WO2019021834A1 - Industrial robot - Google Patents

Industrial robot Download PDF

Info

Publication number
WO2019021834A1
WO2019021834A1 PCT/JP2018/026255 JP2018026255W WO2019021834A1 WO 2019021834 A1 WO2019021834 A1 WO 2019021834A1 JP 2018026255 W JP2018026255 W JP 2018026255W WO 2019021834 A1 WO2019021834 A1 WO 2019021834A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
motor
fixed
hand
rotation shaft
Prior art date
Application number
PCT/JP2018/026255
Other languages
French (fr)
Japanese (ja)
Inventor
矢澤 隆之
志村 芳樹
陽介 高瀬
Original Assignee
日本電産サンキョー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産サンキョー株式会社 filed Critical 日本電産サンキョー株式会社
Priority to CN201880048360.5A priority Critical patent/CN110944806A/en
Priority to KR1020197036602A priority patent/KR102328513B1/en
Publication of WO2019021834A1 publication Critical patent/WO2019021834A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67706Mechanical details, e.g. roller, belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • B25J9/042Cylindrical coordinate type comprising an articulated arm
    • B25J9/043Cylindrical coordinate type comprising an articulated arm double selective compliance articulated robot arms [SCARA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/102Gears specially adapted therefor, e.g. reduction gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/126Rotary actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67715Changing the direction of the conveying path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices

Definitions

  • the present invention relates to an industrial robot that transports an object to be transported in vacuum.
  • the industrial robot which conveys a glass substrate is known (for example, refer patent document 1).
  • the industrial robot described in Patent Document 1 includes a first hand and a second hand on which a glass substrate is mounted, a first hand support member to which the first hand is fixed, and a second hand to which the second hand is fixed.
  • the arm is formed in a substantially rectangular shape elongated in the front-rear direction.
  • the first hand support member and the second hand support member are linearly reciprocally movable in the front-rear direction with respect to the arm.
  • the industrial robot described in Patent Document 1 includes a first drive mechanism for reciprocating the first hand support member with respect to the arm, and a second drive mechanism for reciprocating the second hand support member with respect to the arm. Is equipped.
  • the first drive mechanism rotates a first screw member whose male screw is formed on the outer peripheral surface, a first nut member fixed to the first hand support member and engaged with the first screw member, and a first screw member.
  • a first motor rotates a second screw member whose male screw is formed on the outer peripheral surface, a second nut member fixed to the second hand support member and engaged with the second screw member, and a second screw member.
  • a second motor The first motor is fixed to the front end side inside the arm, and the second motor is fixed to the rear end side inside the arm.
  • an industrial robot for transporting a glass substrate in vacuum is known (see, for example, Patent Document 2).
  • the industrial robot described in Patent Document 2 includes a hand on which a glass substrate is mounted, an arm to which the hand is pivotably connected to the tip end, and a main body portion to which the base end of the arm is pivotably connected. Is equipped.
  • This industrial robot is used by being incorporated into a manufacturing system comprising a transfer chamber and a plurality of process chambers arranged to surround the transfer chamber. The transfer chamber and the interior of the process chamber are evacuated.
  • the hand and arm of the industrial robot described in Patent Document 2 are disposed in a transfer chamber.
  • Various apparatuses are installed in the process chamber, and various processes are performed on the glass substrate in the process chamber.
  • the industrial robot described in Patent Document 2 carries out the glass substrate from the process chamber and carries the glass substrate into the process chamber.
  • processing may be performed on the glass substrate in a high temperature environment, and the internal temperature of the process chamber in which the processing on the glass substrate is performed in the high temperature environment is high.
  • the inventor of the present invention is an industrial robot for transporting a transfer target such as a glass substrate in vacuum like the industrial robot described in Patent Document 2 with respect to the arm like the industrial robot described in Patent Document 1
  • a transfer target such as a glass substrate in vacuum like the industrial robot described in Patent Document 2
  • the arm like the industrial robot described in Patent Document 1
  • the first motor is fixed to the front end side inside the arm, and the second motor is fixed to the rear end side inside the arm.
  • the first motor or the second motor is a high temperature process chamber Approach to
  • the first motor or the second motor approaches the high temperature process chamber, the temperature of the first motor or the second motor becomes high, and the possibility that the first motor or the second motor may be damaged by the heat becomes high.
  • an object of the present invention is, for example, a process in which the temperature is high in an industrial robot having a first hand and a second hand reciprocally moving linearly with respect to an arm and transporting an object to be transported in vacuum. Even in the case of carrying in and out of the object to be transferred from the chamber, the damage due to the heat of the first motor for moving the first hand and the second motor for moving the second hand is suppressed It is to provide an industrial robot capable of
  • an industrial robot is an industrial robot that transports an object to be transported in vacuum, and the first hand and the second hand on which the object to be transported is mounted;
  • the first hand support member to which the hand is fixed, the second hand support member to which the second hand is fixed, and the first hand support member and the second hand support member reciprocate linearly in the same horizontal direction.
  • a second drive mechanism for reciprocating the motor, the first drive mechanism comprises a first motor as a drive source, and the second drive mechanism comprises a second motor as a drive source, the first motor and the second Motor is a Wherein the of being disposed within the central portion.
  • the first motor and the second motor are disposed inside the central portion of the arm. Therefore, with the industrial robot according to the present invention, for example, even when carrying in and out the object to be transferred to and from the high temperature process chamber, the first motor and the second motor and the high temperature process chamber It becomes possible to secure the distance. Therefore, according to the present invention, it is possible to suppress the temperature rise of the first motor and the second motor, for example, even when carrying in and out of the object to be transferred to and from the process chamber which is at a high temperature. As a result, damage to the first motor and the second motor due to the influence of heat can be suppressed.
  • the industrial robot includes, for example, a main body portion to which an arm is rotatably connected, and a center of the arm is connected to the main body portion.
  • the first motor and the second motor are disposed inside the central portion of the arm, in this case, it is possible to reduce the inertia of the arm or the like which pivots with respect to the main body. .
  • an inner space in which the first motor and the second motor are disposed be formed inside the central portion of the arm, and the inner space be at atmospheric pressure.
  • the first motor and the second motor can be efficiently used in the industrial robot according to the present invention, for example, even when carrying in or out the object to be transferred to or from the process chamber which is at a high temperature. It becomes possible to cool. Therefore, for example, even in the case of carrying in and out the object to be transferred to and from the process chamber which is at a high temperature, it becomes possible to effectively suppress the temperature rise of the first motor and the second motor. As a result, it is possible to prevent damage of the first motor and the second motor due to the influence of heat. Moreover, since it becomes unnecessary to use expensive vacuum grease as a lubricant of a 1st motor and a 2nd motor if comprised in this way, it becomes possible to reduce the initial cost and running cost of an industrial robot.
  • the first motor and the second motor are disposed in the internal space so that the output shaft of the first motor and the output shaft of the second motor project in the opposite direction, and the first drive mechanism is configured to And a second drive mechanism is provided with a first rotation shaft connected to the output shaft of the motor, and a first magnetic fluid seal that rotatably supports the first rotation shaft and prevents the outflow of air from the internal space.
  • the first rotation shaft is disposed such that the moving direction of the first hand support member and the second hand support member with respect to the arm coincides with the axial direction of the first rotation shaft
  • the second rotation shaft is
  • the first drive mechanism is fixed to the tip of the first rotation shaft so that the moving direction of the first hand support member and the second hand support member with respect to the arm coincides with the axial direction of the second rotation shaft.
  • the second drive mechanism includes a third bevel gear fixed to a tip end portion of the second rotation shaft, a fourth bevel gear meshing with the third bevel gear, and a fourth rotation shaft to which the fourth bevel gear is fixed , And two second drive pulleys fixed to the fourth rotation shaft.
  • the first drive mechanism includes two first driven pulleys rotatably held by the fourth rotation shaft, and is fixed to the first hand support member, and further includes the first drive pulley and the first driven pulley.
  • the second drive mechanism is fixed to the second hand support member and the two second driven pulleys rotatably held by the third rotation shaft.
  • the second bevel gear is fixed to the center side of the third rotation shaft in the axial direction of the third rotation shaft, and the second bevel gear is provided with two second belts bridged between the second drive pulley and the second driven pulley.
  • Each of the first drive pulleys is fixed to each end of the third rotary shaft in the axial direction of the third rotary shaft, and the second driven pulley is between the second bevel gear and the first drive pulley.
  • the fourth bevel gear is rotatably supported by the third rotation shaft, and the fourth bevel gear is axially aligned with the fourth rotation shaft.
  • the two first driven pulleys which are fixed to the center side of the fourth rotation shaft at each of the first and second rotation shafts, are rotatably held at both ends of the fourth rotation shaft in the axial direction of the fourth rotation shaft.
  • the pulley is preferably fixed to the fourth rotation shaft between the fourth bevel gear and the first driven pulley.
  • the second driven pulley is rotatably held by the third rotary shaft to which the first drive pulley is fixed, and the first driven pulley is rotatable to the fourth rotary shaft to which the second drive pulley is fixed.
  • the configuration of the industrial robot is It becomes possible to simplify.
  • positions so that two 1st belts and two 2nd belts may be located in a line with a horizontal direction if comprised in this way it becomes possible to make thickness of the arm in an up-down direction thin. Therefore, it is possible to lower the height of the industrial robot.
  • the temperature is high, for example. Even in the case of carrying in and out of the object to be transferred into and from the process chamber, the damage due to the heat of the first motor for moving the first hand and the second motor for moving the second hand is suppressed It will be possible to
  • FIG. 1 is a plan view of an industrial robot according to an embodiment of the present invention. It is a side view of the industrial robot shown in FIG. It is a rear view of the industrial robot shown in FIG. (A) is a top view for demonstrating the internal structure of the arm shown in FIG. 1, (B) is a figure for demonstrating the internal structure of an arm from the EE direction of (A).
  • (A) is an enlarged view of a portion F in FIG. 4 (A)
  • (B) is an enlarged view of a portion G in FIG. 4 (B).
  • A) is an enlarged view of H part of FIG. 4 (A)
  • (B) is an enlarged view of J part of FIG. 4 (A).
  • FIG. 5 is a cross-sectional view for describing the configuration of a first hand support member, a second hand support member, an arm, a first drive mechanism, and a second drive mechanism, as viewed from the direction NN in FIG. 4B.
  • FIG. 5 is a cross-sectional view for describing a configuration of a first hand support member, a second hand support member, an arm, a first drive mechanism, and a second drive mechanism in the direction of QQ in FIG. 4B. It is a figure for demonstrating the internal structure of the arm concerning other embodiment of this invention.
  • FIG. 1 is a plan view of an industrial robot 1 according to an embodiment of the present invention.
  • FIG. 2 is a side view of the industrial robot 1 shown in FIG.
  • FIG. 3 is a rear view of the industrial robot 1 shown in FIG.
  • the industrial robot 1 of this embodiment (hereinafter referred to as “robot 1”) is a robot that conveys a glass substrate 2 for liquid crystal display (hereinafter referred to as “substrate 2”), which is an object to be conveyed, in vacuum. It is.
  • the robot 1 is used by being incorporated into a liquid crystal display device manufacturing system.
  • a transfer chamber 3 (hereinafter, referred to as “chamber 3”) disposed at the center and a plurality of process chambers 4 (hereinafter, “chamber 4”) disposed to surround the chamber 3 are provided. And (see FIG. 1).
  • the inside of the chambers 3 and 4 is vacuum. That is, the chambers 3 and 4 are vacuum chambers. Inside the chamber 3, a part of the robot 1 is disposed. The robot 1 carries in the substrate 2 to the chamber 4 and carries out the substrate 2 from the chamber 4. Various devices and the like are disposed in the chamber 4, and various processes are performed on the substrate 2 in the chamber 4. In the chamber 4 of the present embodiment, processing on the substrate 2 is performed in a high temperature environment. Therefore, the internal temperature of the chamber 4 is high.
  • the robot 1 includes a hand 5 as a first hand on which the substrate 2 is mounted, a hand 6 as a second hand on which the substrate 2 is mounted, and a hand support member as a first hand support member to which the hand 5 is fixed. 7, a hand support member 8 as a second hand support member to which the hand 6 is fixed, an arm 9 for holding the hand support members 7 and 8, and a body portion 10 to which the arm 9 is rotatably coupled.
  • the main body unit 10 includes a columnar elevating member 12 (see FIG. 2) to which the central portion of the arm 9 is fixed, an elevating mechanism for elevating the elevating member 12, a pivoting mechanism for pivoting the elevating member 12, And a case body 13 in which the configuration of the above is accommodated.
  • the case body 13 is formed in a substantially bottomed cylindrical shape.
  • a flange 14 formed in a disk shape is fixed to the upper end of the case body 13.
  • the flange 14 is formed with a through hole in which the upper end portion of the elevating member 12 is disposed.
  • the hands 5 and 6 and the arm 9 are disposed on the upper side of the main body 10.
  • a part of the robot 1 is disposed inside the chamber 3.
  • a portion of the robot 1 above the lower end surface of the flange 14 is disposed inside the chamber 3. That is, a portion of the robot 1 above the lower end surface of the flange 14 is disposed in the vacuum region VR, and the hands 5 and 6 and the arm 9 are disposed in the vacuum chamber (in vacuum).
  • the portion of the robot 1 below the lower end surface of the flange 14 is disposed in the atmosphere region AR (in the atmosphere).
  • the arm 9 holds the hand support members 7 and 8 so that the hand support member 7 and the hand support member 8 can linearly reciprocate in the same horizontal direction.
  • the robot 1 has a drive mechanism 17 as a first drive mechanism for reciprocating the hand support member 7 with respect to the arm 9 and a drive mechanism 18 as a second drive mechanism for reciprocate the hand support member 8 with respect to the arm 9. And (see FIG. 4).
  • the X direction in FIG. 1 etc. which is the moving direction of the hand support members 7 and 8 with respect to the arm 9, is referred to as “front and back direction”, and is perpendicular to the vertical direction (vertical direction)
  • the Y direction of is the "left and right direction”.
  • the X1 direction side is referred to as the “front” side
  • the opposite X2 direction side is referred to as the “rear” side.
  • FIG. 4A is a plan view for explaining the internal structure of the arm 9 shown in FIG. 1, and FIG. 4B shows the internal structure of the arm 9 from the EE direction of FIG. 4A. It is a figure for demonstrating.
  • FIG. 5 (A) is an enlarged view of a part F of FIG. 4 (A)
  • FIG. 5 (B) is an enlarged view of a part G of FIG. 4 (B).
  • 6 (A) is an enlarged view of a portion H in FIG. 4 (A)
  • FIG. 6 (B) is an enlarged view of a portion J in FIG. 4 (A).
  • FIG. 7A is a view for explaining the internal structure of the arm 9 from the direction of arrows K in FIG.
  • FIG. 4A, and FIG. 7B is from the direction of LL in FIG. 4A. It is a figure for demonstrating the internal structure of the arm 9.
  • FIG. FIG. 8 is a cross-sectional view for describing the configuration of the hand support members 7, 8, the arm 9, and the drive mechanisms 17, 18 from the direction NN in FIG. 4B.
  • FIG. 9 is a cross-sectional view for describing the configurations of the hand support members 7 and 8, the arm 9 and the drive mechanisms 17 and 18 in the direction of QQ in FIG. 4B.
  • the hand 5 includes a plurality of forks 20 on which the substrate 2 is mounted, and a hand base 21 to which base ends (rear ends) of the plurality of forks 20 are fixed.
  • the hand 6 includes a plurality of forks 20 on which the substrate 2 is mounted, and a hand base 22 to which base ends (rear ends) of the plurality of forks 20 are fixed.
  • the hands 5, 6 in this embodiment are provided with six forks 20.
  • the fork 20 is formed in an elongated linear shape in the front-rear direction.
  • the hand bases 21 and 22 are formed in a substantially rectangular flat plate shape elongated in the left-right direction. The length (length in the left-right direction) of the hand base 21 is longer than the length (length in the left-right direction) of the hand base 22.
  • the hand 5 and the hand 6 are arranged so as to overlap each other in the vertical direction when viewed from the front and rear direction.
  • the hand 5 is disposed on the upper side and the hand 6 is disposed on the lower side when viewed from the front-rear direction. That is, when viewed from the front-rear direction, the hand base 21 is disposed on the upper side, and the hand base 22 is disposed on the lower side.
  • the hand 5 and the hand 6 are arranged such that the center of the hand base 21 and the center of the hand base 22 coincide in the left-right direction when viewed from the front-rear direction. That is, the hand 5 and the hand 6 are arranged such that the center of the hand 5 and the center of the hand 6 coincide in the left-right direction when viewed in the front-rear direction.
  • the arm 9 is disposed below the hand 6.
  • the arm 9 is formed in a substantially rectangular shape elongated in the front-rear direction. Also, the arm 9 is formed in a hollow shape.
  • the width in the left-right direction of the arm 9 is narrower than the width in the left-right direction of the hands 5 and 6.
  • the arm 9 is disposed such that the centers of the hands 5 and 6 and the center of the arm 9 coincide with each other in the left-right direction when viewed from the front-rear direction.
  • the arm 9 includes an arm frame 23 which is a frame of the arm 9, a cover member 24 constituting upper and lower, right and left and front and rear sides of the arm 9, and a box-shaped motor housing member 25 disposed at the center of the arm 9. And an upper surface cover 26 fixed to the upper surface of the motor housing member 25. In FIG. 4 to FIG. 9, the illustration of the cover member 24 is omitted.
  • the arm frame 23 constitutes a frame of the arm 9 in the entire area of the arm 9 in the front-rear direction.
  • the arm frame 23 includes a right side plate portion 23a constituting a right side surface of the arm frame 23, a left side plate portion 23b constituting a left side surface of the arm frame 23, and an upper side plate portion 23c constituting an upper side surface of the arm frame 23. And a lower side plate portion 23d that constitutes the lower side surface of the arm frame 23.
  • the right side plate portion 23a, the left side plate portion 23b, the upper side plate portion 23c, and the lower side plate portion 23d are formed in a flat plate shape.
  • the right side plate portion 23a is disposed such that the thickness direction of the right side plate portion 23a coincides with the left and right direction
  • the left side plate portion 23b is disposed such that the thickness direction of the left side plate portion 23b coincides with the left and right direction It is done.
  • the upper side plate portion 23c is arranged such that the thickness direction of the upper side plate portion 23c coincides with the vertical direction
  • the lower side plate portion 23d is arranged such that the thickness direction of the lower side plate portion 23d coincides with the vertical direction It is done.
  • the right side plate portion 23a and the left side plate portion 23b are disposed in the state of being spaced apart in the left-right direction.
  • the upper side plate portion 23c is fixed to the upper end of the right side plate portion 23a and the upper end of the left side plate portion 23b by screws.
  • the lower side plate portion 23d is fixed to the lower end of the right side plate portion 23a and the lower end of the left side plate portion 23b by screws.
  • the right end of the upper side plate portion 23c and the right end of the lower side plate portion 23d are disposed on the right side of the right side plate portion 23a, and the left end of the upper side plate portion 23c and the left end of the lower side plate portion 23d are disposed on the left side of the left side plate portion 23b It is done.
  • the motor housing member 25 is formed in a substantially rectangular parallelepiped box shape whose upper surface side is open. Further, the motor housing member 25 is formed in a box shape of a substantially rectangular parallelepiped elongated in the front-rear direction.
  • the motor accommodating member 25 accommodates a motor 37 described later constituting the drive mechanism 17 and a motor 38 described later constituting the drive mechanism 18.
  • the motor housing member 25 is fixed to a central portion of the arm frame 23. That is, the motor housing member 25 is disposed at the central portion of the arm 9.
  • the center of the bottom surface of the motor housing member 25 is fixed to the upper end of the elevating member 12. That is, the center of the arm 9 is rotatably connected to the main body 10. Most parts other than the lower end of the motor housing member 25 are disposed between the right side plate 23a and the left side plate 23b in the left-right direction (see FIGS. 5A and 9).
  • the upper surface cover 26 is formed in a rectangular flat plate shape.
  • the upper surface cover 26 is fixed to the upper surface of the motor accommodation member 25 so as to close an opening formed on the upper surface side of the motor accommodation member 25.
  • An internal space S defined by the motor housing member 25 and the top cover 26 is formed inside the central portion of the arm 9.
  • a through hole 25a penetrating in the vertical direction is formed at the center of the bottom surface portion of the motor housing member 25, a through hole 25a penetrating in the vertical direction.
  • the elevating member 12 is formed in a cylindrical shape.
  • the elevating member 12 is fixed to the bottom surface of the motor housing member 25 so as to surround the through hole 25a, and the inside of the case body 13 communicates with the internal space S.
  • the internal space S of the case body 13 is at atmospheric pressure.
  • guide rails 29 for guiding the hand support member 7 in the front-rear direction are fixed to the right surface of the right side plate portion 23a and the left surface of the left side plate portion 23b.
  • a guide rail 30 for guiding the hand support member 8 in the front-rear direction is fixed to the right surface of the right side plate portion 23a and the left surface of the left side plate portion 23b.
  • the guide rails 29, 30 are fixed to the right side plate portion 23a and the left side plate portion 23b so that the longitudinal direction of the guide rails 29, 30 and the longitudinal direction coincide with each other.
  • a plurality of guide rails 29 divided in the front-rear direction are fixed to the right side plate portion 23a and the left side plate portion 23b (see FIG. 7).
  • a plurality of guide rails 30 divided in the front-rear direction are fixed to the right side plate portion 23a and the left side plate portion 23b.
  • the guide rail 29 fixed to the right side of the right side plate portion 23a and the guide rail 29 fixed to the left side of the left side plate portion 23b are arranged at the same position in the vertical direction.
  • the guide rail 30 fixed to the right surface of the right side plate portion 23a and the guide rail 30 fixed to the left surface of the left side plate portion 23b are arranged at the same position in the vertical direction.
  • the guide rail 30 is disposed on the upper side of the guide rail 29.
  • the hand support member 7 is composed of two slide portions 7 a that slide in the front-rear direction along the guide rails 29 and two hand fixing portions 7 b to which the hand base 21 of the hand 5 is fixed.
  • the hand support member 8 is composed of two slide portions 8a that slide in the front-rear direction along the guide rails 30, and two hand fixing portions 8b to which the hand base 22 of the hand 6 is fixed. There is.
  • each of the two slide portions 7a is disposed on the outer side in the left-right direction of the right side plate portion 23a and the left side plate portion 23b.
  • Each of the two slide parts 8a is arrange
  • the two slide parts 8a are arrange
  • the right end portions of the slide portions 7a and 8a disposed on the right side project to the right with respect to the right side surface of the cover member 24 and the left end portions of the slide portions 7a and 8a disposed on the left side are the cover It projects to the left from the left side surface of the member 24.
  • One hand fixing portion 7b of the two hand fixing portions 7b is fixed to the slide portion 7a so as to extend obliquely from the right end side of the slide portion 7a disposed on the right side to the upper right side.
  • the lower surface of the right end portion of the hand base portion 21 is fixed to the upper end of the hand fixing portion 7b as shown in FIG.
  • the other hand fixing portion 7b is fixed to the slide portion 7a so as to extend from the left end side of the slide portion 7a disposed on the left side toward the upper left, and the upper end of the hand fixing portion 7b As shown in 3, the lower surface of the left end portion of the hand base 21 is fixed.
  • One hand fixing portion 8b of the two hand fixing portions 8b is fixed to the slide portion 8a so as to extend obliquely from the right end side of the slide portion 8a disposed on the right side to the upper right side.
  • the lower surface of a portion of the hand base 22 that is closer to the right than the center in the left-right direction is fixed.
  • the other hand fixing portion 8b is fixed to the slide portion 8a so as to extend from the left end side of the slide portion 8a disposed on the left side to the upper left, and the upper end of the hand fixing portion 8b As shown in FIG. 3, the lower surface of the left side of the hand base 22 with respect to the center in the left-right direction is fixed.
  • the guide block 31 engaged with the guide rail 29 disposed on the right side is fixed to the slide portion 7 a disposed on the right side, and the slide portion 7 a disposed on the left side is attached to the guide rail 29 disposed on the left side
  • the guide block 31 to be engaged is fixed.
  • the guide block 32 engaged with the guide rail 30 disposed on the right is fixed to the slide 8a disposed on the right, and the guide 8 disposed on the left is disposed on the slide 8a disposed on the left
  • a guide block 32 engaged with the rail 30 is fixed.
  • three guide blocks 31 are fixed to each of the two slide portions 7a with a space in the front-rear direction (see FIG. 7B). Further, three guide blocks 32 are fixed to each of the two slide portions 8a in a state of being spaced in the front-rear direction (see FIG. 7A).
  • a guide mechanism 33 configured to guide the hand support member 7 in the front-rear direction is configured by the guide rail 29 and the guide block 31. Further, the guide rail 30 and the guide block 32 constitute a guide mechanism 34 for guiding the hand support member 8 in the front-rear direction.
  • the drive mechanisms 17 and 18 are disposed inside the arm 9.
  • the drive mechanism 17 includes a motor 37 as a drive source.
  • the drive mechanism 18 includes a motor 38 as a drive source.
  • the motors 37 and 38 are disposed in the internal space S. That is, the motors 37, 38 are disposed inside the central portion of the arm 9.
  • the motors 37 and 38 are fixed to the motor housing member 25 via predetermined brackets.
  • the motor 37 and the motor 38 are disposed in the state of being spaced apart in the front-rear direction. Specifically, the motor 37 is disposed on the rear side, and the motor 38 is disposed on the front side.
  • the motor 37 of this embodiment is a first motor
  • the motor 38 is a second motor.
  • the motors 37 and 38 are arranged such that the axial direction of the output shaft of the motors 37 and 38 coincides with the front-rear direction.
  • the motors 37 and 38 are disposed in the internal space S such that the output shaft of the motor 37 and the output shaft of the motor 38 protrude in the opposite direction.
  • the motors 37, 38 are disposed in the internal space S such that the output shaft of the motor 37 projects rearward and the output shaft of the motor 38 projects forward.
  • the rotation center of the motor 37 and the rotation center of the motor 38 coincide with each other.
  • the rotation centers of the motors 37 and 38 and the center of the arm 9 substantially coincide with each other. Note that air pipes (not shown) for cooling are wound around the motors 37 and 38.
  • the drive mechanism 17 includes a rotation shaft 39 as a first rotation shaft connected to the output shaft of the motor 37, a bevel gear 40 as a first bevel gear fixed to the tip of the rotation shaft 39, and a bevel gear A bevel gear 41 as a second bevel gear meshing with 40 and a rotation shaft 42 as a third rotation shaft to which the bevel gear 41 is fixed are provided.
  • the drive mechanism 18 includes a rotary shaft 43 as a second rotary shaft connected to the output shaft of the motor 38, a bevel gear 44 as a third bevel gear fixed to the tip of the rotary shaft 43, and a umbrella A bevel gear 45 as a fourth bevel gear meshing with the gear 44 and a rotation shaft 46 as a fourth rotation shaft to which the bevel gear 45 is fixed are provided.
  • the drive mechanism 17 spans two drive pulleys 48 fixed to the rotation shaft 42, two driven pulleys 49 rotatably held by the rotation shaft 46, the drive pulley 48 and the driven pulley 49. It has two belts 50 to be delivered.
  • the drive mechanism 18 comprises two drive pulleys 52 fixed to the rotary shaft 46, two driven pulleys 53 rotatably held by the rotary shaft 42, a drive pulley 52 and a driven pulley 53. It has two belts 54 to be bridged.
  • the drive pulley 48 of this embodiment is a first drive pulley
  • the driven pulley 49 is a first driven pulley
  • the belt 50 is a first belt
  • the drive pulley 52 is a second drive pulley
  • the driven pulley 53 is
  • the belt 54 is a second driven pulley.
  • the rotary shaft 39 is disposed such that the axial direction of the rotary shaft 39 coincides with the front-rear direction, and is connected to the front end (rear end) of the output shaft of the motor 37 via a coupling 55 (FIG. 5) reference).
  • the rotating shaft 43 is disposed so that the axial direction of the rotating shaft 43 coincides with the front-rear direction, and is connected to the tip (front end) of the output shaft of the motor 38 via a coupling 55 (see FIG. 5) ).
  • the bevel gears 40 and 41, the rotation shaft 42, the drive pulley 48 and the driven pulley 53 are disposed inside the rear end side of the arm 9.
  • the bevel gears 44 and 45, the rotation shaft 46, the drive pulley 52 and the driven pulley 49 are disposed inside the front end side of the arm 9.
  • the drive mechanism 17 is provided with a magnetic fluid seal 56 as a first magnetic fluid seal that holds the rotating shaft 39 rotatably and prevents the outflow of air from the internal space S.
  • the drive mechanism 18 is provided with a magnetic fluid seal 57 as a second magnetic fluid seal that holds the rotating shaft 43 rotatably and prevents the outflow of air from the internal space S.
  • the magnetic fluid seal 56 is fixed to a rear wall 25 b that constitutes the rear surface of the motor housing member 25.
  • the magnetic fluid seal 57 is fixed to a front wall 25 c that constitutes the front surface of the motor housing member 25.
  • the magnetic fluid seal 56 is fixed to the rear wall 25b in a state of being inserted into a through hole that penetrates the rear wall 25b in the front-rear direction, and the magnetic fluid seal 57 has a front wall 25c. It is being fixed to front wall 25c in the state where it was inserted in the penetration hole penetrated by the direction of order. That is, the arm 9 includes a rear wall 25 b which defines the inner space S and holds the magnetic fluid seal 56, and a front wall 25 c which defines the inner space S and holds the magnetic fluid seal 57.
  • the rear wall 25b of this embodiment is a first wall
  • the front wall 25c is a second wall.
  • the rotating shafts 39 and 43 are rotatably supported by a plurality of bearings 59 fixed to the arm frame 23.
  • the rotating shaft 39 of this form is formed of two short axes of short length, and one long axis of one long axis.
  • One of the two short shafts is coupled to the output shaft of the motor 37 via a coupling 55 and is rotatably held by the magnetic fluid seal 56.
  • a bevel gear 40 is fixed to the other short axis.
  • One short axis and the front end of the long axis are connected by a coupling 60 disposed behind the magnetic fluid seal 56 (see FIG. 5), and the other short axis and the rear end of the long axis are the rearmost It is connected by the coupling 60 arrange
  • the rotation shaft 43 of the present embodiment is formed by two short axes with a short length and one long axis with a long length.
  • One of the two short shafts is connected to the output shaft of the motor 38 via a coupling 55 and is rotatably held by the magnetic fluid seal 57.
  • a bevel gear 44 is fixed to the other short axis.
  • One short axis and the rear end of the long axis are connected by a coupling 60 disposed on the front side of the magnetic fluid seal 57 (see FIG. 5), and the other short axis and the front end of the long axis are the frontmost It connects by the coupling 60 arrange
  • the rotating shafts 39 and 43 may be configured by one long axis.
  • the rotation shaft 42 is disposed on the rear side of the bevel gear 40.
  • the rotation shaft 42 is disposed such that the axial direction of the rotation shaft 42 coincides with the left and right direction, and rotates with the power of the motor 37 as the rotation axial direction. That is, the drive pulley 48 fixed to the rotation shaft 42 rotates with the power of the motor 37 as the rotation axial direction in the left-right direction. Further, the driven pulley 53 rotatably held by the rotating shaft 42 also rotates with the left and right direction as an axial direction of rotation.
  • the bevel gear 41 is fixed to the center side of the rotation shaft 42 in the left-right direction.
  • the rotation shaft 46 is disposed on the front side of the bevel gear 44.
  • the rotating shaft 46 is disposed so that the axial direction of the rotating shaft 46 coincides with the left and right direction, and rotates with the power of the motor 38 as the rotating axial direction. That is, the drive pulley 52 fixed to the rotating shaft 46 rotates with the power of the motor 38 as the rotation axial direction in the left-right direction. Further, the driven pulley 49 rotatably held by the rotating shaft 46 also rotates with the left and right direction as an axial direction of rotation.
  • the bevel gear 45 is fixed to the center side of the rotation shaft 46 in the left-right direction.
  • Each of the two drive pulleys 48 is fixed to each end of the rotary shaft 42 in the left-right direction.
  • the driven pulley 53 is rotatably held on the rotating shaft 42 between the bevel gear 41 and the drive pulley 48, and the two driven pulleys 53 are disposed inside the two drive pulleys 48 in the left-right direction. It is done.
  • Each of the two driven pulleys 49 is rotatably held at each of both ends of the rotary shaft 46 in the left-right direction.
  • the drive pulley 52 is fixed to the rotating shaft 46 between the bevel gear 45 and the driven pulley 49, and the two drive pulleys 52 are disposed on the inner side in the left-right direction than the two driven pulleys 49. .
  • the belt 50 is fixed to the hand support member 7. Specifically, a part of each of the two belts 50 is fixed to the upper end of each of the two slide parts 7 a by a predetermined mounting member and a bolt.
  • the belt 50 according to the present embodiment is an end belt, and both ends of the belt 50 stretched over the drive pulley 48 and the driven pulley 49 are fixed to the slide portion 7a by the attachment member and the bolt (FIG. B) see).
  • the belt 50 may be an endless belt formed in an annular shape.
  • the belt 54 is fixed to the hand support member 8. Specifically, a portion of each of the two belts 54 is fixed to the lower end portion of each of the two slide portions 8 a by a predetermined mounting member and a bolt. Similar to the belt 50, the belt 54 of this embodiment is an end belt, and both ends of the belt 54 which is bridged by the drive pulley 52 and the driven pulley 53 are fixed to the slide portion 8a by the attachment member and the bolt. (See FIG. 7A).
  • the belt 54 may be an endless belt formed in an annular shape.
  • the two belts 50 are respectively provided on the left and right sides of the motors 37 and 38 when viewed from the front-rear direction.
  • the two belts 54 are disposed on the left and right sides of the motors 37 and 38, respectively.
  • the belt 54 is disposed adjacent to the belt 50 in the left-right direction and at the same height as the belt 50. That is, the belt 54 is disposed at the same height as the belt 50 so as to be adjacent to the belt 50 on the inner side in the left-right direction on both left and right end sides inside the arm 9.
  • the motors 37 and 38 are disposed inside the central portion of the arm 9. Therefore, in the present embodiment, even when the robot 1 carries the substrate 2 into and out of the chamber 4 whose temperature is high, the distance between the motors 37 and 38 and the high temperature chamber 4 is secured. Is possible (see Figure 1). Therefore, in the present embodiment, even when the robot 1 carries in and out the substrate 2 to and from the chamber 4 at high temperature, it is possible to suppress the temperature rise of the motors 37 and 38, and as a result , Damage to the motor 37, 38 due to the influence of heat.
  • the internal space S in which the motors 37 and 38 are disposed has an atmospheric pressure. Therefore, in the present embodiment, even when the robot 1 carries in and out the substrate 2 to and from the high temperature chamber 4, the motors 37 and 38 can be efficiently cooled using the cooling air. . Therefore, in the present embodiment, even when the robot 1 carries in and out the substrate 2 to and from the high temperature chamber 4, the temperature rise of the motors 37 and 38 can be effectively suppressed, and as a result , Damage to the motors 37, 38 due to the influence of heat. Further, in the present embodiment, since the motors 37, 38 are disposed in the internal space S at atmospheric pressure, it is not necessary to use expensive vacuum grease as a lubricant for the motors 37, 38. Therefore, in this embodiment, the initial cost and the running cost of the robot 1 can be reduced.
  • a magnetic fluid seal 56 that rotatably supports the rotation shaft 39 and prevents the outflow of air from the internal space S is attached to the rear wall 25 b that defines the internal space S, and the rotation shaft 43 can be rotated.
  • a magnetic fluid seal 57 is attached to the front wall 25c that defines the inner space S to support the inner space S and to prevent the air from flowing out of the inner space S. Therefore, in the present embodiment, only the internal space S formed in the central portion of the arm 9 has the atmospheric pressure inside the arm 9. Therefore, in the present embodiment, the internal configuration of the arm 9 can be simplified as compared with the case where the space to be the atmospheric pressure is extended to the end of the arm 9, and air can be discharged to the vacuum region VR. It becomes possible to reduce the risk of spillage.
  • the magnetic fluid seals 56, 57 are disposed on the center side of the arm 9, even when the robot 1 carries in and out the substrate 2 to and from the high temperature chamber 4, the magnetic fluid seal It becomes possible to secure the distance between 56 and 57 and the high temperature chamber 4. Therefore, in the present embodiment, it is possible to suppress the temperature rise of the magnetic fluid seals 56, 57, and as a result, it is possible to suppress the damage of the magnetic fluid seals 56, 57 due to the influence of heat.
  • the driven pulley 53 is rotatably held by the rotary shaft 42 to which the drive pulley 48 is fixed, and the driven pulley 49 is rotatably held by the rotary shaft 46 to which the drive pulley 52 is fixed. Therefore, in this embodiment, the configuration of the robot 1 is simplified as compared with the case where the shaft on which the driven pulley 53 is rotatably held and the shaft on which the driven pulley 49 is rotatably held are separately provided. Becomes possible. Further, in the present embodiment, since the two belts 50 and the two belts 54 arranged inside the arm 9 are arranged side by side in the left-right direction, the thickness of the arm 9 (thickness in the vertical direction) ) Can be made thinner. Therefore, in the present embodiment, the height of the robot 1 can be lowered.
  • the driven pulley 49 is rotatably held by the rotary shaft 46, but a shaft for rotatably holding the driven pulley 49 may be separately provided.
  • the driven pulley 53 is rotatably held by the rotating shaft 42, but a shaft for rotatably holding the driven pulley 53 may be separately provided.
  • the belt 54 is disposed adjacent to the belt 50 inside in the left-right direction, but the belt 54 may be disposed on the right side of the belt 50 disposed on the right side, for example Alternatively, the belt 54 may be disposed on the left side of the belt 50 disposed on the left side.
  • the belt 50 and the belt 54 may be arranged to overlap in the vertical direction. Specifically, when viewed from the front and rear direction, the belt 50 and the belt 54 may be arranged to overlap in the vertical direction on both left and right sides of the motors 37 and 38, respectively. Even in this case, the motors 37, 38 are disposed inside the central portion of the arm 9.
  • the same components as those described above are denoted by the same reference numerals.
  • the hand support members 7 and 8 are moved in the front-rear direction using the belts 50 and 54, but like the industrial robot described in the above-mentioned Patent Document 1, the hand using screw members The support members 7 and 8 may be moved in the front-rear direction. Even in this case, the motors 37, 38 are disposed inside the central portion of the arm 9.
  • the arm 9 is held by the arm support member so as to be linearly reciprocally movable in the front-rear direction with respect to the arm support member. May be
  • the motors 37 and 38 may be arranged such that the output shafts of the motors 37 and 38 coincide with the left and right direction.
  • the entire inside of the arm 9 may be at atmospheric pressure. Further, the entire inside of the arm 9 may be vacuum. That is, the motors 37 and 38 may be disposed in a vacuum.
  • the object to be transported by the robot 1 is the glass substrate 2 for liquid crystal display, but the object to be transported by the robot 1 is, for example, for organic EL (organic electroluminescence) display
  • the glass substrate may be an object of conveyance other than the glass substrate 2.

