调节所述红外光的亮度。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围, 凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (34)

  1. 一种光源系统,其特征在于,该光源系统包括激发光源、辅助光源、及波长转换装置,其中:
    所述激发光源用于发出激发光,所述波长转换装置包括转换区域和反射区域,所述波长转换装置周期性运动,使得所述转换区域和反射区域分时地周期性位于所述激发光的光路上;所述转换区域用于将所述激发光转换为受激光并出射,所述反射区域用于将所述激发光反射后出射;从所述波长转换装置出射的所述受激光及所述激发光位于所述波长转换装置的同一侧但光轴不重合,且从所述波长转换装置出射的所述受激光及所述激发光均被引导至所述出光通道,
    所述辅助光源用于发出辅助光,所述辅助光与所述受激光的光谱不重合,所述辅助光也被引导至所述出光通道。
  2. 如权利要求1所述的光源系统,其特征在于:所述辅助光包括红外光,所述红外光被用于调制红外图像。
  3. 如权利要求1所述的光源系统,其特征在于:所述辅助光包括紫外光,所述紫外光被用于紫外光曝光。
  4. 如权利要求1所述的光源系统,其特征在于:所述光源系统还包括区域分光装置,所述区域分光装置包括第一区域与第二区域:
    所述区域分光装置的第一区域将所述激发光源发出的激发光引导至所述波长转换装置,所述反射区域将所述激发光反射至所述区域分光装置的第二区域,所述区域分光装置的第二区域用于将所述反射区域反射的激发光引导至所述出光通道,所述区域分光装置还用于将所述转换区域发出的所述受激光引导至所述出光通道。
  5. 如权利要求4所述的光源系统,其特征在于:所述光源系统还包括合光装置,所述合光装置包括合光元件,所述合光元件接收所述辅助光源发出的辅助光及所述激发光源发出的激发光,并将所述辅助光及所述激发光中的一种透射以及将所述辅助光及所述激发光中的另外一种反射从而将所述辅助光及所述激发光合光,所述合光后的辅助光及所述激发光被提供至所述波长转换装置,其中所述合光后的辅助 光及所述激发光的光路通道重合。
  6. 如权利要求5所述的光源系统,其特征在于:所述区域分光装置包括分光片及反射镜,所述分光片对应所述第一区域设置,所述反射镜对应所述第二区域设置,所述第一区域的分光片接收所述激发光及所述辅助光并将所述激发光及所述辅助光透射至所述波长转换装置,所述波长转换装置将所述激发光及所述辅助光反射至所述反射镜,所述反射镜将所述激发光及所述辅助光反射至所述出光通道,所述第一区域的分光片还将所述受激光反射至所述出光通道。
  7. 如权利要求5所述的光源系统,其特征在于:所述光源系统还包括引导装置,所述出光通道包括第一出光通道及第二出光通道,所述区域分光装置将所述波长转换装置发出的光经由所述第一出光通道引导至所述引导装置,所述引导装置将所述第一出光通道中的光引导至所述第二出光通道。
  8. 如权利要求7所述的光源系统,其特征在于:所述引导装置包括分光片及反射镜,所述分光片接收所述区域分光装置经由所述第一出光通道出射的所述受激光并将所述受激光反射至所述第二出光通道,所述反射镜接收所述区域分光装置经由所述第一出光通道出射的所述激发光及所述辅助光并将所述激发光及所述辅助光反射至所述第二出光通道。
  9. 如权利要求4所述的光源系统,其特征在于:所述光源系统还包括引导装置,所述出光通道包括第一出光通道及第二出光通道,所述区域分光装置将所述波长转换装置发出的光经由所述第一出光通道引导至所述引导装置,所述引导装置将所述第一出光通道中的光引导至所述第二出光通道,所述受激光在所述第一出光通道中的光路通道将所述激发光在所述第一出光通道中的光路通道包围,所述引导装置接收所述辅助光,并将所述辅助光透射至所述第二出光通道,所述受激光在所述第二出光通道中的光路通道将所述激发光与所述辅助光在所述第二出光通道中的光路通道包围。
