WO2019021544A1 - クラッチ用軸受 - Google Patents

クラッチ用軸受 Download PDF

Info

Publication number
WO2019021544A1
WO2019021544A1 PCT/JP2018/015146 JP2018015146W WO2019021544A1 WO 2019021544 A1 WO2019021544 A1 WO 2019021544A1 JP 2018015146 W JP2018015146 W JP 2018015146W WO 2019021544 A1 WO2019021544 A1 WO 2019021544A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner ring
outer ring
ring
clearance
axial
Prior art date
Application number
PCT/JP2018/015146
Other languages
English (en)
French (fr)
Inventor
孝道 田中
浦上 正剛
中村 誠司
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018023982A external-priority patent/JP7043871B2/ja
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to KR1020187030464A priority Critical patent/KR20190013712A/ko
Priority to EP18765795.2A priority patent/EP3453907B1/en
Priority to US16/086,106 priority patent/US20200300299A1/en
Priority to CN201880049200.2A priority patent/CN110998117B/zh
Publication of WO2019021544A1 publication Critical patent/WO2019021544A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/586Details of specific parts of races outside the space between the races, e.g. end faces or bore of inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/6674Details of supply of the liquid to the bearing, e.g. passages or nozzles related to the amount supplied, e.g. gaps to restrict flow of the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/767Sealings of ball or roller bearings integral with the race
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/12Mechanical clutch-actuating mechanisms arranged outside the clutch as such
    • F16D23/14Clutch-actuating sleeves or bearings; Actuating members directly connected to clutch-actuating sleeves or bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/12Mechanical clutch-actuating mechanisms arranged outside the clutch as such
    • F16D23/14Clutch-actuating sleeves or bearings; Actuating members directly connected to clutch-actuating sleeves or bearings
    • F16D23/142Clutch-actuating sleeves or bearings; Actuating members directly connected to clutch-actuating sleeves or bearings with a resilient member acting radially between the bearing and its guide means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/64Medium carbon steel, i.e. carbon content from 0.4 to 0,8 wt%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/66High carbon steel, i.e. carbon content above 0.8 wt%, e.g. through-hardenable steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/70Ferrous alloys, e.g. steel alloys with chromium as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/74Ferrous alloys, e.g. steel alloys with manganese as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/40Shaping by deformation without removing material
    • F16C2220/42Shaping by deformation without removing material by working of thin walled material such as sheet or tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/43Clutches, e.g. disengaging bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/588Races of sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/06Lubrication details not provided for in group F16D13/74
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/08Details or arrangements of sealings not provided for in group F16D3/84