Abstract

Provided is an industrial robot which conveys an object to be conveyed in vacuum and which is capable of suppressing damaging of a motor for moving a first hand and a motor for moving a second hand caused by the influence of heat, even when, for example, the object to be conveyed is delivered into/out of a high-temperature process chamber. The industrial robot 1 is provided with: hands 5, 6; a hand support member 7 to which the hand 5 is fixed; a hand support member 8 to which the hand 6 is fixed; an arm 9 that holds the hand support members 7, 8 so as to enable the hand support members 7, 8 to linearly reciprocate in the same horizontal direction; a first drive mechanism for causing the hand support member 7 to reciprocate with respect to the arm 9; and a second drive mechanism for causing the hand support member 8 to reciprocate with respect to the arm 9. A motor that constitutes a part of the first drive mechanism and a motor that constitutes a part of the second drive mechanism are disposed inside the center portion of the arm 9.

Description

産業用ロボットIndustrial robot
 本発明は、真空中で搬送対象物を搬送する産業用ロボットに関する。 The present invention relates to an industrial robot that transports an object to be transported in vacuum.
 従来、ガラス基板を搬送する産業用ロボットが知られている(たとえば、特許文献1参照)。特許文献1に記載の産業用ロボットは、ガラス基板が搭載される第1ハンドおよび第2ハンドと、第1ハンドが固定される第1ハンド支持部材と、第2ハンドが固定される第2ハンド支持部材と、第1ハンド支持部材および第2ハンド支持部材を保持するアームと、アームを保持するアーム支持部材とを備えている。アームは、前後方向に細長い略直方体状に形成されている。第1ハンド支持部材および第2ハンド支持部材は、アームに対して前後方向へ直線的に往復移動可能となっている。 DESCRIPTION OF RELATED ART Conventionally, the industrial robot which conveys a glass substrate is known (for example, refer patent document 1). The industrial robot described in Patent Document 1 includes a first hand and a second hand on which a glass substrate is mounted, a first hand support member to which the first hand is fixed, and a second hand to which the second hand is fixed. A support member, an arm for holding the first hand support member and the second hand support member, and an arm support member for holding the arm. The arm is formed in a substantially rectangular shape elongated in the front-rear direction. The first hand support member and the second hand support member are linearly reciprocally movable in the front-rear direction with respect to the arm.
 また、特許文献1に記載の産業用ロボットは、アームに対して第1ハンド支持部材を往復移動させる第1駆動機構と、アームに対して第2ハンド支持部材を往復移動させる第2駆動機構とを備えている。第1駆動機構は、外周面にオネジが形成される第1ネジ部材と、第1ハンド支持部材に固定されるとともに第1ネジ部材に係合する第1ナット部材と、第1ネジ部材を回転させる第1モータとを備えている。第2駆動機構は、外周面にオネジが形成される第2ネジ部材と、第2ハンド支持部材に固定されるとともに第2ネジ部材に係合する第2ナット部材と、第2ネジ部材を回転させる第2モータとを備えている。第1モータは、アームの内部の前端側に固定され、第2モータは、アームの内部の後端側に固定されている。 Further, the industrial robot described in Patent Document 1 includes a first drive mechanism for reciprocating the first hand support member with respect to the arm, and a second drive mechanism for reciprocating the second hand support member with respect to the arm. Is equipped. The first drive mechanism rotates a first screw member whose male screw is formed on the outer peripheral surface, a first nut member fixed to the first hand support member and engaged with the first screw member, and a first screw member. And a first motor. The second drive mechanism rotates a second screw member whose male screw is formed on the outer peripheral surface, a second nut member fixed to the second hand support member and engaged with the second screw member, and a second screw member. And a second motor. The first motor is fixed to the front end side inside the arm, and the second motor is fixed to the rear end side inside the arm.
 また、従来、真空中でガラス基板を搬送する産業用ロボットが知られている(たとえば、特許文献2参照)。特許文献2に記載の産業用ロボットは、ガラス基板が搭載されるハンドと、ハンドが先端側に回動可能に連結されるアームと、アームの基端側が回動可能に連結される本体部とを備えている。この産業用ロボットは、トランスファーチャンバーと、トランスファーチャンバーを囲むように配置される複数のプロセスチャンバーとを備える製造システムに組み込まれて使用される。トランスファーチャンバーおよびプロセスチャンバーの内部は、真空になっている。 Also, conventionally, an industrial robot for transporting a glass substrate in vacuum is known (see, for example, Patent Document 2). The industrial robot described in Patent Document 2 includes a hand on which a glass substrate is mounted, an arm to which the hand is pivotably connected to the tip end, and a main body portion to which the base end of the arm is pivotably connected. Is equipped. This industrial robot is used by being incorporated into a manufacturing system comprising a transfer chamber and a plurality of process chambers arranged to surround the transfer chamber. The transfer chamber and the interior of the process chamber are evacuated.
 特許文献2に記載の産業用ロボットのハンドおよびアームは、トランスファーチャンバーの中に配置されている。プロセスチャンバーには、各種の機器が設置されており、プロセスチャンバーでは、ガラス基板に対する各種の処理が実行される。特許文献2に記載の産業用ロボットは、プロセスチャンバーからのガラス基板の搬出やプロセスチャンバーへのガラス基板の搬入を行う。なお、プロセスチャンバーでは、高温環境下でガラス基板に対する処理が実行されることがあり、高温環境下でガラス基板に対する処理が実行されるプロセスチャンバーでは、その内部温度が高くなっている。 The hand and arm of the industrial robot described in Patent Document 2 are disposed in a transfer chamber. Various apparatuses are installed in the process chamber, and various processes are performed on the glass substrate in the process chamber. The industrial robot described in Patent Document 2 carries out the glass substrate from the process chamber and carries the glass substrate into the process chamber. In the process chamber, processing may be performed on the glass substrate in a high temperature environment, and the internal temperature of the process chamber in which the processing on the glass substrate is performed in the high temperature environment is high.
特開2015-80828号公報JP, 2015-80828, A 特開2015-139854号公報JP, 2015-139854, A
 本願発明者は、特許文献2に記載の産業用ロボットのように真空中でガラス基板等の搬送対象物を搬送する産業用ロボットとして、特許文献1に記載の産業用ロボットのようにアームに対して直線的に往復移動する第1ハンドおよび第2ハンドを有する産業用ロボットの採用を検討している。 The inventor of the present invention is an industrial robot for transporting a transfer target such as a glass substrate in vacuum like the industrial robot described in Patent Document 2 with respect to the arm like the industrial robot described in Patent Document 1 We are considering the adoption of an industrial robot with a first hand and a second hand that reciprocate linearly.
 しかしながら、特許文献1に記載の産業用ロボットでは、アームの内部の前端側に第1モータが固定され、アームの内部の後端側に第2モータが固定されているため、この産業用ロボットによって、高温環境下でガラス基板の処理が実行されるプロセスチャンバー(すなわち、高温になっているプロセスチャンバー)に対する搬送対象物の搬入や搬出を行う場合、第1モータまたは第2モータが高温のプロセスチャンバーに近づく。また、第1モータまたは第2モータが高温のプロセスチャンバーに近づくと、第1モータまたは第2モータの温度が高くなって、第1モータまたは第2モータが熱の影響で損傷するおそれが高くなる。 However, in the industrial robot described in Patent Document 1, the first motor is fixed to the front end side inside the arm, and the second motor is fixed to the rear end side inside the arm. When carrying objects in and out of a process chamber in which processing of a glass substrate is performed in a high temperature environment (that is, a process chamber at high temperature), the first motor or the second motor is a high temperature process chamber Approach to In addition, when the first motor or the second motor approaches the high temperature process chamber, the temperature of the first motor or the second motor becomes high, and the possibility that the first motor or the second motor may be damaged by the heat becomes high. .
 そこで、本発明の課題は、アームに対して直線的に往復移動する第1ハンドおよび第2ハンドを有するとともに真空中で搬送対象物を搬送する産業用ロボットにおいて、たとえば、高温になっているプロセスチャンバーに対する搬送対象物の搬入や搬出を行う場合であっても、第1ハンドを移動させるための第1モータおよび第2ハンドを移動させるための第2モータの、熱の影響による損傷を抑制することが可能な産業用ロボットを提供することにある。 Therefore, an object of the present invention is, for example, a process in which the temperature is high in an industrial robot having a first hand and a second hand reciprocally moving linearly with respect to an arm and transporting an object to be transported in vacuum. Even in the case of carrying in and out of the object to be transferred from the chamber, the damage due to the heat of the first motor for moving the first hand and the second motor for moving the second hand is suppressed It is to provide an industrial robot capable of
 上記の課題を解決するため、本発明の産業用ロボットは、真空中で搬送対象物を搬送する産業用ロボットであって、搬送対象物が搭載される第1ハンドおよび第2ハンドと、第1ハンドが固定される第1ハンド支持部材と、第2ハンドが固定される第2ハンド支持部材と、第1ハンド支持部材と第2ハンド支持部材とが水平方向の同じ方向へ直線的に往復移動可能となるように第1ハンド支持部材および第2ハンド支持部材を保持するアームと、アームに対して第1ハンド支持部材を往復移動させる第1駆動機構と、アームに対して第2ハンド支持部材を往復移動させる第2駆動機構とを備え、第1駆動機構は、駆動源としての第1モータを備え、第2駆動機構は、駆動源としての第2モータを備え、第1モータおよび第2モータは、アームの中心部分の内部に配置されていることを特徴とする。 In order to solve the above problems, an industrial robot according to the present invention is an industrial robot that transports an object to be transported in vacuum, and the first hand and the second hand on which the object to be transported is mounted; The first hand support member to which the hand is fixed, the second hand support member to which the second hand is fixed, and the first hand support member and the second hand support member reciprocate linearly in the same horizontal direction. An arm for holding the first hand support member and the second hand support member so as to be possible, a first drive mechanism for reciprocating the first hand support member with respect to the arm, and a second hand support member for the arm A second drive mechanism for reciprocating the motor, the first drive mechanism comprises a first motor as a drive source, and the second drive mechanism comprises a second motor as a drive source, the first motor and the second Motor is a Wherein the of being disposed within the central portion.
 本発明の産業用ロボットでは、第1モータおよび第2モータは、アームの中心部分の内部に配置されている。そのため、本発明の産業用ロボットで、たとえば、高温になっているプロセスチャンバーに対する搬送対象物の搬入や搬出を行う場合であっても、第1モータおよび第2モータと、高温のプロセスチャンバーとの距離を確保することが可能になる。したがって、本発明では、たとえば、高温になっているプロセスチャンバーに対する搬送対象物の搬入や搬出を行う場合であっても、第1モータおよび第2モータの温度の上昇を抑制することが可能になり、その結果、第1モータおよび第2モータの、熱の影響による損傷を抑制することが可能になる。 In the industrial robot of the present invention, the first motor and the second motor are disposed inside the central portion of the arm. Therefore, with the industrial robot according to the present invention, for example, even when carrying in and out the object to be transferred to and from the high temperature process chamber, the first motor and the second motor and the high temperature process chamber It becomes possible to secure the distance. Therefore, according to the present invention, it is possible to suppress the temperature rise of the first motor and the second motor, for example, even when carrying in and out of the object to be transferred to and from the process chamber which is at a high temperature. As a result, damage to the first motor and the second motor due to the influence of heat can be suppressed.
 本発明において、産業用ロボットは、たとえば、アームが回動可能に連結される本体部を備え、アームの中心が本体部に連結されている。本発明では、アームの中心部分の内部に第1モータおよび第2モータが配置されているため、この場合には、本体部に対して回動するアーム等のイナーシャを低減することが可能になる。 In the present invention, the industrial robot includes, for example, a main body portion to which an arm is rotatably connected, and a center of the arm is connected to the main body portion. In the present invention, since the first motor and the second motor are disposed inside the central portion of the arm, in this case, it is possible to reduce the inertia of the arm or the like which pivots with respect to the main body. .
 本発明において、アームの中心部分の内部には、第1モータおよび第2モータが配置される内部空間が形成され、内部空間は、大気圧となっていることが好ましい。このように構成すると、本発明の産業用ロボットで、たとえば、高温になっているプロセスチャンバーに対する搬送対象物の搬入や搬出を行う場合であっても、第1モータおよび第2モータを効率的に冷却することが可能になる。したがって、たとえば、高温になっているプロセスチャンバーに対する搬送対象物の搬入や搬出を行う場合であっても、第1モータおよび第2モータの温度の上昇を効果的に抑制することが可能になり、その結果、第1モータおよび第2モータの、熱の影響による損傷を防止することが可能になる。また、このように構成すると、第1モータおよび第2モータの潤滑剤として高価な真空グリースを使用する必要がなくなるため、産業用ロボットのイニシャルコストおよびランニングコストを低減することが可能になる。 In the present invention, it is preferable that an inner space in which the first motor and the second motor are disposed be formed inside the central portion of the arm, and the inner space be at atmospheric pressure. According to this structure, the first motor and the second motor can be efficiently used in the industrial robot according to the present invention, for example, even when carrying in or out the object to be transferred to or from the process chamber which is at a high temperature. It becomes possible to cool. Therefore, for example, even in the case of carrying in and out the object to be transferred to and from the process chamber which is at a high temperature, it becomes possible to effectively suppress the temperature rise of the first motor and the second motor. As a result, it is possible to prevent damage of the first motor and the second motor due to the influence of heat. Moreover, since it becomes unnecessary to use expensive vacuum grease as a lubricant of a 1st motor and a 2nd motor if comprised in this way, it becomes possible to reduce the initial cost and running cost of an industrial robot.
 本発明において、内部空間には、第1モータの出力軸と第2モータの出力軸とが反対方向に突出するように第1モータおよび第2モータが配置され、第1駆動機構は、第1モータの出力軸に連結される第1回転軸と、第1回転軸を回転可能に支持するとともに内部空間からの空気の流出を防ぐ第1磁性流体シールとを備え、第2駆動機構は、第2モータの出力軸に連結される第2回転軸と、第2回転軸を回転可能に支持するとともに内部空間からの空気の流出を防ぐ第2磁性流体シールとを備え、アームは、内部空間を画定するとともに第1磁性流体シールを保持する第1壁部と、内部空間を画定するとともに第2磁性流体シールを保持する第2壁部とを備えることが好ましい。 In the present invention, the first motor and the second motor are disposed in the internal space so that the output shaft of the first motor and the output shaft of the second motor project in the opposite direction, and the first drive mechanism is configured to And a second drive mechanism is provided with a first rotation shaft connected to the output shaft of the motor, and a first magnetic fluid seal that rotatably supports the first rotation shaft and prevents the outflow of air from the internal space. A second rotating shaft connected to the output shaft of the motor, and a second magnetic fluid seal rotatably supporting the second rotating shaft and preventing the outflow of air from the internal space, the arm including the internal space It is preferable to have a first wall defining and holding the first magnetic fluid seal, and a second wall defining the interior space and holding the second magnetic fluid seal.
 このように構成すると、アームの内部においては、アームの中心部分に形成される内部空間のみが大気圧となる。したがって、アームの端部まで大気圧となる空間が広がっている場合と比較して、アームの内部の構成を簡素化することが可能になるとともに、真空領域へ空気が流出するおそれを低減することが可能になる。また、このように構成すると、アームの中心側に第1磁性流体シールおよび第2磁性流体シールが配置されるため、たとえば、高温のプロセスチャンバーに対する搬送対象物の搬入や搬出を行う場合であっても、第1磁性流体シールおよび第2磁性流体シールと、高温のプロセスチャンバーとの距離を確保することが可能になる。したがって、第1磁性流体シールおよび第2磁性流体シールの温度の上昇を抑制することが可能になり、その結果、第1磁性流体シールおよび第2磁性流体シールの、熱の影響による損傷を抑制することが可能になる。 With this configuration, in the interior of the arm, only the internal space formed in the central portion of the arm is at atmospheric pressure. Therefore, it is possible to simplify the internal configuration of the arm and to reduce the risk of air flowing out to a vacuum region, as compared with the case where the space that is at atmospheric pressure is extended to the end of the arm. Becomes possible. Also, with this configuration, since the first magnetic fluid seal and the second magnetic fluid seal are disposed on the center side of the arm, for example, it is the case of carrying in and out the object to be transferred to the high temperature process chamber Also, the distance between the first magnetic fluid seal and the second magnetic fluid seal and the high temperature process chamber can be secured. Therefore, it is possible to suppress an increase in the temperature of the first magnetic fluid seal and the second magnetic fluid seal, and as a result, suppress the damage of the first magnetic fluid seal and the second magnetic fluid seal due to the influence of heat. It becomes possible.
 本発明において、たとえば、第1回転軸は、アームに対する第1ハンド支持部材および第2ハンド支持部材の移動方向と第1回転軸の軸方向とが一致するように配置され、第2回転軸は、アームに対する第1ハンド支持部材および第2ハンド支持部材の移動方向と第2回転軸の軸方向とが一致するように配置され、第1駆動機構は、第1回転軸の先端部に固定される第1傘歯車と、第1傘歯車に噛み合う第2傘歯車と、第2傘歯車が固定される第3回転軸と、第3回転軸に固定される2個の第1駆動プーリとを備え、第2駆動機構は、第2回転軸の先端部に固定される第3傘歯車と、第3傘歯車に噛み合う第4傘歯車と、第4傘歯車が固定される第4回転軸と、第4回転軸に固定される2個の第2駆動プーリとを備えている。 In the present invention, for example, the first rotation shaft is disposed such that the moving direction of the first hand support member and the second hand support member with respect to the arm coincides with the axial direction of the first rotation shaft, and the second rotation shaft is And the first drive mechanism is fixed to the tip of the first rotation shaft so that the moving direction of the first hand support member and the second hand support member with respect to the arm coincides with the axial direction of the second rotation shaft. A first bevel gear, a second bevel gear meshing with the first bevel gear, a third rotation shaft to which the second bevel gear is fixed, and two first drive pulleys fixed to the third rotation shaft The second drive mechanism includes a third bevel gear fixed to a tip end portion of the second rotation shaft, a fourth bevel gear meshing with the third bevel gear, and a fourth rotation shaft to which the fourth bevel gear is fixed , And two second drive pulleys fixed to the fourth rotation shaft.
 本発明において、第1駆動機構は、第4回転軸に回転可能に保持される2個の第1従動プーリと、第1ハンド支持部材に固定されるとともに第1駆動プーリと第1従動プーリとに架け渡される2本の第1ベルトとを備え、第2駆動機構は、第3回転軸に回転可能に保持される2個の第2従動プーリと、第2ハンド支持部材に固定されるとともに第2駆動プーリと第2従動プーリとに架け渡される2本の第2ベルトとを備え、第2傘歯車は、第3回転軸の軸方向における第3回転軸の中心側に固定され、2個の第1駆動プーリのそれぞれは、第3回転軸の軸方向における第3回転軸の両端部のそれぞれに固定され、第2従動プーリは、第2傘歯車と第1駆動プーリとの間で第3回転軸に回転可能に保持され、第4傘歯車は、第4回転軸の軸方向における第4回転軸の中心側に固定され、2個の第1従動プーリのそれぞれは、第4回転軸の軸方向における第4回転軸の両端部のそれぞれに回転可能に保持され、第2駆動プーリは、第4傘歯車と第1従動プーリとの間で第4回転軸に固定されていることが好ましい。 In the present invention, the first drive mechanism includes two first driven pulleys rotatably held by the fourth rotation shaft, and is fixed to the first hand support member, and further includes the first drive pulley and the first driven pulley. And the second drive mechanism is fixed to the second hand support member and the two second driven pulleys rotatably held by the third rotation shaft. The second bevel gear is fixed to the center side of the third rotation shaft in the axial direction of the third rotation shaft, and the second bevel gear is provided with two second belts bridged between the second drive pulley and the second driven pulley. Each of the first drive pulleys is fixed to each end of the third rotary shaft in the axial direction of the third rotary shaft, and the second driven pulley is between the second bevel gear and the first drive pulley. The fourth bevel gear is rotatably supported by the third rotation shaft, and the fourth bevel gear is axially aligned with the fourth rotation shaft. The two first driven pulleys, which are fixed to the center side of the fourth rotation shaft at each of the first and second rotation shafts, are rotatably held at both ends of the fourth rotation shaft in the axial direction of the fourth rotation shaft. The pulley is preferably fixed to the fourth rotation shaft between the fourth bevel gear and the first driven pulley.