  10. 如权利要求9所述的光源系统,其特征在于:所述区域分光装 置包括分光片及反射镜,所述分光片对应所述第一区域设置,所述反射镜对应所述第二区域设置,所述第一区域的分光片的第一表面接收所述激发光及所述辅助光并将所述激发光及所述辅助光反射至所述波长转换装置,所述波长转换装置将所述激发光反射至所述第二区域的反射镜,所述反射镜将所述激发光反射至所述第一区域的分光片的与所述第一表面相背的第二表面,所述第一区域的分光片的第二表面将所述激发光反射至所述出光通道,所述波长转换装置还将所述受激光反射至所述出光通道。
  11. 如权利要求1所述的光源系统,其特征在于:所述光源系统还包括散射装置,所述散射装置用于接收所述出光通道的光并对所述出光通道出射的光进行散射。
  12. 如权利要求11所述的光源系统,其特征在于:所述光源系统还包括第一收集系统,所述第一收集系统用于将所述波长转换装置发出的光进行收集并将收集后的光提供至所述区域分光装置;所述光源系统还包括第二收集系统,所述第二收集系统用于接收所述出光通道的光并将所述出光通道的光进行收集后提供至所述散射装置;所述光源系统还包括匀光装置,所述匀光装置用于接收所述散射装置出射的光并对所述散射装置出射的光进行匀光及合光;所述匀光装置包括方棒,所述光源系统还包括第三收集系统,所述第三收集系统将所述出光通道发出的光收集至所述方棒的入口。
  13. 如权利要求11所述的光源系统,其特征在于:所述散射装置包括散射区域与滤光区域,所述散射区域用于对所述出光通道出射的激发光进行散射,所述滤光区域用于对所述出光通道出射的所述受激光进行过滤,所述散射区域与所述滤光区域沿圆周方向设置。
  14. 如权利要求13所述的光源系统,其特征在于:所述转换区域包括第一转换区域及第二转换区域,所述第一转换区域用于将接收到的激发光转换为所述第一受激光,所述第二转换区域用于将接收到的激发光转换为所述第二受激光,所述第一受激光与所述第二受激光颜色不同。
  15. 如权利要求14所述的光源系统,其特征在于:所述反射区域包括第一反射区域与第二反射区域,所述第一反射区域将所述第一部分激发光反射至所述区域分光装置的第二区域,所述第二反射区域将所述红外光反射至所述区域分光装置的第二区域,所述第一反射区域、所述第二反射区域、所述第一转换区域及第二转换区域沿圆周方向相接设置,所述滤光区域包括第一滤光区域及第二滤光区域,所述散射区域包括第一散射区域及第二散射区域,所述第一滤光区域、所述第一散射区域、所述第二滤光区域、及所述第二散射区域沿圆周方向相接设置,所述第一滤光区域用于对所述出光通道出射的所述第一受激光进行过滤,所述第二滤光区域用于对所述出光通道出射的所述第二受激光进行过滤,所述第一散射区域用于对所述出光通道出射的第一部分激发光进行散射,所述第二散射区域用于对所述红外光进行散射。
  16. 如权利要求14所述的光源系统,其特征在于:所述转换区域还包括第三转换区域,所述第三转换区域用于将接收到的激发光转换为所述第三受激光,所述第一、第二及第三受激光颜色均不同;所述滤光区域还第三滤光区域,所述第一滤光区域、第二滤光区域及第三滤光区域及所述散射区域沿圆周方向相接设置,所述第一滤光区域用于对所述出光通道出射的所述第一受激光进行过滤,所述第二滤光区域用于对所述出光通道出射的所述第二受激光进行过滤,所述第三滤光区域用于对所述出光通道出射的所述第三受激光进行过滤。
  17. 如权利要求13所述的光源系统,其特征在于:所述散射装置与所述波长转换装置为一体结构,所述散射区域及所述滤光区域位于所述反射区域及所述转换区域的内侧。
  18. 如权利要求1所述的光源系统,其特征在于:所述反射区域包括反射表面,所述反射表面包括半弧形凸面。
  19. 如权利要求1所述的光源系统,其特征在于:所述光源系统还包括补充光源,所述补充光源用于发出补充光,所述补充光被引导至所述转换区域,所述转换区域将所述补充光反射,所述补充光被引导至所述出光通道,所述补充光与所述受激光具有至少部分相同的颜色 成分,且所述补充光在所述出光通道中的光路通道与所述受激光在所述出光通道中的光路通道重合。
  20. 如权利要求19所述的光源系统,其特征在于:所述受激光包括第一受激光与第二受激光,所述补充光包括第一补充光与第二补充光,所述补充光源包括用于发出第一补充光的第一补充光源及用于发出所述第二补充光的第二补充光源,所述第一补充光与所述第一受激光具有至少部分相同的颜色成分,所述第二补充光与所述第二受激光具有至少部分相同的颜色成分,所述第二补充光源在所述波长转换装置发出所述第二受激光时开启,且所述第二补充光源在所述波长转换装置发出第一受激光、所述第一部分激发光时关闭;所述第二区域还包括第三区域,所述第三区域将所述补充光源发出的补充光透射至所述波长转换装置。
