WO2020057152A1 - 动态色域调节系统、方法及显示系统 - Google Patents

动态色域调节系统、方法及显示系统 Download PDF

Info

Publication number
WO2020057152A1
WO2020057152A1 PCT/CN2019/086928 CN2019086928W WO2020057152A1 WO 2020057152 A1 WO2020057152 A1 WO 2020057152A1 CN 2019086928 W CN2019086928 W CN 2019086928W WO 2020057152 A1 WO2020057152 A1 WO 2020057152A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light
color
primary
primary color
Prior art date
Application number
PCT/CN2019/086928
Other languages
English (en)
French (fr)
Inventor
余新
苟青松
黄雪峰
张贤鹏
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2020057152A1 publication Critical patent/WO2020057152A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2053Intensity control of illuminating light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3182Colour adjustment, e.g. white balance, shading or gamut

Definitions

  • the present invention relates to a display system, and particularly to a dynamic color gamut adjustment system, method, and display system.
  • a short-wavelength visible light emitted by a laser excites a phosphor on a wavelength conversion device to generate a time-series fluorescent primary color light or white light.
  • the color gamut coverage of this light source is relatively large. narrow.
  • the short-wavelength visible light emitted by the laser is converted into the primary color light by a wavelength conversion device and filtered by a synchronous filter to obtain a narrow-band and higher color purity primary color light to extend the color gamut of laser fluorescence.
  • the filter device will bring additional optical power loss, which reduces the efficiency of using this light source.
  • a solid-color red-green laser is added to the laser fluorescence to extend the color gamut of the light source.
  • a solid-color red-green laser is added to the laser fluorescence to extend the color gamut of the light source.
  • a solid-color red-green laser is added to the laser fluorescence to extend the color gamut of the light source.
  • the mixing of pure color laser can expand the color gamut of laser fluorescence, it does not involve the modulation of the light source ratio according to the display content when the light source is used in a display system. Therefore, the range of color gamut that can be enhanced is limited.
  • the color gamut of laser fluorescence is extended to the DCI-P3 standard, and a solid-color laser equivalent to 40% of the fluorescence brightness needs to be added. Therefore, a high-power red-green laser needs to be added, resulting in a large increase in system cost.
  • the present invention provides a dynamic color gamut adjustment system, method and display system to solve the above problems.
  • the present invention provides a dynamic color gamut adjustment system for adjusting the color gamut of a display system.
  • the display system includes a light source module and an imaging module.
  • the light source module includes an excitation light source and a narrow-spectrum primary color light source.
  • the excitation light source emits excitation light, and the excitation light outputs blue light and wide-spectrum red and green light after treatment.
  • the narrow-spectrum primary color light source outputs at least one narrow-spectrum primary color light.
  • the primary color light is red light and / or green light in a narrow spectrum, and the blue light, red and green light in a broad spectrum, and red and / or green light in a narrow spectrum form a multi-primary light source with more than three primary colors.
  • the narrow spectrum The primary color light is combined with the corresponding broad-spectrum primary color light, so that the light source module outputs three primary color lights of red, green, and blue to the imaging module in time sequence.
  • the three primary color lights of red, green, and blue constitute the three primary color lights of the light source.
  • the imaging module includes a processing device, a storage device, and a spatial light modulation device.
  • the dynamic color gamut adjustment system is stored in the storage device and executed by the processing device.
  • the adjustment system includes a light source brightness adjustment module for generating a light source brightness signal for each of the primary color light sources of the light source multi-primary color light according to the obtained original three primary color RGB signals of a frame of image, and outputting the light source brightness signal to the timing according to the time sequence.
  • a light source module to adjust the brightness of the illumination light emitted by the excitation light source and the narrow-spectrum primary color light source.
  • the present invention also provides a dynamic color gamut adjustment method for adjusting the color gamut of a display system.
  • the display system includes a light source module and an imaging module.
  • the light source module includes an excitation light source and a narrow-spectrum primary color light source.
  • the excitation light source emits excitation light, and the excitation light outputs blue light and wide-spectrum red and green light after treatment.
  • the narrow-spectrum primary color light source outputs at least one narrow-spectrum primary color light.
  • the primary light of the spectrum is red and / or green light of a narrow spectrum, and the blue light, red and green light of a broad spectrum, and red and / or green light of a narrow spectrum constitute a multi-primary light source of more than three primary colors.
  • the narrow-spectrum primary color light is combined with the corresponding broad-spectrum primary color light, so that the light source module outputs three primary color lights of red, green, and blue to the imaging module in time sequence.
  • the three primary color lights of red, green, and blue constitute the light source three.
  • Primary color light the imaging module includes a processing device, a storage device, and a spatial light modulation device, and the method includes: generating multiple primary colors for the light source according to the obtained original three primary color RGB signals of a frame image Each primary light source luminance signal output timing of the light source luminance press signal to the light source module, to adjust the brightness of the illumination light of the excitation light source with a narrow spectral said primary light emitted from the light source.
  • the present invention further provides a display system, the display system includes a light source module and an imaging module, the light source module includes an excitation light source and a narrow-spectrum primary color light source, and the excitation light source emits excitation light.
  • the excitation light outputs blue light and wide-spectrum red and green light after treatment.
  • the narrow-spectrum primary color light source outputs at least one narrow-spectrum primary color light.
  • the at least one narrow-spectrum primary color light is narrow-spectrum red light and And / or green light, the blue light, broad-spectrum red-green light, and narrow-spectrum red and / or green light constitute light source multi-primary light with more than three primary colors, and the narrow-spectrum primary light and corresponding broad-spectrum primary color Photosynthetic light, so that the light source module outputs three primary color lights of red, green, and blue to the imaging module in time sequence; the three primary color lights of red, green, and blue constitute light source three primary colors; the imaging module includes a processing device, A storage device and a spatial light modulation device, the display system further includes the dynamic color gamut adjustment system described above, the dynamic color gamut adjustment system is stored in the storage device and is processed by the processing device Row.
  • the dynamic color gamut adjustment system, method and display system provided by the embodiments of the present invention, on the one hand, use the excitation light with better monochromaticity and broad-spectrum fluorescence to synthesize new primary color light, thereby expanding the color gamut of the display system; on the other hand, Through color space conversion, according to the pre-configured multi-primary light source parameters of more than three primary colors, such as four primary colors and five primary colors, calculate the brightness of each pixel in the original signal of a frame of image corresponding to the multi-primary light, and then count all pixels Corresponding to the maximum brightness of each primary color light, adjust the corresponding primary color illumination light in the light source module according to the maximum brightness to optimize the brightness ratio of the wide-spectrum fluorescence and narrow-spectrum laser provided by the light source module, and improve the efficiency of the display system; Calculate the color coordinates and brightness of the new three primary colors of the light source module based on the primary color illumination brightness corresponding to the multiple primary colors, calculate the compensation matrix of the original signal of the frame image
  • the dynamic color gamut adjustment system, method, and display system provided in the embodiments of the present invention, while enhancing the color gamut of the display system (enhancing the color gamut to reach the REC2020 color gamut standard), maintain high efficiency of the display system and reduce color aberrations. .
  • FIG. 1 is a schematic structural diagram of a display system with dynamic color gamut adjustment according to an embodiment of the present invention.
  • FIG. 2 is a module diagram of a dynamic color gamut adjustment system according to an embodiment of the present invention.
  • FIG. 3 is a method flowchart of a dynamic color gamut adjustment method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a light source control signal of the display system shown in FIG. 1.
  • FIG. 1 is a schematic structural diagram of a display system according to an embodiment of the present invention.
  • the display system 1 includes a light source module 10 and an imaging module 20.
  • the light source module 10 includes an excitation light source 110, a narrow-spectrum primary color light source 120, and a wavelength conversion and light combining device 130.
  • the short-wavelength excitation light emitted by the excitation light source 110 is guided to the wavelength conversion and light combining device 130, is absorbed by the wavelength conversion and light combining device 130 and generates a broad spectrum of primary color light, and a narrow spectrum of the narrow spectrum primary color light source 120.
  • the primary-color light is guided to the wavelength conversion and light-combining device 130, and the light is combined with the broad-spectrum primary-color light at the wavelength conversion and light-combination device 130.
  • the excitation light source 110 is a blue laser light source
  • the excitation light emitted is a blue laser light.
  • a wavelength conversion material and a scattering material are disposed on the wavelength conversion and light combining device 130 in a sub-region, and the wavelength conversion material includes red fluorescence.
  • the powder material and the green phosphor material for convenience of explanation, the area where the red fluorescent material is provided is called a "red light area”, the area where the green fluorescent material is provided is called a "green light area”, and the scattering material is provided. The area is called "Blu-ray area”.
  • the narrow-spectrum primary color light source 120 includes a red laser light source and a green laser light source, and the red laser light source and the green laser light source emit two kinds of primary color light: red laser light and green laser light, and the red laser light is guided to the wavelength conversion and
  • the light combining device 130 combines light with the red fluorescence, and the green laser light is guided to the wavelength conversion and the light combining device 130 is combined with the green fluorescence. Therefore, the light source module 10 finally outputs the red, green, and blue three primary color illumination lights to the imaging module 20 according to the timing.
  • the red light R, green light G, and blue light G output by the light source module 10 are referred to as a light source three-primary color light, which corresponds to the image data to be displayed by the three primary color light.
  • Each pixel of the image data can be represented by the three primary colors, that is, P (r, g, b).
  • the red fluorescence r, green fluorescence g, blue laser b, red laser r ', and green laser b' output by the light source module 10 are referred to as the five primary light sources of the light source, and correspond to the image data to be displayed by the five primary light sources.
  • Each pixel of the image data can also be represented by the five primary colors, that is, P (r, g, b, r ', b'). Descriptions such as the three primary color coordinates and brightness of the light source module 10, the five primary color coordinates and brightness of the light source module 10, the pixel three primary color coordinates and brightness, and the pixel five primary color coordinates and brightness will appear below.
  • the three primary color coordinates and brightness of the module 10 refer to the color coordinates and brightness of the three primary colors of red light R, green G, and blue light G output by the light source module 10 in a certain color space.
  • the three primary color coordinates and brightness of the pixel refer to The coordinates and brightness of the three primary colors of each pixel in a frame in an image in a certain color space.
  • the coordinates and brightness of the five primary colors of the light source module 10 refer to the red fluorescence r, green fluorescence g, blue laser b, The color coordinates and brightness of the five primary colors of red laser r 'and green laser b' in a certain color space.
  • the pixel five primary color coordinates and brightness refer to the five primary colors of each pixel in a frame in an image. Coordinates and brightness.
  • the manner of guiding the excitation light and the narrow-spectrum primary color light to the wavelength conversion and light combining device 130 and the manner of guiding the primary color light from the wavelength conversion and light combining device 130 to the imaging module 20 can refer to the existing Technology is not described here.
  • the wavelength conversion and light combining device 130 may be separated into two devices: the wavelength conversion device and the light combining device, and the two may be disposed adjacently or separately, which is not limited herein.
  • the light source module 10 may further include a filtering device, and the filtering device may be integrated with or separated from the wavelength conversion and light combining device 130, which is not limited herein.
  • the light source module 10 may also first generate blue light and yellow fluorescence, and then filter out red fluorescence and green fluorescence from the yellow fluorescence.
  • the light source module 10 includes an excitation light source 110 and a narrow-spectrum primary color light source 120.
  • the excitation light emitted by the excitation light source 110 is processed, for example, to output blue light and wide spectrum after operation such as wavelength conversion, filtering, or scattering.
  • the narrow-spectrum primary color light source 120 outputs at least one narrow-spectrum primary color light
  • the at least one narrow-spectrum primary color light is narrow-spectrum red and / or green light
  • the blue light, Wide-spectrum red-green light and narrow-spectrum red and / or green light constitute a multi-primary color light source with more than three primary colors
  • the narrow-spectrum primary color light and the corresponding broad-spectrum primary color light combine to make the light source module
  • the three primary color lights of red, green, and blue are output to the imaging module in time sequence, and the three primary color lights of red, green, and blue constitute the three primary color lights of the light source.
  • the imaging module 20 includes a processing device 210, a storage device 220, and a spatial light modulation device 230.
  • the processing device 210 is electrically connected to the storage device 220, the spatial light modulation device 230, and an image source 30.
  • the processing device 210 receives an image signal from the image source 30.
  • the spatial light modulation device 230 under the control of the processing device 210, modulates the primary color light output by the light source module 10 into image light carrying image information.
  • the image light is output and projected onto a screen (not shown) through a projection lens 240 to form an image.
  • a dynamic color gamut adjustment system 221 (hereinafter referred to as "dynamic adjustment system 221") is installed and operated in the imaging module 20.
  • the dynamic adjustment system 221 may be divided into one or more Module, the one or more modules are stored in the storage device 220 and executed by the processing device 210, so as to dynamically adjust the color gamut of the display system 1 according to the display content of the display system 1.
  • the processing device 210 obtains the original signal u of the image in real time from the image source 30, that is, the original three primary color RGB signals u of the image.
  • the processing device 210 runs the dynamic adjustment system 221 To generate a light source luminance signal v according to the obtained original three primary color RGB signals u, the light source luminance signal v is output to a gamma corrector 40, and after being corrected by the gamma corrector 40, it is output to the excitation light source 110 and the narrow-spectrum primary color
  • the light source 120 is used to adjust the brightness of the illumination light emitted by the excitation light source 110 and the narrow-spectrum primary color light source 120, thereby generating five primary colors of light with different proportions to be output to the spatial light modulation device 230.
  • the processing device 210 further calculates a new color gamut according to the light source luminance signal v and generates new three primary color (R, G, B) color coordinates of the light source module 10, and uses the new three primary color of the light source module 10
  • the coordinates are subjected to color gamut transformation of the original three primary color RGB signals u of each pixel of the frame image to generate a new three primary color RGB signal w of each pixel.
  • This new three primary color RGB signal w is output to the spatial light modulation device 230 to control
  • the spatial light modulator 230 modulates the primary color light output from the light source module 10 into image light carrying image information.
  • the dynamic adjustment system 221 may be divided into a light source brightness adjustment module 2210 and a dynamic color gamut compensation module 2220.
  • the light source brightness adjustment module 2210 is configured to generate a light source brightness signal v according to the obtained original three primary color RGB signals u of a frame of image, and output the light source brightness signal v to control the excitation light source 110 and the narrow-spectrum primary color light source 120.
  • the color gamut compensation module 2220 is used to calculate a new color gamut according to the light source luminance signal v and generate new three primary color RGB color coordinates of the light source module 10, and use the new three primary color RGB color coordinates to the original three primary color RGB of each pixel of the frame image
  • the signal u undergoes a color gamut transformation to generate a new three-primary-color RGB signal w for each pixel, and outputs a new three-primary-color RGB signal w for each pixel to the spatial light modulation device 230 to control the spatial light modulation device 230 to output the light source module 10
  • the primary light is modulated into image light carrying image information.
  • the light source brightness adjustment module 2210 may be further divided into a base color conversion calculation module 2211, a maximum brightness value acquisition module 2212, a brightness signal generation module 2213, and a brightness signal output module 2214.
  • the dynamic color gamut compensation module 2220 may be further divided into a light source new primary color generation module 2221 and a pixel new primary color generation module 2222.
  • the module referred to in the present invention is a program segment capable of completing a specific function, which is more suitable for describing the execution process of the software in the display system 1 than the program. The detailed functions of each module will be combined with FIG. 3 The flowchart is described in detail.
  • FIG. 3 is a method flowchart of a dynamic color gamut adjustment method according to an embodiment of the present invention. The method may be implemented by using the display system 1 shown in FIG. 1, and a dynamic color gamut adjustment method is described in detail below with reference to the display system 1.
  • the primary color conversion calculation module 2211 calculates a light source five primary color representation of each pixel in the original three primary color RGB signals u of a frame of image. Specifically, after receiving a frame of image, the base color conversion calculation module 2211 performs color space conversion on the original three primary color RGB signals of the image, and according to the preset light source parameters in the converted color space, for example, after the light source module 10 is converted, The color coordinates and brightness of the primary colors in the color space are calculated, and the five primary color representations of the light source of each pixel are calculated.
  • pixels of a frame of image are generally represented by three semaphores, according to different video transmission standards, pixels can be represented by different color spaces such as RGB, Yuv, XYZ, but no matter which color space is used to represent pixels of a frame of image Both can be converted to RGB values in a certain color gamut space.
  • the RGB primary colors are different according to the selected color gamut.
  • the three primary RGB colors specified by the REC2020 color gamut standard are (0.708, 0.292, 0.2627), (0.17, 0.797, 0.6780), (0.131, 0.046, 0.0593) ), Where the xyY color gamut coordinates are defined by the CIE1931 standard. Therefore, in this embodiment, the three primary colors of the original RGB signals of one frame of image, that is, the original three primary color RGB signals can be expressed as:
  • the original RGB signal (r, g, b) is converted into the CIE 1931 color space as:
  • CIE1931 uses a three-dimensional vector to define the absolute color and brightness of any color that can be distinguished by the human eye. It does not change with the change of color gamut. Five primary colors are used in this embodiment, and the five primary colors are defined as:
  • r 0 , g 0 , b 0 , rl 0 , and gl 0 represent the colors and brightness of red fluorescence, green fluorescence, blue laser, red laser, and green laser, respectively.
  • the brightness of any one color in the CIE space can be obtained by combining the five primary color lights according to the brightness modulation.
  • the color modulation signals of the five primary colors can be written as (r, g, b, rl, gl).
  • the color represented by this modulated signal can be expressed as:
  • Equation (5) can be transformed into:
  • the light source brightness values corresponding to the three primary colors rgb of the five primary colors can be obtained, and then the light source brightness values corresponding to the three primary colors rgb are brought into formula (7) to obtain the other two primary color lights r 'and g. 'The corresponding brightness value of the light source, thereby obtaining the brightness value represented by the five primary colors of the light source of each pixel.
  • the value of the light source brightness corresponding to two of the five primary colors may be randomly specified, and then the value of the light source brightness corresponding to the other three primary colors may be obtained.
  • the maximum brightness value acquisition module 2212 separately counts the maximum light source brightness of the required primary color light represented by the five primary colors of the frame image, that is, finds max (r), max (g), max (b), max (r ') and max (g'). If the maximum luminance value of any one of the five primary colors is greater than 1, the value is truncated to 1.
  • the luminance signal generating module 2213 generates the light source luminance signal v of each primary color light corresponding to the maximum luminance value of the required primary color light represented by the five primary colors obtained by the maximum luminance value acquisition module 2213.
  • step S4 the brightness signal output module 2214 outputs the light source brightness signal v of the respective primary color light to the corresponding excitation light source 110 and the narrow-spectrum primary light source 120 in a time sequence, thereby adjusting the excitation light source 110 and the narrow-spectrum primary light source 120.
  • the brightness of the emitted illuminating light, and thus the five primary colors of light with different proportions are output to the spatial light modulation device 230.
  • FIG. 4 is a schematic diagram of controlling the brightness of the excitation light source 110 and the narrow-spectrum primary color light source 120 in one embodiment.
  • One frame of image is divided into three segments: blue, green, and red.
  • the drive current intensity of the red, green and blue laser light is modulated, thereby modulating the brightness of the red, green and blue laser light.
  • step S5 the light source new primary color generation module 2221 calculates a new color gamut according to the light source luminance signal v corresponding to each primary color of the light source module 10, and generates new three primary color RGB color coordinates and brightness of the light source module 10.
  • a new color gamut can be calculated.
  • the color gamut is determined by the color coordinates and brightness of the primary color light corresponding to each color component that can be modulated by the spatial light modulation device 230.
  • the spatial light modulator is divided into three timings to process the red, green, and blue three primary colors, and the color gamut that the display system 1 can represent is the color coordinates and brightness of the illumination light emitted by the light source module 10 in the three timings. . If one or some of the color timings is an illumination light composed of multiple primary color lights, the primary color light representing the color gamut within the color timing is determined by the total color coordinates and the total degree of the synthesized primary color light.
  • the red color timing includes red fluorescence with a relative peak luminance of a% and red laser light with a relative peak luminance of b%.
  • the primary color light determined by the red color timing is composed of a% red fluorescence and b%.
  • the color coordinates and brightness of the illumination light after the red laser light is mixed are determined. Therefore, according to the brightness values and color coordinates of the respective primary colors output by the light source module 10, the new three primary color RGB color coordinates after mixing by the light source module 10 can be obtained.
  • step S6 the pixel new primary color generation module 2222 uses the new three primary color RGB color coordinates and brightness of the light source module 10 to obtain a compensation matrix of the original three primary color RGB signals u, and uses the compensation matrix to obtain a new one for each pixel of the frame image.
  • the compensation matrix is determined by the following method:
  • CIE 1931 uses a three-dimensional vector to define the absolute color and color brightness that any human eye can distinguish. It does not change with the change of color gamut.
  • the three primary colors of display system 1 satisfy the following formula:
  • the brightness of the three primary colors displayed by the display system 1 must satisfy:
  • the relationship between the color gamut space of the original signal u of the input image and the three primary color modulation signals of the display system 1 can be defined as:
  • C ′ is a 4x3 or 5x3 matrix, and the determinant value of the pseudo-inverse matrix is zero, so there are infinitely many solutions for the conversion from XYZ space to the primary color space.
  • C ′ -1 is a conversion matrix from XYZ to the primary color space.
  • This transformation matrix can be solved by adding a constraint, such as maximizing white light in a light source module using a four-segment color wheel RGBW, and evenly distributing the brightness of the primary colors as much as possible.
  • Accurately measuring the color coordinates and brightness values of each primary color light of the display system 1 to generate accurate C ′ is the basis for ensuring the accurate color display of the display system 1.
  • the panel control chips provided by the existing mainstream display panel (that is, spatial light modulation device) suppliers have integrated color management modules such as color gamut conversion and gamma correction to perform color management functions, these color management modules use registers to store color transformation matrices.
  • the color signal input at each pixel is converted to the color space of the display system by using the color conversion matrix. Therefore, in this embodiment, the improvement of the existing mainstream display system can be reached in one frame of image. Perform dynamic color gamut compensation on the frame image before the panel control chip.
  • the color conversion matrix recorded in the panel control chip can be set to:
  • C ′ is a transformation matrix from rgb space to XYZ space in the three primary colors recorded by the panel control chip
  • C is a transformation matrix for converting the original signal u of the input video or image to XYZ space.
  • C is the conversion matrix corresponding to the original color signal u color gamut change
  • C ′ is the color gamut conversion matrix recorded in the panel control chip
  • C ′′ is the dynamic new color gamut conversion matrix, that is, the compensation matrix. It is the signal input to the panel control chip after compensation.
  • step S7 the pixel new primary color generation module 2222 outputs the new three primary color RGB signals w of each pixel of the frame image to the spatial light modulation device 230, so as to control the spatial light modulation device 230 to output the three primary color light output by the light source module 10. Modulated into image light carrying image information.
  • the imaging module 20 calculates the light source five primary color representation of a frame of image, counts the maximum value of the five primary color representations, and thus generates a light source brightness signal corresponding to each primary color light.
  • the light source module 10 may also be set to emit only four primary colors of illumination light, such as only red fluorescence r, green fluorescence g , Blue laser b, red laser r ', or only emits red fluorescence r, green fluorescence g, blue laser b, green laser g', and accordingly, the imaging module 20 may be configured to calculate the four primary color representations and statistics of the light source of a frame of image The maximum value represented by the four primary colors and therefore generates a light source luminance signal v corresponding to each primary color light, thereby modulating the brightness of the four primary color illumination lights emitted by the light source module 10.
  • the imaging module 20 may also generate a corresponding compensation matrix according to the light source luminance signal v, and use the compensation matrix to correct the original three primary color RGB signals of the frame image to compensate for the color difference caused by the color gamut change.
  • the dynamic color gamut adjustment system, method, and display system provided by the embodiments of the present invention, on the one hand, use excitation light with better monochromaticity and broad-spectrum fluorescence to synthesize new primary color light, thereby expanding the color gamut of the display system. ;
  • the pre-configured multi-primary light source parameters of more than three primary colors, such as four primary colors and five primary colors calculate the brightness of each pixel in the original signal of a frame of image corresponding to the multi-primary light.
  • the dynamic color gamut adjustment system, method, and display system provided in the embodiments of the present invention, while enhancing the color gamut of the display system (enhancing the color gamut to reach the REC2020 color gamut standard), maintain high efficiency of the display system and reduce color aberrations. .

Abstract

一种动态色域调节系统、方法及显示系统,显示系统(1)包括光源模块(10)与成像模块(20),光源模块(10)包括激发光光源(110)与窄光谱基色光光源(120),激发光光源(110)发出激发光经由处置后输出蓝光及宽光谱红绿光,窄光谱基色光光源(120)发出窄光谱基色光,蓝光、宽光谱红绿光与窄光谱基色光构成光源多基色光,窄光谱基色光与宽光谱基色光合光后输出至成像模块(20),成像模块(20)包括处理装置(210)、存储装置(220)及空间光调制装置(230)。动态色域调节系统由处理装置(210)执行,包括光源亮度调节模块(2210),光源亮度调节模块(2210)根据一帧图像的原始三基色信号产生针对光源多基色光中每一基色光的光源亮度信号,以调节激发光光源(110)与窄光谱基色光光源(120)发出光的亮度,在增强色域的基础上提高了效率。

Description

动态色域调节系统、方法及显示系统 技术领域
本发明涉及显示系统,尤其涉及动态色域调节系统、方法及显示系统。
背景技术
一种基本的激光荧光光源中,由激光器发出的短波长可见光激发波长转换装置上的荧光粉以产生时序的荧光基色光或白光,然由于荧光的频谱较宽,使得此光源的色域覆盖较窄。另一种改进的激光荧光光源中,激光发出的短波长可见光通过波长转换装置转换成基色光并通过同步滤光器件滤波获得窄带且色纯度更高的基色光以扩展激光荧光的色域,然在此种方案中,滤光器件会带来额外的光功率损失,使利用此光源的效率降低。
在激光荧光光源系统的进一步改进中,激光荧光中被掺入纯色的红绿激光以扩展光源的色域,此种方案请参考公开号为20150316775A1的美国专利申请以及申请号为201110191454.8的中国专利。虽然掺入纯色激光能够扩展激光荧光的色域,但是没有涉及将光源应用于显示系统中时,针对显示内容对光源配比进行调制,因此所能增强的色域范围有限,此外,若需将激光荧光的色域扩展到DCI-P3标准,需要加入相当于荧光亮度40%的纯色激光,因此需要加入大功率的红绿激光,导致系统成本大大增加。
发明内容
鉴于上述状况,本发明提供一种动态色域调节系统、方法及显示系统,以解决上述问题。
一方面,本发明提供一种动态色域调节系统,用于调节显示系统色域,所述显示系统包括光源模块与成像模块,所述光源模块包括激发光光源与窄光谱基色光光源,所述激发光光源发出激发光,所述激发光经由处置后输出蓝光以及宽光谱的红、绿光,所述窄光谱基色光光源输出至少一种窄光谱的基色光,所述至少一种窄光谱的基色光为窄光谱的红光及/或绿光,所述蓝光、宽光谱的红绿光以及窄光谱的红光及/或绿光构成多于三基色的光源多基色光,所述窄光谱基色光与对应的宽光谱的基色光合光,以使所述光源模块按时序输出红、绿、蓝三基色光至所述成像模块,所述红、绿、蓝三基色光构成光源三基色光,所述成像模块包括处理装置、存储装置及空间光调制装置,所述动态色域调节系统存储于所述存储装置中并由所述处理装置执行,所述动态色域调节系统包括光源亮度调节模块,用于根据获得的一帧图像的原始三基色RGB信号产生针对光源多基色光中每一基色光的光源亮度信号,并按时序输出所述光源亮度信号至所述光源模块,以调节所述激发光光源与所述窄光谱基色光光源发出的照明光的亮度。
另一方面,本发明还提供一种动态色域调节方法,用于调节显示系统色域,所述显示系统包括光源模块与成像模块,所述光源模块包括激发光光源与窄光谱基色光光源,所述激发光光源发出激发光,所述激发光经由处置后输出蓝光以及宽光谱的红、绿光,所述窄光谱基色光光源输出至少一种窄光谱的基色光,所述至少一种窄光谱的基色光为窄光谱的红光及/或绿光,所述蓝光、 宽光谱的红绿光以及窄光谱的红光及/或绿光构成多于三基色的光源多基色光,所述窄光谱基色光与对应的宽光谱的基色光合光,以使所述光源模块按时序输出红、绿、蓝三基色光至所述成像模块,所述红、绿、蓝三基色光构成光源三基色光,所述成像模块包括处理装置、存储装置及空间光调制装置,所述方法包括:根据获得的一帧图像的原始三基色RGB信号产生针对光源多基色光中每一基色光的光源亮度信号,并按时序输出所述光源亮度信号至所述光源模块,以调节所述激发光光源与所述窄光谱基色光光源发出的照明光的亮度。
第三方面,本发明还提供一种显示系统,所述显示系统包括光源模块与成像模块,所述光源模块包括激发光光源与窄光谱基色光光源,所述激发光光源发出激发光,所述激发光经由处置后输出蓝光以及宽光谱的红、绿光,所述窄光谱基色光光源输出至少一种窄光谱的基色光,所述至少一种窄光谱的基色光为窄光谱的红光及/或绿光,所述蓝光、宽光谱的红绿光以及窄光谱的红光及/或绿光构成多于三基色的光源多基色光,所述窄光谱基色光与对应的宽光谱的基色光合光,以使所述光源模块按时序输出红、绿、蓝三基色光至所述成像模块,所述红、绿、蓝三基色光构成光源三基色光,所述成像模块包括处理装置、存储装置及空间光调制装置,所述显示系统还包括上述的动态色域调节系统,所述动态色域调节系统存储于所述存储装置中并由所述处理装置执行。
本发明实施例提供的动态色域调节系统、方法及显示系统,一方面利用单色性更好的激发光和宽光谱荧光合成新的基色光,从而扩大显示系统的色域;另一方面,通过色彩空间转换,根据预先配置的多于三个基色,如四基色、五基色的多基色光源参数,计算一帧图像的原始信号中每一像素对应该多基色光的亮度,再统 计所有像素中对应每一基色光的最大亮度,根据最大亮度调节光源模块中对应的基色照明光,以优化由光源模块提供的宽光谱荧光与窄光谱激光的亮度配比,提高显示系统效率;同时,根据多基色对应的基色照明光亮度计算光源模块新三基色的色坐标和亮度,根据光源模块新三基色的色坐标和亮度计算该帧图像的原始信号的补偿矩阵,并用补偿矩阵补偿该帧图像的原始信号以生成补偿后的图像每一像素的RGB值,用以控制空间光调制装置的输出,从而根据每帧图像的不同动态补偿由于每帧图像由于色域变化产生的色差。因此,本发明实施方式中提供的动态色域调节系统、方法及显示系统,在增强显示系统色域(增强色域至达到REC2020色域标准)的同时保持显示系统较高的效率、并降低色差。
附图说明
图1为本发明一种实施方式中的具动态色域调节的显示系统的结构示意图。
图2是本发明一种实施方式中的动态色域调节系统的模组图。
图3是本发明一种实施方式中的动态色域调节方法的方法流程图。
图4是图1所示显示系统的光源控制信号的示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更明显易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,为使描述简要清晰,同一元件或相似元件在以下不同实施方式中采用相同编号。显然,所描述的实施例仅仅 是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1所示,为本发明一种实施方式中的显示系统的构成示意图,所述显示系统1包括光源模块10与成像模块20。其中光源模块10包括激发光光源110、窄光谱基色光光源120、波长转换与合光装置130。其中,激发光光源110发出的短波长激发光被引导至波长转换与合光装置130,被波长转换与合光装置130吸收并产生宽光谱的基色光,窄光谱基色光光源120发出的窄光谱基色光被引导至波长转换与合光装置130,在波长转换与合光装置130处与宽光谱的基色光进行合光。在本实施方式中,激发光光源110为蓝激光光源,所发出的激发光为蓝激光,波长转换与合光装置130上分区域设置波长转换材料与散射材料,其中波长转换材料包括红光荧光粉材料与绿光荧光粉材料,为便于说明,设置红光荧光材料的区域称之为“红光区”,设置绿光荧光材料的区域称之为“绿光区”,而设置散射材料的区域称之为“蓝光区”。红光区、绿光区与蓝光区按时序轮流切入激发光的出射路径,从而在波长转换与合光装置130处按时序出射红荧光、绿荧光与蓝激光三种基色光。在本实施方式中,窄光谱基色光光源120包括红激光光源与绿激光光源,红激光光源与绿激光光源按照时序发出红激光与绿激光两种基色光,其中红激光被引导至波长转换与合光装置130处与红荧光进行合光,绿激光被引导至波长转换与合光装置130处于绿荧光进行合光。因此光源模块10最终按时序输出红、绿、蓝三基色照明光至成像模块20。
为便于描述,在本发明实施方式中,光源模块10输出的红光R、绿光G、蓝光G被称为光源三基色光,对应至由此三基色光去实现显示的图像数据,所述图像数据的每一像素点可由此三基色去表示,即P(r,g,b)。光源模块10输出的红荧光r、绿荧光g、蓝激光b、红激光r’、绿激光b’被称为光源五基色光,对应至由此五基色光去实现显示的图像数据,所述图像数据的每一像素点亦可由此五基色去表示,即P(r,g,b,r’,b’)。在下面还会出现诸如光源模块10的三基色色坐标及亮度、光源模块10的五基色色坐标及亮度、像素三基色色坐标及亮度、像素五基色色坐标及亮度之类的描述,其中光源模块10的三基色色坐标及亮度是指光源模块10输出的红光R、绿光G、蓝光G三基色光在某一色彩空间下的色坐标及亮度,像素三基色色坐标及亮度是指一帧图像中每一像素在某一色彩空间下的三基色色坐标及亮度,光源模块10的五基色色坐标及亮度是指光源模块10输出的红荧光r、绿荧光g、蓝激光b、红激光r’、绿激光b’五基色光在某一色彩空间下的色坐标及亮度,像素五基色色坐标及亮度是指一帧图像中每一像素在某一色彩空间下的五基色色坐标及亮度。
在上述实施方式中,将激发光、窄光谱基色光引导至波长转换与合光装置130的方式、以及将基色光从波长转换与合光装置130处引导至成像模块20的方式可以参考现有技术,在此不作介绍。
可以理解,在其他实施方式中,波长转换与合光装置130可以分离成波长转换装置与合光装置两个装置,二者可以邻近也可隔开设置,在此不作限定。
可以理解,光源模块10还可以包括滤光装置,滤光装置可以与波长转换与合光装置130设置为一体或分开设置,在此不作限定。
可以理解,在其他实施方式中,光源模块10也可先产生蓝光与黄荧光,再由黄荧光中过滤出红荧光与绿荧光。
可以理解,无论如何,光源模块10包括激发光光源110与窄光谱基色光光源120,激发光光源110发出的激发光经由处置,例如经由波长转换、过滤或散射诸如此类的操作后输出蓝光以及宽光谱的红、绿光,所述窄光谱基色光光源120输出至少一种窄光谱的基色光,所述至少一种窄光谱的基色光为窄光谱的红光及/或绿光,所述蓝光、宽光谱的红绿光以及窄光谱的红光及/或绿光构成光源多于三基色的多基色光,所述窄光谱基色光与对应的宽光谱的基色光合光,以使所述光源模块按时序输出红、绿、蓝三基色光至所述成像模块,所述红、绿、蓝三基色光构成光源三基色光。
所述成像模块20包括处理装置210、存储装置220与空间光调制装置230。所述处理装置210电连接存储装置220、空间光调制装置230以及一图像源30。所述处理装置210从所述图像源30接收图像信号,所述空间光调制装置230在所述处理装置210的控制下,将光源模块10输出的基色光调制成携带图像信息的图像光,所述图像光经由投影镜头240输出投影至屏幕(图未示)上形成图像。
本实施方式中,动态色域调节系统221(以下简称为“动态调节系统221”)安装并运行于所述成像模块20中,具体地,所述动态调节系统221可以被分割成一个或多个模块,所述一个或多个模块存储在所述存储装置220中,并由所述处理装置210执行,从而根据显示系统1的显示内容动态调节显示系统1的色域。进一步地,所述处理装置210从图像源30处实时获得图像的原始信号u,即获得图像的原始三基色RGB信号u,针对具体一帧图像,所述处理装置210运行所述动态调节系统221,以根据获得的原始三基色RGB信号u产生光源亮度信号v,光源亮度信号v被输出至一伽马校正器40,经伽马校正器40进行校正后输出至激发 光光源110与窄光谱基色光光源120,以调节激发光光源110与窄光谱基色光光源120发出的照明光的亮度,从而产生不同比例的五基色光输出至空间光调制装置230。在此基础上,所述处理装置210另还根据光源亮度信号v计算新的色域并生成光源模块10新的三基色(R,G,B)色坐标,利用光源模块10新的三基色色坐标对该帧图像每一像素的原始三基色RGB信号u进行色域变换以生成每一像素新的三基色RGB信号w,此新的三基色RGB信号w被输出至空间光调制装置230,控制空间光调制器230将光源模块10输出的基色光调制成携带图像信息的图像光。
请参阅图2所示,所述动态调节系统221可以被分割成光源亮度调节模块2210与动态色域补偿模块2220。所述光源亮度调节模块2210用于根据获得的一帧图像的原始三基色RGB信号u产生光源亮度信号v、并输出光源亮度信号v控制激发光光源110与窄光谱基色光光源120,所述动态色域补偿模块2220用于根据光源亮度信号v计算新的色域并生成光源模块10新的三基色RGB色坐标、利用新的三基色RGB色坐标对该帧图像每一像素的原始三基色RGB信号u进行色域变换以生成每一像素新的三基色RGB信号w、及输出每一像素新的三基色RGB信号w至空间光调制装置230,以控制空间光调制装置230将光源模块10输出的基色光调制成携带图像信息的图像光。所述光源亮度调节模块2210可进一步被分割成基色变换计算模块2211、最大亮度值获取模块2212、亮度信号生成模块2213及亮度信号输出模块2214。所述动态色域补偿模块2220可进一步被分割为光源新基色生成模块2221与像素新基色生成模块2222。在此需申明的是,本发明所称的模块是能够完成一特定功能的程序段,比程序更适合用于描述软件在显示系统1中的执行过程,关于各模块的详细功能将结合图3的流程图作具体描述。
请参阅图3所示,为本发明一实施方式中的动态色域调节方法的方法流程图。所述方法可以利用图1所示的显示系统1来实现,以下结合显示系统1来对动态色域调节方法进行详细描述。
首先,在步骤S1中,基色变换计算模块2211计算一帧图像的原始三基色RGB信号u中每一像素的光源五基色表示。具体地,基色变换算模块2211接收到一帧图像后,针对图像的原始三基色RGB信号进行色彩空间转换,并在转换后的色彩空间内根据预设的光源参数,例如光源模块10在转换后的色彩空间内的基色色坐标及亮度,计算每一像素的光源五基色表示。
由于一帧图像的像素一般有三个信号量表示,根据视频传输标准的不同,像素可以有RGB、Yuv、XYZ等不同的颜色空间表示,但不管用哪一种颜色空间表示,一帧图像的像素均可转换成某一色域空间下的RGB值。根据选取的色域不同,RGB基色亦不同,例如REC2020色域标准规定的RGB三基色在xyY坐标下分别为(0.708,0.292,0.2627)、(0.17,0.797,0.6780)、(0.131,0.046,0.0593),其中xyY色域坐标以CIE1931标准定义。因此,在本实施方式中,一帧图像的原始RGB信号的三基色、即原始三基色RGB信号可以表示为:
Figure PCTCN2019086928-appb-000001
则原始RGB信号(r,g,b)转换至CIE 1931颜色空间中为:
Figure PCTCN2019086928-appb-000002
Figure PCTCN2019086928-appb-000003
CIE1931以一个三维向量定义了任意人眼可以分辨的绝对颜色和颜色的亮度。其不随色域的变换而变换。本实施方式中使用了五基色,其中五个基色光定义为:
Figure PCTCN2019086928-appb-000004
其中r 0,g 0,b 0,rl 0,和gl 0分别代表红荧光,绿荧光,蓝激光,红激光和绿激光的色彩和亮度。CIE空间中的任意一颜色亮度可以由这五种基色光按亮度调制后合光而成。五基色的颜色调制信号可以写为(r,g,b,rl,gl)。则由此调制信号表示的颜色可以表示为:
Figure PCTCN2019086928-appb-000005
其中:
Figure PCTCN2019086928-appb-000006
可以看出,在已知CIE色坐标的情况下,五基色的亮度信号有无穷多组解。要想实现唯一五基色对应的光源亮度信号v的求解,需要加入额外的限制。在一种实施方式中,可以通过优化五基色中的某些组合,例如使得红激光与绿激光的亮度平方和最低,即求min(rl 2+gl 2),以节省红激光与绿激光的用量,在扩展色域的情况下同时降低成本。如此,可将式(5)变换为:
Figure PCTCN2019086928-appb-000007
其中:
Figure PCTCN2019086928-appb-000008
这样可以求得(rl,gl)为:
Figure PCTCN2019086928-appb-000009
求min(rl 2+gl 2)即求
Figure PCTCN2019086928-appb-000010
定义函数:
Figure PCTCN2019086928-appb-000011
则最小值处满足:
Figure PCTCN2019086928-appb-000012
将式(9)中的矩阵写为:
Figure PCTCN2019086928-appb-000013
则式(11)可以写为:
Figure PCTCN2019086928-appb-000014
其中:
Figure PCTCN2019086928-appb-000015
Figure PCTCN2019086928-appb-000016
利用上式即可求得五基色中的其中三基色rgb对应的光源亮度的值,然后将三基色rgb对应的光源亮度的值带入式(7)可以求得另外两基色光r’和g’对应的光源亮度的值,从而得到每个像素的光源五基色表示的亮度值。
在另一种实施方式中,可以通过随机指定五基色中的其中两基色对应的光源亮度的值,再求另外三基色对应的光源亮度的值。
其次,在步骤S2,最大亮度值获取模块2212分别统计该帧图像的五基色表示的所需基色光的光源亮度最大值,即求max(r),max(g),max(b),max(r’)和max(g’)。如果五基色表示的任一基色照明光亮度最大值大于1,则截断为1。
再次,在步骤S3中,亮度信号生成模块2213根据最大亮度值获取模块2213获得的五基色表示的所需基色光的光源亮度最大值对应生成相应各基色光的光源亮度信号v。
在步骤S4中,亮度信号输出模块2214按时序输出相应各基色光的光源亮度信号v至对应的激发光光源110与窄光谱基色光光源120,从而调节激发光光源110与窄光谱基色光光源120发出的照明光的亮度,并因此产生不同比例的五基色光输出至空间光调制装置230。
请同时参阅图4所示,为一种实施方式中控制激发光光源110与窄光谱基色光光源120的亮度的示意图。一帧图像按时序分为蓝绿红三段。根据前面计算的每一基色光的光源亮度信号v,调制红绿蓝激光的驱动电流强度,从而调制红绿蓝激光的亮度。
在步骤S5中,光源新基色生成模块2221根据对应光源模块10每一基色的光源亮度信号v、计算新的色域并生成光源模块10新的三基色RGB色坐标和亮度。
根据对应光源模块10每一基色的光源亮度信号v,可以计算新的色域。色域由可以被空间光调制装置230调制的各个色彩分量对应的基色光色坐标和亮度决定。例如,空间光调制器分为三个时序分别处理红绿蓝三基色光,则该显示系统1能够表示的色域即为三个时序中的光源模块10发出的照明光的色坐标和亮度决定。如果其中的某个或某些色彩时序是由多个基色光合成的照 明光,则该色彩时序内表征色域的基色光由合成基色光的总色坐标和总量度决定。例如在一帧图像中,红色色彩时序内有相对峰值亮度a%的红荧光和相对峰值亮度b%的红激光组成,则该红色色彩时序决定的基色光由a%的红荧光和b%的红激光混合后的照明光的色坐标和亮度决定。因而根据光源模块10输出的各个基色光亮度值和色坐标,可以求得光源模块10混合后的新的三基色RGB色坐标。
步骤S6中,像素新基色生成模块2222利用光源模块10新的三基色RGB色坐标和亮度求得原始三基色RGB信号u的补偿矩阵,并利用补偿矩阵求得该帧图像的每一像素的新的三基色RGB信号w。在本实施方式中,求补偿矩阵由如下所述的方法确定:
CIE 1931以一个三维向量定义了任意人眼可以分辨的绝对颜色和颜色的亮度。其不随色域的变换而变换。显示系统1的三基色满足如下公式:
Figure PCTCN2019086928-appb-000017
要在显示系统1下显示图像原始信号u所表示的颜色,需要显示系统1显示的三基色的亮度满足:
Figure PCTCN2019086928-appb-000018
其中
Figure PCTCN2019086928-appb-000019
表示显示系统1中三基色的调制信号强度,而C′为:
Figure PCTCN2019086928-appb-000020
这样,可以定义从输入的图像的原始信号u的色域空间到显示系统1的三基色调制信号之间的关系为:
Figure PCTCN2019086928-appb-000021
这里仅以三基色系统为例来阐述色彩转换的原理。对于使用四基色或五基色的投影系统,C′为4x3或5x3的矩阵,其伪逆矩阵的行列式值为零,因而从XYZ空间到基色空间的转换有无穷多解。C′ -1为XYZ到基色空间的一转换矩阵。这个转换矩阵可以由加入的一限制条件求解,比如在采用四段式色轮RGBW的光源模块中最大化白光,尽量平均分配基色亮度等。对显示系统1色彩的校准,也就是对C′的校准。准确的测量显示系统1各基色光的色坐标和亮度值,以生成准确的C′是保障显示系统1色彩显示准确的基础。
由于现有主流显示面板(即空间光调制装置)供应商提供的面板控制芯片都集成了色域转换、gamma校正等色彩管理模块执行色彩管理功能,这些色彩管理模块利用寄存器存储色彩变换矩阵,对每一像素点输入的彩色信号,利用色彩变换矩阵将输入信号的色彩空间转换为显示系统的色彩空间,因此,在本实施方式中,对现有主流显示系统的改进,可以在一帧图像到达面板控制芯片前对该帧图像执行动态色域补偿,其中,面板控制芯片中记录的色彩转换矩阵可以设为:
T=C′ -1C
其中C′为面板控制芯片记录的三基色下从rgb空间到XYZ空间的变换矩阵,C为输入的视频或图像的原始信号u转换到XYZ空间的变换矩阵。当光源模块10的荧光和激光根据光源亮度信号v调制以后,为使经过面板控制芯片转换后的rgb值满足新的动态生成的色域的合成和维持色彩不变,亦即色彩的XYZ坐标不变,这样可以得到输入给面板控制芯片的信号需要在原输入信号、即原始信号u的基础上变换为:
Figure PCTCN2019086928-appb-000022
其中,C是图像原始信号u色域变化对应的转换矩阵,C′是面板控制芯片里记录的色域转换矩阵,C″是动态新色域的转换矩阵,即补偿矩阵,
Figure PCTCN2019086928-appb-000023
为输入给面板控制芯片经过补偿后的信号。利用上式,可以保证光源模块10经过调制导致的色域变化情况下,显示系统1显示的色彩不发生变化。
步骤S7中,像素新基色生成模块2222输出该帧图像的每一像素的新的三基色RGB信号w至空间光调制装置230,以此控制空间光调制装置230将光源模块10输出的三基色光调制成携带图像信息的图像光。
可以理解,虽然上述实施方式仅以光源模块10发出五基色照明光、成像模块20计算一帧图像的光源五基色表示、统计五基色表示的最大值并因此生成对应每一基色光的光源亮度信号v,以此调制光源模块10发出的五基色照明光的亮度为例,然在其他实施方式中,光源模块10也可以设置为仅发出四基色照明光,如仅发出红荧光r、绿荧光g、蓝激光b、红激光r’或者仅发出红荧光r、绿荧光g、蓝激光b、绿激光g’,相应地,成像模块20可被设置为计算一帧图像的光源四基色表示、统计四基色表示的最大值并 因此生成对应每一基色光的光源亮度信号v,以此调制光源模块10发出的四基色照明光的亮度。成像模块20中亦可根据光源亮度信号v生成相应的补偿矩阵,利用补偿矩阵对该帧图像的原始三基色RGB信号进行修正,补偿由于色域变化产生的色差。
综上所述,本发明实施方式提供的动态色域调节系统、方法及显示系统,一方面利用单色性更好的激发光和宽光谱荧光合成新的基色光,从而扩大显示系统的色域;另一方面,通过色彩空间转换,根据预先配置的多于三个基色,如四基色、五基色的多基色光源参数,计算一帧图像的原始信号中每一像素对应该多基色光的亮度,再统计所有像素中对应每一基色光的最大亮度,根据最大亮度调节光源模块中对应的基色照明光,以优化由光源模块提供的宽光谱荧光与窄光谱激光的亮度配比,提高显示系统效率;同时,根据多基色对应的基色照明光亮度计算光源模块新三基色的色坐标和亮度,根据光源模块新三基色的色坐标和亮度计算该帧图像的原始信号的补偿矩阵,并用补偿矩阵补偿该帧图像的原始信号以生成补偿后的图像每一像素的RGB值,用以控制空间光调制装置的输出,从而根据每帧图像的不同动态补偿由于每帧图像由于色域变化产生的色差。因此,本发明实施方式中提供的动态色域调节系统、方法及显示系统,在增强显示系统色域(增强色域至达到REC2020色域标准)的同时保持显示系统较高的效率、并降低色差。
以上实施方式仅用以说明本发明的技术方案而非限制,尽管参照以上较佳实施方式对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换都不应脱离本发明技术方案的精神和范围。

Claims (17)

  1. 一种动态色域调节系统,用于调节显示系统色域,所述显示系统包括光源模块与成像模块,所述光源模块包括激发光光源与窄光谱基色光光源,所述激发光光源发出激发光,所述激发光经由处置后输出蓝光以及宽光谱的红、绿光,所述窄光谱基色光光源输出至少一种窄光谱的基色光,所述至少一种窄光谱的基色光为窄光谱的红光及/或绿光,所述蓝光、宽光谱的红绿光以及窄光谱的红光及/或绿光构成多于三基色的光源多基色光,所述窄光谱基色光与对应的宽光谱的基色光合光,以使所述光源模块按时序输出红、绿、蓝三基色光至所述成像模块,所述红、绿、蓝三基色光构成光源三基色光,所述成像模块包括处理装置、存储装置及空间光调制装置,所述动态色域调节系统存储于所述存储装置中并由所述处理装置执行,其特征在于,所述动态色域调节系统包括:
    光源亮度调节模块,用于根据获得的一帧图像的原始三基色RGB信号产生针对光源多基色光中所需基色光的光源亮度信号,并按时序输出所述光源亮度信号至所述光源模块,以调节所述激发光光源与所述窄光谱基色光光源发出的照明光的亮度。
  2. 如权利要求1所述的系统,其特征在于,还包括一动态色域补偿模块,用于根据光源多基色光中每一基色光的光源亮度信号计算新的色域并生成所述光源模块新的三基色RGB色坐标、利用所述光源模块新的三基色RGB色坐标对该帧图像每一像素的原始三基色RGB信号进行色域变换以生成每一像素新的三基色RGB信号、及输出每一像素新的三基色RGB信号至所述空间光调制装置,以控制所述空间光调制装置将所述光源三基色光调制成携带图像信息的图像光。
  3. 如权利要求2所述的系统,其特征在于,所述光源亮度调节模块包括:
    基色变换计算模块,用于计算该帧图像的原始三基色RGB信号中每一像素的光源多基色表示;
    最大亮度值获取模块,用于分别统计该帧图像中所需基色光的亮度最大值;
    亮度信号生成模块,用于根据所需基色光的亮度最大值对应生成相应各基色光的光源亮度信号;及
    亮度信号输出模块,用于按时序输出相应各基色光的光源亮度信号至所述激发光光源与窄光谱基色光光源,以调节所述激发光光源与窄光谱基色光光源发出的照明光的亮度,从而产生不同比例的多基色光输出至所述空间光调制装置。
  4. 如权利要求3所述的系统,其特征在于,所述基色变换计算模块用于针对该帧图像的原始三基色RGB信号进行色彩空间转换,并在转换后的色彩空间内根据预设的光源参数计算每一像素的光源多基色表示。
  5. 如权利要求4所述的系统,其特征在于,所述预设的光源参数包括所述光源模块输出的多基色光在转换后的色彩空间内的色坐标与亮度。
  6. 如权利要求4所述的系统,其特征在于,所述动态色域补偿模块包括:
    光源新基色生成模块,用于根据对应所述光源模块每一基色的光源亮度信号v,计算新的色域并生成所述光源模块的新的三基色RGB色坐标和亮度;
    像素新基色生成模块,用于利用所述光源模块的新的三基色RGB色坐标和亮度求得该帧图像的所述原始三基色RGB信号的补偿矩阵,并利用所述补偿矩阵求得该帧图像的每一像素的新的三基色RGB信号,及输出该帧图像的所述每一像素的新的三基色RGB信号至所述空间光调制装置,以控制所述空间光调制装置将所述光源模块输出的三基色光调制成携带图像信息的图像光。
  7. 如权利要求3所述的系统,其特征在于,所述基色变换计算模块根据光源多基色中其中两种或多种基色的光源亮度平方和最低来计算该帧图像的原始三基色RGB信号中每一像素的光源多基色表示。
  8. 如权利要求7所述的系统,其特征在于,所述基色变换计算模块根据光源多基色中窄光谱的红光与绿光的亮度平方和最低来计算该帧图像的原始三基色RGB信号中每一像素的光源多基色表示。
  9. 一种动态色域调节方法,用于调节显示系统色域,所述显示系统包括光源模块与成像模块,所述光源模块包括激发光光源与窄光谱基色光光源,所述激发光光源发出激发光,所述激发光经由处置后输出蓝光以及宽光谱的红、绿光,所述窄光谱基色光光源输出至少一种窄光谱的基色光,所述至少一种窄光谱的基色光为窄光谱的红光及/或绿光,所述蓝光、宽光谱的红绿光以及窄光谱的红光及/或绿光构成多于三基色的光源多基色光,所述窄光谱基色光与对应的宽光谱的基色光合光,以使所述光源模块按时序输出红、绿、蓝三基色光至所述成像模块,所述红、绿、蓝三基色光构成光源三基色光,所述成像模块包括处理装置、存储装置及空间光调制装置,其特征在于,所述方法包括:
    a)根据获得的一帧图像的原始三基色RGB信号产生针对光源多基色光中所需基色光的光源亮度信号,并按时序输出所述光源亮度信号至所述光源模块,以调节所述激发光光源与所述窄光谱基色光光源发出的照明光的亮度。
  10. 如权利要求9所述的方法,其特征在于,还包括:
    b)根据光源多基色光中每一基色光的光源亮度信号计算新的色域并生成所述光源模块新的三基色RGB色坐标、利用所述光源模块新的三基色RGB色坐标对该帧图像每一像素的原始三基色RGB信号进行色域变换以生成每一像素新的三基色RGB信号、及输出每一像素新的三基色RGB信号至所述空间光调制装置,以控 制所述空间光调制装置将所述光源三基色光调制成携带图像信息的图像光。
  11. 如权利要求10所述的方法,其特征在于,所述a)步骤包括:
    计算该帧图像的原始三基色RGB信号中每一像素的光源多基色表示;
    分别统计该帧图像的光源多基色表示的所需基色光的光源亮度最大值;
    根据所述光源亮度最大值对应生成相应各基色光的光源亮度信号;及
    按时序输出相应各基色光的光源亮度信号至所述激发光光源与窄光谱基色光光源,以调节所述激发光光源与窄光谱基色光光源发出的照明光的亮度,从而产生不同比例的光源多基色光输出至所述空间光调制装置。
  12. 如权利要求10所述的方法,其特征在于,所述步骤“计算该帧图像的原始三基色RGB信号中每一像素的光源多基色表示”具体包括:针对该帧图像的原始三基色RGB信号进行色彩空间转换,并在转换后的色彩空间内根据预设的光源参数计算每一像素的光源多基色表示。
  13. 如权利要求12所述的方法,其特征在于,所述预设的光源参数包括所述光源模块输出的光源多基色光在转换后的色彩空间内的色坐标与亮度。
  14. 如权利要求11所述的方法,其特征在于,所述b)步骤包括:
    根据对应所述光源模块每一基色的光源亮度信号v,计算新的色域并生成所述光源模块的新的三基色RGB色坐标和亮度;及
    利用所述光源模块的新的三基色RGB色坐标和亮度求得该帧图像的所述原始三基色RGB信号的补偿矩阵,并利用所述补偿矩 阵求得该帧图像的每一像素的新的三基色RGB信号,及输出该帧图像的所述每一像素的新的三基色RGB信号至所述空间光调制装置,以控制所述空间光调制装置将所述光源模块输出的三基色光调制成携带图像信息的图像光。
  15. 如权利要求11所述的方法,其特征在于,所述步骤计算该帧图像的原始三基色RGB信号中每一像素的光源多基色表示具体为:根据光源多基色中其中两种或多种基色的光源亮度平方和最低来计算该帧图像的原始三基色RGB信号中每一像素的光源多基色表示。
  16. 如权利要求15所述的方法,其特征在于,步骤计算该帧图像的原始三基色RGB信号中每一像素的光源多基色表示具体为:根据光源多基色中窄光谱的红光与绿光的光源亮度平方和最低来计算该帧图像的原始三基色RGB信号中每一像素的光源多基色表示。
  17. 一种显示系统,所述显示系统包括光源模块与成像模块,所述光源模块包括激发光光源与窄光谱基色光光源,所述激发光光源发出激发光,所述激发光经由处置后输出蓝光以及宽光谱的红、绿光,所述窄光谱基色光光源输出至少一种窄光谱的基色光,所述至少一种窄光谱的基色光为窄光谱的红光及/或绿光,所述蓝光、宽光谱的红绿光以及窄光谱的红光及/或绿光构成多于三基色的光源多基色光,所述窄光谱基色光与对应的宽光谱的基色光合光,以使所述光源模块按时序输出红、绿、蓝三基色光至所述成像模块,所述红、绿、蓝三基色光构成光源三基色光,所述成像模块包括处理装置、存储装置及空间光调制装置,其特征在于,所述显示系统还包括如权利要求1-8任一项所述的动态色域调节系统,所述动态色域调节系统存储于所述存储装置中并由所述处理装置执行。
PCT/CN2019/086928 2018-09-21 2019-05-15 动态色域调节系统、方法及显示系统 WO2020057152A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811109891.9 2018-09-21
CN201811109891.9A CN110941135B (zh) 2018-09-21 2018-09-21 动态色域调节系统、方法及显示系统

Publications (1)

Publication Number Publication Date
WO2020057152A1 true WO2020057152A1 (zh) 2020-03-26

Family

ID=69888274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086928 WO2020057152A1 (zh) 2018-09-21 2019-05-15 动态色域调节系统、方法及显示系统

Country Status (2)

Country Link
CN (1) CN110941135B (zh)
WO (1) WO2020057152A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114727452A (zh) * 2022-06-09 2022-07-08 杭州罗莱迪思科技股份有限公司 基于rgb模式的多基色灯光控制方法及其应用
CN115315040A (zh) * 2022-07-25 2022-11-08 上海芯龙光电科技股份有限公司 一种基于rgbwcla七色合一的led全光谱色彩管理系统
CN116828162A (zh) * 2023-08-28 2023-09-29 宜宾市极米光电有限公司 显示系统和显示控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114598829A (zh) * 2022-03-17 2022-06-07 上海宇度医学科技股份有限公司 一种单cmos成像系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101720045A (zh) * 2009-12-22 2010-06-02 中国科学院长春光学精密机械与物理研究所 激光显示色域扩展中色调与亮度转换的方法
CN105739226A (zh) * 2014-12-08 2016-07-06 深圳市绎立锐光科技开发有限公司 投影系统
CN106292142A (zh) * 2015-05-14 2017-01-04 深圳市绎立锐光科技开发有限公司 一种发光装置及其发光控制方法、投影设备
CN106353956A (zh) * 2015-07-13 2017-01-25 深圳市光峰光电技术有限公司 投影显示系统的控制方法及投影显示系统
CN107615886A (zh) * 2015-05-22 2018-01-19 Nec显示器解决方案株式会社 照明装置、投影仪、显示系统和光源调节方法
CN107621746A (zh) * 2016-07-15 2018-01-23 深圳市光峰光电技术有限公司 发光装置及相关投影系统
JP2018013541A (ja) * 2016-07-19 2018-01-25 パナソニックIpマネジメント株式会社 投写型映像表示装置
CN108279548A (zh) * 2017-01-06 2018-07-13 深圳市光峰光电技术有限公司 投影系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204595412U (zh) * 2014-12-08 2015-08-26 深圳市光峰光电技术有限公司 发光装置和投影系统
CN110874002B (zh) * 2018-08-31 2021-12-21 深圳光峰科技股份有限公司 动态调节显示系统色域的系统、方法及显示系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101720045A (zh) * 2009-12-22 2010-06-02 中国科学院长春光学精密机械与物理研究所 激光显示色域扩展中色调与亮度转换的方法
CN105739226A (zh) * 2014-12-08 2016-07-06 深圳市绎立锐光科技开发有限公司 投影系统
CN106292142A (zh) * 2015-05-14 2017-01-04 深圳市绎立锐光科技开发有限公司 一种发光装置及其发光控制方法、投影设备
CN107615886A (zh) * 2015-05-22 2018-01-19 Nec显示器解决方案株式会社 照明装置、投影仪、显示系统和光源调节方法
CN106353956A (zh) * 2015-07-13 2017-01-25 深圳市光峰光电技术有限公司 投影显示系统的控制方法及投影显示系统
CN107621746A (zh) * 2016-07-15 2018-01-23 深圳市光峰光电技术有限公司 发光装置及相关投影系统
JP2018013541A (ja) * 2016-07-19 2018-01-25 パナソニックIpマネジメント株式会社 投写型映像表示装置
CN108279548A (zh) * 2017-01-06 2018-07-13 深圳市光峰光电技术有限公司 投影系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114727452A (zh) * 2022-06-09 2022-07-08 杭州罗莱迪思科技股份有限公司 基于rgb模式的多基色灯光控制方法及其应用
CN115315040A (zh) * 2022-07-25 2022-11-08 上海芯龙光电科技股份有限公司 一种基于rgbwcla七色合一的led全光谱色彩管理系统
CN115315040B (zh) * 2022-07-25 2024-04-09 上海芯龙光电科技股份有限公司 一种基于rgbwcla七色合一的led全光谱色彩管理系统
CN116828162A (zh) * 2023-08-28 2023-09-29 宜宾市极米光电有限公司 显示系统和显示控制方法
CN116828162B (zh) * 2023-08-28 2023-12-01 宜宾市极米光电有限公司 显示系统和显示控制方法

Also Published As

Publication number Publication date
CN110941135B (zh) 2022-05-13
CN110941135A (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
WO2020057152A1 (zh) 动态色域调节系统、方法及显示系统
US8194095B2 (en) Color image display device and color conversion device
WO2016161934A1 (zh) 一种投影系统及其色域控制方法
WO2020042566A1 (zh) 动态调节显示系统色域的系统、方法及显示系统
JP2013033086A (ja) 投写型映像表示装置
JP7065917B2 (ja) 三次元(3d)対応ディスプレイ上への広色域二次元(2d)画像の描画
WO2019174271A1 (zh) 显示设备
WO2019174274A1 (zh) 显示设备及显示方法
CN110278423B (zh) 显示设备
CN111862888B (zh) 一种四色低蓝光广色域显示的方法、装置、系统及存储介质
CN109327689B (zh) 显示设备及显示方法
CN110278421B (zh) 显示设备及显示方法
US20110149167A1 (en) Full Visible Gamut Color Video Display
CN109324465B (zh) 显示设备及显示方法
WO2019174273A1 (zh) 图像处理装置、显示设备、图像处理与显示装置及方法
EP4097970A1 (en) Projection system and method with blended color gamut
JP2014066805A (ja) プロジェクター、及び、プロジェクターにおける発光制御方法
CN110278422B (zh) 显示设备
WO2019109505A1 (zh) 投影设备及投影显示方法
JP2013190449A (ja) 映像表示装置、映像信号変換装置および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863888

Country of ref document: EP

Kind code of ref document: A1