Definitions

  • the present invention relates to a clutch bearing.
  • the biasing force of the diaphragm spring is released from the friction plate by pressing the diaphragm spring of the clutch cover in the axial direction with a release fork which is an input member. Detachment takes place.
  • the release fork is disposed on the fixed side of a vehicle body or the like, and the diaphragm spring is attached to a clutch cover that is attached to a flywheel or the like of the engine and rotates integrally. Therefore, when the diaphragm spring rotating with the clutch cover is pressed directly by the release fork, wear occurs at the contact portion between the release fork and the diaphragm spring. Therefore, a clutch release bearing is disposed between the diaphragm spring and the release fork, and the rotary wheel is brought into contact with the diaphragm spring to rotate integrally, and the guide sleeve receiving the input from the release fork is brought into contact with the fixed ring It contacts and prevents wear.
  • the present invention has been made in view of the above-described problems, and an object thereof is to reduce the stirring resistance of lubricating oil by controlling the amount and flow of the lubricating oil supplied to the clutch bearing to thereby reduce the rotational torque. It is an object of the present invention to provide a clutch bearing capable of reducing the
  • the above object of the present invention is achieved by the following constitution.
  • An outer ring which is An inner ring raceway surface formed on an outer peripheral surface, an inner ring small diameter portion extending to one axial side with respect to the inner ring raceway surface, and an inner ring large diameter portion extending to the other axial side with respect to the inner ring raceway surface With the inner ring, A plurality of balls disposed rollably between the outer ring raceway surface and the inner ring raceway surface
  • the radial clearance on the inner diameter side inlet formed by the axial end of the folded portion and the inner peripheral surface of the inner ring small diameter portion is formed by the axial end of the inner ring small diameter portion and the outer peripheral surface of the folded portion
  • a ratio of the radial clearance of the inner diameter side outlet to the radial direction clearance of the inner diameter side inlet is 1: 1.2 to 5.0.
  • (1) to (3) The clutch bearing according to any one of the above.
  • the inner ring small diameter portion is formed with an inner ring tapered portion whose inner peripheral surface is diameter-expanded toward the axial direction end of the inner ring small diameter portion, and
  • the cage includes a small annular portion, a large annular portion, and a plurality of pillars axially connecting the small annular portion and the large annular portion.
  • the sum of the cross-sectional areas of the gaps between the small ring and the outer ring and the inner ring is smaller than the sum of the cross-sectional areas of the gaps between the large ring and the outer ring and the inner ring (1)
  • the outer ring and the inner ring contain 0.7 to 0.9% by weight of carbon, 0.3 to 0.9% by weight of manganese, 0.3 to 1.0% by weight of chromium, and 0.2% by weight of silicon.
  • the clutch bearing according to any one of the above.
  • the inner ring is provided with a flange portion extending from the axial end of the large inner diameter portion to the outer diameter side and having an axial clearance between the inner ring and the axial end of the large outer diameter portion of the outer ring.
  • a locking portion engageable with a mating member is formed on at least one of the outer surface of the radial wall of the outer ring and the outer surface of the flange of the inner ring (1)
  • a bearing for a clutch according to any one of (9) to (9).
  • the outer ring is the outer ring small diameter portion extending on one side in the axial direction with respect to the outer ring raceway surface, the radial wall extending to the inner diameter side from the axial end of the outer ring small diameter portion, It has a turnback portion extending from the inner end of the radial wall portion to the other side in the axial direction and radially overlapping with the inner peripheral surface of the inner ring small diameter portion with a radial clearance.
  • the radial clearance of the inner diameter side inlet formed by the axial end of the folded portion and the inner peripheral surface of the inner ring small diameter portion is the inner diameter formed by the axial end of the inner ring small diameter portion and the outer peripheral surface of the folded portion Smaller than the radial clearance at the outlet.
  • (A) is a principal part expanded sectional view of a bearing for clutches of a 1st embodiment concerning the present invention
  • (b) is an I section enlarged view of (a). It is a principal part expanded sectional view of a bearing for clutches of a 2nd embodiment concerning the present invention. It is a principal part expanded sectional view of a bearing for clutches of a 3rd embodiment concerning the present invention.
  • the clutch bearing 10 of the first embodiment includes a substantially annular outer ring 11, a substantially annular inner ring 12 concentrically formed with the outer ring 11, and the outer ring 11.
  • the roller is disposed between the outer ring raceway surface 11a formed on the circumferential surface and the inner ring raceway surface 12a formed on the outer peripheral surface of the inner ring 12 so as to be in contact with both the raceway surfaces 11a and 12a at a predetermined contact angle.
  • the raceway surfaces 11a, 12a of the clutch bearing 10 and the rolling contact surfaces of the balls 15 are lubricated by the supplied lubricating oil.
  • the outer ring raceway surface 11a is located on one side (left side in the figure) of the plurality of balls 15 in the axial direction with respect to the center O of the plurality of balls 15 in FIG. It has a curved surface. Further, the outer ring 11 is an annular outer ring small diameter portion 11b extending to one side in the axial direction from the portion constituting the outer ring raceway surface 11a and a portion constituting the outer ring raceway surface 11a from the other side in the axial direction (right side in the drawing) From the radially inner end of the annular outer ring large diameter portion 11 e extending radially inward from the axial end of the outer ring small diameter portion 11 b to the other side in the axial direction from the radially inner end of the radial wall 11 c And an extending folded back portion 11d.
  • a portion on one axial side of the outer ring 11 is formed in a shape of a cross section substantially C. Further, a part of the folded back portion 11d is disposed on the inner diameter side of the inner ring small diameter portion 12b described later via a radial clearance. As a result, the folded portion 11 d and the inner ring small diameter portion 12 b form an overlapping portion 20 (see FIG. 1B) overlapping in the radial direction over the axial length W.
  • the outer peripheral surface of the folded back portion 11 d is formed in a cylindrical surface having a constant outer diameter in the range of the overlapping portion 20.
  • the inner ring raceway surface 12 a is located on the other side in the axial direction with respect to the center O of the plurality of balls 15 in FIG. 1A, and has a curved surface of about 1 ⁇ 4 of the maximum outer diameter of the balls 15.
  • the inner ring 12 has an annular inner ring small diameter portion 12b extending axially to one side from a portion constituting the inner ring raceway surface 12a, and an annular inner ring large diameter portion 12d extending axially to the other side from a portion constituting the raceway surface 12a. And a flange portion 12e extending radially outward from the other axial end side of the inner ring large diameter portion 12d.
  • an inner ring tapered portion 12c On the inner peripheral surface of the inner ring small diameter portion 12b, an inner ring tapered portion 12c whose diameter is increased toward the axial end of the inner ring small diameter portion 12b, and a cylindrical surface portion 12g whose inner diameter is constant are formed.
  • the axial boundary position between the cylindrical surface portion 12g and the inner ring tapered portion 12c may be on one side in the axial direction of the end in the axial direction of the folded portion 11d as shown in FIG. 1B. It may be the other side in the axial direction than the axial end.
  • the overlapping portion 20 when the axial boundary position between the cylindrical surface portion 12 g and the inner ring tapered portion 12 c is on one side in the axial direction with respect to the axial end of the folded portion 11 d, the overlapping portion 20 is It comprises a parallel clearance 21 and a taper clearance 22.
  • the parallel gap portion 21 has an axial length W1 and is formed on the other side in the axial direction of the overlapping portion 20, and is formed between the inner peripheral surface of the cylindrical surface portion 12g and the outer peripheral surface of the folded portion 11d.
  • the parallel clearance portion 21 defines a radial direction entrance clearance (hereinafter, referred to as an inner diameter side entrance clearance) C1 in which the clearance dimension becomes constant in the axial direction.
  • the radial clearance of the tapered clearance portion 22 gradually increases toward one side in the axial direction, and defines a radial outlet clearance (hereinafter referred to as an inner diameter side outlet clearance) C2 which becomes maximum at one axial end thereof.
  • the inner diameter side inlet clearance C1 is set smaller than the inner diameter side outlet clearance C2.
  • the inner diameter side outlet clearance C2 with respect to the inner diameter side inlet clearance C1.
  • the ratio of is preferably set to 1: 1.2 to 5.0.
  • the flange portion 12e of the inner ring 12 is opposed to the axial end of the outer ring large diameter portion 11e, and an axial gap (hereinafter referred to as an outer diameter) between the flange portion 12e and the axial end of the outer ring large diameter portion 11e. Said side exit clearance C3 is formed.
  • the outer diameter side outlet clearance C3 is set larger than the inner diameter side outlet clearance C2. That is, the size of each clearance increases in the order of the inner diameter side inlet clearance C1, the inner diameter side outlet clearance C2, and the outer diameter side outlet clearance C3 (C1 ⁇ C2 ⁇ C3).
  • the outer ring 11 and the inner ring 12 contain 0.7 to 0.9% by weight of carbon, 0.3 to 0.9% by weight of manganese, 0.3 to 1.0% by weight of chromium, and 0.01 to 0 of silicon.
  • a plate material of an alloy material or a steel material containing 15% by weight is pressed and formed by heat treatment.
  • An example of such a material is PCR5.
  • the reason for containing each element and the reason for limitation of the content are as follows.
  • the amount of carbon is 0.7% by weight or more, but when it exceeds 0.9% by weight, deep drawability is reduced.
  • Silicon is added as a deoxidizer at steel making and is usually contained in excess of 0.01% by weight, but if the silicon content is more than 0.15% by weight, ferrite is strengthened and deep drawability is lowered. Therefore, the silicon content is set to 0.15% by weight or less.
  • Manganese has the effect of improving hardenability by being added as a deoxidizing element like silicon, but if the amount is too large, the deformation resistance is increased, so the upper limit is made 0.9 wt% .
  • Chromium is added in an amount of 0.3% by weight or more to improve hardenability, but if it is added in excess of 1.0% by weight, the deep drawability decreases, so the upper limit of the amount is 1.0% and
  • the ironing rate of the folded portion 11d can be made 60% or more, preferably 60 to 65%, and the processability is improved. Do.
  • an ironing rate is a reduction rate of board thickness after ironing to board thickness before ironing.
  • the inner ring and the outer ring of the bearing do not fit with the shaft or the housing, and are in contact with other parts only at the flat portions on both sides of the assembled bearing.
  • the outer ring 11 is a fixed ring and the inner ring 12 is a rotating ring
  • the outer ring 11 is connected without sliding with other parts (for example, a guide sleeve)
  • the inner ring 12 is rotated without sliding with other parts (for example, a diaphragm spring)
  • a load is applied in the axial direction, and a frictional force is provided between the outer ring 11 and the guide sleeve, and between the inner ring 12 and the diaphragm spring.
  • the rotational torque is increased, which may deteriorate the fuel efficiency of the vehicle.
  • the clutch bearing 10 includes projections (guide sleeves and diaphragm springs) on at least three locations on the outer wall 11 c of the outer ring 11 and the outer surface of the flange 12 e of the inner ring 12 (see FIG. A recess 11 f or a hole 12 f is provided which is a locking portion to be engaged with (not shown).
  • Both locking portions may be configured only by the recess 11 f and the hole 12 f, or may be a combination of the recess 11 f and the hole 12 f.