 このように構成すると、第1駆動プーリが固定される第3回転軸に第2従動プーリが回転可能に保持され、第2駆動プーリが固定される第4回転軸に第1従動プーリが回転可能に保持されているため、第1従動プーリが回転可能に保持される軸や第2従動プーリが回転可能に保持される軸が別途設けられている場合と比較して、産業用ロボットの構成を簡素化することが可能になる。また、このように構成すると、2本の第1ベルトと2本の第2ベルトとが水平方向で並ぶように配置されるため、上下方向におけるアームの厚さを薄くすることが可能になる。したがって、産業用ロボットの高さを低くすることが可能になる。 According to this structure, the second driven pulley is rotatably held by the third rotary shaft to which the first drive pulley is fixed, and the first driven pulley is rotatable to the fourth rotary shaft to which the second drive pulley is fixed. Compared with the case where the shaft on which the first driven pulley is rotatably held and the shaft on which the second driven pulley is rotatably held are separately provided, the configuration of the industrial robot is It becomes possible to simplify. Moreover, since it arrange | positions so that two 1st belts and two 2nd belts may be located in a line with a horizontal direction if comprised in this way, it becomes possible to make thickness of the arm in an up-down direction thin. Therefore, it is possible to lower the height of the industrial robot.
 以上のように、本発明では、アームに対して直線的に往復移動する第1ハンドおよび第2ハンドを有するとともに真空中で搬送対象物を搬送する産業用ロボットにおいて、たとえば、高温になっているプロセスチャンバーに対する搬送対象物の搬入や搬出を行う場合であっても、第1ハンドを移動させるための第1モータおよび第2ハンドを移動させるための第2モータの、熱の影響による損傷を抑制することが可能になる。 As described above, in the present invention, for example, in the industrial robot having the first hand and the second hand that linearly reciprocates with respect to the arm and transporting the object to be transported in vacuum, the temperature is high, for example. Even in the case of carrying in and out of the object to be transferred into and from the process chamber, the damage due to the heat of the first motor for moving the first hand and the second motor for moving the second hand is suppressed It will be possible to
本発明の実施の形態にかかる産業用ロボットの平面図である。1 is a plan view of an industrial robot according to an embodiment of the present invention. 図1に示す産業用ロボットの側面図である。It is a side view of the industrial robot shown in FIG. 図1に示す産業用ロボットの背面図である。It is a rear view of the industrial robot shown in FIG. (A)は、図1に示すアームの内部構造を説明するための平面図であり、(B)は、(A)のE-E方向からアームの内部構造を説明するための図である。(A) is a top view for demonstrating the internal structure of the arm shown in FIG. 1, (B) is a figure for demonstrating the internal structure of an arm from the EE direction of (A). (A)は、図4(A)のF部の拡大図であり、(B)は、図4(B)のG部の拡大図である。(A) is an enlarged view of a portion F in FIG. 4 (A), and (B) is an enlarged view of a portion G in FIG. 4 (B). (A)は、図4(A)のH部の拡大図であり、(B)は、図4(A)のJ部の拡大図である。(A) is an enlarged view of H part of FIG. 4 (A), (B) is an enlarged view of J part of FIG. 4 (A). (A)は、図4(A)のK-K方向からアームの内部構造を説明するための図であり、(B)は、図4(A)のL-L方向からアームの内部構造を説明するための図である。(A) is a figure for demonstrating the internal structure of an arm from the KK direction of FIG. 4 (A), (B) is an internal structure of an arm from the LL direction of FIG. 4 (A). It is a figure for demonstrating. 図4(B)のN-N方向から第1ハンド支持部材、第2ハンド支持部材、アーム、第1駆動機構および第2駆動機構の構成を説明するための断面図である。FIG. 5 is a cross-sectional view for describing the configuration of a first hand support member, a second hand support member, an arm, a first drive mechanism, and a second drive mechanism, as viewed from the direction NN in FIG. 4B. 図4(B)のQ-Q方向から第1ハンド支持部材、第2ハンド支持部材、アーム、第1駆動機構および第2駆動機構の構成を説明するための断面図である。FIG. 5 is a cross-sectional view for describing a configuration of a first hand support member, a second hand support member, an arm, a first drive mechanism, and a second drive mechanism in the direction of QQ in FIG. 4B. 本発明の他の実施の形態にかかるアームの内部構造を説明するための図である。It is a figure for demonstrating the internal structure of the arm concerning other embodiment of this invention.
 以下、図面を参照しながら、本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (産業用ロボットの概略構成)
 図1は、本発明の実施の形態にかかる産業用ロボット1の平面図である。図2は、図1に示す産業用ロボット1の側面図である。図3は、図1に示す産業用ロボット1の背面図である。
(Schematic configuration of industrial robot)
FIG. 1 is a plan view of an industrial robot 1 according to an embodiment of the present invention. FIG. 2 is a side view of the industrial robot 1 shown in FIG. FIG. 3 is a rear view of the industrial robot 1 shown in FIG.
 本形態の産業用ロボット1(以下、「ロボット1」とする。)は、搬送対象物である液晶ディスプレイ用のガラス基板2(以下、「基板2」とする。)を真空中で搬送するロボットである。このロボット1は、液晶ディスプレイ装置の製造システムに組み込まれて使用される。この製造システムは、中心に配置されるトランスファーチャンバー3(以下、「チャンバー3」とする。)と、チャンバー3を囲むように配置される複数のプロセスチャンバー4(以下、「チャンバー4」とする。)とを備えている(図1参照)。 The industrial robot 1 of this embodiment (hereinafter referred to as "robot 1") is a robot that conveys a glass substrate 2 for liquid crystal display (hereinafter referred to as "substrate 2"), which is an object to be conveyed, in vacuum. It is. The robot 1 is used by being incorporated into a liquid crystal display device manufacturing system. In this manufacturing system, a transfer chamber 3 (hereinafter, referred to as “chamber 3”) disposed at the center and a plurality of process chambers 4 (hereinafter, “chamber 4”) disposed to surround the chamber 3 are provided. And (see FIG. 1).
 チャンバー3、4の内部は、真空になっている。すなわち、チャンバー3、4は、真空チャンバーである。チャンバー3の内部には、ロボット1の一部が配置されている。ロボット1は、チャンバー4への基板2の搬入とチャンバー4からの基板2の搬出とを行う。チャンバー4の内部には、各種の装置等が配置されており、チャンバー4の内部では、基板2に対して各種の処理が行われる。本形態のチャンバー4では、高温環境下で基板2に対する処理が実行される。そのため、チャンバー4の内部温度は高くなっている。 The inside of the chambers 3 and 4 is vacuum. That is, the chambers 3 and 4 are vacuum chambers. Inside the chamber 3, a part of the robot 1 is disposed. The robot 1 carries in the substrate 2 to the chamber 4 and carries out the substrate 2 from the chamber 4. Various devices and the like are disposed in the chamber 4, and various processes are performed on the substrate 2 in the chamber 4. In the chamber 4 of the present embodiment, processing on the substrate 2 is performed in a high temperature environment. Therefore, the internal temperature of the chamber 4 is high.
 ロボット1は、基板2が搭載される第1ハンドとしてのハンド5と、基板2が搭載される第2ハンドとしてのハンド6と、ハンド5が固定される第1ハンド支持部材としてのハンド支持部材7と、ハンド6が固定される第2ハンド支持部材としてのハンド支持部材8と、ハンド支持部材7、8を保持するアーム9と、アーム9が回動可能に連結される本体部10とを備えている。 The robot 1 includes a hand 5 as a first hand on which the substrate 2 is mounted, a hand 6 as a second hand on which the substrate 2 is mounted, and a hand support member as a first hand support member to which the hand 5 is fixed. 7, a hand support member 8 as a second hand support member to which the hand 6 is fixed, an arm 9 for holding the hand support members 7 and 8, and a body portion 10 to which the arm 9 is rotatably coupled. Have.
 本体部10は、アーム9の中心部が固定される円柱状の昇降部材12(図2参照)と、昇降部材12を昇降させる昇降機構と、昇降部材12を回動させる回動機構と、これらの構成が収容されるケース体13とを備えている。ケース体13は、略有底円筒状に形成されている。ケース体13の上端には、円板状に形成されたフランジ14が固定されている。フランジ14には、昇降部材12の上端側部分が配置される貫通孔が形成されている。 The main body unit 10 includes a columnar elevating member 12 (see FIG. 2) to which the central portion of the arm 9 is fixed, an elevating mechanism for elevating the elevating member 12, a pivoting mechanism for pivoting the elevating member 12, And a case body 13 in which the configuration of the above is accommodated. The case body 13 is formed in a substantially bottomed cylindrical shape. A flange 14 formed in a disk shape is fixed to the upper end of the case body 13. The flange 14 is formed with a through hole in which the upper end portion of the elevating member 12 is disposed.
 ハンド5、6およびアーム9は、本体部10の上側に配置されている。上述のように、ロボット1の一部は、チャンバー3の内部に配置されている。具体的には、ロボット1の、フランジ14の下端面よりも上側の部分がチャンバー3の内部に配置されている。すなわち、ロボット1の、フランジ14の下端面よりも上側の部分は、真空領域VRの中に配置されており、ハンド5、6およびアーム9は、真空チャンバー内(真空中)に配置されている。一方、ロボット1の、フランジ14の下端面よりも下側の部分は、大気領域ARの中(大気中)に配置されている。 The hands 5 and 6 and the arm 9 are disposed on the upper side of the main body 10. As described above, a part of the robot 1 is disposed inside the chamber 3. Specifically, a portion of the robot 1 above the lower end surface of the flange 14 is disposed inside the chamber 3. That is, a portion of the robot 1 above the lower end surface of the flange 14 is disposed in the vacuum region VR, and the hands 5 and 6 and the arm 9 are disposed in the vacuum chamber (in vacuum). . On the other hand, the portion of the robot 1 below the lower end surface of the flange 14 is disposed in the atmosphere region AR (in the atmosphere).
 アーム9は、ハンド支持部材7とハンド支持部材8とが水平方向の同じ方向へ直線的に往復移動可能となるようにハンド支持部材7、8を保持している。ロボット1は、アーム9に対してハンド支持部材7を往復移動させる第1駆動機構としての駆動機構17と、アーム9に対してハンド支持部材8を往復移動させる第2駆動機構としての駆動機構18とを備えている(図4参照)。 The arm 9 holds the hand support members 7 and 8 so that the hand support member 7 and the hand support member 8 can linearly reciprocate in the same horizontal direction. The robot 1 has a drive mechanism 17 as a first drive mechanism for reciprocating the hand support member 7 with respect to the arm 9 and a drive mechanism 18 as a second drive mechanism for reciprocate the hand support member 8 with respect to the arm 9. And (see FIG. 4).
 以下、ハンド5、6、ハンド支持部材7、8、アーム9および駆動機構17、18の具体的な構成を説明する。なお、以下の説明では、アーム9に対するハンド支持部材7、8の移動方向である図1等のX方向を「前後方向」とし、上下方向(鉛直方向)と前後方向とに直交する図1等のY方向を「左右方向」とする。また、前後方向のうちのX1方向側を「前」側とし、その反対側であるX2方向側を「後ろ」側とする。 Hereinafter, specific configurations of the hands 5 and 6, the hand support members 7 and 8, the arm 9, and the drive mechanisms 17 and 18 will be described. In the following description, the X direction in FIG. 1 etc., which is the moving direction of the hand support members 7 and 8 with respect to the arm 9, is referred to as “front and back direction”, and is perpendicular to the vertical direction (vertical direction) The Y direction of is the "left and right direction". Further, in the front-rear direction, the X1 direction side is referred to as the “front” side, and the opposite X2 direction side is referred to as the “rear” side.
 (ハンド、ハンド支持部材、アームおよび駆動機構の構成)
 図4(A)は、図1に示すアーム9の内部構造を説明するための平面図であり、図4(B)は、図4(A)のE-E方向からアーム9の内部構造を説明するための図である。図5(A)は、図4(A)のF部の拡大図であり、図5(B)は、図4(B)のG部の拡大図である。図6(A)は、図4(A)のH部の拡大図であり、図6(B)は、図4(A)のJ部の拡大図である。図7(A)は、図4(A)のK-K方向からアーム9の内部構造を説明するための図であり、図7(B)は、図4(A)のL-L方向からアーム9の内部構造を説明するための図である。図8は、図4(B)のN-N方向からハンド支持部材7、8、アーム9および駆動機構17、18の構成を説明するための断面図である。図9は、図4(B)のQ-Q方向からハンド支持部材7、8、アーム9および駆動機構17、18の構成を説明するための断面図である。
(Configuration of hand, hand support member, arm and drive mechanism)
FIG. 4A is a plan view for explaining the internal structure of the arm 9 shown in FIG. 1, and FIG. 4B shows the internal structure of the arm 9 from the EE direction of FIG. 4A. It is a figure for demonstrating. FIG. 5 (A) is an enlarged view of a part F of FIG. 4 (A), and FIG. 5 (B) is an enlarged view of a part G of FIG. 4 (B). 6 (A) is an enlarged view of a portion H in FIG. 4 (A), and FIG. 6 (B) is an enlarged view of a portion J in FIG. 4 (A). FIG. 7A is a view for explaining the internal structure of the arm 9 from the direction of arrows K in FIG. 4A, and FIG. 7B is from the direction of LL in FIG. 4A. It is a figure for demonstrating the internal structure of the arm 9. FIG. FIG. 8 is a cross-sectional view for describing the configuration of the hand support members 7, 8, the arm 9, and the drive mechanisms 17, 18 from the direction NN in FIG. 4B. FIG. 9 is a cross-sectional view for describing the configurations of the hand support members 7 and 8, the arm 9 and the drive mechanisms 17 and 18 in the direction of QQ in FIG. 4B.
 ハンド5は、基板2が搭載される複数のフォーク20と、複数のフォーク20の基端部(後端部)が固定されるハンド基部21とを備えている。ハンド6は、ハンド5と同様に、基板2が搭載される複数のフォーク20と、複数のフォーク20の基端部(後端部)が固定されるハンド基部22とを備えている。本形態のハンド5、6は、6本のフォーク20を備えている。フォーク20は、前後方向に細長い直線状に形成されている。ハンド基部21、22は、左右方向に細長い略長方形状の平板状に形成されている。ハンド基部21の長さ(左右方向の長さ)は、ハンド基部22の長さ(左右方向の長さ)よりも長くなっている。 The hand 5 includes a plurality of forks 20 on which the substrate 2 is mounted, and a hand base 21 to which base ends (rear ends) of the plurality of forks 20 are fixed. Similar to the hand 5, the hand 6 includes a plurality of forks 20 on which the substrate 2 is mounted, and a hand base 22 to which base ends (rear ends) of the plurality of forks 20 are fixed. The hands 5, 6 in this embodiment are provided with six forks 20. The fork 20 is formed in an elongated linear shape in the front-rear direction. The hand bases 21 and 22 are formed in a substantially rectangular flat plate shape elongated in the left-right direction. The length (length in the left-right direction) of the hand base 21 is longer than the length (length in the left-right direction) of the hand base 22.
 ハンド5とハンド6とは、前後方向から見たときに、上下方向で互いに重なるように配置されている。本形態では、前後方向から見たときに、ハンド5が上側に配置され、ハンド6が下側に配置されている。すなわち、前後方向から見たときに、ハンド基部21が上側に配置され、ハンド基部22が下側に配置されている。また、図3に示すように、ハンド5とハンド6とは、前後方向から見たときに、ハンド基部21の中心とハンド基部22の中心とが左右方向において一致するように配置されている。すなわち、ハンド5とハンド6とは、前後方向から見たときに、ハンド5の中心とハンド6の中心とが左右方向において一致するように配置されている。 The hand 5 and the hand 6 are arranged so as to overlap each other in the vertical direction when viewed from the front and rear direction. In the present embodiment, the hand 5 is disposed on the upper side and the hand 6 is disposed on the lower side when viewed from the front-rear direction. That is, when viewed from the front-rear direction, the hand base 21 is disposed on the upper side, and the hand base 22 is disposed on the lower side. Further, as shown in FIG. 3, the hand 5 and the hand 6 are arranged such that the center of the hand base 21 and the center of the hand base 22 coincide in the left-right direction when viewed from the front-rear direction. That is, the hand 5 and the hand 6 are arranged such that the center of the hand 5 and the center of the hand 6 coincide in the left-right direction when viewed in the front-rear direction.
 アーム9は、ハンド6の下側に配置されている。このアーム9は、前後方向に細長い略直方体状に形成されている。また、アーム9は、中空状に形成されている。アーム9の左右方向の幅は、ハンド5、6の左右方向の幅よりも狭くなっている。アーム9は、前後方向から見たときに、ハンド5、6の中心とアーム9の中心とが左右方向において一致するように配置されている。アーム9は、アーム9のフレームであるアームフレーム23と、アーム9の上下、左右および前後の側面を構成するカバー部材24と、アーム9の中心部に配置される箱状のモータ収容部材25と、モータ収容部材25の上面に固定される上面カバー26とを備えている。なお、図4~図9では、カバー部材24の図示を省略している。 The arm 9 is disposed below the hand 6. The arm 9 is formed in a substantially rectangular shape elongated in the front-rear direction. Also, the arm 9 is formed in a hollow shape. The width in the left-right direction of the arm 9 is narrower than the width in the left-right direction of the hands 5 and 6. The arm 9 is disposed such that the centers of the hands 5 and 6 and the center of the arm 9 coincide with each other in the left-right direction when viewed from the front-rear direction. The arm 9 includes an arm frame 23 which is a frame of the arm 9, a cover member 24 constituting upper and lower, right and left and front and rear sides of the arm 9, and a box-shaped motor housing member 25 disposed at the center of the arm 9. And an upper surface cover 26 fixed to the upper surface of the motor housing member 25. In FIG. 4 to FIG. 9, the illustration of the cover member 24 is omitted.
 アームフレーム23は、前後方向におけるアーム9の全域でアーム9のフレームを構成している。このアームフレーム23は、アームフレーム23の右側面を構成する右側板部23aと、アームフレーム23の左側面を構成する左側板部23bと、アームフレーム23の上側面を構成する上側板部23cと、アームフレーム23の下側面を構成する下側板部23dとを備えている。 The arm frame 23 constitutes a frame of the arm 9 in the entire area of the arm 9 in the front-rear direction. The arm frame 23 includes a right side plate portion 23a constituting a right side surface of the arm frame 23, a left side plate portion 23b constituting a left side surface of the arm frame 23, and an upper side plate portion 23c constituting an upper side surface of the arm frame 23. And a lower side plate portion 23d that constitutes the lower side surface of the arm frame 23.
 右側板部23a、左側板部23b、上側板部23cおよび下側板部23dは、平板状に形成されている。右側板部23aは、右側板部23aの厚さ方向と左右方向とが一致するように配置され、左側板部23bは、左側板部23bの厚さ方向と左右方向とが一致するように配置されている。上側板部23cは、上側板部23cの厚さ方向と上下方向とが一致するように配置され、下側板部23dは、下側板部23dの厚さ方向と上下方向とが一致するように配置されている。 The right side plate portion 23a, the left side plate portion 23b, the upper side plate portion 23c, and the lower side plate portion 23d are formed in a flat plate shape. The right side plate portion 23a is disposed such that the thickness direction of the right side plate portion 23a coincides with the left and right direction, and the left side plate portion 23b is disposed such that the thickness direction of the left side plate portion 23b coincides with the left and right direction It is done. The upper side plate portion 23c is arranged such that the thickness direction of the upper side plate portion 23c coincides with the vertical direction, and the lower side plate portion 23d is arranged such that the thickness direction of the lower side plate portion 23d coincides with the vertical direction It is done.
 右側板部23aと左側板部23bとは、左右方向に間隔をあけた状態で配置されている。上側板部23cは、右側板部23aの上端および左側板部23bの上端にネジによって固定されている。下側板部23dは、右側板部23aの下端および左側板部23bの下端にネジによって固定されている。上側板部23cの右端および下側板部23dの右端は、右側板部23aよりも右側に配置され、上側板部23cの左端および下側板部23dの左端は、左側板部23bよりも左側に配置されている。 The right side plate portion 23a and the left side plate portion 23b are disposed in the state of being spaced apart in the left-right direction. The upper side plate portion 23c is fixed to the upper end of the right side plate portion 23a and the upper end of the left side plate portion 23b by screws. The lower side plate portion 23d is fixed to the lower end of the right side plate portion 23a and the lower end of the left side plate portion 23b by screws. The right end of the upper side plate portion 23c and the right end of the lower side plate portion 23d are disposed on the right side of the right side plate portion 23a, and the left end of the upper side plate portion 23c and the left end of the lower side plate portion 23d are disposed on the left side of the left side plate portion 23b It is done.
 モータ収容部材25は、上面側が開口する略直方体の箱状に形成されている。また、モータ収容部材25は、前後方向に細長い略直方体の箱状に形成されている。モータ収容部材25には、駆動機構17を構成する後述のモータ37と、駆動機構18を構成する後述のモータ38とが収容されている。モータ収容部材25は、アームフレーム23の中心部分に固定されている。すなわち、モータ収容部材25は、アーム9の中心部分に配置されている。モータ収容部材25の底面の中心は、昇降部材12の上端に固定されている。すなわち、アーム9の中心は、本体部10に回動可能に連結されている。なお、モータ収容部材25の、下端部以外の大半部分は、左右方向において、右側板部23aと左側板部23bとの間に配置されている(図5(A)、図9参照)。 The motor housing member 25 is formed in a substantially rectangular parallelepiped box shape whose upper surface side is open. Further, the motor housing member 25 is formed in a box shape of a substantially rectangular parallelepiped elongated in the front-rear direction. The motor accommodating member 25 accommodates a motor 37 described later constituting the drive mechanism 17 and a motor 38 described later constituting the drive mechanism 18. The motor housing member 25 is fixed to a central portion of the arm frame 23. That is, the motor housing member 25 is disposed at the central portion of the arm 9. The center of the bottom surface of the motor housing member 25 is fixed to the upper end of the elevating member 12. That is, the center of the arm 9 is rotatably connected to the main body 10. Most parts other than the lower end of the motor housing member 25 are disposed between the right side plate 23a and the left side plate 23b in the left-right direction (see FIGS. 5A and 9).
 上面カバー26は、長方形の平板状に形成されている。上面カバー26は、モータ収容部材25の上面側に形成される開口部を塞ぐようにモータ収容部材25の上面に固定されている。アーム9の中心部分の内部には、モータ収容部材25と上面カバー26とによって画定される内部空間Sが形成されている。モータ収容部材25の底面部の中心には、上下方向に貫通する貫通穴25aが形成されている。上述のように、昇降部材12は、円筒状に形成されている。昇降部材12は、貫通穴25aを囲むようにモータ収容部材25の底面に固定されており、ケース体13の内部と内部空間Sとが通じている。ケース体13の内部および内部空間Sは、大気圧となっている。 The upper surface cover 26 is formed in a rectangular flat plate shape. The upper surface cover 26 is fixed to the upper surface of the motor accommodation member 25 so as to close an opening formed on the upper surface side of the motor accommodation member 25. An internal space S defined by the motor housing member 25 and the top cover 26 is formed inside the central portion of the arm 9. At the center of the bottom surface portion of the motor housing member 25, a through hole 25a penetrating in the vertical direction is formed. As described above, the elevating member 12 is formed in a cylindrical shape. The elevating member 12 is fixed to the bottom surface of the motor housing member 25 so as to surround the through hole 25a, and the inside of the case body 13 communicates with the internal space S. The internal space S of the case body 13 is at atmospheric pressure.
 図8、図9に示すように、右側板部23aの右面および左側板部23bの左面には、ハンド支持部材7を前後方向へ案内するためのガイドレール29が固定されている。また、右側板部23aの右面および左側板部23bの左面には、ハンド支持部材8を前後方向へ案内するためのガイドレール30が固定されている。ガイドレール29、30は、ガイドレール29、30の長手方向と前後方向とが一致するように、右側板部23aおよび左側板部23bに固定されている。 As shown in FIGS. 8 and 9, guide rails 29 for guiding the hand support member 7 in the front-rear direction are fixed to the right surface of the right side plate portion 23a and the left surface of the left side plate portion 23b. Further, a guide rail 30 for guiding the hand support member 8 in the front-rear direction is fixed to the right surface of the right side plate portion 23a and the left surface of the left side plate portion 23b. The guide rails 29, 30 are fixed to the right side plate portion 23a and the left side plate portion 23b so that the longitudinal direction of the guide rails 29, 30 and the longitudinal direction coincide with each other.
 本形態では、前後方向で分割された複数のガイドレール29が右側板部23aおよび左側板部23bに固定されている(図7参照)。同様に、前後方向で分割された複数のガイドレール30が右側板部23aおよび左側板部23bに固定されている。右側板部23aの右面に固定されるガイドレール29と、左側板部23bの左面に固定されるガイドレール29とは、上下方向において同じ位置に配置されている。同様に、右側板部23aの右面に固定されるガイドレール30と、左側板部23bの左面に固定されるガイドレール30とは、上下方向において同じ位置に配置されている。また、ガイドレール30は、ガイドレール29の上側に配置されている。 In this embodiment, a plurality of guide rails 29 divided in the front-rear direction are fixed to the right side plate portion 23a and the left side plate portion 23b (see FIG. 7). Similarly, a plurality of guide rails 30 divided in the front-rear direction are fixed to the right side plate portion 23a and the left side plate portion 23b. The guide rail 29 fixed to the right side of the right side plate portion 23a and the guide rail 29 fixed to the left side of the left side plate portion 23b are arranged at the same position in the vertical direction. Similarly, the guide rail 30 fixed to the right surface of the right side plate portion 23a and the guide rail 30 fixed to the left surface of the left side plate portion 23b are arranged at the same position in the vertical direction. Further, the guide rail 30 is disposed on the upper side of the guide rail 29.
 ハンド支持部材7は、ガイドレール29に沿って前後方向にスライドする2個のスライド部7aと、ハンド5のハンド基部21が固定される2個のハンド固定部7bとから構成されている。同様に、ハンド支持部材8は、ガイドレール30に沿って前後方向にスライドする2個のスライド部8aと、ハンド6のハンド基部22が固定される2個のハンド固定部8bとから構成されている。 The hand support member 7 is composed of two slide portions 7 a that slide in the front-rear direction along the guide rails 29 and two hand fixing portions 7 b to which the hand base 21 of the hand 5 is fixed. Similarly, the hand support member 8 is composed of two slide portions 8a that slide in the front-rear direction along the guide rails 30, and two hand fixing portions 8b to which the hand base 22 of the hand 6 is fixed. There is.
 図8、図9に示すように、2個のスライド部7aのそれぞれは、右側板部23aおよび左側板部23bの左右方向の外側に配置されている。2個のスライド部8aのそれぞれは、右側板部23aおよび左側板部23bの左右方向の外側に配置されている。また、2個のスライド部8aは、2個のスライド部7aの上側に配置されている。図3に示すように、右側に配置されるスライド部7a、8aの右端部分は、カバー部材24の右側面よりも右側へ突出し、左側に配置されるスライド部7a、8aの左端部分は、カバー部材24の左側面よりも左側へ突出している。 As shown in FIGS. 8 and 9, each of the two slide portions 7a is disposed on the outer side in the left-right direction of the right side plate portion 23a and the left side plate portion 23b. Each of the two slide parts 8a is arrange | positioned on the outer side of the left-right direction of the right side plate part 23a and the left side plate part 23b. Moreover, the two slide parts 8a are arrange | positioned above the two slide parts 7a. As shown in FIG. 3, the right end portions of the slide portions 7a and 8a disposed on the right side project to the right with respect to the right side surface of the cover member 24 and the left end portions of the slide portions 7a and 8a disposed on the left side are the cover It projects to the left from the left side surface of the member 24.
 2個のハンド固定部7bのうちの一方のハンド固定部7bは、右側に配置されるスライド部7aの右端側から右斜め上側に向かって伸びるようにこのスライド部7aに固定されており、このハンド固定部7bの上端には、図3に示すように、ハンド基部21の右端部分の下面が固定されている。他方のハンド固定部7bは、左側に配置されるスライド部7aの左端側から左斜め上側に向かって伸びるようにこのスライド部7aに固定されており、このハンド固定部7bの上端には、図3に示すように、ハンド基部21の左端部分の下面が固定されている。 One hand fixing portion 7b of the two hand fixing portions 7b is fixed to the slide portion 7a so as to extend obliquely from the right end side of the slide portion 7a disposed on the right side to the upper right side. The lower surface of the right end portion of the hand base portion 21 is fixed to the upper end of the hand fixing portion 7b as shown in FIG. The other hand fixing portion 7b is fixed to the slide portion 7a so as to extend from the left end side of the slide portion 7a disposed on the left side toward the upper left, and the upper end of the hand fixing portion 7b As shown in 3, the lower surface of the left end portion of the hand base 21 is fixed.
 2個のハンド固定部8bのうちの一方のハンド固定部8bは、右側に配置されるスライド部8aの右端側から右斜め上側に向かって伸びるようにこのスライド部8aに固定されており、このハンド固定部8bの上端には、図3に示すように、ハンド基部22の、左右方向の中心よりも右寄りの部分の下面が固定されている。他方のハンド固定部8bは、左側に配置されるスライド部8aの左端側から左斜め上側に向かって伸びるようにこのスライド部8aに固定されており、このハンド固定部8bの上端には、図3に示すように、ハンド基部22の、左右方向の中心よりも左寄りの部分の下面が固定されている。 One hand fixing portion 8b of the two hand fixing portions 8b is fixed to the slide portion 8a so as to extend obliquely from the right end side of the slide portion 8a disposed on the right side to the upper right side. At the upper end of the hand fixing portion 8b, as shown in FIG. 3, the lower surface of a portion of the hand base 22 that is closer to the right than the center in the left-right direction is fixed. The other hand fixing portion 8b is fixed to the slide portion 8a so as to extend from the left end side of the slide portion 8a disposed on the left side to the upper left, and the upper end of the hand fixing portion 8b As shown in FIG. 3, the lower surface of the left side of the hand base 22 with respect to the center in the left-right direction is fixed.
 右側に配置されるスライド部7aには、右側に配置されるガイドレール29に係合するガイドブロック31が固定され、左側に配置されるスライド部7aには、左側に配置されるガイドレール29に係合するガイドブロック31が固定されている。同様に、右側に配置されるスライド部8aには、右側に配置されるガイドレール30に係合するガイドブロック32が固定され、左側に配置されるスライド部8aには、左側に配置されるガイドレール30に係合するガイドブロック32が固定されている。 The guide block 31 engaged with the guide rail 29 disposed on the right side is fixed to the slide portion 7 a disposed on the right side, and the slide portion 7 a disposed on the left side is attached to the guide rail 29 disposed on the left side The guide block 31 to be engaged is fixed. Similarly, the guide block 32 engaged with the guide rail 30 disposed on the right is fixed to the slide 8a disposed on the right, and the guide 8 disposed on the left is disposed on the slide 8a disposed on the left A guide block 32 engaged with the rail 30 is fixed.
 具体的には、2個のスライド部7aのそれぞれに3個のガイドブロック31が前後方向に間隔をあけた状態で固定されている(図7(B)参照)。また、2個のスライド部8aのそれぞれに3個のガイドブロック32が前後方向に間隔をあけた状態で固定されている(図7(A)参照)。本形態では、ガイドレール29とガイドブロック31とによってハンド支持部材7を前後方向へ案内するガイド機構33が構成されている。また、ガイドレール30とガイドブロック32とによってハンド支持部材8を前後方向へ案内するガイド機構34が構成されている。 Specifically, three guide blocks 31 are fixed to each of the two slide portions 7a with a space in the front-rear direction (see FIG. 7B). Further, three guide blocks 32 are fixed to each of the two slide portions 8a in a state of being spaced in the front-rear direction (see FIG. 7A). In the present embodiment, a guide mechanism 33 configured to guide the hand support member 7 in the front-rear direction is configured by the guide rail 29 and the guide block 31. Further, the guide rail 30 and the guide block 32 constitute a guide mechanism 34 for guiding the hand support member 8 in the front-rear direction.
 駆動機構17、18は、アーム9の内部に配置されている。駆動機構17は、駆動源としてのモータ37を備えている。駆動機構18は、駆動源としてのモータ38を備えている。モータ37、38は、内部空間Sに配置されている。すなわち、モータ37、38は、アーム9の中心部分の内部に配置されている。モータ37、38は、所定のブラケットを介して、モータ収容部材25に固定されている。モータ37とモータ38とは、前後方向に間隔をあけた状態で配置されている。具体的には、モータ37が後ろ側に配置され、モータ38が前側に配置されている。本形態のモータ37は、第1モータであり、モータ38は、第2モータである。 The drive mechanisms 17 and 18 are disposed inside the arm 9. The drive mechanism 17 includes a motor 37 as a drive source. The drive mechanism 18 includes a motor 38 as a drive source. The motors 37 and 38 are disposed in the internal space S. That is, the motors 37, 38 are disposed inside the central portion of the arm 9. The motors 37 and 38 are fixed to the motor housing member 25 via predetermined brackets. The motor 37 and the motor 38 are disposed in the state of being spaced apart in the front-rear direction. Specifically, the motor 37 is disposed on the rear side, and the motor 38 is disposed on the front side. The motor 37 of this embodiment is a first motor, and the motor 38 is a second motor.
 モータ37、38は、モータ37、38の出力軸の軸方向と前後方向とが一致するように配置されている。また、モータ37、38は、モータ37の出力軸とモータ38の出力軸とが反対方向に突出するように内部空間Sに配置されている。具体的には、モータ37の出力軸が後ろ側に向かって突出し、モータ38の出力軸が前側に向かって突出するように、モータ37、38が内部空間Sに配置されている。前後方向から見たときに、モータ37の回転中心とモータ38の回転中心とは一致している。また、前後方向から見たときに、モータ37、38の回転中心とアーム9の中心とは略一致している。なお、モータ37、38には、冷却用のエア配管(図示省略)が巻き付けられている。 The motors 37 and 38 are arranged such that the axial direction of the output shaft of the motors 37 and 38 coincides with the front-rear direction. The motors 37 and 38 are disposed in the internal space S such that the output shaft of the motor 37 and the output shaft of the motor 38 protrude in the opposite direction. Specifically, the motors 37, 38 are disposed in the internal space S such that the output shaft of the motor 37 projects rearward and the output shaft of the motor 38 projects forward. When viewed from the front-rear direction, the rotation center of the motor 37 and the rotation center of the motor 38 coincide with each other. Further, when viewed in the front-rear direction, the rotation centers of the motors 37 and 38 and the center of the arm 9 substantially coincide with each other. Note that air pipes (not shown) for cooling are wound around the motors 37 and 38.
 また、駆動機構17は、モータ37の出力軸に連結される第1回転軸としての回転軸39と、回転軸39の先端部に固定される第1傘歯車としての傘歯車40と、傘歯車40に噛み合う第2傘歯車としての傘歯車41と、傘歯車41が固定される第3回転軸としての回転軸42とを備えている。同様に、駆動機構18は、モータ38の出力軸に連結される第2回転軸としての回転軸43と、回転軸43の先端部に固定される第3傘歯車としての傘歯車44と、傘歯車44に噛み合う第4傘歯車としての傘歯車45と、傘歯車45が固定される第4回転軸としての回転軸46とを備えている。 Further, the drive mechanism 17 includes a rotation shaft 39 as a first rotation shaft connected to the output shaft of the motor 37, a bevel gear 40 as a first bevel gear fixed to the tip of the rotation shaft 39, and a bevel gear A bevel gear 41 as a second bevel gear meshing with 40 and a rotation shaft 42 as a third rotation shaft to which the bevel gear 41 is fixed are provided. Similarly, the drive mechanism 18 includes a rotary shaft 43 as a second rotary shaft connected to the output shaft of the motor 38, a bevel gear 44 as a third bevel gear fixed to the tip of the rotary shaft 43, and a umbrella A bevel gear 45 as a fourth bevel gear meshing with the gear 44 and a rotation shaft 46 as a fourth rotation shaft to which the bevel gear 45 is fixed are provided.
 さらに、駆動機構17は、回転軸42に固定される2個の駆動プーリ48と、回転軸46に回転可能に保持される2個の従動プーリ49と、駆動プーリ48と従動プーリ49とに架け渡される2本のベルト50とを備えている。同様に、駆動機構18は、回転軸46に固定される2個の駆動プーリ52と、回転軸42に回転可能に保持される2個の従動プーリ53と、駆動プーリ52と従動プーリ53とに架け渡される2本のベルト54とを備えている。本形態の駆動プーリ48は第1駆動プーリであり、従動プーリ49は第1従動プーリであり、ベルト50は第1ベルトであり、駆動プーリ52は第2駆動プーリであり、従動プーリ53は第2従動プーリであり、ベルト54は第2ベルトである。 Furthermore, the drive mechanism 17 spans two drive pulleys 48 fixed to the rotation shaft 42, two driven pulleys 49 rotatably held by the rotation shaft 46, the drive pulley 48 and the driven pulley 49. It has two belts 50 to be delivered. Similarly, the drive mechanism 18 comprises two drive pulleys 52 fixed to the rotary shaft 46, two driven pulleys 53 rotatably held by the rotary shaft 42, a drive pulley 52 and a driven pulley 53. It has two belts 54 to be bridged. The drive pulley 48 of this embodiment is a first drive pulley, the driven pulley 49 is a first driven pulley, the belt 50 is a first belt, the drive pulley 52 is a second drive pulley, and the driven pulley 53 is The belt 54 is a second driven pulley.
 回転軸39は、回転軸39の軸方向と前後方向とが一致するように配置されており、モータ37の出力軸の先端(後端)にカップリング55を介して連結されている(図5参照)。回転軸43は、回転軸43の軸方向と前後方向とが一致するように配置されており、モータ38の出力軸の先端(前端)にカップリング55を介して連結されている(図5参照)。傘歯車40、41、回転軸42、駆動プーリ48および従動プーリ53は、アーム9の後端側の内部に配置されている。傘歯車44、45、回転軸46、駆動プーリ52および従動プーリ49は、アーム9の前端側の内部に配置されている。 The rotary shaft 39 is disposed such that the axial direction of the rotary shaft 39 coincides with the front-rear direction, and is connected to the front end (rear end) of the output shaft of the motor 37 via a coupling 55 (FIG. 5) reference). The rotating shaft 43 is disposed so that the axial direction of the rotating shaft 43 coincides with the front-rear direction, and is connected to the tip (front end) of the output shaft of the motor 38 via a coupling 55 (see FIG. 5) ). The bevel gears 40 and 41, the rotation shaft 42, the drive pulley 48 and the driven pulley 53 are disposed inside the rear end side of the arm 9. The bevel gears 44 and 45, the rotation shaft 46, the drive pulley 52 and the driven pulley 49 are disposed inside the front end side of the arm 9.
 また、駆動機構17は、回転軸39を回転可能に保持するとともに内部空間Sからの空気の流出を防ぐ第1磁性流体シールとしての磁性流体シール56を備えている。同様に、駆動機構18は、回転軸43を回転可能に保持するとともに内部空間Sからの空気の流出を防ぐ第2磁性流体シールとしての磁性流体シール57を備えている。図5に示すように、磁性流体シール56は、モータ収容部材25の後面を構成する後壁部25bに固定されている。磁性流体シール57は、モータ収容部材25の前面を構成する前壁部25cに固定されている。 Further, the drive mechanism 17 is provided with a magnetic fluid seal 56 as a first magnetic fluid seal that holds the rotating shaft 39 rotatably and prevents the outflow of air from the internal space S. Similarly, the drive mechanism 18 is provided with a magnetic fluid seal 57 as a second magnetic fluid seal that holds the rotating shaft 43 rotatably and prevents the outflow of air from the internal space S. As shown in FIG. 5, the magnetic fluid seal 56 is fixed to a rear wall 25 b that constitutes the rear surface of the motor housing member 25. The magnetic fluid seal 57 is fixed to a front wall 25 c that constitutes the front surface of the motor housing member 25.
 具体的には、磁性流体シール56は、後壁部25bを前後方向で貫通する貫通穴の中に挿通された状態で後壁部25bに固定され、磁性流体シール57は、前壁部25cを前後方向で貫通する貫通穴の中に挿通された状態で前壁部25cに固定されている。すなわち、アーム9は、内部空間Sを画定するとともに磁性流体シール56を保持する後壁部25bと、内部空間Sを画定するとともに磁性流体シール57を保持する前壁部25cとを備えている。本形態の後壁部25bは第1壁部であり、前壁部25cは第2壁部である。 Specifically, the magnetic fluid seal 56 is fixed to the rear wall 25b in a state of being inserted into a through hole that penetrates the rear wall 25b in the front-rear direction, and the magnetic fluid seal 57 has a front wall 25c. It is being fixed to front wall 25c in the state where it was inserted in the penetration hole penetrated by the direction of order. That is, the arm 9 includes a rear wall 25 b which defines the inner space S and holds the magnetic fluid seal 56, and a front wall 25 c which defines the inner space S and holds the magnetic fluid seal 57. The rear wall 25b of this embodiment is a first wall, and the front wall 25c is a second wall.
 また、回転軸39、43は、アームフレーム23に固定される複数の軸受59に回転可能に支持されている。なお、本形態の回転軸39は、長さの短い2本の短軸と、長さの長い1本の長軸とによって形成されている。2本の短軸のうちの一方の短軸は、カップリング55を介してモータ37の出力軸に連結されるとともに磁性流体シール56に回転可能に保持されている。他方の短軸には、傘歯車40が固定されている。一方の短軸と長軸の前端とは、磁性流体シール56の後ろ側に配置されるカップリング60によって連結され(図5参照)、他方の短軸と長軸の後端とは、最も後ろ側の軸受59の前側に配置されるカップリング60によって連結されている(図6(B)参照)。 The rotating shafts 39 and 43 are rotatably supported by a plurality of bearings 59 fixed to the arm frame 23. In addition, the rotating shaft 39 of this form is formed of two short axes of short length, and one long axis of one long axis. One of the two short shafts is coupled to the output shaft of the motor 37 via a coupling 55 and is rotatably held by the magnetic fluid seal 56. A bevel gear 40 is fixed to the other short axis. One short axis and the front end of the long axis are connected by a coupling 60 disposed behind the magnetic fluid seal 56 (see FIG. 5), and the other short axis and the rear end of the long axis are the rearmost It is connected by the coupling 60 arrange | positioned in the front side of the bearing 59 of a side (refer FIG. 6 (B)).