  21. 一种投影设备,所述投影设备包括光源系统,其特征在于:所述光源系统采用权利要求1、3-20项任意一项所述的光源系统。
  22. 一种投影设备,其特征在于:所述投影设备包括光源系统,所述光源系统包括激发光源、红外光源、及波长转换装置,其中:
    所述激发光源用于发出激发光,所述波长转换装置包括转换区域和反射区域,所述波长转换装置周期性运动,使得所述转换区域和反射区域分时地周期性位于所述激发光的光路上;所述转换区域用于将所述激发光转换为受激光并出射,所述反射区域用于将所述激发光反射后出射;从所述波长转换装置出射的所述受激光及所述激发光位于所述波长转换装置的同一侧但光轴不重合,且从所述波长转换装置出射的所述受激光及所述激发光均被引导至所述出光通道,
    所述红外光源用于发出红外光,所述红外光被用于调制红外图像,所述红外光与所述受激光的光谱不重合,所述红外光也被引导至所述出光通道。
  23. 如权利要求22所述的投影设备,其特征在于:所述转换区域包括第一转换区域及第二转换区域,所述第一转换区域用于将接收到的激发光转换为所述第一受激光,所述第二转换区域用于将接收到的 激发光转换为所述第二受激光,所述第一受激光与所述第二受激光颜色不同,所述投影设备还包括数据处理模块及光调制模块,所述数据处理模块用于接收图像数据并基于所述图像数据产生图像显示数据信号,所述光调制模块用于基于所述图像显示数据信号对所述第一部分激发光进行图像调制产生第一颜色图像光、用于基于所述图像显示数据信号对所述第一受激光进行图像调制产生第二颜色图像光、用于基于所述图像显示数据信号对所述第二受激光进行图像调制产生第三颜色图像光、及还用于基于所述图像显示数据信号对所述红外光进行图像调制产生红外图像光。
  24. 如权利要求23所述的投影设备,其特征在于:所述转换区域还包括第三转换区域,所述第三转换区域用于将接收到的激发光转换为所述第三受激光,所述第一、第二及第三受激光颜色均不同,所述光调制模块还用于基于所述图像显示数据信号对所述第三受激光进行图像调制产生第四颜色图像光。
  25. 如权利要求24所述的投影设备,其特征在于:所述图像显示数据信号包括第一颜色数据信号、第二颜色数据信号、第三颜色数据信号及第四颜色数据信号,所述光调制模块基于所述第一颜色数据信号对所述第一部分激发光进行图像调制产生第一颜色图像光、基于所述第二颜色数据信号对所述第一受激光进行图像调制产生第二颜色图像光、基于所述第三颜色数据信号对所述第二受激光进行图像调制产生第三颜色图像光、基于所述第四颜色数据信号对所述第三受激光进行图像调制产生第四颜色图像光、及基于所述四个颜色数据信号其中的至少一个对所述红外光进行图像调制产生红外图像光。
  26. 如权利要求25所述的投影设备,其特征在于:所述光调制模块进行一帧图像的调制时段包括四个不同的时间段,分别为第一子帧图像调制时段、第二子帧图像调制时段、第三子帧图像调制时段及第四子帧图像调制时段,所述光调制模块在所述第一子帧图像调制时段基于所述第二颜色数据信号对所述第一受激光进行图像调制产生第二颜色图像光、在所述第二子帧图像调制时段基于所述第四颜色数据信 号对所述第三受激光进行图像调制产生第四颜色图像光、在所述第三子帧图像调制时段基于所述第三颜色数据信号对所述第二受激光进行图像调制产生第三颜色图像光、在所述第四子帧图像调制时段基于所述第一颜色数据信号对所述第一部分激发光及所述红外光进行图像调制产生第一颜色图像光及红外图像光。
  27. 如权利要求24所述的投影设备,其特征在于:所述图像显示数据信号包括第一颜色数据信号、第二颜色数据信号、第三颜色数据信号及红外数据信号,所述光调制模块基于所述第一颜色数据信号对所述第一部分激发光进行图像调制产生第一颜色图像光、基于所述第二颜色数据信号对所述第一受激光进行图像调制产生第二颜色图像光、基于所述第三颜色数据信号对所述第二受激光进行图像调制产生第三颜色图像光、及基于所述红外数据信号对所述红外光进行图像调制产生红外图像光。