  • the recess 11 f or the hole 12 f may be formed only on the outer surface of the radial wall 11 c or may be formed only on the outer surface of the flange 12 e of the inner ring 12.
  • the radial wall 11 c and the flange 12 e It may be formed on both outer side surfaces of
  • a recess or a hole may be formed in the mating member, and a projection as a locking portion may be formed on the outer surface of the radial direction wall 11c and the flange 12e.
  • the surface roughness of the radial direction wall portion 11c of the outer ring 11 and the outer surface of the flange portion 12e of the inner ring 12 may be roughened to increase the frictional force.
  • the cage 16 includes a small annular portion 16a disposed on each small diameter side of the clutch bearing 10, a large annular portion 16b disposed on the large diameter side, a small annular portion 16a, and a large annular portion And a plurality of column portions 16c which are connected in an axially inclined manner with the 16b.
  • a pocket 17 for holding the ball 15 is formed by the axially inner surface of the small annular portion 16a and the large annular portion 16b and the circumferential side surface of the adjacent column portion 16c.
  • the sum (S4 + S5) of the annular clearance C5 formed by the outer circumferential surface 12b and the cross-sectional area S5 viewed from the axial direction of the annular clearance C5 is the outer circumferential surface of the large annular portion 16b and the inner circumferential surface of the outer ring large diameter portion 11e Seen from the axial direction of the annular gap C7 formed by the cross-sectional area S6 viewed from the axial direction of the annular gap C6 to be formed and the outer circumferential surface of the inner circumferential surface of the large annular portion 16b and the outer circumferential surface of the inner ring large diameter portion 12d It is set smaller than the sum (S6 + S7) with
  • the radial width of the small annular portion 16a can be achieved by making the radial width of the small annular portion 16a different from the radial width of the large annular portion 16b.
  • the cross-sectional area S5 viewed from the axial direction of the annular gap C5 is set smaller than the cross-sectional area S4 viewed from the axial direction of the annular gap C4.
  • the annular gaps C4 to C7 are the axially outer end positions of the small annular portion 16a and the large annular portion 16b (the axial one end of the small annular portion 16a and the large circle It defines in the axial direction other side end part of ring part 16b.
  • Lubricating oil for lubricating the rolling surface of the clutch bearing 10 flows in from the inner diameter side inlet clearance C1, and further, the inner diameter side outlet clearance C2, and further, the annular portion of the small annular portion 16a of the cage 16 and the outer ring 11 and the inner ring 12 It is supplied to the inside through the gaps C4 and C5 to lubricate the lubrication portion (rolling surface).
  • the lubricating oil that lubricated the lubricating portion (the ball 15 and the raceway surfaces 11a and 12a, and the sliding contact surface between the ball 15 and the cage 16) is obtained by combining the large annular portion 16b of the cage 16 with the outer ring 11 and the inner ring 12
  • the annular clearances C6 and C7 are discharged to the outside from the outer diameter side outlet clearance C3 between the flange portion 12e and the axial end of the outer ring large diameter portion 11e.
  • the inner diameter side inlet clearance C1 is set smaller than the inner diameter side outlet clearance C2, the inflow of the lubricating oil more than the necessary amount is suppressed by the inner diameter side inlet clearance C1. Also, the lubricating oil that has flowed in is smoothly discharged (flows into the space in the bearing) from the large inner diameter side exit clearance C2. Specifically, the lubricating oil introduced from the inner diameter side inlet clearance C1 is moved to one side in the axial direction along the inner ring tapered portion 12c by the centrifugal force of the rotating inner ring 12, and then from the axial end of the inner ring small diameter portion 12b Shake off and scatter in the space inside the bearing.
  • the outer diameter side outlet clearance C3 is set to be larger than the inner diameter side outlet clearance C2, the lubricating oil lubricating the lubricating portion is smoothly retained without being retained inside the clutch bearing 10. Is discharged to the outside, reducing the agitation resistance of the lubricating oil.
  • the sum of the cross-sectional areas S4 and S5 of the small annular portion 16a of the cage 16 and the annular gaps C4 and C5 of the outer ring 11 and the inner ring 12 as viewed from the axial direction corresponds to the large annular portion 16b of the cage 16 Since it is set smaller than the sum of the cross-sectional areas S6 and S7 seen in the axial direction of the annular gaps C6 and C7 with the outer ring 11 and the inner ring 12, the amount of oil flowing into the lubricating portion is suppressed to the necessary amount. The inflowing lubricating oil flows out of the annular gaps C6 and C7 without staying in the lubricating portion for a long time.
  • the cross-sectional area S5 viewed from the axial direction of the annular gap C5 is set smaller than the cross-sectional area S4 viewed from the axial direction of the annular gap C4, more lubricating oil flows to the outer ring 11 side, The agitation of the lubricating oil by the column portion 16c of the retainer 16 is reduced.
  • the lubricating oil flowing from the annular clearance C4 moves to the outer diameter side along the outer ring raceway surface 11a by the centrifugal force of the rotating bearing, and then flows out from the annular clearance C6.
  • the clutch bearing 10 used under the lubricating oil lubricating environment also reduces the rotational torque by reducing the stirring resistance of the lubricating oil, thereby improving the fuel efficiency of the vehicle.
  • the outer ring 11 is the outer ring small diameter portion 11b extending on one side in the axial direction with respect to the outer ring raceway surface 11a, and the axial end of the outer ring small diameter portion 11b A radial wall 11c extending radially inwards from the radial inner end of the radial wall 11c and a radial clearance between the radial inner end and the inner circumferential surface of the inner ring small diameter portion 12b And a folded portion 11d overlapping in the radial direction.
  • the inner diameter side entrance clearance C1 formed by the axial end of the folded portion 11d and the inner peripheral surface of the inner ring small diameter portion 12b is the inner diameter side formed by the axial end of the inner ring small diameter portion 12b and the outer peripheral surface of the folded portion 11d Since it is smaller than the outlet clearance C2, the amount of lubricating oil supplied from the inner diameter side inlet clearance C1 to the clutch bearing 10 is limited, and smoothly flows into the inside (lubricated portion) of the clutch bearing 10 from the inner diameter side outlet clearance C2. By controlling the oil amount and flow of the lubricating oil, it is possible to reduce the stirring resistance of the lubricating oil and to reduce the torque.
  • the inner ring small diameter portion 12b is formed with an inner ring tapered portion 12c whose inner circumferential surface is diameter-expanded toward the axial direction end of the inner ring small diameter portion 12b, so the inner side inlet clearance C1 and the inner side outlet clearance C2
  • the ratio of can be set to any size.
  • the ratio of the inner diameter side outlet clearance C2 to the inner diameter side inlet clearance C1 is 1: 1.2 to 5.0, the radial clearance can be easily designed only by the inner ring tapered portion 12c.
  • the sum of the cross sectional areas S4 and S5 of the gaps C4 and C5 between the small annular portion 16a of the cage 16 and the outer ring 11 and the inner ring 12 is the gap C6 and C7 between the large annular portion 16b and the outer ring 11 and the inner ring 12.
  • the outer ring 11 and the inner ring 12 contain 0.7 to 0.9% by weight of carbon, 0.3 to 0.9% by weight of manganese, 0.3 to 1.0% by weight of chromium, and 0.01 of silicon. It is formed by pressing a metal plate of an alloy material or a steel material contained in an amount of ⁇ 0.15% by weight, and since the ironing rate of the folded portion 11 d is 60% or more, molding of the folded portion 11 d is easy.
  • At least one of the outer surface of radial wall 11c of outer ring 11 and the outer surface of flange 12e of inner ring 12 such as a recess 11f or a hole 12f engageable with a projection provided on the other member Since the locking portion is formed, by engaging the projection of the mating member with the recess 11f or the hole 12f to prevent rotation, the axial load load conventionally applied for the purpose of slip prevention becomes unnecessary. The rotational torque is reduced to improve the fuel efficiency.
  • the clutch bearing 10 of the second embodiment is the same as the clutch bearing 10 of the first embodiment except for the shape of the folded portion 11 d of the outer ring 11 and the small diameter portion 12 b of the inner ring. Is substantially similar to that of the first embodiment of the present invention. Therefore, the same or corresponding parts as in the first embodiment are denoted by the same reference numerals, and the description will be simplified or omitted.
  • the inner race small diameter portion 12 b is axially extended in parallel with the central axis of the clutch bearing 10.
  • an outer ring taper portion 11g is provided in the turnback portion 11d of the outer ring 11 so that the outer peripheral surface of the turnback portion 11d is expanded in diameter toward the axial end (right direction in the drawing) of the turnback portion 11d. ing.
  • an inner diameter side inlet clearance is formed between the axial end of the folded portion 11d and the inner peripheral surface of the inner ring small diameter portion 12b by the outer ring tapered portion 11g. C1 is formed, and an inner diameter side outlet clearance C2 is formed between the axial end of the inner ring small diameter portion 12b and the outer peripheral surface of the folded portion 11d.
  • the inner diameter side inlet clearance C1 is set smaller than the inner diameter side outlet clearance C2.
  • the inner diameter of the inner peripheral surface of the inner ring small diameter portion 12b is made constant, and the ratio of the inner diameter side outlet clearance C2 to the inner diameter side inlet clearance C1 is 1: 1.2-5 by only the outer ring tapered portion 11g. It is set to .0.
  • the outer ring taper portion 11g whose outer peripheral surface is diameter-expanded toward the axial direction end of the turnback portion 11d is formed in the turnback portion 11d of the outer ring 11 Therefore, the inner diameter side inlet clearance C1 can be easily made smaller than the inner diameter side outlet clearance C2.
  • the other configuration and operation are the same as those of the clutch bearing 10 of the first embodiment.
  • the clutch bearing 10 of the third embodiment shown in FIG. 3 is expanded toward the axial end of the inner ring small diameter portion 12b on the inner peripheral surface of the inner ring small diameter portion 12b.
  • a diameter inner ring taper portion 12c is formed.
  • the outer circumferential surface of the folded portion 11 d is expanded in diameter toward the axial end (right direction in the figure) of the folded portion 11 d in the folded portion 11 d of the outer ring 11
  • the outer ring tapered portion 11g is formed on the outer ring.
  • the axial direction end of the folded portion 11 d and the inner circumferential surface of the inner ring small diameter portion 12 b are formed by the inner ring tapered portion 12 c and the outer ring tapered portion 11 g.
  • An inner diameter side inlet clearance C1 is formed between them, and an inner diameter side outlet clearance C2 is formed between an axial end of the inner ring small diameter portion 12b and an outer peripheral surface of the folded portion 11d.
  • the inner diameter side inlet clearance C1 is set smaller than the inner diameter side outlet clearance C2.
  • the ratio of the inner diameter side outlet clearance C2 to the inner diameter side inlet clearance C1 is set to 1: 1.4 to 10.0 by the inner ring tapered portion 12c and the outer ring tapered portion 11g.
  • the inner diameter side inlet clearance C1 is set smaller than the inner diameter side outlet clearance C2 by providing the inner ring tapered portion 12c and the outer ring tapered portion 11g. Further, the ratio of the inside diameter side exit clearance C2 to the inside diameter side entrance clearance C1 can be designed in the range of 1: 1.4 to 10.0.
  • the other configuration and operation are the same as those of the clutch bearing 10 of the first and second embodiments.
  • the clutch bearing of the present invention may be a clutch release bearing in which a force is applied to the bearing when the clutch is released, or a clutch engagement in which a force is applied to the bearing when the clutch is engaged. It may be a bearing.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