 同様に、本形態の回転軸43は、長さの短い2本の短軸と、長さの長い1本の長軸とによって形成されている。2本の短軸のうちの一方の短軸は、カップリング55を介してモータ38の出力軸に連結されるとともに磁性流体シール57に回転可能に保持されている。他方の短軸には、傘歯車44が固定されている。一方の短軸と長軸の後端とは、磁性流体シール57の前側に配置されるカップリング60によって連結され(図5参照)、他方の短軸と長軸の前端とは、最も前側の軸受59の後ろ側に配置されるカップリング60によって連結されている(図6(A)参照)。なお、回転軸39、43は、1本の長軸によって構成されていても良い。 Similarly, the rotation shaft 43 of the present embodiment is formed by two short axes with a short length and one long axis with a long length. One of the two short shafts is connected to the output shaft of the motor 38 via a coupling 55 and is rotatably held by the magnetic fluid seal 57. A bevel gear 44 is fixed to the other short axis. One short axis and the rear end of the long axis are connected by a coupling 60 disposed on the front side of the magnetic fluid seal 57 (see FIG. 5), and the other short axis and the front end of the long axis are the frontmost It connects by the coupling 60 arrange | positioned at the back side of the bearing 59 (refer FIG. 6 (A)). The rotating shafts 39 and 43 may be configured by one long axis.
 回転軸42は、傘歯車40の後ろ側に配置されている。回転軸42は、回転軸42の軸方向と左右方向とが一致するように配置されており、モータ37の動力で左右方向を回転の軸方向として回転する。すなわち、回転軸42に固定される駆動プーリ48は、モータ37の動力で左右方向を回転の軸方向として回転する。また、回転軸42に回転可能に保持される従動プーリ53も、左右方向を回転の軸方向として回転する。傘歯車41は、左右方向における回転軸42の中心側に固定されている。 The rotation shaft 42 is disposed on the rear side of the bevel gear 40. The rotation shaft 42 is disposed such that the axial direction of the rotation shaft 42 coincides with the left and right direction, and rotates with the power of the motor 37 as the rotation axial direction. That is, the drive pulley 48 fixed to the rotation shaft 42 rotates with the power of the motor 37 as the rotation axial direction in the left-right direction. Further, the driven pulley 53 rotatably held by the rotating shaft 42 also rotates with the left and right direction as an axial direction of rotation. The bevel gear 41 is fixed to the center side of the rotation shaft 42 in the left-right direction.
 回転軸46は、傘歯車44の前側に配置されている。回転軸46は、回転軸46の軸方向と左右方向とが一致するように配置されており、モータ38の動力で左右方向を回転の軸方向として回転する。すなわち、回転軸46に固定される駆動プーリ52は、モータ38の動力で左右方向を回転の軸方向として回転する。また、回転軸46に回転可能に保持される従動プーリ49も、左右方向を回転の軸方向として回転する。傘歯車45は、左右方向における回転軸46の中心側に固定されている。 The rotation shaft 46 is disposed on the front side of the bevel gear 44. The rotating shaft 46 is disposed so that the axial direction of the rotating shaft 46 coincides with the left and right direction, and rotates with the power of the motor 38 as the rotating axial direction. That is, the drive pulley 52 fixed to the rotating shaft 46 rotates with the power of the motor 38 as the rotation axial direction in the left-right direction. Further, the driven pulley 49 rotatably held by the rotating shaft 46 also rotates with the left and right direction as an axial direction of rotation. The bevel gear 45 is fixed to the center side of the rotation shaft 46 in the left-right direction.
 2個の駆動プーリ48のそれぞれは、左右方向における回転軸42の両端部のそれぞれに固定されている。従動プーリ53は、傘歯車41と駆動プーリ48との間で回転軸42に回転可能に保持されており、2個の従動プーリ53は、2個の駆動プーリ48よりも左右方向の内側に配置されている。2個の従動プーリ49のそれぞれは、左右方向における回転軸46の両端部のそれぞれに回転可能に保持されている。駆動プーリ52は、傘歯車45と従動プーリ49との間で回転軸46に固定されており、2個の駆動プーリ52は、2個の従動プーリ49よりも左右方向の内側に配置されている。 Each of the two drive pulleys 48 is fixed to each end of the rotary shaft 42 in the left-right direction. The driven pulley 53 is rotatably held on the rotating shaft 42 between the bevel gear 41 and the drive pulley 48, and the two driven pulleys 53 are disposed inside the two drive pulleys 48 in the left-right direction. It is done. Each of the two driven pulleys 49 is rotatably held at each of both ends of the rotary shaft 46 in the left-right direction. The drive pulley 52 is fixed to the rotating shaft 46 between the bevel gear 45 and the driven pulley 49, and the two drive pulleys 52 are disposed on the inner side in the left-right direction than the two driven pulleys 49. .
 ベルト50は、ハンド支持部材7に固定されている。具体的には、所定の取付部材およびボルトによって、2本のベルト50のそれぞれの一部が2個のスライド部7aのそれぞれの上端部に固定されている。本形態のベルト50は、有端ベルトであり、駆動プーリ48および従動プーリ49に架け渡されたベルト50の両端部のそれぞれが取付部材およびボルトによってスライド部7aに固定されている(図7(B)参照)。なお、ベルト50は、環状に形成された無端ベルトであっても良い。 The belt 50 is fixed to the hand support member 7. Specifically, a part of each of the two belts 50 is fixed to the upper end of each of the two slide parts 7 a by a predetermined mounting member and a bolt. The belt 50 according to the present embodiment is an end belt, and both ends of the belt 50 stretched over the drive pulley 48 and the driven pulley 49 are fixed to the slide portion 7a by the attachment member and the bolt (FIG. B) see). The belt 50 may be an endless belt formed in an annular shape.
 ベルト54は、ハンド支持部材8に固定されている。具体的には、所定の取付部材およびボルトによって、2本のベルト54のそれぞれの一部が2個のスライド部8aのそれぞれの下端部に固定されている。ベルト50と同様に、本形態のベルト54は、有端ベルトであり、駆動プーリ52および従動プーリ53に架け渡されたベルト54の両端部のそれぞれが取付部材およびボルトによってスライド部8aに固定されている(図7(A)参照)。なお、ベルト54は、環状に形成された無端ベルトであっても良い。 The belt 54 is fixed to the hand support member 8. Specifically, a portion of each of the two belts 54 is fixed to the lower end portion of each of the two slide portions 8 a by a predetermined mounting member and a bolt. Similar to the belt 50, the belt 54 of this embodiment is an end belt, and both ends of the belt 54 which is bridged by the drive pulley 52 and the driven pulley 53 are fixed to the slide portion 8a by the attachment member and the bolt. (See FIG. 7A). The belt 54 may be an endless belt formed in an annular shape.
 駆動プーリ48、52および従動プーリ49、53が上述のように配置されているため、前後方向から見たときに、2本のベルト50のそれぞれは、モータ37、38の左右の両側のそれぞれに配置され、2本のベルト54のそれぞれは、モータ37、38の左右の両側のそれぞれに配置されている。また、ベルト54は、ベルト50と左右方向で隣り合うように、かつ、ベルト50と同じ高さで配置されている。すなわち、アーム9の内部の左右の両端側において、ベルト54は、左右方向の内側でベルト50と隣り合うように、かつ、ベルト50と同じ高さで配置されている。 Since the drive pulleys 48 and 52 and the driven pulleys 49 and 53 are arranged as described above, the two belts 50 are respectively provided on the left and right sides of the motors 37 and 38 when viewed from the front-rear direction. The two belts 54 are disposed on the left and right sides of the motors 37 and 38, respectively. The belt 54 is disposed adjacent to the belt 50 in the left-right direction and at the same height as the belt 50. That is, the belt 54 is disposed at the same height as the belt 50 so as to be adjacent to the belt 50 on the inner side in the left-right direction on both left and right end sides inside the arm 9.
 (本形態の主な効果)
 以上説明したように、本形態では、モータ37、38は、アーム9の中心部分の内部に配置されている。そのため、本形態では、内部が高温になっているチャンバー4に対する基板2の搬入や搬出をロボット1が行う場合であっても、モータ37、38と、高温のチャンバー4との距離を確保することが可能になる(図1参照)。したがって、本形態では、高温になっているチャンバー4に対する基板2の搬入や搬出をロボット1が行う場合であっても、モータ37、38の温度の上昇を抑制することが可能になり、その結果、モータ37、38の、熱の影響による損傷を抑制することが可能になる。また、本形態では、本体部10に回動可能に連結されるアーム9の中心部にモータ37、38が配置されているため、本体部10に対して回動するアーム9等のイナーシャを低減することが可能になる。
(Main effects of this form)
As described above, in the present embodiment, the motors 37 and 38 are disposed inside the central portion of the arm 9. Therefore, in the present embodiment, even when the robot 1 carries the substrate 2 into and out of the chamber 4 whose temperature is high, the distance between the motors 37 and 38 and the high temperature chamber 4 is secured. Is possible (see Figure 1). Therefore, in the present embodiment, even when the robot 1 carries in and out the substrate 2 to and from the chamber 4 at high temperature, it is possible to suppress the temperature rise of the motors 37 and 38, and as a result , Damage to the motor 37, 38 due to the influence of heat. Further, in the present embodiment, since the motors 37 and 38 are disposed at the central portion of the arm 9 rotatably coupled to the main body portion 10, inertia of the arm 9 etc. which rotates relative to the main body portion 10 is reduced. It will be possible to
 本形態では、モータ37、38が配置される内部空間Sは、大気圧となっている。そのため、本形態では、高温のチャンバー4に対する基板2の搬入や搬出をロボット1が行う場合であっても、冷却用のエアを用いてモータ37、38を効率的に冷却することが可能になる。したがって、本形態では、高温のチャンバー4に対する基板2の搬入や搬出をロボット1が行う場合であっても、モータ37、38の温度の上昇を効果的に抑制することが可能になり、その結果、モータ37、38の、熱の影響による損傷を防止することが可能になる。また、本形態では、大気圧となっている内部空間Sにモータ37、38が配置されているため、モータ37、38の潤滑剤として高価な真空グリースを使用する必要がなくなる。したがって、本形態では、ロボット1のイニシャルコストおよびランニングコストを低減することが可能になる。 In the present embodiment, the internal space S in which the motors 37 and 38 are disposed has an atmospheric pressure. Therefore, in the present embodiment, even when the robot 1 carries in and out the substrate 2 to and from the high temperature chamber 4, the motors 37 and 38 can be efficiently cooled using the cooling air. . Therefore, in the present embodiment, even when the robot 1 carries in and out the substrate 2 to and from the high temperature chamber 4, the temperature rise of the motors 37 and 38 can be effectively suppressed, and as a result , Damage to the motors 37, 38 due to the influence of heat. Further, in the present embodiment, since the motors 37, 38 are disposed in the internal space S at atmospheric pressure, it is not necessary to use expensive vacuum grease as a lubricant for the motors 37, 38. Therefore, in this embodiment, the initial cost and the running cost of the robot 1 can be reduced.
 本形態では、回転軸39を回転可能に支持するとともに内部空間Sからの空気の流出を防ぐ磁性流体シール56が、内部空間Sを画定する後壁部25bに取り付けられ、回転軸43を回転可能に支持するとともに内部空間Sからの空気の流出を防ぐ磁性流体シール57が、内部空間Sを画定する前壁部25cに取り付けられている。そのため、本形態では、アーム9の内部において、アーム9の中心部分に形成される内部空間Sのみが大気圧となる。したがって、本形態では、アーム9の端部まで大気圧となる空間が広がっている場合と比較して、アーム9の内部の構成を簡素化することが可能になるとともに、真空領域VRへ空気が流出するおそれを低減することが可能になる。 In the present embodiment, a magnetic fluid seal 56 that rotatably supports the rotation shaft 39 and prevents the outflow of air from the internal space S is attached to the rear wall 25 b that defines the internal space S, and the rotation shaft 43 can be rotated. A magnetic fluid seal 57 is attached to the front wall 25c that defines the inner space S to support the inner space S and to prevent the air from flowing out of the inner space S. Therefore, in the present embodiment, only the internal space S formed in the central portion of the arm 9 has the atmospheric pressure inside the arm 9. Therefore, in the present embodiment, the internal configuration of the arm 9 can be simplified as compared with the case where the space to be the atmospheric pressure is extended to the end of the arm 9, and air can be discharged to the vacuum region VR. It becomes possible to reduce the risk of spillage.
 また、本形態では、アーム9の中心側に磁性流体シール56、57が配置されているため、高温のチャンバー4に対する基板2の搬入や搬出をロボット1が行う場合であっても、磁性流体シール56、57と高温のチャンバー4との距離を確保することが可能になる。したがって、本形態では、磁性流体シール56、57の温度の上昇を抑制することが可能になり、その結果、磁性流体シール56、57の、熱の影響による損傷を抑制することが可能になる。 Further, in the present embodiment, since the magnetic fluid seals 56, 57 are disposed on the center side of the arm 9, even when the robot 1 carries in and out the substrate 2 to and from the high temperature chamber 4, the magnetic fluid seal It becomes possible to secure the distance between 56 and 57 and the high temperature chamber 4. Therefore, in the present embodiment, it is possible to suppress the temperature rise of the magnetic fluid seals 56, 57, and as a result, it is possible to suppress the damage of the magnetic fluid seals 56, 57 due to the influence of heat.
 本形態では、駆動プーリ48が固定される回転軸42に従動プーリ53が回転可能に保持され、駆動プーリ52が固定される回転軸46に従動プーリ49が回転可能に保持されている。そのため、本形態では、従動プーリ53が回転可能に保持される軸や従動プーリ49が回転可能に保持される軸が別途設けられている場合と比較して、ロボット1の構成を簡素化することが可能になる。また、本形態では、アーム9の内部に配置される2本のベルト50と2本のベルト54とが左右方向で並ぶように配置されているため、アーム9の厚さ(上下方向の厚さ)を薄くすることが可能になる。したがって、本形態では、ロボット1の高さを低くすることが可能になる。 In this embodiment, the driven pulley 53 is rotatably held by the rotary shaft 42 to which the drive pulley 48 is fixed, and the driven pulley 49 is rotatably held by the rotary shaft 46 to which the drive pulley 52 is fixed. Therefore, in this embodiment, the configuration of the robot 1 is simplified as compared with the case where the shaft on which the driven pulley 53 is rotatably held and the shaft on which the driven pulley 49 is rotatably held are separately provided. Becomes possible. Further, in the present embodiment, since the two belts 50 and the two belts 54 arranged inside the arm 9 are arranged side by side in the left-right direction, the thickness of the arm 9 (thickness in the vertical direction) ) Can be made thinner. Therefore, in the present embodiment, the height of the robot 1 can be lowered.
 (他の実施の形態)
 上述した形態は、本発明の好適な形態の一例ではあるが、これに限定されるものではなく本発明の要旨を変更しない範囲において種々変形実施が可能である。
(Other embodiments)
The embodiment described above is an example of the preferred embodiment of the present invention, but is not limited to this, and various modifications can be made without departing from the scope of the present invention.
 上述した形態では、従動プーリ49は、回転軸46に回転可能に保持されているが、従動プーリ49を回転可能に保持する軸が別途設けられていても良い。同様に、上述した形態では、従動プーリ53は、回転軸42に回転可能に保持されているが、従動プーリ53を回転可能に保持する軸が別途設けられていても良い。また、上述した形態では、ベルト54は、左右方向の内側でベルト50と隣り合うように配置されているが、たとえば、右側に配置されるベルト50の右側にベルト54が配置されていても良いし、左側に配置されるベルト50の左側にベルト54が配置されていても良い。 In the embodiment described above, the driven pulley 49 is rotatably held by the rotary shaft 46, but a shaft for rotatably holding the driven pulley 49 may be separately provided. Similarly, in the embodiment described above, the driven pulley 53 is rotatably held by the rotating shaft 42, but a shaft for rotatably holding the driven pulley 53 may be separately provided. Further, in the embodiment described above, the belt 54 is disposed adjacent to the belt 50 inside in the left-right direction, but the belt 54 may be disposed on the right side of the belt 50 disposed on the right side, for example Alternatively, the belt 54 may be disposed on the left side of the belt 50 disposed on the left side.
 上述した形態において、図10に示すように、ベルト50とベルト54とが上下方向で重なるように配置されていても良い。具体的には、前後方向から見たときに、モータ37、38の左右の両側のそれぞれにおいて、ベルト50とベルト54とが上下方向で重なるように配置されていても良い。この場合であっても、モータ37、38は、アーム9の中心部分の内部に配置されている。なお、図10では、上述した形態と同様の構成については同一の符号を付している。 In the embodiment described above, as shown in FIG. 10, the belt 50 and the belt 54 may be arranged to overlap in the vertical direction. Specifically, when viewed from the front and rear direction, the belt 50 and the belt 54 may be arranged to overlap in the vertical direction on both left and right sides of the motors 37 and 38, respectively. Even in this case, the motors 37, 38 are disposed inside the central portion of the arm 9. In FIG. 10, the same components as those described above are denoted by the same reference numerals.
 上述した形態では、ベルト50、54を用いてハンド支持部材7、8を前後方向に移動させているが、上述の特許文献1に記載された産業用ロボットのように、ネジ部材を用いてハンド支持部材7、8を前後方向に移動させても良い。この場合であっても、モータ37、38は、アーム9の中心部分の内部に配置されている。また、上述した形態において、特許文献1に記載された産業用ロボットのように、アーム9は、アーム支持部材に対して前後方向に直線的に往復移動可能となるようにアーム支持部材に保持されていても良い。 In the embodiment described above, the hand support members 7 and 8 are moved in the front-rear direction using the belts 50 and 54, but like the industrial robot described in the above-mentioned Patent Document 1, the hand using screw members The support members 7 and 8 may be moved in the front-rear direction. Even in this case, the motors 37, 38 are disposed inside the central portion of the arm 9. In the embodiment described above, as in the industrial robot described in Patent Document 1, the arm 9 is held by the arm support member so as to be linearly reciprocally movable in the front-rear direction with respect to the arm support member. May be
 上述した形態において、モータ37、38の出力軸と左右方向とが一致するようにモータ37、38が配置されていても良い。また、上述した形態において、アーム9の内部の全体が大気圧となっていても良い。また、アーム9の内部の全体が真空となっていても良い。すなわち、モータ37、38は、真空中に配置されていても良い。さらに、上述した形態では、ロボット1によって搬送される搬送対象物は液晶ディスプレイ用のガラス基板2であるが、ロボット1によって搬送される搬送対象物は、たとえば、有機EL(有機エレクトロルミネッセンス)ディスプレイ用のガラス基板であっても良いし、ガラス基板2以外の搬送対象物であっても良い。 In the embodiment described above, the motors 37 and 38 may be arranged such that the output shafts of the motors 37 and 38 coincide with the left and right direction. In the embodiment described above, the entire inside of the arm 9 may be at atmospheric pressure. Further, the entire inside of the arm 9 may be vacuum. That is, the motors 37 and 38 may be disposed in a vacuum. Furthermore, in the embodiment described above, the object to be transported by the robot 1 is the glass substrate 2 for liquid crystal display, but the object to be transported by the robot 1 is, for example, for organic EL (organic electroluminescence) display The glass substrate may be an object of conveyance other than the glass substrate 2.
 1 ロボット(産業用ロボット)
 2 基板(ガラス基板、搬送対象物)
 5 ハンド(第1ハンド)
 6 ハンド(第2ハンド)
 7 ハンド支持部材(第1ハンド支持部材)
 8 ハンド支持部材(第2ハンド支持部材)
 9 アーム
 10 本体部
 17 駆動機構(第1駆動機構)
 18 駆動機構(第2駆動機構)
 25b 後壁部(第1壁部)
 25c 前壁部(第2壁部)
 37 モータ(第1モータ)
 38 モータ(第2モータ)
 39 回転軸(第1回転軸)
 40 傘歯車(第1傘歯車)
 41 傘歯車(第2傘歯車)
 42 回転軸(第3回転軸)
 43 回転軸(第2回転軸)
 44 傘歯車(第3傘歯車)
 45 傘歯車(第4傘歯車)
 46 回転軸(第4回転軸)
 48 駆動プーリ(第1駆動プーリ)
 49 従動プーリ(第1従動プーリ)
 50 ベルト(第1ベルト)
 52 駆動プーリ(第2駆動プーリ)
 53 従動プーリ(第2従動プーリ)
 54 ベルト(第2ベルト)
 56 磁性流体シール(第1磁性流体シール)
 57 磁性流体シール(第2磁性流体シール)
 S 内部空間
1 Robot (industrial robot)
2 Substrates (glass substrates, objects to be transported)
5 hands (1st hand)
6 hands (second hand)
7 hand support member (first hand support member)
8 hand support member (second hand support member)
9 arm 10 main body 17 drive mechanism (first drive mechanism)
18 Drive mechanism (second drive mechanism)
25b back wall (first wall)
25c front wall (second wall)
37 Motor (1st motor)
38 Motor (2nd motor)
39 Rotation axis (1st rotation axis)
40 Bevel gear (1st bevel gear)
41 Bevel gear (2nd bevel gear)
42 Axis of rotation (3rd axis of rotation)
43 Axis of rotation (second axis of rotation)
44 Bevel gear (3rd bevel gear)
45 bevel gear (4th bevel gear)
46 Axis of rotation (4th axis of rotation)
48 Drive pulley (1st drive pulley)
49 driven pulley (first driven pulley)
50 belts (first belt)
52 Drive pulley (second drive pulley)
53 Driven pulley (2nd driven pulley)
54 belt (second belt)
56 Magnetic Fluid Seal (First Magnetic Fluid Seal)
57 Magnetic fluid seal (2nd magnetic fluid seal)
S internal space

Claims (6)

  1.  真空中で搬送対象物を搬送する産業用ロボットであって、
     前記搬送対象物が搭載される第1ハンドおよび第2ハンドと、前記第1ハンドが固定される第1ハンド支持部材と、前記第2ハンドが固定される第2ハンド支持部材と、前記第1ハンド支持部材と前記第2ハンド支持部材とが水平方向の同じ方向へ直線的に往復移動可能となるように前記第1ハンド支持部材および前記第2ハンド支持部材を保持するアームと、前記アームに対して前記第1ハンド支持部材を往復移動させる第1駆動機構と、前記アームに対して前記第2ハンド支持部材を往復移動させる第2駆動機構とを備え、
     前記第1駆動機構は、駆動源としての第1モータを備え、
     前記第2駆動機構は、駆動源としての第2モータを備え、
     前記第1モータおよび前記第2モータは、前記アームの中心部分の内部に配置されていることを特徴とする産業用ロボット。
    An industrial robot for transporting an object to be transported in vacuum,
    A first hand and a second hand on which the object to be transferred is mounted, a first hand support member to which the first hand is fixed, a second hand support member to which the second hand is fixed, and the first hand An arm for holding the first hand support member and the second hand support member so that the hand support member and the second hand support member can linearly reciprocate in the same horizontal direction, and the arm A first drive mechanism for reciprocating the first hand support member, and a second drive mechanism for reciprocating the second hand support member relative to the arm,
    The first drive mechanism includes a first motor as a drive source,
    The second drive mechanism includes a second motor as a drive source,
    An industrial robot, wherein the first motor and the second motor are disposed inside a central portion of the arm.
  2.  前記アームが回動可能に連結される本体部を備え、
     前記アームの中心が前記本体部に連結されていることを特徴とする請求項1記載の産業用ロボット。
    The arm is rotatably connected to the main body;
    The industrial robot according to claim 1, wherein a center of the arm is connected to the main body.
  3.  前記アームの中心部分の内部には、前記第1モータおよび前記第2モータが配置される内部空間が形成され、
     前記内部空間は、大気圧となっていることを特徴とする請求項2記載の産業用ロボット。
    An internal space in which the first motor and the second motor are disposed is formed inside a central portion of the arm,
    The industrial robot according to claim 2, wherein the internal space is at atmospheric pressure.
  4.  前記内部空間には、前記第1モータの出力軸と前記第2モータの出力軸とが反対方向に突出するように前記第1モータおよび前記第2モータが配置され、
     前記第1駆動機構は、前記第1モータの出力軸に連結される第1回転軸と、前記第1回転軸を回転可能に支持するとともに前記内部空間からの空気の流出を防ぐ第1磁性流体シールとを備え、
     前記第2駆動機構は、前記第2モータの出力軸に連結される第2回転軸と、前記第2回転軸を回転可能に支持するとともに前記内部空間からの空気の流出を防ぐ第2磁性流体シールとを備え、
     前記アームは、前記内部空間を画定するとともに前記第1磁性流体シールを保持する第1壁部と、前記内部空間を画定するとともに前記第2磁性流体シールを保持する第2壁部とを備えることを特徴とする請求項3記載の産業用ロボット。
    The first motor and the second motor are disposed in the inner space such that the output shaft of the first motor and the output shaft of the second motor project in opposite directions.
    A first magnetic fluid rotatably supports a first rotation shaft connected to an output shaft of the first motor, and the first rotation shaft, and a first magnetic fluid that prevents the outflow of air from the internal space. Equipped with a seal,
    The second drive mechanism rotatably supports a second rotation shaft connected to the output shaft of the second motor, and the second rotation shaft, and a second magnetic fluid that prevents the air from flowing out from the internal space Equipped with a seal,
    The arm includes a first wall defining the inner space and holding the first magnetic fluid seal, and a second wall defining the inner space and holding the second magnetic fluid seal. The industrial robot according to claim 3, characterized in that
  5.  前記第1回転軸は、前記アームに対する前記第1ハンド支持部材および前記第2ハンド支持部材の移動方向と前記第1回転軸の軸方向とが一致するように配置され、
     前記第2回転軸は、前記アームに対する前記第1ハンド支持部材および前記第2ハンド支持部材の移動方向と前記第2回転軸の軸方向とが一致するように配置され、
     前記第1駆動機構は、前記第1回転軸の先端部に固定される第1傘歯車と、前記第1傘歯車に噛み合う第2傘歯車と、前記第2傘歯車が固定される第3回転軸と、前記第3回転軸に固定される2個の第1駆動プーリとを備え、
     前記第2駆動機構は、前記第2回転軸の先端部に固定される第3傘歯車と、前記第3傘歯車に噛み合う第4傘歯車と、前記第4傘歯車が固定される第4回転軸と、前記第4回転軸に固定される2個の第2駆動プーリとを備えることを特徴とする請求項4記載の産業用ロボット。
    The first rotation shaft is disposed such that the moving direction of the first hand support member and the second hand support member with respect to the arm coincides with the axial direction of the first rotation shaft.
    The second rotation shaft is disposed such that the moving direction of the first hand support member and the second hand support member with respect to the arm coincides with the axial direction of the second rotation shaft.
    The first drive mechanism includes a first bevel gear fixed to a tip end portion of the first rotation shaft, a second bevel gear meshing with the first bevel gear, and a third rotation to which the second bevel gear is fixed A shaft, and two first drive pulleys fixed to the third rotation shaft,
    The second drive mechanism includes a third bevel gear fixed to an end portion of the second rotation shaft, a fourth bevel gear meshing with the third bevel gear, and a fourth rotation to which the fourth bevel gear is fixed 5. The industrial robot according to claim 4, further comprising: a shaft and two second drive pulleys fixed to the fourth rotation shaft.
  6.  前記第1駆動機構は、前記第4回転軸に回転可能に保持される2個の第1従動プーリと、前記第1ハンド支持部材に固定されるとともに前記第1駆動プーリと前記第1従動プーリとに架け渡される2本の第1ベルトとを備え、
     前記第2駆動機構は、前記第3回転軸に回転可能に保持される2個の第2従動プーリと、前記第2ハンド支持部材に固定されるとともに前記第2駆動プーリと前記第2従動プーリとに架け渡される2本の第2ベルトとを備え、
     前記第2傘歯車は、前記第3回転軸の軸方向における前記第3回転軸の中心側に固定され、
     2個の前記第1駆動プーリのそれぞれは、前記第3回転軸の軸方向における前記第3回転軸の両端部のそれぞれに固定され、
     前記第2従動プーリは、前記第2傘歯車と前記第1駆動プーリとの間で前記第3回転軸に回転可能に保持され、
     前記第4傘歯車は、前記第4回転軸の軸方向における前記第4回転軸の中心側に固定され、
     2個の前記第1従動プーリのそれぞれは、前記第4回転軸の軸方向における前記第4回転軸の両端部のそれぞれに回転可能に保持され、
     前記第2駆動プーリは、前記第4傘歯車と前記第1従動プーリとの間で前記第4回転軸に固定されていることを特徴とする請求項5記載の産業用ロボット。
    The first drive mechanism includes two first driven pulleys rotatably held by the fourth rotation shaft, and is fixed to the first hand support member, and the first drive pulley and the first driven pulley. And two first belts that are
    The second drive mechanism includes two second driven pulleys rotatably held by the third rotation shaft, and is fixed to the second hand support member, and the second drive pulley and the second driven pulley. And two second belts that are
    The second bevel gear is fixed to the center side of the third rotation axis in the axial direction of the third rotation axis,
    Each of the two first drive pulleys is fixed to each of both end portions of the third rotation shaft in the axial direction of the third rotation shaft,
    The second driven pulley is rotatably held on the third rotation shaft between the second bevel gear and the first drive pulley.
    The fourth bevel gear is fixed to the center side of the fourth rotation axis in the axial direction of the fourth rotation axis,
    Each of the two first driven pulleys is rotatably held at each of both ends of the fourth rotation shaft in the axial direction of the fourth rotation shaft,
    The industrial robot according to claim 5, wherein the second drive pulley is fixed to the fourth rotation shaft between the fourth bevel gear and the first driven pulley.
PCT/JP2018/026255 2017-07-28 2018-07-12 Industrial robot WO2019021834A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880048360.5A CN110944806A (en) 2017-07-28 2018-07-12 Industrial robot
KR1020197036602A KR102328513B1 (en) 2017-07-28 2018-07-12 industrial robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-146862 2017-07-28
JP2017146862A JP6902422B2 (en) 2017-07-28 2017-07-28 Industrial robot