  28. 如权利要求27所述的投影设备,其特征在于:所述数据处理模块对所述图像数据进行解码获得所述第一至第三颜色数据信号,所述数据处理模块将所述第一至第三颜色数据信号中的一个数据信号作为所述红外数据信号。
  29. 如权利要求27所述的投影设备,其特征在于:所述光调制模块进行一帧图像的调制时段包括四个不同的时间段,分别为第一子帧图像调制时段、第二子帧图像调制时段、第三子帧图像调制时段及第四子帧图像调制时段,所述光调制模块在所述第一子帧图像调制时段基于所述第二颜色数据信号对所述第一受激光进行图像调制产生第二颜色图像光、在所述第二子帧图像调制时段基于所述红外数据信号对所述红外光进行图像调制产生红外图像光、在所述第三子帧图像调制时段基于所述第三颜色数据信号对所述第二受激光进行图像调制产生第三颜色图像光、在所述第四子帧图像调制时段基于所述第一颜色数据信号对所述第一部分激发光进行图像调制产生第一颜色图像光。
  30. 如权利要求23所述的投影设备,其特征在于:所述光调制模块包括第一调制模块及第二调制模块,所述第一调制模块用于对所述 第一部分激发光及第一受激光进行图像调制,所述第二调制模块用于对所述第二受激光及所述红外光进行图像调制。
  31. 如权利要求27所述的投影设备,其特征在于:所述数据处理模块对所述图像数据进行解码获得所述第一颜色数据信号、第二颜色数据信号及第三颜色数据信号,所述数据处理模块还基于所述第一至第三颜色数据信号计算红外数据信号,设所述第一至第三数据信号中任意一个像素的信号值为A、B、C,所述任意一个像素的红外数据信号值IR=(A*a+B*b+C*c)/Ymax,其中所述a、b、c分别代表提供到所述光调制模块的所述第一部分激发光、所述第一受激光及所述第二受激光的亮度,Ymax=a+b+c。
  32. 如权利要求27所述的投影设备,其特征在于:所述光调制模块进行一帧图像的调制时段包括三个不同的时间段,分别为第一子帧图像调制时段、第二子帧图像调制时段、第三子帧图像调制时段,所述光调制模块在所述第一子帧图像调制时段基于所述第二颜色数据信号对所述第一受激光进行图像调制产生第二颜色图像光、在所述第二子帧图像调制时段基于所述第三颜色数据信号对所述第二受激光进行图像调制产生第三颜色图像光、在所述第三子帧图像调制时段基于所述第一颜色数据信号对所述第一部分激发光进行图像调制产生第一颜色图像光,所述光调制模块还在所述第一、第二及第三子帧图像调制时段基于所述红外数据信号对所述红外光进行图像调制产生红外图像光。
  33. 如权利要求32所述的投影设备,其特征在于:所述投影设备还包括光源控制器,所述数据处理模块对所述图像数据进行解码获得所述第一颜色数据信号、第二颜色数据信号及第三颜色数据信号,所述数据处理模块还基于所述第一至第三颜色数据信号计算红外数据信号,设所述第一至第三数据信号中任意一像素的信号值为A、B、C,提供到所述光调制模块的所述第一部分激发光、所述第一受激光及所述第二受激光的亮度分别为a、b、c,所述光源控制器控制所述红外光的亮度使得提供到所述光调制模块的红外光在所述三个子帧图像调 制时段的亮度分别为d、e及f,其中d=a*a;e=a*b;f=a*c,即所述提供到所述光调制模块的红外光在所述三个子帧像调制时段的亮度分别为所述第一至第三颜色光的亮度的a倍。
  34. 一种图像显示控制方法,其包括如下步骤:
    接收图像数据,基于图像数据产生图像显示数据信号;
    提供第一颜色光、第二颜色光、第三颜色光及红外光;
    基于图像显示数据信号对所述第一颜色光进行图像调制产生第一颜色图像光;
    基于图像显示数据信号对所述第二颜色光进行图像调制产生第二颜色图像光;
    基于图像显示数据信号对所述第三颜色光进行图像调制产生第三颜色图像光;及
    基于图像显示数据信号对所述红外光进行图像调制产生红外图像光。
PCT/CN2017/096515 2017-05-26 2017-08-09 光源系统、投影设备及图像显示控制方法 WO2018214290A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710385424.8 2017-05-26
CN201710385424.8A CN108931880B (zh) 2017-05-26 2017-05-26 光源系统及显示设备