外輪(11)は、外輪軌道面(11a)に対して軸方向一方側に延びる外輪小径部(11b)、該外輪小径部(11b)の軸方向端部から内径側に延びる径方向壁部(11c)、及び該径方向壁部(11c)の径方向内端部から軸方向他方側に延び、内輪小径部(12b)の内周面との間に径方向すきま(C1,C2)を有して径方向に重なる折り返し部(11d)を備える。折り返し部(11d)の軸方向端と内輪小径部(12b)の内周面とで形成される内径側入り口の径方向すきま(C1)が、内輪小径部(12b)の軸方向端と折り返し部(11d)の外周面とで形成される内径側出口の径方向すきま(C2)より小さい。これにより、クラッチ用軸受に供給される潤滑油の油量及び流れを制御することで潤滑油の攪拌抵抗を低減させて低トルク化することができる。

Description

クラッチ用軸受
 本発明は、クラッチ用軸受に関する。
 車両等に搭載される摩擦板を用いたクラッチは、入力部材であるレリーズフォークでクラッチカバーのダイヤフラムスプリングを軸線方向に押圧することにより、ダイヤフラムスプリングの付勢力を摩擦板から解除して動力伝達の切り離しが行なわれる。
 ところで、レリーズフォークは車体等の固定側に配置され、ダイヤフラムスプリングはエンジンのフライホイール等に取り付けられて一体回転するクラッチカバーに取り付けられている。従って、クラッチカバーと共に回転するダイヤフラムスプリングをレリーズフォークで直接押圧すると、レリーズフォークとダイヤフラムスプリングとの当接部に磨耗が生じる。そこで、クラッチレリーズ軸受をダイヤフラムスプリングとレリーズフォークとの間に配設し、回転輪をダイヤフラムスプリングに当接させて一体的に回転させると共に、レリーズフォークからの入力を受けるガイドスリーブを固定輪に当接させて磨耗を防止している。
 このようなクラッチレリーズ軸受が摩擦板を潤滑油中に浸漬させた構成のクラッチで使用される場合、摩擦板からの磨耗片を含んだ(汚染された)潤滑環境下で使用されるため、磨耗片がクラッチレリーズ軸受の内部に堆積して、クラッチレリーズ軸受を損傷させる虞がある。また、軸受の内部に潤滑油が滞留すると、攪拌抵抗により回転トルクが増大してしまう。特許文献1では、外輪の軸方向一方側部分を略コの字形に形成し、外輪の折り返された部分の外周面と内輪の内周面とが軸方向に重なる重なり部に、所定の径方向すきまを設けて潤滑油の流入を制限することにより、クラッチレリーズ軸受内部の磨耗片の堆積を抑制すると共に、クラッチ装置全体における潤滑油の流れを制御している。
独国特許出願公開第102014209418号明細書
 しかしながら、特許文献1によると、外輪の折り返された部分の外周面と内輪の内周面との径方向すきまは一定であり、該径方向すきまに流入した潤滑油の流出(軌道面への供給)については考慮されていない。また、軌道面へ流入した潤滑油に対する保持器による攪拌抵抗低減についても言及されていない。
 本発明は、前述した課題に鑑みてなされたものであり、その目的は、クラッチ用軸受に供給される潤滑油の油量及び流れを制御することで潤滑油の攪拌抵抗を低減させて回転トルクを低減することができるクラッチ用軸受を提供することにある。
 本発明の上記目的は、下記の構成により達成される。
(1) 内周面に形成される外輪軌道面と、該外輪軌道面に対して軸方向一方側に延びる外輪小径部と、前記外輪軌道面に対して軸方向他方側に延びる外輪大径部と、前記外輪小径部の軸方向端部から内径側に延びる径方向壁部と、該径方向壁部の径方向内端部から軸方向他方側に延びる折り返し部と、を備え、プレス成型品である外輪と、
 外周面に形成される内輪軌道面と、該内輪軌道面に対して軸方向一方側に延びる内輪小径部と、前記内輪軌道面に対して軸方向他方側に延びる内輪大径部と、を備える内輪と、
 前記外輪軌道面と前記内輪軌道面間に転動自在に配設され、前記両軌道面に所定の接触角で接触する複数の玉と、
 前記複数の玉を転動自在に保持する保持器と、
を備えるクラッチ用軸受であって、
 前記外輪の前記折り返し部は、前記内輪小径部の内周面との間に径方向すきまを有して前記内輪小径部と径方向に重なっており、
 前記折り返し部の軸方向端と前記内輪小径部の内周面とで形成される内径側入り口の前記径方向すきまが、前記内輪小径部の軸方向端と前記折り返し部の外周面とで形成される内径側出口の前記径方向すきまより小さいことを特徴とするクラッチ用軸受。
(2)前記内輪小径部には、その内周面が前記内輪小径部の軸方向端に向かって拡径する内輪テーパ部が形成されることを特徴とする(1)に記載のクラッチ用軸受。
(3) 前記外輪の前記折り返し部には、その外周面が前記折り返し部の軸方向端に向かって拡径する外輪テーパ部が形成されることを特徴とする(1)に記載のクラッチ用軸受。
(4) 前記内径側入り口の前記径方向すきまに対する前記内径側出口の前記径方向すきまの比率は、1:1.2~5.0であることを特徴とする(1)~(3)のいずれかに記載のクラッチ用軸受。
(5) 前記内輪小径部には、その内周面が前記内輪小径部の軸方向端に向かって拡径する内輪テーパ部が形成され、且つ、
 前記外輪の前記折り返し部には、その外周面が前記折り返し部の軸方向端に向かって拡径する外輪テーパ部が形成されることを特徴とする(1)に記載のクラッチ用軸受。
(6) 前記内径側入り口の前記径方向すきまに対する前記内径側出口の前記径方向すきまの比率は、1:1.4~10.0であることを特徴とする請求項5に記載のクラッチ用軸受。
(7) 前記内輪は、前記内輪大径部の軸方向端部から外径側に延び、前記外輪の大径部の軸方向端との間に軸方向すきまを有して対向するフランジ部を備え、
 前記軸方向すきまは、前記内径側出口の前記径方向すきまより大きいことを特徴とする(1)~(6)のいずれか1項に記載のクラッチ用軸受。
(8) 前記保持器は、小円環部と、大円環部と、前記小円環部と前記大円環部とを軸方向に接続する複数の柱部と、を備え、
 前記小円環部と前記外輪及び前記内輪とのすきまの断面積の和は、前記大円環部と前記外輪及び前記内輪とのすきまの断面積の和より小さいことを特徴とする(1)~(7)のいずれかに記載のクラッチ用軸受。
(9) 前記外輪及び前記内輪は、炭素が0.7~0.9重量%、マンガンが0.3~0.9重量%、クロムが0.3~1.0重量%、シリコンが0.01~0.15重量%含まれた合金素材又は鋼素材の金属板をプレス加工することで形成され、前記折り返し部のしごき率が60%以上であることを特徴とする(1)~(8)のいずれかに記載のクラッチ用軸受。
(10) 前記内輪は、前記内輪大径部の軸方向端部から外径側に延び、前記外輪大径部の軸方向端との間に軸方向すきまを有して対向するフランジ部を備え、
 前記外輪の前記径方向壁部の外側面、及び前記内輪の前記フランジ部の外側面の少なくとも一方には、相手部材と係合可能な係止部が形成されることを特徴とする(1)~(9)のいずれかに記載のクラッチ用軸受。
 本発明のクラッチ用軸受によれば、外輪は、外輪軌道面に対して軸方向一方側に延びる外輪小径部、該外輪小径部の軸方向端部から内径側に延びる径方向壁部、及び該径方向壁部の内端部から軸方向他方側に延び、内輪小径部の内周面との間に径方向すきまを有して径方向に重なる折り返し部を備える。また、折り返し部の軸方向端と内輪小径部の内周面とで形成される内径側入り口の径方向すきまは、内輪小径部の軸方向端と折り返し部の外周面とで形成される内径側出口の径方向すきまより小さい。これにより、内径側入り口の径方向すきまからクラッチ用軸受に供給される潤滑油量を制限するとともに、内径側出口の径方向すきまからスムーズにクラッチ用軸受の内部(潤滑部)に排出して、潤滑油の油量及び流れを制御することで潤滑油の攪拌抵抗を低減させて回転トルクを抑制することができる。
(a)は、本発明に係る第1実施形態のクラッチ用軸受の要部拡大断面図であり、(b)は、(a)のI部拡大図である。 本発明に係る第2実施形態のクラッチ用軸受の要部拡大断面図である。 本発明に係る第3実施形態のクラッチ用軸受の要部拡大断面図である。
 以下、本発明の各実施形態に係るクラッチ用軸受を図面に基づいて詳細に説明する。
(第1実施形態)
 図1(a)に示すように、第1実施形態のクラッチ用軸受10は、略円環状の外輪11と、外輪11と同心的に形成された略円環状の内輪12と、外輪11の内周面に形成された外輪軌道面11aと内輪12の外周面に形成された内輪軌道面12aとの間に転動自在に配置され、該両軌道面11a,12aと所定の接触角で接触する複数の玉15と、玉15を所定間隔で保持する保持器16と、を備えるアンギュラ玉軸受である。クラッチ用軸受10の各軌道面11a、12a及び玉15の転走面は、供給される潤滑油により潤滑される。
 外輪軌道面11aは、図1(a)中、複数の玉15の中心Oに対して軸方向一方側(図中、左側)寄りに位置し、玉15の最大外形の略1/4程度の曲面を有する。また、外輪11は、外輪軌道面11aを構成する部分から軸方向一方側に延びる円環状の外輪小径部11bと、外輪軌道面11aを構成する部分から軸方向他方側(図中、右側)に延びる円環状の外輪大径部11eと、外輪小径部11bの軸方向端部から内径側に延びる径方向壁部11cと、該径方向壁部11cの径方向内端部から軸方向他方側に延びる折り返し部11dと、を備える。
 したがって、外輪11の軸方向一方側の部分は、断面略Cの字形に形成されている。
 また、折り返し部11dの一部は、後述する内輪小径部12bの内径側に、径方向すきまを介して配設されている。これにより、折り返し部11dと内輪小径部12bとは、軸方向長さWに亘って、径方向に重なる重なり部20(図1(b)参照)を形成する。折り返し部11dの外周面は、重なり部20の範囲において、外径が一定である円筒面に形成されている。
