WO2019024228A1 - 一种汽车前照灯控制方法和装置 - Google Patents

一种汽车前照灯控制方法和装置 Download PDF

Info

Publication number
WO2019024228A1
WO2019024228A1 PCT/CN2017/104514 CN2017104514W WO2019024228A1 WO 2019024228 A1 WO2019024228 A1 WO 2019024228A1 CN 2017104514 W CN2017104514 W CN 2017104514W WO 2019024228 A1 WO2019024228 A1 WO 2019024228A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
information
mode
headlight
usage mode
Prior art date
Application number
PCT/CN2017/104514
Other languages
English (en)
French (fr)
Inventor
任中杰
Original Assignee
西安中兴新软件有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安中兴新软件有限责任公司 filed Critical 西安中兴新软件有限责任公司
Publication of WO2019024228A1 publication Critical patent/WO2019024228A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • B60Q1/08Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • B60Q1/08Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically
    • B60Q1/085Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to special conditions, e.g. adverse weather, type of road, badly illuminated road signs or potential dangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q11/00Arrangement of monitoring devices for devices provided for in groups B60Q1/00 - B60Q9/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/30Indexing codes relating to the vehicle environment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • This article relates to, but is not limited to, the field of Internet of Things technology, and in particular relates to a method and device for controlling a headlight of an automobile.
  • the Internet of Vehicle is a huge interactive network of information such as vehicle location, speed and route.
  • GPRS General Packet Radio Service
  • RFID Radio Frequency Identification
  • sensors, cameras and other devices the vehicle can complete the collection of the whole body environment and its own state information; through the Internet technology, all vehicles can The collected information is transmitted to the central processor; through computer technology, the information of these large vehicles can be analyzed and processed to calculate the optimal route of different vehicles, report the road conditions in time, and arrange the signal cycle.
  • the vehicle networking system refers to the acquisition, storage and transmission of vehicle working conditions and static and dynamic information by installing vehicle terminal equipment on the vehicle instrument panel.
  • the vehicle networking system is divided into three parts: the vehicle terminal, the cloud computing processing platform and the data analysis platform. According to the different functional requirements of different industries, the vehicle is effectively monitored and managed.
  • Embodiments of the present invention provide a method and apparatus for controlling a headlight of an automobile.
  • a method for controlling a headlight of a car comprising:
  • obtaining environmental illuminance information includes:
  • determining whether the headlight usage mode is reasonable according to the vehicle driving information and the ambient illuminance information comprises:
  • control method further includes: determining whether there is another traveling vehicle within a safe distance ahead of the vehicle, and determining whether the headlight usage mode is reasonable according to the driving situation of the front safety distance.
  • the method further includes:
  • Counting in the preset period, the number of times the vehicle headlight usage mode is unreasonable, and when the number of times reaches a preset threshold, sending a reminder instruction to the vehicle, the reminder instruction indicating that the headlight usage mode is more than an unreasonable number of times Preset threshold.
  • the method further includes:
  • Correction information is sent to the vehicle, the correction information indicating the correct headlamp usage mode.
  • obtaining a bottom view picture of the current time of the location where the vehicle is located includes:
  • a bottom view picture is acquired from the top of the vehicle or a bottom view picture that is within a preset range from the position of the vehicle is selected from the stored up view pictures of other vehicles.
  • determining the ambient illuminance information according to the looking up picture includes:
  • the ambient illuminance information is determined in conjunction with the time and location at which the bottom view picture is acquired.
  • determining the ambient illuminance information according to the location of the vehicle, combined with the time and the illumination information includes:
  • the ambient illuminance information is determined in conjunction with the illumination of the street light.
  • the embodiment of the invention further provides an automobile headlight control device, comprising:
  • a communication module configured to obtain vehicle driving information, environmental illuminance information, and headlight usage mode information of the vehicle;
  • the determining module is configured to determine whether the headlight usage mode is reasonable according to the vehicle driving information and the environmental illuminance information, and issue a prompt message when the headlight usage mode is unreasonable.
  • the communication module is configured to obtain the ambient illuminance information by:
  • the determining module is configured to determine whether the headlight usage mode is reasonable according to the vehicle driving information and the ambient illuminance information by:
  • the determining module is further configured to: determine whether there is another traveling vehicle within a safe distance ahead of the vehicle, and determine the use of the headlight according to the driving situation of the front safe distance. Is the mode reasonable?
  • control device further includes:
  • the prompting module is configured to count the number of times that the vehicle headlight usage mode is unreasonable within a preset period, and when the number of times reaches a preset threshold, send a reminder instruction to the vehicle, where the reminder instruction indicates that the headlight is used The number of unreasonable patterns exceeds the preset threshold.
  • the prompting module is further configured to:
  • Correction information is sent to the vehicle, the correction information indicating the correct headlamp usage mode.
  • the communication module is configured to implement a bottom view picture of acquiring a current moment of the location of the vehicle by:
  • a bottom view picture is acquired from the top of the vehicle or a bottom view picture that is within a preset range from the position of the vehicle is selected from the stored up view pictures of other vehicles.
  • the communication module is configured to determine ambient illuminance information according to the look-up picture by:
  • the ambient illuminance information is determined in conjunction with the time and location at which the bottom view picture is acquired.
  • the communication module is configured to determine the ambient illuminance information according to the location of the vehicle, combining the time and the illumination information by:
  • the ambient illuminance information is determined in conjunction with the illumination of the street light.
  • the embodiment of the invention is based on the vehicle networking platform, and determines whether the usage mode of the headlights is reasonable through the cloud server, not only can automatically control the reasonable use of the headlights, but also can guide the driver to develop a reasonable use of the headlights habit.
  • FIG. 1 is a flow chart of a method for controlling a headlight of a vehicle based on a vehicle networking platform according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a vehicle headlight control device based on a vehicle networking platform according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a terminal access system based on the OneM2M protocol Internet of Things platform
  • FIG. 4 is a flow chart of a terminal access process of an Internet of Things platform based on the OneM2M protocol;
  • FIG. 5 is a flowchart of another terminal access process based on the OneM2M protocol Internet of Things platform
  • FIG. 6 is a flow chart of another terminal access process based on the OneM2M protocol Internet of Things platform
  • FIG. 7 is a flow chart of another terminal access procedure based on the OneM2M protocol Internet of Things platform
  • FIG. 9 is a flow chart of another OneM2M protocol IoT platform terminal access process.
  • the headlamp automatic control system used almost automatically controls the headlight switching mode when the ambient brightness or the vehicle distance does not meet the current headlight usage conditions. This automatic control does not enable the driver to develop a reasonable The habit of using light will cause the driver to rely on the automatic control and use the headlights indiscriminately. Once the automatic control system fails, it will create a greater safety hazard;
  • car networking system has become more and more popular in the car, but there is no real way to use the car networking system to achieve automatic control of the headlights.
  • an embodiment of the present invention provides a method for controlling a headlight of an automobile, which is applied to a cloud server of a network of vehicles, including:
  • the prompt information in the embodiment of the present invention is used to indicate that the usage mode of the vehicle headlight is unreasonable.
  • the vehicle driving information includes at least one of the following: vehicle position information, vehicle speed, and startup information.
  • the vehicle's ECU Electronic Control Unit