Publications (1)

Publication Number Publication Date
WO2019021834A1 true WO2019021834A1 (en) 2019-01-31

Family

ID=65040528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026255 WO2019021834A1 (en) 2017-07-28 2018-07-12 Industrial robot

Country Status (4)

Country Link
JP (1) JP6902422B2 (en)
KR (1) KR102328513B1 (en)
CN (1) CN110944806A (en)
WO (1) WO2019021834A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114684614A (en) * 2020-12-28 2022-07-01 日本电产三协株式会社 Industrial robot

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506011A (en) * 1972-11-30 1975-01-22
DE3217301A1 (en) * 1982-05-05 1983-11-17 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Drive for electric rail locomotives
JPH1126550A (en) * 1997-07-04 1999-01-29 Tokyo Electron Ltd Substrate conveyer and apparatus for treating substrate, using the same
JP2002066976A (en) * 2000-08-28 2002-03-05 Assist Japan Kk Vacuum robot for carrying substrate
JP2008030151A (en) * 2006-07-28 2008-02-14 Daihen Corp Linear motion mechanism and carrier robot using the mechanism
JP2014034109A (en) * 2012-08-09 2014-02-24 Nidec Sankyo Corp Industrial robot and metho of controlling the same
JP2016002602A (en) * 2014-06-13 2016-01-12 トヨタ自動車株式会社 Transportation arm

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3135330B2 (en) * 1991-12-28 2001-02-13 エスエムシー株式会社 Actuator and its structure
JPH0840559A (en) * 1994-07-29 1996-02-13 Tokyo Bijutsu Shiko Jigiyou Kyodo Kumiai Loading robot and loading method by loading robot
JP2003203963A (en) * 2002-01-08 2003-07-18 Tokyo Electron Ltd Transport mechanism, processing system and transport method
JP4369851B2 (en) * 2004-11-01 2009-11-25 株式会社ダイヘン Linear movement mechanism and transfer robot using the same
JP2008246644A (en) * 2007-03-30 2008-10-16 Daihen Corp Carrier device
JP5018285B2 (en) * 2007-07-06 2012-09-05 株式会社Ihi Belt tensioning device and conveying device
KR100987362B1 (en) * 2008-09-02 2010-10-13 주식회사 티이에스 Apparatus for transferring substrate for use in transfer chamber
JP6313963B2 (en) * 2013-01-07 2018-04-18 日本電産サンキョー株式会社 Industrial robot
JP6235881B2 (en) * 2013-08-09 2017-11-22 日本電産サンキョー株式会社 Industrial robot
JP6190692B2 (en) 2013-10-22 2017-08-30 日本電産サンキョー株式会社 Industrial robot
JP6499826B2 (en) 2014-01-29 2019-04-10 日本電産サンキョー株式会社 Industrial robot
JP6557475B2 (en) * 2015-02-10 2019-08-07 日本電産サンキョー株式会社 Industrial robot

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506011A (en) * 1972-11-30 1975-01-22
DE3217301A1 (en) * 1982-05-05 1983-11-17 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Drive for electric rail locomotives
JPH1126550A (en) * 1997-07-04 1999-01-29 Tokyo Electron Ltd Substrate conveyer and apparatus for treating substrate, using the same
JP2002066976A (en) * 2000-08-28 2002-03-05 Assist Japan Kk Vacuum robot for carrying substrate
JP2008030151A (en) * 2006-07-28 2008-02-14 Daihen Corp Linear motion mechanism and carrier robot using the mechanism
JP2014034109A (en) * 2012-08-09 2014-02-24 Nidec Sankyo Corp Industrial robot and metho of controlling the same
JP2016002602A (en) * 2014-06-13 2016-01-12 トヨタ自動車株式会社 Transportation arm

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114684614A (en) * 2020-12-28 2022-07-01 日本电产三协株式会社 Industrial robot
CN114684614B (en) * 2020-12-28 2023-11-14 日本电产三协株式会社 Industrial robot

Also Published As

Publication number Publication date
KR102328513B1 (en) 2021-11-18
CN110944806A (en) 2020-03-31
JP6902422B2 (en) 2021-07-14
KR20200007881A (en) 2020-01-22
JP2019025585A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
JP6110636B2 (en) Industrial robot
JP4908306B2 (en) Transport device
JP6313963B2 (en) Industrial robot
JP5324211B2 (en) Work transfer device
JP2010177411A (en) Workpiece conveying device
JP2015508236A5 (en)
JPWO2008059815A1 (en) Rotation introducing mechanism, substrate transfer apparatus, and vacuum processing apparatus
KR102260097B1 (en) industrial robot
KR20130071342A (en) Transfer robot
KR101878585B1 (en) Industrial robot
WO2019021834A1 (en) Industrial robot
JP2013049128A (en) Robot arm structure and robot
KR20130071344A (en) Transfer robot
JP2010158759A (en) Work conveying device
KR102340217B1 (en) industrial robot
KR100987362B1 (en) Apparatus for transferring substrate for use in transfer chamber
JP6190692B2 (en) Industrial robot
KR20150072260A (en) Apparatus for turning glass
JP2014078602A (en) Substrate conveyance tray derricking device
JP2014078600A (en) Deposition apparatus
KR101436896B1 (en) Vacuum machine for turning over substrate and driving device for rotating thereof
KR20120136000A (en) Hybrid vacuum robot transport apparatus
JP2022104004A (en) Industrial robot
JP2022034669A (en) Transport device
JP2006026819A (en) Transfer robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197036602

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838143

Country of ref document: EP

Kind code of ref document: A1