 内輪軌道面12aは、図1(a)中、複数の玉15の中心Oに対して軸方向他方側寄りに位置し、玉15の最大外形の略1/4程度の曲面を有する。内輪12は、内輪軌道面12aを構成する部分から軸方向一方側に延びる円環状の内輪小径部12bと、軌道面12aを構成する部分から軸方向他方側に延びる円環状の内輪大径部12dと、該内輪大径部12dの軸方向他端側から径方向外方に延設されたフランジ部12eと、を備える。内輪小径部12bの内周面には、内輪小径部12bの軸方向端に向かって拡径する内輪テーパ部12cと、内周面の内径が一定である円筒面部12gとが形成されている。なお、円筒面部12gと内輪テーパ部12cとの軸方向境界位置は、図1(b)のように、折り返し部11dの軸方向端よりも軸方向一方側でもよいし、或いは、折り返し部11dの軸方向端よりも軸方向他方側でもよい。
 特に、図1(b)に示すように、円筒面部12gと内輪テーパ部12cとの軸方向境界位置が、折り返し部11dの軸方向端よりも軸方向一方側である場合、重なり部20は、平行すきま部21と、テーパすきま部22とにより構成される。平行すきま部21は、軸方向長さW1を有して、重なり部20の軸方向他方側に構成され、円筒面部12gの内周面と、折り返し部11dの外周面との間に形成される。平行すきま部21は、軸方向に亘ってすきま寸法が一定となる径方向入り口すきま(以後、内径側入り口すきまと言う)C1を規定する。
 一方、テーパすきま部22は、軸方向長さW2(=W-W1)を有して、重なり部20の軸方向一方側に構成され、内輪テーパ部12cの内周面と、折り返し部11dの外周面との間に形成される。テーパすきま部22の径方向すきまは、軸方向一方側に向かって徐々に増加し、その軸方向一方側端部において最大となる径方向出口すきま(以後、内径側出口すきまと言う)C2を規定する。
 この場合、内径側入り口すきまC1は、内径側出口すきまC2より小さく設定されている。具体的に、本実施形態の様に、折り返し部11dの外周面を一様径とし、内輪テーパ部12cのみによって、径方向すきまを変える場合には、内径側入り口すきまC1に対する内径側出口すきまC2の比率は、1:1.2~5.0に設定されることが好ましい。
 また、上記の場合、平行すきま部21の長さW1と、重なり部20の長さWとの割合は、W1/W=0.1~0.5であることが望ましく、0.2~0.4であることがより望ましい。
 平行すきま部21の長さW1を重なり部20の長さWに対して0.1以上確保することで、潤滑油が流入する量を制御しやすくなる。また、平行すきま部21の長さW1を重なり部20の長さWに対して0.5以下とすることで、内輪テーパ部12cの傾斜が緩い勾配となるように設計することができる。
 また、この平行すきま部21の長さW1と、内径側入り口すきまC1との割合は、平行すきま部21の長さW1/内径側入り口すきまC1=1~5であることが望ましく、2~4であることがより望ましい。
 平行すきま部21の長さW1を内径側入り口すきまC1に対して1以上確保することで、潤滑油が流入する量を制御しやすくなる。また、平行すきま部21の長さW1を内径側入り口すきまC1に対して5以下とすることで、内輪小径部12bと折り返し部11dとの接触を回避しやすくなる。
 さらに、重なり部20の長さWと、内輪小径部12bの円筒面部12gにおける内輪板厚tとの割合は、重なり部20の長さW/内輪板厚t=1~2であることが望ましく、1.2~1.8であることがより望ましい。
 また、内輪12のフランジ部12eは、外輪大径部11eの軸方向端に対向し、フランジ部12eと外輪大径部11eの軸方向端との間には、軸方向すきま(以後、外径側出口すきまと言う)C3が形成されている。
 外径側出口すきまC3は、内径側出口すきまC2より大きく設定されている。即ち、各すきまの大きさは、内径側入り口すきまC1、内径側出口すきまC2、及び外径側出口すきまC3の順に大きくなる(C1<C2<C3)。
 外輪11及び内輪12は、炭素が0.7~0.9重量%、マンガンが0.3~0.9重量%、クロムが0.3~1.0重量%、シリコンが0.01~0.15重量%含まれた合金素材又は鋼素材の板材がプレス加工され、熱処理が施されて形成される。このような素材としては、例えばPCR5がある。
 各元素を含有させた理由並びに含有量の限定理由は以下の通りである。焼入れ処理により外輪11及び内輪12に必要なHRC60以上の高度を得るには、炭素量は0.7重量%以上必要であるが、0.9重量%を超えると深絞り性が低下する。シリコンは、製鋼時の脱酸剤として添加され、通常0.01重量%より多く含有されるが、シリコンが0.15重量%より多く含有されるとフェライトが強化され、深絞り性が低下するため、シリコンの含有率は0.15重量%以下とした。マンガンは、シリコンと同様に脱酸元素として添加されることにより焼入性を向上させる効果があるが、添加量が多すぎると変形抵抗を増大させるため、その上限を0.9重量%とした。クロムは、焼入性向上のために0.3重量%以上添加するが、1.0重量%を超えて添加されると深絞り性が低下するため、添加量の上限を1.0重量%とした。
 このように、伸びが良く、加工性に優れる素材で外輪11を製作することにより、折り返し部11dのしごき率を60%以上、好ましくは、60~65%にすることができ、加工性が向上する。なお、しごき率とは、しごき前の板厚に対するしごき後の板厚の減少率である。
 クラッチ部では、軸受の内輪、外輪はシャフトやハウジングとの嵌め合いはなく、組み付け後の軸受の両側の平面部のみで他部品と接している。外輪11を固定輪とし、内輪12を回転輪とした場合、外輪11は他部品(例えば、ガイドスリーブ)と滑ること無く接続され、内輪12は他部品(例えば、ダイヤフラムスプリング)と滑ること無く回転することが求められる。そのため、一般的には、アキシアル方向に荷重を負荷し、外輪11とガイドスリーブ間、及び内輪12とダイヤフラムスプリング間に摩擦力を与えている。しかしながら、クラッチ用軸受10に大きなアキシアル荷重を負荷すると回転トルクが大きくなるため、車両の燃費が悪化する可能性がある。
 本実施形態のクラッチ用軸受10は、外輪11の径方向壁部11c、及び内輪12のフランジ部12eの外側面の少なくとも3か所に、相手部材(ガイドスリーブやダイヤフラムスプリング)の突起部(図示せず)と係合する係止部である窪み11fまたは孔12fが設けられている。窪み11f又は孔12fに、相手部材の突起部を係合させて回り止めとすることにより、すべり防止を目的とした上記アキシアル荷重負荷が不要となり、燃費向上が期待される。これにより、クラッチ用軸受10に必要なアキシアル荷重は、軸受のアキシアル方向のガタをなくすための予圧のみとなる。
 両係止部は、窪み11fや孔12fのみで構成されてもよく、また、窪み11fと孔12fとの組み合わせであってもよい。窪み11fや孔12fは、径方向壁部11cの外側面だけに形成されてもよいし、内輪12のフランジ部12eの外側面だけに形成されてもよく、径方向壁部11c及びフランジ部12eの両外側面に形成されてもよい。また、窪みや孔が相手部材に形成され、係止部としての突起部が径方向壁部11c及びフランジ部12eの外側面に形成されてもよい。
 さらに、外輪11の径方向壁部11c、及び内輪12のフランジ部12eの外側面の面粗度を粗くして摩擦力を高めるようにしてもよい。
 保持器16は、クラッチ用軸受10の各小径部側に配置される小円環部16aと、大径部側に配置される大円環部16bと、小円環部16aと大円環部16bとを軸方向に傾斜して接続する複数の柱部16cと、を備える。小円環部16a及び大円環部16bの軸方向内側面と、隣り合う柱部16cの周方向側面とで、玉15を保持するポケット17が形成される。
 小円環部16aの外周面と外輪小径部11bの内周面とで形成される円環状すきまC4の軸方向から見た断面積S4と、小円環部16aの内周面と内輪小径部12bの外周面とで形成される円環状すきまC5の軸方向から見た断面積S5との和(S4+S5)は、大円環部16bの外周面と外輪大径部11eの内周面とで形成される円環状すきまC6の軸方向から見た断面積S6と、大円環部16bの内周面と内輪大径部12dの外周面とで形成される円環状すきまC7の軸方向から見た断面積S7との和(S6+S7)より小さく設定されている。これは、小円環部16aの径方向幅と、大円環部16bの径方向幅と、を異ならせることにより達成可能である。さらに、円環状すきまC5の軸方向から見た断面積S5は、円環状すきまC4の軸方向から見た断面積S4より小さく設定されている。
 なお、本実施形態では、各円環状すきまC4~C7は、小円環部16a及び大円環部16bの軸方向外端位置(小円環部16aの軸方向一方側端部と、大円環部16bの軸方向他方側端部)において規定される。
 次に、クラッチ用軸受10の各部のすきまC1~C7による潤滑油の油流制御について説明する。
 クラッチ用軸受10の転動面を潤滑する潤滑油は、内径側入り口すきまC1から流入し、内径側出口すきまC2、さらに保持器16の小円環部16aと外輪11及び内輪12との円環状すきまC4及びC5を介して内部に供給されて潤滑部(転動面)を潤滑する。潤滑部(玉15と各軌道面11a,12a、及び玉15と保持器16との摺接面)を潤滑した潤滑油は、保持器16の大円環部16bと外輪11及び内輪12との円環状すきまC6及びC7、フランジ部12eと外輪大径部11eの軸方向端との間の外径側出口すきまC3から外部に排出される。
 ここで、内径側入り口すきまC1は、内径側出口すきまC2より小さく設定されているので、内径側入り口すきまC1により必要量以上の潤滑油の流入が抑制される。また、流入した潤滑油は、大きな内径側出口すきまC2からスムーズに排出(軸受内の空間に流入)される。具体的に、内径側入り口すきまC1から流入した潤滑油は、回転する内輪12の遠心力により、内輪テーパ部12cに沿って軸方向一方側に移動した後、内輪小径部12bの軸方向端から軸受内の空間に振り切られて飛散する。また、外径側出口すきまC3は、内径側出口すきまC2より大きく設定されているので、潤滑部を潤滑した潤滑油は、クラッチ用軸受10の内部に滞留することなく、スムーズにクラッチ用軸受10の外部へ排出され、潤滑油の攪拌抵抗が低減する。