  • the vehicle's ECU can be used to obtain vehicle start information, vehicle speed, position information (latitude and longitude), and headlight usage mode information (mode L0 is off, mode L1 is low beam, mode L2 is High-beam light), and uploaded to the cloud server through the network, the cloud server can send instructions to the vehicle to obtain the current vehicle position information, the current vehicle speed and the headlight usage mode every other polling period (for example, set to 10s).
  • the vehicle When the driver manually switches the headlight usage mode, the vehicle actively sends the current vehicle location information, the current vehicle speed, and the headlight usage mode to the cloud server.
  • the cloud server obtains the environmental illuminance information again, and the cloud server determines whether the headlight usage mode is reasonable according to the obtained information.
  • the prompt message is sent to the vehicle to remind the driver to drive.
  • the use mode of human vehicle headlights is unreasonable.
  • This embodiment can also automatically send the headlight usage mode to a reasonable mode by sending an instruction to the vehicle after multiple (eg, 3) reminders.
  • the embodiment of the invention can not only automatically control the reasonable use of the headlights, but also guide the driver to develop a reasonable habit of using the headlights.
  • determining whether the headlight usage mode is reasonable according to the vehicle driving information and the environmental illuminance information in step S102 of the embodiment of the present invention includes:
  • obtaining environmental illuminance information includes:
  • Method 1 obtaining a bottom view picture of the current time of the location of the vehicle, according to the bottom view Film, determining environmental illuminance information;
  • Method 2 According to the location of the vehicle, combined with time information (including the time zone in which the vehicle is located, local time, sunrise and sunset time) and lighting information (including streetlight conditions, and the vehicle is in day or night conditions), the ambient illuminance information is determined.
  • time information including the time zone in which the vehicle is located, local time, sunrise and sunset time
  • lighting information including streetlight conditions, and the vehicle is in day or night conditions
  • the cloud server For the first method, you can install a camera on the top of the vehicle, take a picture of the top of the vehicle and send it to the cloud server every other cycle (such as 60s), and upload all the photos taken by the camera to the cloud server.
  • the cloud server first determines the current view of the current time in the vicinity of the location of the vehicle according to the location of the vehicle, and the bottom view collected by the cloud server is uploaded by all the cars passing through the area. Filtered.
  • the preset number of PNs for example, 5
  • the preset number of PNs for example, 5
  • Illumination information If the vehicle does not have a camera; or the number of look-up pictures obtained by the cloud server within a preset time interval or in a preset area does not exceed a preset number (for example, 5); or, exceeds a preset number, but the environmental illumination information cannot be determined, Then, according to the second method, the environmental illuminance information is determined.
  • a preset number for example, 5
  • the method for obtaining the bottom view of the current moment of the location of the vehicle includes:
  • a bottom view picture is acquired from the top of the vehicle or a bottom view picture that is within a preset range from the position of the vehicle is selected from the stored up view pictures of other vehicles.
  • Determining the ambient illuminance information according to the looking up picture includes:
  • the ambient illuminance information is determined in conjunction with the time and location at which the bottom view picture is acquired.
  • the cloud server first obtains the brightness values of all the pixels in the bottom view picture (the brightness value is the brightness in the three elements of hue, saturation, and brightness of the color, and in general, the brightness value ranges from 0 to 240, each of which The brightness value of the color is proportional to the light intensity).
  • Set the threshold value of the brightness value highlight BH (for example: set to 180), medium bright BM (that is, various colors are more comfortable Brightness, generally can be set to 120), low light BL (for example: set to 60).
  • the cloud determines whether the percentage of the number of pixels whose luminance value is greater than BM is greater than BMP. If the BMP is exceeded, the mode L0 is the R mode, and the mode L2 is the D mode. If the cloud determines that the percentage of the pixel whose brightness value is greater than BM is less than or equal to BMP, it continues to determine whether the pixel whose brightness value is smaller than BL exceeds BLP. If BLP is not reached, mode L1 is R mode, and mode L2 is D mode. . If the BLP is exceeded, it is determined whether the pixel whose luminance value is greater than BH exceeds BHP. If the BHP is exceeded, the mode L1 is the R mode, and the mode L2 or L0 is the D mode.
  • the brightness threshold and the pixel percentage threshold can be adjusted according to the specific situation of the photo.
  • the second method determines the environmental illuminance information according to the location of the vehicle, combined with the time and the illumination information, including:
  • the ambient illuminance information is determined in conjunction with the illumination of the street light.
  • the cloud server collects information such as the time zone, the local time, the sunrise and sunset time, the road condition of the road, the streetlight condition, and the surrounding vehicle conditions of the current vehicle according to the location information uploaded by the vehicle, and determines the environmental illuminance information.
  • the streetlight condition of the road where the vehicle is currently located is determined, and if the street light is turned on, the mode L1 is the R mode, the mode L2 Or L0 is D mode; if the street light is off or the street light information is not obtained, the R mode and the D mode are further judged according to other information.
  • the mode L0 is the R mode and the mode L2 is the D mode.
  • the control method further includes: determining whether there is another traveling vehicle within a safe distance ahead of the vehicle, and determining whether the headlight usage mode is reasonable according to the determination result.
  • the R mode and the D mode may be further determined according to whether there are other vehicles in the safety distance in front of the vehicle, for example, when the street lamp is off or the street lamp information is not obtained, the vehicle is further judged. Whether there is another driving vehicle in the front safety distance (based on the current speed, the current braking speed of the vehicle is set to the safety distance), if there are other driving vehicles, the mode L1 is the R mode, and the mode L2 or L0 is D. Mode, if there is no other traveling vehicle, mode L1 is the R mode, and mode L0 is the D mode.
  • the method further includes:
  • Counting in the preset period, the number of times the vehicle headlight usage mode is unreasonable, and when the number of times reaches a preset threshold, sending a reminder instruction to the vehicle, the reminder instruction indicating that the headlight usage mode is more than an unreasonable number of times Preset threshold.
  • the bad light record of each vehicle is counted in the cloud server, and each time the vehicle adjusts the headlights through the cloud reminder or automatic control, the relevant information is recorded in the cloud server.
  • the cloud server may send an instruction to the vehicle terminal to remind the driver that the number of unreasonable use of the light is excessive each time the vehicle is started.
  • the cloud server sends a reminder command or an automatic control command to the vehicle
  • the ID corresponding to the vehicle in the cloud server is added with a bad light record
  • the record includes a reminder command or an automatic control command identifier, a record generation time, a vehicle position, and a front Information such as the lamp usage mode.
  • the cloud server sends an instruction to the vehicle to remind the driving. In this cycle, the number of violations is more frequent, pay attention to the rational use of lighting.
  • the data can be shared with the network of the traffic control department as a reference for illegal use of light.
  • the driver can use the Internet of Vehicles system to check the record of the defective lights of his own vehicle.
  • the method further includes:
  • Correction information is sent to the vehicle, the correction information indicating the correct headlamp usage mode.
  • Embodiments of the present invention also provide a computer readable storage medium storing computer executable instructions that are implemented by a processor to implement the above method.
  • an embodiment of the present invention further provides an automobile headlight control apparatus, including:
  • the communication module 01 is configured to obtain vehicle driving information, environmental illuminance information, and headlight usage mode information of the vehicle;
  • the determining module 02 is configured to determine, according to the vehicle driving information and the environmental illuminance information Whether the headlight usage mode is reasonable or not, when the headlight usage mode is unreasonable, a prompt message is issued.
  • the communication module 01 is configured to obtain the ambient illuminance information by:
  • the determining module 02 is configured to determine whether the headlight usage mode is reasonable according to the vehicle driving information and the ambient illuminance information by:
  • the determining module 02 is further configured to: determine whether there is another traveling vehicle within the safe distance ahead of the vehicle, and determine whether the headlight usage mode is reasonable according to the driving situation of the front safe distance.
  • control device further includes:
  • the prompting module is configured to count the number of times that the vehicle headlight usage mode is unreasonable within a preset period, and when the number of times reaches a preset threshold, send a reminder instruction to the vehicle, where the reminder instruction indicates that the headlight is used The number of unreasonable patterns exceeds the preset threshold.
  • the prompting module is further configured to:
  • Correction information is sent to the vehicle, the correction information indicating the correct headlamp usage mode.
  • the communication module 01 is configured to obtain a bottom view picture of the current time of the location where the vehicle is located by:
  • a bottom view picture is acquired from the top of the vehicle or a bottom view picture that is within a preset range from the position of the vehicle is selected from the stored up view pictures of other vehicles.
  • the communication module 01 is configured to determine ambient illuminance information according to the look-up picture by:
  • the ambient illuminance information is determined in conjunction with the time and location at which the bottom view picture is acquired.
  • the communication module 01 is configured to determine the ambient illuminance information according to the location of the vehicle, the combined time and the illumination information by:
  • the ambient illuminance information is determined in conjunction with the illumination of the street light.
  • the architecture diagram of the vehicle networking system of this application example is shown in FIG. 3.
  • the vehicle terminal is directly connected to the ECU module of the vehicle and communicates with the cloud server through the wireless communication module, so that the vehicle terminal can receive the command of the cloud server and send it to the ECU.
  • the command controls the vehicle, and at the same time, the vehicle terminal can also acquire relevant information of the vehicle through the ECU and send it to the cloud server.
  • the car networking system can obtain and control related information of related vehicles from the cloud server.
  • FIG. 4 gives a detailed description:
  • Step 201 The vehicle starts up
  • Step 202 The ECU sends a vehicle startup message to the vehicle terminal.
  • Step 203 The vehicle terminal acquires a vehicle position and a headlight usage mode.
  • Step 204 The vehicle terminal transmits a vehicle start, a vehicle location, and a headlight usage mode message to the cloud server.
  • Step 301 The cloud server receives the vehicle startup message.
  • Step 302 The cloud server starts a polling timer for the vehicle.
  • Step 303 The cloud server determines whether the number of reminders or automatic control times of the vehicle in a startup reminding period reaches a set threshold;
  • Step 304 If the number of reminders or automatic control reaches the threshold, the cloud server sends an instruction to the vehicle terminal to remind the driver that the number of unreasonable use of the light during the period is high. Please pay attention to the reasonable use of the light.
  • Step 401 The cloud server polls the vehicle for query
  • Step 402 The cloud server sends an instruction to acquire the vehicle information to the vehicle terminal, and step 404 is performed;
  • Step 403 The driver manually changes the headlight usage mode
  • Step 404 The vehicle terminal acquires vehicle position, speed, and headlight usage mode information and uploads the information to the cloud server.
  • Step 405 The cloud server collects or calculates the time zone, the local time, the sunrise and sunset time, the road condition of the road, the street light condition, and the surrounding vehicle conditions of the current vehicle according to the current location of the vehicle;
  • Step 406 The cloud server determines whether the real-time view of the road segment where the vehicle is currently located is greater than PN;
  • Step 407 If the cloud server determines that the real-time view of the road segment where the vehicle is currently located is greater than PN, then the R mode and the D mode are set according to the real-time photo process, and step 409 is performed;
  • Step 408 If the cloud server determines that the real-time view of the road segment where the vehicle is currently located is less than or equal to the PN, the R mode and the D mode are set according to the real-time environment flow;
  • Step 409 The cloud server determines whether the current vehicle headlight usage mode is the D mode.
  • Step 410 If the current headlight usage mode is the D mode, the cloud server sends an instruction to the vehicle terminal to remind the driver to switch the headlights to the R mode, and increases the number of reminders by one, and adds a reminder record to the database.
  • Step 411 The cloud server determines whether the number of reminders is greater than 3 times
  • Step 412 If the number of reminders is greater than 3 times, the cloud server sends an instruction to the vehicle terminal to automatically switch the headlights to the R mode, and simultaneously clears the number of reminders, and adds an automatic control record to the database.
  • Step 501 The cloud server acquires a PN top view photo of the location where the vehicle is located closest to the current time;
  • Step 502 The cloud server calculates brightness values of all pixel points in all the bottom views
  • Step 503 The cloud server determines whether the number of pixels whose brightness is greater than BM exceeds BMP among all the pixels.
  • Step 504 If the number of pixels whose brightness is greater than BM exceeds BMP, that is, the illumination intensity of the current driving environment is equivalent to the daytime, then the L0 mode is the R mode, the L2 mode is the D mode, and the process ends;
  • Step 505 If the brightness is greater than the number of BM is less than or equal to BMP, determine whether the number of pixels whose brightness is smaller than BL exceeds BLP;
  • Step 506 If the brightness is greater than or equal to the BMP and the brightness is less than the number of BLs, the L1 mode is the R mode, the L2 mode is the D mode, and the process ends.
  • Step 507 If the brightness is greater than the number of BM is less than BMP and the brightness is less than the number of BL exceeds BLP, it is determined whether the brightness is greater than the number of BH exceeds BHP;
  • Step 508 If the brightness is greater than the number of BMs smaller than BMP and the brightness is less than the number of BLs exceeds BLP and the number of brightnesses greater than BH exceeds BHP, the current driving environment illumination intensity is equivalent to night, but with auxiliary light source, L1 mode is R mode. , L0 or L2 mode is D mode, the process ends;
  • Step 509 If the brightness is greater than the number of BMs is less than BMP and the brightness is less than the number of BLs If the BLP and the brightness greater than BH does not exceed BHP, it is determined whether there is another driving vehicle within the safe distance ahead of the vehicle;
  • Step 510 If the brightness is greater than the number of BMs smaller than BMP and the brightness is less than the number of BLs exceeds BLP and the number of brightness greater than BH does not exceed BHP and there is no other traveling vehicle within the safe distance of the vehicle, the L1 mode is R mode, and the L0 mode is D mode.
  • Step 601 The cloud server collects or calculates a time zone, a local time, a sunrise and sunset time, a road condition, a street light condition, and a surrounding vehicle condition of the current vehicle according to the current location of the vehicle;
  • Step 602 The cloud server determines, according to the local time and the sunrise and sunset time of the location where the vehicle is located, whether the current driving environment of the vehicle is day or night;
  • Step 603 If the current vehicle is in the daytime, the L0 mode is the R mode, the L2 mode is the D mode, and the process ends;
  • Step 604 If the current vehicle is at night, the cloud server determines whether the street light of the vehicle currently located is turned on;
  • Step 605 If the current vehicle is at night and the road light is on, or if the current vehicle is at night and the road light is off or unable to obtain street light information and there are other traveling vehicles within the safe distance ahead, the L1 mode For the R mode, the L0 or L2 mode is the D mode, and the flow ends;
  • Step 606 If the current vehicle is at night and the road light is off or the street light information cannot be obtained, the cloud determines whether there are other traveling vehicles within the safe distance ahead of the vehicle;
  • Step 607 If the current vehicle is at night and the road light is off or the street light information cannot be obtained and there is no other traveling vehicle within the safe distance ahead of the vehicle, the L1 mode is the R mode and the L0 mode is the D mode.
  • Step 701 The vehicle is turned off
  • Step 702 The ECU sends a vehicle flameout message to the vehicle terminal.
  • Step 703 The vehicle terminal sends a vehicle flameout message to the cloud server.
  • Step 704 The cloud server receives the vehicle flameout message and stops polling the vehicle.
  • Step 705 The cloud server pushes the current driving light.
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules, or other data. , removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media.
  • Providing the embodiment of the invention not only can automatically control the reasonable use of the headlights, but also can guide the driver to develop a reasonable habit of using the headlights.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

一种汽车前照灯控制方法和装置,所述方法,包括:获得车辆的车辆行驶信息、环境照度信息和前照灯使用模式信息(S101);根据所述车辆行驶信息和环境照度信息判断所述前照灯使用模式是否合理,当所述前照灯使用模式不合理时,发出提示信息(S102)。

Description

一种汽车前照灯控制方法和装置 技术领域
本文涉及但不限于物联网技术领域,具体涉及一种汽车前照灯控制方法和装置。
背景技术
车联网(Internet of Vehicle)是由车辆位置、速度和路线等信息构成的巨大交互网络。通过GPRS(General Packet Radio Service,通用分组无线服务)、RFID(Radio Frequency Identification无线射频识别)、传感器、摄像头等装置,车辆可以完成周身环境和自身状态信息的采集;通过互联网技术,所有的车辆可以将采集的信息传输汇聚到中央处理器;通过计算机技术,这些大量车辆的信息可以被分析和处理,从而计算出不同车辆的最佳路线、及时汇报路况和安排信号灯周期等。
车联网系统是指通过在车辆仪表台安装车载终端设备,实现对车辆工作情况和静、动态信息的采集、存储并发送。车联网系统分为三大部分:车载终端、云计算处理平台和数据分析平台,根据不同行业对车辆的不同功能需求实现对车辆的有效监控管理。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种汽车前照灯控制方法和装置。
一种汽车前照灯控制方法,包括:
获得车辆的车辆行驶信息、环境照度信息和前照灯使用模式信息;
根据所述车辆行驶信息和环境照度信息判断所述前照灯使用模式是否合理,当所述前照灯使用模式不合理时,发出提示信息。
可选地,获取环境照度信息包括:
获取所述车辆所在位置预设时间区间的仰视图片,根据所述仰视图片,确定环境照度信息;或者根据车辆的位置,结合时间信息和光照信息,确定环境照度信息。
可选地,根据所述车辆行驶信息和环境照度信息判断所述前照灯使用模式是否合理包括:
根据所述车辆行驶信息和环境照度信息确定所述车辆的前照灯的危险模式和合理模式;
将所述车辆的前照灯使用模式与所述危险模式或合理模式进行对比,确定所述车辆的前照灯使用模式是否合理。
可选地,所述的控制方法还包括:判断车辆行驶前方安全距离内是否有其他行驶车辆,结合所述前方安全距离的行驶车辆情况确定所述前照灯使用模式是否合理。
可选地,所述方法之后还包括:
统计预设周期内所述车辆前照灯使用模式不合理的次数,当所述次数达到预设阈值,则向所述车辆发送提醒指令,所述提醒指令指示前照灯使用模式不合理次数超过预设阈值。
可选地,所述方法之后还包括:
向所述车辆发出更正信息,所述更正信息指示正确的前照灯使用模式。
可选地,获取所述车辆所在位置当前时刻的仰视图片包括:
在预设时间区间内,从所述车辆顶部获取仰视图片或者从保存的其他车辆的仰视图片中选择与所述车辆所在位置距离预设范围的仰视图片。
可选地,根据所述仰视图片,确定环境照度信息包括:
获得所述仰视图片的所有像素点的亮度值,根据亮度值处于的亮度区间和处于所述亮度区间的像素点占所有像素点的百分比,确定车辆行驶的亮度信息;
基于所述车辆行驶的亮度信息,结合获取所述仰视图片的时间和位置,确定环境照度信息。
可选地,根据车辆的位置,结合时间和光照信息,确定环境照度信息包括:
根据车辆的位置,确定所述车辆所处的时区;
根据时间信息,确定日出和日落时间;
结合路灯的光照情况,确定环境照度信息。
本发明实施例还提供一种汽车前照灯控制装置,包括:
通信模块,设置为获得车辆的车辆行驶信息、环境照度信息和前照灯使用模式信息;
判断模块,设置为根据所述车辆行驶信息和环境照度信息判断所述前照灯使用模式是否合理,当所述前照灯使用模式不合理时,发出提示信息。
可选地,所述通信模块是设置为通过如下方式实现获取环境照度信息:
获取所述车辆所在位置预设时间区间的仰视图片,根据所述仰视图片,确定环境照度信息;或者根据车辆的位置,结合时间信息和光照信息,确定环境照度信息。
可选地,所述判断模块是设置为通过如下方式实现根据所述车辆行驶信息和环境照度信息判断所述前照灯使用模式是否合理:
根据所述车辆行驶信息和环境照度信息确定所述车辆的前照灯的危险模式和合理模式;
将所述车辆的前照灯使用模式与所述危险模式或合理模式进行对比,确定所述车辆的前照灯使用模式是否合理。
可选地,所述判断模块还设置为:判断车辆行驶前方安全距离内是否有其他行驶车辆,结合所述前方安全距离的行驶车辆情况确定所述前照灯使用 模式是否合理。
可选地,所述的控制装置还包括:
提示模块,设置为统计预设周期内所述车辆前照灯使用模式不合理的次数,当所述次数达到预设阈值,则向所述车辆发送提醒指令,所述提醒指令指示前照灯使用模式不合理次数超过预设阈值。
可选地,所述提示模块还设置为:
向所述车辆发出更正信息,所述更正信息指示正确的前照灯使用模式。
可选地,所述通信模块是设置为通过如下方式实现获取所述车辆所在位置当前时刻的仰视图片:
在预设时间区间内,从所述车辆顶部获取仰视图片或者从保存的其他车辆的仰视图片中选择与所述车辆所在位置距离预设范围的仰视图片。
可选地,所述通信模块是设置为通过如下方式实现根据所述仰视图片,确定环境照度信息:
获得所述仰视图片的所有像素点的亮度值,根据亮度值处于的亮度区间和处于所述亮度区间的像素点占所有像素点的百分比,确定车辆行驶的亮度信息;
基于所述车辆行驶的亮度信息,结合获取所述仰视图片的时间和位置,确定环境照度信息。
可选地,所述通信模块是设置为通过如下方式实现根据车辆的位置,结合时间和光照信息,确定环境照度信息:
根据车辆的位置,确定所述车辆所处的时区;
根据时间信息,确定日出和日落时间;
结合路灯的光照情况,确定环境照度信息。
本发明实施例基于车联网平台,通过云端服务器判断前照灯的使用模式是否合理,不但能自动控制前照灯的合理使用,而且能够引导驾驶员养成合理的使用前照灯习惯。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例的基于车联网平台的汽车前照灯控制方法的流程图;
图2为本发明实施例的基于车联网平台的汽车前照灯控制装置的结构示意图;
图3为基于OneM2M协议物联网平台终端接入系统的结构示意图;
图4为基于OneM2M协议物联网平台终端接入过程的流程图;
图5为另一种基于OneM2M协议物联网平台终端接入过程的流程图;
图6为另一种基于OneM2M协议物联网平台终端接入过程的流程图;
图7为另一种基于OneM2M协议物联网平台终端接入过程的流程图;
图8为另一种基于OneM2M协议物联网平台终端接入过程的流程图;
图9为另一种OneM2M协议物联网平台终端接入过程的流程图。
本发明的实施方式
一些汽车厂家会在新车型中配备前照灯自动控制系统,这存在一些问题和缺点:
1、大多数自动控制系统配备在高端车型上,成本较高,不便于推广;
2、几乎所用的前照灯自动控制系统都是在环境亮度或车距等不符合当前前照灯使用条件时自动控制前照灯切换模式,这种自动控制并不能使驾驶员养成合理的用光习惯,反而会使驾驶员依赖于自动控制而胡乱使用前照灯,一旦自动控制系统出现故障,将会产生更大的安全隐患;
3、车联网系统已经在汽车中越来越普及,但目前还没有真正使用车联网系统实现前照灯自动控制的方法。
如图1所示,本发明实施例提供一种汽车前照灯控制方法,应用于车联网云端服务器,包括:
S101、获得车辆的车辆行驶信息、环境照度信息和前照灯使用模式信息;
S102、根据所述车辆行驶信息和环境照度信息判断所述前照灯使用模式是否合理,当所述前照灯使用模式不合理时,发出提示信息。
本发明实施例中所述提示信息用于指示所述车辆前照灯使用模式不合理。
其中,车辆行驶信息包括以下至少之一:车辆位置信息、车速、启动信息。
可以利用车辆的ECU(Electronic Control Unit,电子控制单元)获得车辆的启动信息、车速、位置信息(经纬度)和前照灯使用模式信息(模式L0为关闭,模式L1为近光灯,模式L2为远光灯),并通过网络上传至云端服务器,云端服务器可以每隔一个轮询周期(如:设置为10s)就向车辆发送指令获取当前车辆的位置信息、车辆当前速度和前照灯使用模式。当驾驶员手动切换前照灯使用模式时,车辆主动向云端服务器发送当前车辆的位置信息、车辆当前速度和前照灯使用模式。云端服务器再获得环境照度信息,云端服务器结合获得的信息判断前照灯使用模式是否合理,如果前照灯使用模式不合理(危险模式D和合理模式R),则向车辆发送提示信息,提醒驾驶人车辆前照灯使用模式不合理。本实施例还可以在多次(例如3次)提醒后向车辆发送指令自动将前照灯使用模式切换到合理模式。
本发明实施例不但能自动控制前照灯的合理使用,而且能够引导驾驶员养成合理的使用前照灯习惯。
可选的,本发明实施例步骤S102中根据所述车辆行驶信息和环境照度信息判断所述前照灯使用模式是否合理包括:
根据所述车辆行驶信息和环境照度信息确定所述车辆的前照灯的危险模式和合理模式;
将所述车辆的前照灯使用模式与所述危险模式或合理模式进行对比,确定所述车辆的前照灯使用模式是否合理。
可选的,获取环境照度信息包括:
方式一、获取所述车辆所在位置当前时刻的仰视图片,根据所述仰视图 片,确定环境照度信息;
方式二、根据车辆的位置,结合时间信息(包括车辆所处的时区、当地时间、日出和日落时间)和光照信息(包括路灯情况,以及车辆处于白天或夜晚情况),确定环境照度信息。
对于方式一,可以在车辆的顶部安装一个摄像头,每隔一个周期(如60s)拍摄一张车辆顶部仰视照片并发送到云端服务器,还可以将所有汽车摄像头拍摄的仰视照片都上传到云端服务器,由云端服务器统一管理,云端服务器根据所述车辆所在位置,首先确定所述车辆所在位置附近区域内当前时刻的仰视照片,云端服务器所搜集的仰视照片是由所有经过该区域的汽车上传的照片中筛选的。当云端服务器在预设时间区间内或者预设区域内获得的仰视图片数量超过预设数量PN(例如5);或者,没有超过预设数量,但足够确定环境照度信息,则利用方式一确定环境照度信息。如果车辆没有摄像头;或者云端服务器获得的在预设时间区间内或者预设区域内获得的仰视图片数量没有超过预设数量(例如5);或者,超过预设数量,但不能确定环境照度信息,则按照方式二确定环境照度信息。
可选地,方式一获取所述车辆所在位置当前时刻的仰视图片包括:
在预设时间区间内,从所述车辆顶部获取仰视图片或者从保存的其他车辆的仰视图片中选择与所述车辆所在位置距离预设范围的仰视图片。
根据所述仰视图片,确定环境照度信息包括:
获得所述仰视图片的所有像素点的亮度值,根据亮度值处于的亮度区间和处于各个亮度区间的像素点占所有像素点的百分比,确定车辆行驶的亮度信息;
基于所述车辆行驶的亮度信息,结合获取所述仰视图片的时间和位置,确定环境照度信息。
本发明实施例中,云端服务器首先获取仰视图片中所有像素点的亮度值(亮度值为颜色的色调、饱和度、亮度三要素中的亮度,通用情况下设亮度值得范围为0到240,各种颜色的亮度值和光照强度成正比)。设定亮度值的阈值:高亮BH(如:设定为180),中亮BM(即各种颜色比较舒适的 亮度,一般可设定为120),低亮BL(如:设定为60)。设定像素点数量百分比的几个阈值:高亮百分比BHP(如:设定为5%),中亮百分比BMP(如:设定为50%),低亮百分比BLP(如:设定为40%)。云端判断亮度值大于BM的像素点个数所占百分比是否大于BMP,若超过BMP,则模式L0为R模式,模式L2为D模式。云端若判断亮度值大于BM的像素点个数所占百分比小于或等于BMP,继续判断亮度值小于BL的像素点是否超过BLP,若没有达到BLP,则模式L1为R模式,模式L2为D模式。若超过BLP,则判断亮度值大于BH的像素点是否超过BHP,若超过BHP,则模式L1为R模式,模式L2或L0为D模式。亮度阈值和像素点百分比阈值可根据仰视照片具体情况进行调整。
可选地,方式二根据车辆的位置,结合时间和光照信息,确定环境照度信息包括:
根据车辆的位置,确定所述车辆所处的时区;
根据时间信息,确定日出和日落时间;
结合路灯的光照情况,确定环境照度信息。
本发明实施例中,云端服务器根据车辆上传的位置信息采集当前车辆所处的时区、当地时间、日出和日落时间、所处道路路况、路灯情况以及周围车辆情况等信息,确定环境照度信息。
可选地,当车辆所处位置的当地实时时间晚于日落时间早于日出时间时(夜晚),判断车辆当前所处道路的路灯状况,若路灯打开,则模式L1为R模式,模式L2或L0为D模式;若路灯关闭或获取不到路灯信息,根据其他信息进一步判断R模式和D模式。当车辆所处位置的当地实时时间晚于日出时间早于日落时间时(白天),则模式L0为R模式,模式L2为D模式。
所述的控制方法还包括:判断车辆行驶前方安全距离内是否有其他行驶车辆,结合判断结果确定所述前照灯使用模式是否合理。
本实施例中可以进一步根据车辆前方安全距离内是否有其他车辆,判断R模式和D模式,例如在路灯关闭或获取不到路灯信息时,进一步判断车辆 前方安全距离(根据当前车速,将当前车速下,该车辆的最大刹车距离设置为安全距离)内是否有其他行驶车辆,若有其他行驶车辆,则模式L1为R模式,模式L2或L0为D模式,若没有其他行驶车辆,则模式L1为R模式,模式L0为D模式。
所述方法之后还包括:
统计预设周期内所述车辆前照灯使用模式不合理的次数,当所述次数达到预设阈值,则向所述车辆发送提醒指令,所述提醒指令指示前照灯使用模式不合理次数超过预设阈值。
在云端服务器中统计每台车辆的不良用灯记录,每次车辆通过云端提醒或者自动控制调整前照灯后,则在云端服务器中记录相关信息。当一个周期内的不合理用灯次数超出预设阈值后,云端服务器可以在该车辆每次启动时,都向车载终端发送指令提醒驾驶员不合理用光次数过多。
当云端服务器向车辆发出提醒指令或自动控制指令时,则将云端服务器中该车辆对应的ID增加一条不良用灯记录,记录中包括提醒指令或自动控制指令标识、记录产生时间、车辆位置、前照灯使用模式等信息。当车辆启动时,若该车辆的提醒次数或自动控制次数大于一个启动提醒周期(一个周期可设定为一周、一个月等)内设定的预设阈值,则云端服务器向车辆发送指令提醒驾驶员本周期内违规用光次数较多,注意合理使用灯光。后续,该数据可以和交管部门网络共享,作为非法用光处罚的参考。驾驶员可以使用车联网系统查询自己车辆的不良用灯记录。
所述方法之后还包括:
向所述车辆发出更正信息,所述更正信息指示正确的前照灯使用模式。
本发明实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述方法。
如图2所示,本发明实施例还提供一种汽车前照灯控制装置,包括:
通信模块01,设置为获得车辆的车辆行驶信息、环境照度信息和前照灯使用模式信息;
判断模块02,设置为根据所述车辆行驶信息和环境照度信息判断所述 前照灯使用模式是否合理,当所述前照灯使用模式不合理时,发出提示信息。
可选地,所述通信模块01是设置为通过如下方式实现获取环境照度信息:
获取所述车辆所在位置预设时间区间的仰视图片,根据所述仰视图片,确定环境照度信息;或者根据车辆的位置,结合时间信息和光照信息,确定环境照度信息。
可选地,所述判断模块02是设置为通过如下方式实现根据所述车辆行驶信息和环境照度信息判断所述前照灯使用模式是否合理:
根据所述车辆行驶信息和环境照度信息确定所述车辆的前照灯的危险模式和合理模式;
将所述车辆的前照灯使用模式与所述危险模式或合理模式进行对比,确定所述车辆的前照灯使用模式是否合理。
可选地,所述判断模块02还设置为:判断车辆行驶前方安全距离内是否有其他行驶车辆,结合所述前方安全距离的行驶车辆情况确定所述前照灯使用模式是否合理。
可选地,所述的控制装置还包括:
提示模块,设置为统计预设周期内所述车辆前照灯使用模式不合理的次数,当所述次数达到预设阈值,则向所述车辆发送提醒指令,所述提醒指令指示前照灯使用模式不合理次数超过预设阈值。
可选地,所述提示模块还设置为:
向所述车辆发出更正信息,所述更正信息指示正确的前照灯使用模式。
可选地,所述通信模块01是设置为通过如下方式实现获取所述车辆所在位置当前时刻的仰视图片:
在预设时间区间内,从所述车辆顶部获取仰视图片或者从保存的其他车辆的仰视图片中选择与所述车辆所在位置距离预设范围的仰视图片。
可选地,所述通信模块01是设置为通过如下方式实现根据所述仰视图片,确定环境照度信息:
获得所述仰视图片的所有像素点的亮度值,根据亮度值处于的亮度区间和处于所述亮度区间的像素点占所有像素点的百分比,确定车辆行驶的亮度信息;
基于所述车辆行驶的亮度信息,结合获取所述仰视图片的时间和位置,确定环境照度信息。
可选地,所述通信模块01是设置为通过如下方式实现根据车辆的位置,结合时间和光照信息,确定环境照度信息:
根据车辆的位置,确定所述车辆所处的时区;
根据时间信息,确定日出和日落时间;
结合路灯的光照情况,确定环境照度信息。
应用实例1
本应用示例的车联网系统的架构图如图3所示,车载终端直接连接在车辆的ECU模块上并通过无线通信模块与云端服务器进行通信,这样车载终端可以接收云端服务器的指令并向ECU发送指令对车辆进行控制,同时,车载终端也可以通过ECU获取车辆的相关信息并发送到云端服务器。车联网系统可以从云端服务器获取相关车辆的相关信息并进行控制。
其中,针对车辆启动时车载终端的处理流程,图4给出了详细描述:
步骤201:车辆启动;
步骤202:ECU向车载终端发送车辆启动消息;
步骤203:车载终端获取车辆位置和前照灯使用模式;
步骤204:车载终端将车辆启动、车辆位置和前照灯使用模式消息发送到云端服务器。
应用示例2
针对车辆启动时云端处理流程,图5给出了详细描述:
步骤301:云端服务器收到车辆启动消息;
步骤302:云端服务器对该车辆开启轮询定时器;
步骤303:云端服务器判断该车辆在一个启动提醒周期内的提醒或自动控制次数是否达到设定阈值;
步骤304:若提醒或自动控制次数达到阈值,则云端服务器向车载终端发送指令提醒驾驶员本周期内不合理用光次数较多,请注意合理使用灯光。
应用示例3
针对车辆在行驶过程中的处理流程,图6给出了详细描述:
步骤401:云端服务器对车辆进行轮询查询;
步骤402:云端服务器向车载终端发送指令获取车辆信息,执行步骤404;
步骤403:驾驶员手动改变前照灯使用模式;
步骤404:车载终端获取车辆位置、速度和前照灯使用模式信息并上传到云端服务器;
步骤405:云端服务器根据车辆当前位置采集或计算当前车辆所处的时区、当地时间、日出和日落时间、所处道路路况、路灯情况以及周围车辆情况;
步骤406:云端服务器判断车辆当前所处路段的实时仰视照片是否大于PN;
步骤407:如果云端服务器判断车辆当前所处路段的实时仰视照片大于PN,则按照实时照片流程设定R模式和D模式,执行步骤409;
步骤408:如果云端服务器判断车辆当前所处路段的实时仰视照片小于或等于PN,则按照实时环境流程设定R模式和D模式;
步骤409:云端服务器判断当前车辆前照灯使用模式是否为D模式;
步骤410:若当前前照灯使用模式为D模式,云端服务器向车载终端发送指令提醒驾驶员将前照灯切换为R模式,同时将提醒次数加1,并且向数据库中增加一条提醒记录。
步骤411:云端服务器判断提醒次数是否大于3次;
步骤412:若提醒次数大于3次,则云端服务器向车载终端发送指令将前照灯自动切换为R模式,同时将提醒次数清零,并向数据库增加一条自动控制记录。
应用示例4
针对车辆行驶过程中实时照片流程下的判断方法,图7给出了详细描述:
步骤501:云端服务器获取车辆所处位置距离当前时间最近的PN张仰视照片;
步骤502:云端服务器计算所有仰视图中所有像素点颜色的亮度值;
步骤503:云端服务器判断在所有像素点中,亮度大于BM的像素点数量是否超过BMP;
步骤504:如果亮度大于BM的像素点数量超过BMP,即说明当前驾驶环境的光照强度与白天相当,则L0模式为R模式,L2模式为D模式,流程结束;
步骤505:如果亮度大于BM的数量小于或等于BMP,则判断亮度小于BL的像素点数量是否超过BLP;
步骤506:如果亮度大于BM的数量小于或等于BMP且亮度小于BL的数量不超过BLP,则L1模式为R模式,L2模式为D模式,流程结束;
步骤507:如果亮度大于BM的数量小于BMP且亮度小于BL的数量超过BLP,则判断亮度大于BH的数量是否超过BHP;
步骤508:如果亮度大于BM的数量小于BMP且亮度小于BL的数量超过BLP且亮度大于BH的数量超过BHP,则说明当前驾驶环境光照强度与夜晚相当,但有辅助光源,则L1模式为R模式,L0或L2模式为D模式,流程结束;
步骤509:如果亮度大于BM的数量小于BMP且亮度小于BL的数量超 过BLP且亮度大于BH的数量不超过BHP,则判断车辆行驶前方安全距离内是否有其他行驶车辆;
步骤510:如果亮度大于BM的数量小于BMP且亮度小于BL的数量超过BLP且亮度大于BH的数量不超过BHP且车辆行驶前方安全距离内没有其他行驶车辆,则L1模式为R模式,L0模式为D模式。
应用示例5
针对车辆行驶过程中实时环境模式下的判断流程,图8给出了详细描述:
步骤601:云端服务器根据车辆当前位置采集或计算当前车辆所处的时区、当地时间、日出和日落时间、所处道路路况、路灯情况以及周围车辆情况;
步骤602:云端服务器根据车辆所处位置的当地时间和日出日落时间判断车辆当前驾驶环境是白天还是夜晚;
步骤603:若当前车辆处于白天,则L0模式为R模式,L2模式为D模式,流程结束;
步骤604:若当前车辆处于夜晚,则云端服务器判断车辆当前所处道路路灯是否开启;
步骤605:若当前车辆处于夜晚且所处道路路灯为开启状态,或者若当前车辆处于夜晚且所处道路路灯为关闭或无法获取路灯信息且车辆行驶前方安全距离内有其他行驶车辆,则L1模式为R模式,L0或L2模式为D模式,流程结束;
步骤606:若当前车辆处于夜晚且所处道路路灯为关闭或无法获取路灯信息,则云端判断车辆行驶前方安全距离内是否有其他行驶车辆;
步骤607:若当前车辆处于夜晚且所处道路路灯为关闭或无法获取路灯信息且车辆行驶前方安全距离内没有其他行驶车辆,则L1模式为R模式,L0模式为D模式。
应用示例6
针对车辆熄火的处理流程,图9给出了详细描述:
步骤701:车辆熄火;
步骤702:ECU向车载终端发送车辆熄火消息;
步骤703:车载终端将车辆熄火消息发送到云端服务器;
步骤704:云端服务器收到车辆熄火消息,停止对该车辆的轮询;
步骤705:云端服务器推送本次驾驶用灯情况。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理单元的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
虽然本发明所揭示的实施方式如上,但其内容只是为了便于理解本发明的而采用的实施方式,并非用于限定本发明。任何本发明所属技术领域内的技术人员,在不脱离本发明所揭示的核心的前提下,可以在实施的形式和细节上做任何修改与变化,但本发明所限定的保护范围,仍须以所附的权利要求书限定的范围为准。
工业实用性
提供本发明实施例不但能自动控制前照灯的合理使用,而且能够引导驾驶员养成合理的使用前照灯习惯。

Claims (18)

  1. 一种汽车前照灯控制方法,包括:
    获得车辆的车辆行驶信息、环境照度信息和前照灯使用模式信息(S101);
    根据所述车辆行驶信息和环境照度信息判断所述前照灯使用模式是否合理,当所述前照灯使用模式不合理时,发出提示信息(S102)。
  2. 如权利要求1所述的控制方法,其中:获取环境照度信息包括:
    获取所述车辆所在位置预设时间区间的仰视图片,根据所述仰视图片,确定环境照度信息;或者,
    根据车辆的位置,结合时间信息和光照信息,确定环境照度信息。
  3. 如权利要求1所述的控制方法,其中:根据所述车辆行驶信息和环境照度信息判断所述前照灯使用模式是否合理包括:
    根据所述车辆行驶信息和环境照度信息确定所述车辆的前照灯的危险模式和合理模式;
    将所述车辆的前照灯使用模式与所述危险模式或合理模式进行对比,确定所述车辆的前照灯使用模式是否合理。
  4. 如权利要求1所述的控制方法,还包括:判断车辆行驶前方安全距离内是否有其他行驶车辆,结合所述前方安全距离的行驶车辆情况确定所述前照灯使用模式是否合理。
  5. 如权利要求1所述的控制方法,所述方法之后还包括:
    统计预设周期内所述车辆前照灯使用模式不合理的次数,当所述次数达到预设阈值,则向所述车辆发送提醒指令,所述提醒指令指示前照灯使用模式不合理次数超过预设阈值。
  6. 如权利要求1所述的控制方法,:所述根据所述车辆行驶信息和环境照度信息判断所述前照灯使用模式是否合理,当所述前照灯使用模式不合理时,发出提示信息之后还包括:
    向所述车辆发出更正信息,所述更正信息指示正确的前照灯使用模式。
  7. 如权利要求2所述的控制方法,其中:获取所述车辆所在位置当前时刻的仰视图片包括:
    在预设时间区间内,从所述车辆顶部获取仰视图片或者从保存的其他车辆的仰视图片中选择与所述车辆所在位置距离预设范围的仰视图片。
  8. 如权利要求7所述的控制方法,其中:根据所述仰视图片,确定环境照度信息包括:
    获得所述仰视图片的所有像素点的亮度值,根据亮度值处于的亮度区间和各个所述亮度区间的像素点占所有像素点的百分比,确定车辆行驶的亮度信息;
    基于所述车辆行驶的亮度信息,结合获取所述仰视图片的时间和位置,确定环境照度信息。
  9. 如权利要求2所述的控制方法,其中:根据车辆的位置,结合时间和光照信息,确定环境照度信息包括:
    根据车辆的位置,确定所述车辆所处的时区;
    根据时间信息,确定日出和日落时间;
    结合路灯的光照情况,确定环境照度信息。
  10. 一种汽车前照灯控制装置,包括:
    通信模块(01),设置为获得车辆的车辆行驶信息、环境照度信息和前照灯使用模式信息;
    判断模块(02),设置为根据所述车辆行驶信息和环境照度信息判断所述前照灯使用模式是否合理,当所述前照灯使用模式不合理时,发出提示信息。
  11. 如权利要求10所述的控制装置,其中:所述通信模块(01)是设置为通过如下方式实现获取环境照度信息:
    获取所述车辆所在位置预设时间区间的仰视图片,根据所述仰视图片,确定环境照度信息;或者根据车辆的位置,结合时间信息和光照信息,确定环境照度信息。
  12. 如权利要求10所述的控制方法,其中:所述判断模块(02)是设置为通过如下方式实现根据所述车辆行驶信息和环境照度信息判断所述前照灯使用模式是否合理:
    根据所述车辆行驶信息和环境照度信息确定所述车辆的前照灯的危险模式和合理模式;
    将所述车辆的前照灯使用模式与所述危险模式或合理模式进行对比,确定所述车辆的前照灯使用模式是否合理。
  13. 如权利要求10所述的控制装置,所述判断模块(02)还设置为:判断车辆行驶前方安全距离内是否有其他行驶车辆,结合所述前方安全距离的行驶车辆情况确定所述前照灯使用模式是否合理。
  14. 如权利要求10所述的控制装置,还包括:
    提示模块,设置为统计预设周期内所述车辆前照灯使用模式不合理的次数,当所述次数达到预设阈值,则向所述车辆发送提醒指令,所述提醒指令指示前照灯使用模式不合理次数超过预设阈值。
  15. 如权利要求14所述的控制装置,所述提示模块还设置为:
    向所述车辆发出更正信息,所述更正信息指示正确的前照灯使用模式。
  16. 如权利要求11所述的控制装置,其中:所述通信模块(01)是设置为通过如下方式实现获取所述车辆所在位置当前时刻的仰视图片:
    在预设时间区间内,从所述车辆顶部获取仰视图片或者从保存的其他车辆的仰视图片中选择与所述车辆所在位置距离预设范围的仰视图片。
  17. 如权利要求16所述的控制装置,其中:所述通信模块(01)是设置为通过如下方式实现根据所述仰视图片,确定环境照度信息:
    获得所述仰视图片的所有像素点的亮度值,根据亮度值处于的亮度区间和各个所述亮度区间的像素点占所有像素点的百分比,确定车辆行驶的亮度信息;
    基于所述车辆行驶的亮度信息,结合获取所述仰视图片的时间和位置,确定环境照度信息。
  18. 如权利要求11所述的控制装置,其中:所述通信模块(01)是设置为通过如下方式实现根据车辆的位置,结合时间和光照信息,确定环境照度信息:
    根据车辆的位置,确定所述车辆所处的时区;
    根据时间信息,确定日出和日落时间;
    结合路灯的光照情况,确定环境照度信息。
PCT/CN2017/104514 2017-08-04 2017-09-29 一种汽车前照灯控制方法和装置 WO2019024228A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710659557.XA CN109383362B (zh) 2017-08-04 2017-08-04 一种汽车前照灯控制方法和装置
CN201710659557.X 2017-08-04

Publications (1)

Publication Number Publication Date
WO2019024228A1 true WO2019024228A1 (zh) 2019-02-07

Family

ID=65233211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104514 WO2019024228A1 (zh) 2017-08-04 2017-09-29 一种汽车前照灯控制方法和装置

Country Status (2)

Country Link
CN (1) CN109383362B (zh)
WO (1) WO2019024228A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112109627A (zh) * 2019-06-20 2020-12-22 奥迪股份公司 车灯控制方法、装置、设备和存储介质
CN113650553A (zh) * 2021-09-17 2021-11-16 北京航空航天大学 一种汽车大灯智能调节控制装置及方法
CN114604166A (zh) * 2022-04-18 2022-06-10 深圳市元征软件开发有限公司 车辆远光灯控制方法、装置、设备及存储介质
CN114643926A (zh) * 2020-12-17 2022-06-21 博泰车联网(南京)有限公司 远光灯的控制方法、系统、设备及存储介质
CN115346388A (zh) * 2021-05-14 2022-11-15 丰田自动车株式会社 自动停车服务器、自动驾驶车辆、自动停车系统
CN117111516A (zh) * 2023-09-07 2023-11-24 江苏日兴汽车配件有限公司 一种汽车室内灯智能控制系统及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112235513B (zh) * 2020-09-29 2023-04-07 三一专用汽车有限责任公司 图像处理装置、方法和车辆
CN113276760A (zh) * 2021-06-30 2021-08-20 宜宾凯翼汽车有限公司 一种远光灯控制系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2538614Y (zh) * 2002-02-24 2003-03-05 谢志勇 车灯自动控制装置
EP2570302A2 (en) * 2011-09-13 2013-03-20 Niles Co., Ltd. Vehicular light automatic control device
US20140084788A1 (en) * 2012-09-27 2014-03-27 Lg Innotek Co., Ltd. Headlight apparatus and method of controlling the same
JP2015039902A (ja) * 2013-08-20 2015-03-02 日産自動車株式会社 車両用照明制御装置
CN106915300A (zh) * 2015-12-26 2017-07-04 昆达电脑科技(昆山)有限公司 汽车前照灯忘开提醒系统及其方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2949627B1 (ja) * 1998-09-29 1999-09-20 阪神エレクトリック株式会社 車両の灯火類制御装置
JP2007030739A (ja) * 2005-07-28 2007-02-08 Fujitsu Ten Ltd 車載灯具制御装置および車載灯具制御方法
JP4453638B2 (ja) * 2005-09-28 2010-04-21 マツダ株式会社 車両のヘッドライト制御装置
JP2010118767A (ja) * 2008-11-11 2010-05-27 Nissan Motor Co Ltd 画像処理装置及び画像処理方法
JP2011255765A (ja) * 2010-06-08 2011-12-22 Denso Corp ヘッドライト制御装置
CN102592442A (zh) * 2012-03-06 2012-07-18 奇瑞汽车股份有限公司 一种基于车联网的眩光控制系统及其控制方法
JP6314666B2 (ja) * 2014-06-02 2018-04-25 株式会社デンソー 前照灯制御装置
CN204736757U (zh) * 2015-06-19 2015-11-04 西南交通大学 汽车远光灯检测与预警系统
CN205365391U (zh) * 2016-02-19 2016-07-06 安徽机电职业技术学院 一种汽车前照灯未开提醒装置
CN205365395U (zh) * 2016-03-14 2016-07-06 安徽机电职业技术学院 一种前照灯提醒与自动切换装置
CN106004638B (zh) * 2016-05-30 2018-10-30 扬州泰博汽车电子智能科技有限公司 汽车前照灯智能控制装置及控制前照灯的方法
CN106080372B (zh) * 2016-07-18 2019-03-12 奇瑞汽车股份有限公司 一种正确使用远光灯的提醒装置及其提醒方法
CN106218492B (zh) * 2016-08-31 2019-05-21 江苏鸿信系统集成有限公司 一种黑夜行车灯光自动切换装置及切换方法
CN106740432B (zh) * 2017-03-09 2023-03-24 合肥工业大学 一种基于生理舒适性的隧道内车辆自动变光系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2538614Y (zh) * 2002-02-24 2003-03-05 谢志勇 车灯自动控制装置
EP2570302A2 (en) * 2011-09-13 2013-03-20 Niles Co., Ltd. Vehicular light automatic control device
US20140084788A1 (en) * 2012-09-27 2014-03-27 Lg Innotek Co., Ltd. Headlight apparatus and method of controlling the same
JP2015039902A (ja) * 2013-08-20 2015-03-02 日産自動車株式会社 車両用照明制御装置
CN106915300A (zh) * 2015-12-26 2017-07-04 昆达电脑科技(昆山)有限公司 汽车前照灯忘开提醒系统及其方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112109627A (zh) * 2019-06-20 2020-12-22 奥迪股份公司 车灯控制方法、装置、设备和存储介质
CN114643926A (zh) * 2020-12-17 2022-06-21 博泰车联网(南京)有限公司 远光灯的控制方法、系统、设备及存储介质
CN114643926B (zh) * 2020-12-17 2024-02-27 博泰车联网(南京)有限公司 远光灯的控制方法、系统、设备及存储介质
CN115346388A (zh) * 2021-05-14 2022-11-15 丰田自动车株式会社 自动停车服务器、自动驾驶车辆、自动停车系统
CN115346388B (zh) * 2021-05-14 2023-11-03 丰田自动车株式会社 自动停车服务器、自动驾驶车辆、自动停车系统
CN113650553A (zh) * 2021-09-17 2021-11-16 北京航空航天大学 一种汽车大灯智能调节控制装置及方法
CN114604166A (zh) * 2022-04-18 2022-06-10 深圳市元征软件开发有限公司 车辆远光灯控制方法、装置、设备及存储介质
CN117111516A (zh) * 2023-09-07 2023-11-24 江苏日兴汽车配件有限公司 一种汽车室内灯智能控制系统及方法
CN117111516B (zh) * 2023-09-07 2024-04-02 江苏日兴汽车配件有限公司 一种汽车室内灯智能控制系统及方法

Also Published As

Publication number Publication date
CN109383362B (zh) 2023-04-28
CN109383362A (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
WO2019024228A1 (zh) 一种汽车前照灯控制方法和装置
WO2016163294A1 (ja) 映像投射装置
CN109194873B (zh) 一种图像处理方法及装置
US20190096242A1 (en) Traffic light control device, method, and system
CN107650778A (zh) 车辆尾灯控制方法和装置以及存储介质
CN109204120B (zh) 用于机动车辆的灯光系统
US8605154B2 (en) Vehicle headlight management
CN109598940B (zh) 路口信号灯配时方法及装置
KR101252671B1 (ko) 차량 촬상 시스템 및 그를 위한 광량 제어 방법
CN111669513A (zh) 通过脉冲照明实现弱光视觉的系统和方法
JP6963563B2 (ja) 車両用照明システムおよび車両
CN110264763B (zh) 一种近距离陌生车主间预警系统和方法
US11481173B2 (en) Information processing apparatus, information processing method and non-transitory storage medium
JP6533050B2 (ja) 車載カメラシステム
CN202939800U (zh) 智能高清卡口系统
CN108734976B (zh) 一种交通导航提示方法及其系统
US20170061218A1 (en) Road light monitoring device and monitoring system and monitoring method using same
CN110531602B (zh) 一种显示无人设备提醒标识的方法、装置以及无人设备
CN112565618B (zh) 曝光控制装置
JP2009065586A (ja) 車載カメラ
CN113997855A (zh) 一种户外预警方法、装置、电子设备及计算机存储介质
GB2586802A (en) System and method for identifying light emitter flicker
JP2011209961A (ja) 車載用撮像装置
CN206574239U (zh) 一种基于光电传感器的交通灯智能控制系统
CN112009353A (zh) Led大灯控制方法、led大灯控制器及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920351

Country of ref document: EP

Kind code of ref document: A1