Publications (1)

Publication Number Publication Date
WO2018214290A1 true WO2018214290A1 (zh) 2018-11-29

Family

ID=64395046

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/096515 WO2018214290A1 (zh) 2017-05-26 2017-08-09 光源系统、投影设备及图像显示控制方法
PCT/CN2017/096514 WO2018214289A1 (zh) 2017-05-26 2017-08-09 光源系统及显示设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096514 WO2018214289A1 (zh) 2017-05-26 2017-08-09 光源系统及显示设备

Country Status (3)

Country Link
US (1) US11306899B2 (zh)
CN (1) CN108931880B (zh)
WO (2) WO2018214290A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110488563A (zh) * 2019-08-22 2019-11-22 苏州佳世达光电有限公司 投影机

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018127831A1 (de) * 2018-11-07 2020-05-07 Schott Ag Beleuchtungseinrichtung, vorzugsweise mit einstellbarem oder eingestelltem Farbort, und ihre Verwendung sowie Verfahren zur Einstellung des Farborts einer Beleuchtungseinrichtung
CN111399324B (zh) 2019-01-03 2022-11-25 深圳光峰科技股份有限公司 光源系统及投影设备
CN112118430B (zh) * 2019-06-20 2022-03-25 青岛海信激光显示股份有限公司 激光投影设备
JP2021005060A (ja) * 2019-06-27 2021-01-14 キヤノン株式会社 光源装置およびこれを備える画像投射装置
CN113009753A (zh) * 2019-12-20 2021-06-22 青岛海信激光显示股份有限公司 一种激光光源及激光投影设备
CN113900334A (zh) * 2020-06-22 2022-01-07 青岛海信激光显示股份有限公司 光源组件和投影设备
US11906435B2 (en) 2020-09-11 2024-02-20 Atonarp Inc. System including auto-alignment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120242912A1 (en) * 2011-03-23 2012-09-27 Panasonic Corporation Light source apparatus and image display apparatus using the same
CN103913936A (zh) * 2012-12-28 2014-07-09 深圳市绎立锐光科技开发有限公司 发光装置及投影系统
CN105573037A (zh) * 2015-12-31 2016-05-11 海信集团有限公司 一种激光光源及激光投影设备
CN106353956A (zh) * 2015-07-13 2017-01-25 深圳市光峰光电技术有限公司 投影显示系统的控制方法及投影显示系统
CN106371274A (zh) * 2015-07-20 2017-02-01 深圳市光峰光电技术有限公司 一种混合光源装置及其发光控制方法、投影系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4102807B2 (ja) * 2005-01-31 2008-06-18 Necディスプレイソリューションズ株式会社 表示パネルの照明光学系、およびその照明光学系を有するプロジェクタ
JP5796272B2 (ja) * 2009-09-28 2015-10-21 カシオ計算機株式会社 光源装置、投影装置及び投影方法
CN105676576B (zh) * 2011-12-18 2017-11-24 深圳市光峰光电技术有限公司 光源系统及投影装置
DE102014202090B4 (de) * 2014-02-05 2024-02-22 Coretronic Corporation Beleuchtungsvorrichtung mit einer Wellenlängenkonversionsanordnung
CN205539893U (zh) * 2016-01-14 2016-08-31 深圳市光峰光电技术有限公司 一种波长转换装置、光源系统以及投影装置
CN205982968U (zh) * 2016-08-06 2017-02-22 深圳市绎立锐光科技开发有限公司 照明装置及显示系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120242912A1 (en) * 2011-03-23 2012-09-27 Panasonic Corporation Light source apparatus and image display apparatus using the same
CN103913936A (zh) * 2012-12-28 2014-07-09 深圳市绎立锐光科技开发有限公司 发光装置及投影系统
CN106353956A (zh) * 2015-07-13 2017-01-25 深圳市光峰光电技术有限公司 投影显示系统的控制方法及投影显示系统
CN106371274A (zh) * 2015-07-20 2017-02-01 深圳市光峰光电技术有限公司 一种混合光源装置及其发光控制方法、投影系统
CN105573037A (zh) * 2015-12-31 2016-05-11 海信集团有限公司 一种激光光源及激光投影设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110488563A (zh) * 2019-08-22 2019-11-22 苏州佳世达光电有限公司 投影机
CN110488563B (zh) * 2019-08-22 2021-03-30 苏州佳世达光电有限公司 投影机

Also Published As

Publication number Publication date
CN108931880A (zh) 2018-12-04
CN108931880B (zh) 2023-03-14
US11306899B2 (en) 2022-04-19
WO2018214289A1 (zh) 2018-11-29
US20200271300A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
WO2018214290A1 (zh) 光源系统、投影设备及图像显示控制方法
US10018902B2 (en) Projector light source and system, including configuration for display of 3D using passive viewing glasses
US10139713B2 (en) Light source system and projection system
JP4245563B2 (ja) 投写型映像表示装置
US9081268B2 (en) Lighting device and projection-type display apparatus including lighting device
CN207067642U (zh) 光源系统及投影设备
WO2016161934A1 (zh) 一种投影系统及其色域控制方法
JP2016224304A (ja) 光源装置、投写型表示装置及び光生成方法
US8944606B2 (en) Projector having color separation optical system with reflecting curved surface
JP6406736B2 (ja) プロジェクタおよび画像表示方法
WO2016161933A1 (zh) 投影显示系统及其控制方法
WO2020057150A1 (zh) 投影系统及投影显示方法
CN106980220A (zh) 投影型影像显示装置
CN107797368B (zh) 双空间光调制系统及使用该系统进行光调节的方法
US11669001B2 (en) Projection display system
KR101185297B1 (ko) 영상 프로젝터
JP2020516930A (ja) 表示システム
CN108303842B (zh) 投影显示系统
CN114488674A (zh) 投影光学系统及其偏色调整方法
JP5194870B2 (ja) 画像表示装置及び投影装置
CN108931879B (zh) 光源系统、投影设备及图像显示控制方法
CN112213908B (zh) 光源系统与显示设备
CN113885285A (zh) 光源组件与投影设备
JP7428202B2 (ja) プロジェクター及びプロジェクターの制御装置
CN111338167B (zh) 激光光源及激光投影机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911265

Country of ref document: EP

Kind code of ref document: A1