 また、保持器16の小円環部16aと外輪11及び内輪12との円環状すきまC4及びC5の軸方向から見た断面積S4及びS5の和は、保持器16の大円環部16bと外輪11及び内輪12との円環状すきまC6及びC7の軸方向から見た断面積S6及びS7の和より小さく設定されているので、潤滑部に流入する油量が必要量に抑制されると共に、流入した潤滑油は、長時間潤滑部の内部に留まることなく、円環状すきまC6及びC7から流出する。さらに、円環状すきまC5の軸方向から見た断面積S5は、円環状すきまC4の軸方向から見た断面積S4より小さく設定されているので、より多くの潤滑油が外輪11側に流れ、保持器16の柱部16cによる潤滑油の攪拌が低減する。
 特に、円環状すきまC4から流入した潤滑油は、回転する軸受の遠心力により、外輪軌道面11aに沿って外径側に移動した後、円環状すきまC6から流出する。一方、円環状すきまC5から流入した潤滑油の多くは、回転する軸受の遠心力により、傾斜して延びる柱部16cに導かれて(柱部16cの内径側の面に沿って)、円環状のすきまC7から流出する。さらに、円環状すきまC5から流入した潤滑油の一部は、玉15とポケット17との間を通過(潤滑)した後、円環状すきまC6から流出する。このように、円環状すきまC4及びC5により流入制限された潤滑油は、積極的に潤滑部から流出するので、保持器16の柱部16cの近傍には潤滑油が滞留しない。
 また、保持器16の小円環部16aの軸方向から見た面積をS16aとすると、小円環部16aの軸方向端面位置における、軸方向から見た内外輪間の断面積SI(SI=S4+S5+S16a)に対して、該小円環部16aの軸方向から見た面積S16aの占める割合は、S16a/SI=0.6~0.9であることが望ましく、0.7~0.8であることがより望ましい。
 S16a/SIを0.6以上とすることで、小円環部16aの端面に付着するオイルの量を確保することができ、付着したオイルを、保持器公転による遠心力で外径側に移動させ、円環状すきまC4を通過させるオイルの割合を増やすことができる。一方、S16a/SIを0.9以下とすることで、保持器断面の割合が大きくなりすぎて、オイル全体の流れが悪くなるのを防止している。
 このように、潤滑油の潤滑環境下で使用されるクラッチ用軸受10は、潤滑油の攪拌抵抗が低減することで回転トルクも低減し、自動車の燃費が向上する。
 以上説明したように、本実施形態のクラッチ用軸受10によれば、外輪11は、外輪軌道面11aに対して軸方向一方側に延びる外輪小径部11b、該外輪小径部11bの軸方向端部から内径側に延びる径方向壁部11c、及び該径方向壁部11cの径方向内端部から軸方向他方側に延び、内輪小径部12bの内周面との間に径方向すきまを有して径方向に重なる折り返し部11dを備える。折り返し部11dの軸方向端と内輪小径部12bの内周面とで形成される内径側入り口すきまC1は、内輪小径部12bの軸方向端と折り返し部11dの外周面とで形成される内径側出口すきまC2より小さいので、内径側入り口すきまC1からクラッチ用軸受10に供給される潤滑油量を制限するとともに、内径側出口すきまC2からスムーズにクラッチ用軸受10の内部(潤滑部)に流入させて、潤滑油の油量及び流れを制御することで潤滑油の攪拌抵抗を低減させて低トルク化することができる。
 また、内輪小径部12bには、その内周面が内輪小径部12bの軸方向端に向かって拡径する内輪テーパ部12cが形成されるので、内径側入り口すきまC1と内径側出口すきまC2との比率を任意の大きさに設定できる。
 また、内径側入り口すきまC1に対する内径側出口すきまC2の比率は、1:1.2~5.0であるので、内輪テーパ部12cのみによって容易に径方向すきまを設計することができる。
 また、外輪大径部11eの軸方向端と、内輪12のフランジ部12eとの間の外径側出口すきまC3は、内径側出口すきまC2より大きいので、クラッチ用軸受10の内部の潤滑油は、内部に滞留することなく、スムーズにクラッチ用軸受10の外部へ排出されて、潤滑油の攪拌抵抗が低減する。
 また、保持器16の小円環部16aと外輪11及び内輪12とのすきまC4,C5の断面積S4,S5の和は、大円環部16bと外輪11及び内輪12とのすきまC6,C7の断面積S6,S7の和より小さいので、クラッチ用軸受10の内部の潤滑油はスムーズに流出し、潤滑油の攪拌抵抗が低減する。
 また、外輪11及び内輪12は、炭素が0.7~0.9重量%、マンガンが0.3~0.9重量%、クロムが0.3~1.0重量%、シリコンが0.01~0.15重量%含まれた合金素材又は鋼素材の金属板をプレス加工することで形成され、折り返し部11dのしごき率が60%以上であるので、折り返し部11dの成形が容易である。
 また、外輪11の径方向壁部11cの外側面、及び内輪12のフランジ部12eの外側面の少なくとも一方には、相手部材に設けられた突起部と係合可能な窪み11fまたは孔12fなどの係止部が形成されるので、相手部材の突起部と窪み11fまたは孔12fを係合させて回り止めとすることにより、従来、すべり防止を目的として付与されていたアキシアル荷重負荷が不要となり、回転トルクが低減して燃費が向上する。
(第2実施形態)
 次に、第2実施形態のクラッチ用軸受について図2を参照して説明する。なお、第2実施形態のクラッチ用軸受10は、外輪11の折り返し部11d、及び内輪小径部12bの形状が、第1実施形態のクラッチ用軸受10のものと異なるのみであり、その他の部分については、本発明の第1実施形態のものと実質的に同様である。このため、第1実施形態と同一又は相当部分については同一符号を付して説明を簡略化又は省略する。
 本実施形態の内輪12では、内輪小径部12bはクラッチ用軸受10の中心軸と平行に軸方向に延設されている。一方、外輪11の折り返し部11dには、折り返し部11dの外周面が、折り返し部11dの軸方向端(図中右方向)に向かって拡径するように形成される外輪テーパ部11gが設けられている。
 外輪11の折り返し部11dと、内輪小径部12bとの重なり部Wには、外輪テーパ部11gにより、折り返し部11dの軸方向端と内輪小径部12bの内周面との間に内径側入り口すきまC1が形成され、内輪小径部12bの軸方向端と折り返し部11dの外周面との間に内径側出口すきまC2が形成されている。
 これにより、内径側入り口すきまC1は、内径側出口すきまC2より小さく設定される。具体的に、この場合、内輪小径部12bの内周面の内径を一定とし、外輪テーパ部11gのみによって、内径側入り口すきまC1に対する内径側出口すきまC2の比率は、1:1.2~5.0に設定されている。
 このように、本実施形態のクラッチ用軸受10によれば、外輪11の折り返し部11dには、その外周面が折り返し部11dの軸方向端に向かって拡径する外輪テーパ部11gが形成されているので、容易に、内径側入り口すきまC1を内径側出口すきまC2より小さくすることができる。
 その他の構成及び作用は、第1実施形態のクラッチ用軸受10と同様である。
(第3実施形態)
 次に、第3実施形態のクラッチ用軸受について図3を参照して説明する。図3に示す第3実施形態のクラッチ用軸受10では、内輪小径部12bの内周面に、第1実施形態のクラッチ用軸受10と同様に、内輪小径部12bの軸方向端に向かって拡径する内輪テーパ部12cが形成されている。さらに、外輪11の折り返し部11dに、第2実施形態のクラッチ用軸受10と同様に、折り返し部11dの外周面が折り返し部11dの軸方向端(図中右方向)に向かって拡径するように外輪テーパ部11gが形成されている。
 そして、外輪11の折り返し部11dと、内輪小径部12bとの重なり部Wには、内輪テーパ部12c及び外輪テーパ部11gにより、折り返し部11dの軸方向端と内輪小径部12bの内周面との間に内径側入り口すきまC1が形成され、内輪小径部12bの軸方向端と折り返し部11dの外周面との間に内径側出口すきまC2が形成されている。
 これにより、内径側入り口すきまC1は、内径側出口すきまC2より小さく設定される。具体的に、この場合、内輪テーパ部12c及び外輪テーパ部11gによって、内径側入り口すきまC1に対する内径側出口すきまC2の比率は、1:1.4~10.0に設定される。
 このような本実施形態のクラッチ用軸受10によれば、内輪テーパ部12c及び外輪テーパ部11gを設けることで、内径側入り口すきまC1は、内径側出口すきまC2より小さく設定される。また、内径側入り口すきまC1に対する内径側出口すきまC2の比率を、1:1.4~10.0の範囲で設計することができる。
 その他の構成及び作用は、第1及び第2実施形態のクラッチ用軸受10と同様である。
 尚、本発明は、前述した各実施形態に限定されるものではなく、適宜、変形、改良等が可能である。例えば、本発明のクラッチ用軸受は、クラッチを開放する際に、軸受に力が付与されるクラッチレリーズ軸受であってもよいし、クラッチを締結する際に、軸受に力が付与されるクラッチエンゲージ軸受であってもよい。
 本出願は、2017年7月27日出願の日本特許出願2017-145744及び2018年2月14日出願の日本特許出願2018-23982に基づくものであり、その内容はここに参照として取り込まれる。
10   クラッチ用軸受
11   外輪
11a  外輪軌道面
11b  外輪小径部
11c  径方向壁部
11d  折り返し部
11e  外輪大径部
11f  窪み(係止部)
11g  外輪テーパ部
12   内輪
12a  内輪軌道面
12b  内輪小径部
12c  内輪テーパ部
12d  内輪大径部
12e  フランジ部
12f  孔(係止部)
12g  円筒面部
15   玉
16   保持器
16a  小円環部
16b  大円環部
16c  柱部
17   ポケット
C1   内径側入り口すきま(内径側入り口の径方向すきま)
C2   内径側出口すきま(内径側出口の径方向すきま)
C3   外径側出口すきま(軸方向すきま)
C4   円環状すきま(小円環部と外輪とのすきま)
C5   円環状すきま(小円環部と内輪とのすきま)
C6   円環状すきま(大円環部と外輪とのすきま)
C7   円環状すきま(大円環部と内輪とのすきま)
S4   すきまC4の断面積
S5   すきまC5の断面積
S6   すきまC6の断面積
S7   すきまC7の断面積

Claims (10)

  1.  内周面に形成される外輪軌道面と、該外輪軌道面に対して軸方向一方側に延びる外輪小径部と、前記外輪軌道面に対して軸方向他方側に延びる外輪大径部と、前記外輪小径部の軸方向端部から内径側に延びる径方向壁部と、該径方向壁部の径方向内端部から軸方向他方側に延びる折り返し部と、を備え、プレス成型品である外輪と、
     外周面に形成される内輪軌道面と、該内輪軌道面に対して軸方向一方側に延びる内輪小径部と、前記内輪軌道面に対して軸方向他方側に延びる内輪大径部と、を備える内輪と、
     前記外輪軌道面と前記内輪軌道面間に転動自在に配設され、前記両軌道面に所定の接触角で接触する複数の玉と、
     前記複数の玉を転動自在に保持する保持器と、
    を備えるクラッチ用軸受であって、
     前記外輪の前記折り返し部は、前記内輪小径部の内周面との間に径方向すきまを有して前記内輪小径部と径方向に重なっており、
     前記折り返し部の軸方向端と前記内輪小径部の内周面とで形成される内径側入り口の前記径方向すきまが、前記内輪小径部の軸方向端と前記折り返し部の外周面とで形成される内径側出口の前記径方向すきまより小さいことを特徴とするクラッチ用軸受。
  2.  前記内輪小径部には、その内周面が前記内輪小径部の軸方向端に向かって拡径する内輪テーパ部が形成されることを特徴とする請求項1に記載のクラッチ用軸受。
  3.  前記外輪の前記折り返し部には、その外周面が前記折り返し部の軸方向端に向かって拡径する外輪テーパ部が形成されることを特徴とする請求項1に記載のクラッチ用軸受。
  4.  前記内径側入り口の前記径方向すきまに対する前記内径側出口の前記径方向すきまの比率は、1:1.2~5.0であることを特徴とする請求項1~3のいずれか1項に記載のクラッチ用軸受。
  5.  前記内輪小径部には、その内周面が前記内輪小径部の軸方向端に向かって拡径する内輪テーパ部が形成され、且つ、
     前記外輪の前記折り返し部には、その外周面が前記折り返し部の軸方向端に向かって拡径する外輪テーパ部が形成されることを特徴とする請求項1に記載のクラッチ用軸受。
  6.  前記内径側入り口の前記径方向すきまに対する前記内径側出口の前記径方向すきまの比率は、1:1.4~10.0であることを特徴とする請求項5に記載のクラッチ用軸受。
  7.  前記内輪は、前記内輪大径部の軸方向端部から外径側に延び、前記外輪大径部の軸方向端との間に軸方向すきまを有して対向するフランジ部を備え、
     前記軸方向すきまは、前記内径側出口の前記径方向すきまより大きいことを特徴とする請求項1~6のいずれか1項に記載のクラッチ用軸受。
  8.  前記保持器は、小円環部と、大円環部と、前記小円環部と前記大円環部とを軸方向に接続する複数の柱部と、を備え、
     前記小円環部と前記外輪及び前記内輪とのすきまの断面積の和は、前記大円環部と前記外輪及び前記内輪とのすきまの断面積の和より小さいことを特徴とする請求項1~7のいずれか1項に記載のクラッチ用軸受。
  9.  前記外輪及び前記内輪は、炭素が0.7~0.9重量%、マンガンが0.3~0.9重量%、クロムが0.3~1.0重量%、シリコンが0.01~0.15重量%含まれた合金素材又は鋼素材の金属板をプレス加工することで形成され、前記折り返し部のしごき率が60%以上であることを特徴とする請求項1~8のいずれか1項に記載のクラッチ用軸受。
  10.  前記内輪は、前記内輪大径部の軸方向端部から外径側に延び、前記外輪大径部の軸方向端との間に軸方向すきまを有して対向するフランジ部を備え、
     前記外輪の前記径方向壁部の外側面、及び前記内輪の前記フランジ部の外側面の少なくとも一方には、相手部材と係合可能な係止部が形成されることを特徴とする請求項1~9のいずれか1項に記載のクラッチ用軸受。
PCT/JP2018/015146 2017-07-27 2018-04-10 クラッチ用軸受 WO2019021544A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187030464A KR20190013712A (ko) 2017-07-27 2018-04-10 클러치용 베어링
EP18765795.2A EP3453907B1 (en) 2017-07-27 2018-04-10 Bearing for clutch
US16/086,106 US20200300299A1 (en) 2017-07-27 2018-04-10 Bearing for clutch
CN201880049200.2A CN110998117B (zh) 2017-07-27 2018-04-10 离合器用轴承

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017145744 2017-07-27
JP2017-145744 2017-07-27
JP2018023982A JP7043871B2 (ja) 2017-07-27 2018-02-14 クラッチ用軸受
JP2018-023982 2018-02-14

Publications (1)

Publication Number Publication Date
WO2019021544A1 true WO2019021544A1 (ja) 2019-01-31

Family

ID=64426853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015146 WO2019021544A1 (ja) 2017-07-27 2018-04-10 クラッチ用軸受

Country Status (3)

Country Link
EP (1) EP3453907B1 (ja)
KR (1) KR20190013712A (ja)
WO (1) WO2019021544A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129617U (ja) * 1980-03-05 1981-10-02
JPH09177827A (ja) * 1995-12-25 1997-07-11 Nippon Seiko Kk クラッチレリーズ軸受装置
JP2010053984A (ja) * 2008-08-28 2010-03-11 Ntn Corp 外輪回転クラッチレリーズ軸受およびクラッチレリーズ軸受装置
DE102014209418A1 (de) 2014-05-19 2015-11-19 Schaeffler Technologies AG & Co. KG Kupplungsausrückanordnung für eine Ölbadkupplung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1975536U (de) * 1967-10-07 1967-12-21 Skf Kugellagerfabriken Gmbh Waelzlager, insbesondere kupplungsdrucklager.
DE2250455C3 (de) * 1972-10-14 1980-09-25 Skf Kugellagerfabriken Gmbh, 8720 Schweinfurt Paarung eines Kupplungshebels mit der Stirnseite eines Kupplungslagers
FR2611009B1 (fr) * 1987-02-17 1989-05-19 Valeo Butee de debrayage, notamment pour vehicule automobile
FR2704916B1 (fr) * 1993-05-06 1995-06-30 Valeo Butee de debrayage, notamment pour vehicule automobile.
FR2744776B1 (fr) * 1996-02-08 1998-03-20 Skf France Butee d'embrayage a organe d'auto-alignement elastique
FR2866085B1 (fr) * 2004-02-11 2007-06-29 Skf Ab Dispositif de buee axiale de volant d'inertie.
FR2898951B1 (fr) * 2006-03-21 2009-02-27 Skf Ab Butee de debrayage auto-centreuse
CN103180626B (zh) * 2010-10-19 2015-12-02 Ntn株式会社 滚动轴承
FR2973460B1 (fr) * 2011-03-28 2013-05-03 Ntn Snr Roulements Montage d'une butee d'embrayage sur un arbre d'une boite de vitesses d'un vehicule automobile
FR3022964B1 (fr) * 2014-06-27 2016-07-29 Skf Ab Bague de roulement, procede de fabrication d'une telle bague et roulement comprenant une telle bague

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129617U (ja) * 1980-03-05 1981-10-02
JPH09177827A (ja) * 1995-12-25 1997-07-11 Nippon Seiko Kk クラッチレリーズ軸受装置
JP2010053984A (ja) * 2008-08-28 2010-03-11 Ntn Corp 外輪回転クラッチレリーズ軸受およびクラッチレリーズ軸受装置
DE102014209418A1 (de) 2014-05-19 2015-11-19 Schaeffler Technologies AG & Co. KG Kupplungsausrückanordnung für eine Ölbadkupplung

Also Published As

Publication number Publication date
EP3453907A4 (en) 2019-05-08
EP3453907B1 (en) 2020-09-30
EP3453907A1 (en) 2019-03-13
KR20190013712A (ko) 2019-02-11

Similar Documents

Publication Publication Date Title
JP4314430B2 (ja) 円すいころ軸受
JP4103501B2 (ja) 円錐ころ軸受
JP5595747B2 (ja) 車輪用軸受装置
JP2014202341A (ja) 円すいころ軸受
CN106979232B (zh) 滚子轴承
JPH0932858A (ja) 円錐ころ軸受
KR20160074626A (ko) 원통 롤러 베어링 및 트랜스미션용 베어링 장치
TWI600849B (zh) 齒輪傳動裝置
JP4552896B2 (ja) シェル形ころ軸受
JP7043871B2 (ja) クラッチ用軸受
JP2004076766A (ja) 円すいころ軸受
JPH09291942A (ja) ラジアル転がり軸受
WO2019021544A1 (ja) クラッチ用軸受
US10001171B2 (en) Rolling bearing
CN108071683B (zh) 圆锥滚子轴承及动力传递装置
US20090028486A1 (en) Tapered roller bearing
JP2019211005A (ja) スラストニードル軸受
JP2011047474A (ja) 軸受用保持器および軸受
JP2018135957A (ja) 円すいころ軸受
JP2005023997A (ja) ころ、およびころ軸受
JP2008045597A (ja) 円すいころ軸受およびパイロット部軸支持構造
JP2006214533A (ja) スラスト円筒ころ軸受
JP2008082421A (ja) ソリッド形針状ころ軸受及びソリッド形針状ころ軸受の保持器の製造方法
JP2006258262A (ja) 複列転がり軸受
JP2008025617A (ja) 円すいころ軸受

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187030464

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018765795

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018765795

Country of ref document: EP

Effective date: 20181102

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18765795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE