WO2019019483A1 - 一种低极性本征阻燃树脂及其制备方法和应用 - Google Patents

一种低极性本征阻燃树脂及其制备方法和应用 Download PDF

Info

Publication number
WO2019019483A1
WO2019019483A1 PCT/CN2017/110811 CN2017110811W WO2019019483A1 WO 2019019483 A1 WO2019019483 A1 WO 2019019483A1 CN 2017110811 W CN2017110811 W CN 2017110811W WO 2019019483 A1 WO2019019483 A1 WO 2019019483A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
reaction
low polarity
phenolic
combination
Prior art date
Application number
PCT/CN2017/110811
Other languages
English (en)
French (fr)
Inventor
苏民社
Original Assignee
广东生益科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东生益科技股份有限公司 filed Critical 广东生益科技股份有限公司
Priority to JP2019556930A priority Critical patent/JP6802390B2/ja
Priority to EP17919503.7A priority patent/EP3660028A4/en
Priority to US16/632,997 priority patent/US20200208057A1/en
Priority to KR1020207000364A priority patent/KR102292464B1/ko
Publication of WO2019019483A1 publication Critical patent/WO2019019483A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/022Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • B32B17/04Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments bonded with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/04Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/657163Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom
    • C07F9/657172Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom the ring phosphorus atom and one oxygen atom being part of a (thio)phosphinic acid ester: (X = O, S)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • C07F9/65744Esters of oxyacids of phosphorus condensed with carbocyclic or heterocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/28Chemically modified polycondensates
    • C08G8/36Chemically modified polycondensates by etherifying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/14Modified phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J161/00Adhesives based on condensation polymers of aldehydes or ketones; Adhesives based on derivatives of such polymers
    • C09J161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09J161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C09J161/14Modified phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/14Macromolecular materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/05Polymer mixtures characterised by other features containing polymer components which can react with one another
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/04Crosslinking with phenolic resin

Definitions

  • the invention belongs to the technical field of thermosetting resins, and relates to a low polarity intrinsic flame retardant resin and a preparation method and application thereof.
  • thermosetting resins are widely used in aerospace, rail transit, power insulation, microelectronic packaging due to their excellent heat resistance, flame retardancy, weather resistance, electrical insulation, good mechanical properties and dimensional stability. Resin matrix, high temperature insulation materials and adhesives for composite materials in other fields. Commonly used high-performance thermosetting resins are epoxy resin, phenolic resin, bismaleimide resin, etc., but the above-mentioned resin has brittleness, resulting in insufficient impact resistance of the material, and the resin has a high molecular structure polarity, resulting in high dielectric constant and loss. Weaknesses have limited its promotion and application in certain fields. Research on thermosetting resin modification has always been a research topic of concern for material workers.
  • thermosetting resins typified by bismaleimide resins have been used in aerospace radar radomes, rail transit circuit insulation materials and microelectronic circuit boards.
  • the ordinary high temperature resistant thermosetting resin has high dielectric constant and loss, and its transmission insulation performance cannot be improved.
  • CN104311756A discloses a silicon-containing bismaleimide resin with the introduction of a silicon-containing group which reduces the dielectric constant to below 3.0.
  • CN104479130A discloses a novel double horse monomer having a fluorine-containing structure, which significantly reduces the dielectric constant and loss of the bismale resin.
  • the above-mentioned novel structure double horse monomer synthesis process is complicated, high in cost, and difficult Batch preparation and application.
  • copolymerization modification by other resins is one of the important methods to improve the insulation properties of thermosetting resins.
  • CN101338032A discloses the preparation of a prepreg using a cyanate-modified bismale resin, and the dielectric constant and loss of the composite material are significantly reduced.
  • this method has certain effects on improving the dielectric properties of the resin, but the degree is limited, and there is still a certain gap in the distance application.
  • Flame retardant performance is one of the important properties of composite materials.
  • bromine-containing flame retardants have gradually withdrawn from the field of information electronics, and replaced by new flame retardants containing phosphorus and nitrogen.
  • the above flame retardant is generally added in a large amount, and the composite material has a significant influence on the high temperature resistance and mechanical strength after the addition. Therefore, the development of matrix resin with intrinsic flame retardant is a future development trend.
  • the object of the present invention is to provide a low polarity intrinsic flame retardant resin and a preparation method and application thereof.
  • the resin of the present invention does not contain a polar group (for example, a hydroxyl group), has low molecular polarity, high reactivity, lowers the dielectric constant and loss of the cured product, and the allyl structure in the resin structure realizes crosslinking curing to ensure curing.
  • a polar group for example, a hydroxyl group
  • the present invention adopts the following technical solutions:
  • the present invention provides a low polarity intrinsic flame retardant resin having the structure of Formula I below:
  • R is a linear or branched alkyl group, -O-, X and Y are independently hydrogen, allyl, linear alkyl, branched alkyl, or a combination of at least two;
  • A is a phosphorus-containing end group, and n is an integer from 1 to 20.
  • the low polarity means that it does not contain a polar group, especially does not contain a hydroxyl group, so that the resin has a lower polarity and overcomes the generality.
  • the high-frequency dielectric constant and high-loss defects caused by the high polarity of the thermosetting resin, and the cross-linking curing by the allyl structure in the structure can be achieved, the mechanical strength after curing is ensured, and the cured product has excellent heat resistance.
  • the resin contains a flame-retardant phosphorus-containing structure, which makes it have a good intrinsic flame retardant effect.
  • said R is a C1-C6 (eg C1, C2, C3, C4, C5 or C6) linear alkyl group or a C3-C6 (eg C3, C4, C5 or C6) branched alkyl group, in particular Can be -CH 2 -, Wait.
  • C1-C6 eg C1, C2, C3, C4, C5 or C6
  • C3-C6 eg C3, C4, C5 or C6 branched alkyl group
  • R is -CH 2 -, -O- or n is an integer from 1 to 20, and X and Y are independently hydrogen, allyl, linear alkyl, branched alkyl, or a combination of at least two, and A is a phosphorus-containing capping group.
  • n is an integer of 1-20, for example, n may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 , 18, 19 or 20.
  • X and Y are independently C1-C21 (eg, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, a linear alkyl group of C19, C20 or C21) or C3-C21 (eg C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19) , C20 or C21) branched alkyl.
  • C1-C21 eg, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19
  • A is a group containing a DOPO structure, preferably Any of them.
  • the low polarity intrinsic flame retardant resin is any one or a combination of at least two of the compounds having the structure represented by the following formula A-form D:
  • n is an integer from 1-20.
  • the present invention provides a method of preparing a low polarity intrinsic flame retardant resin as described above, the method comprising the steps of:
  • R 1 is a linear or branched alkyl group, -O-
  • R 2 is a linear or branched alkyl group, -O-
  • R 3 is a linear or branched alkyl group, -O-
  • R is a linear or branched alkyl group, -O- or
  • X and Y are independently hydrogen, allyl, linear alkyl, branched alkyl, or a combination of at least two
  • A is a phosphorus-containing end group
  • n is an integer from 1 to 20.
  • step (2) when R 2 is In the case where the allyl ether group therein is rearranged, resulting in the intermediate unit R 3 of the allylated phenolic resin of the formula IV containing an allyl group due to rearrangement, and further in the product formula I
  • the R unit of the low-polarity resin shown includes allyl groups due to rearrangement, and the simple expression in the present invention does not directly represent the allyl group to the corresponding structures of R 3 and R, but only by X.
  • X contains allyl groups due to rearrangement
  • the benzene ring carries other substituents X, after the rearrangement reaction of step (2), then the structure of R 3
  • the middle X may represent a combination of allyl groups produced by rearrangement and other substituents before the reaction.
  • R 2 is also included.
  • R 2 unit allyl ether group rearrangement reaction does not occur at this time, the reaction product of R 3 and R before the reaction of X in the allyl ether of formula III in the resin of R 2 X
  • the groups are the same.
  • the phenolic compound or the phenolic resin in the step (1) is a phenol, a dihydric phenol, a polyhydric phenol or a derivative thereof, preferably phenol, o-cresol, bisphenol A, bisphenol F, tetramethyl Any one or a combination of at least two of bisphenol A, a phenol resin, an o-cresol novolac resin, or a cyclopentadiene phenol resin.
  • the allylation reagent is any one or a combination of at least two of allyl silanol, allyl chloride, allyl bromide, allyl iodide or allylamine.
  • the molar ratio of the phenolic hydroxyl group to the allyl group in the phenolic resin is 1: (0.3 to 1.2), for example, 1:0.3, 1:0.4, 1:0.5, 1:0.6, 1:0.7, 1:0.8, 1:0.9, 1:1, 1:1.1 or 1:1.2.
  • the reaction of the step (1) is carried out in the presence of a basic substance, preferably any one of sodium hydroxide, potassium hydroxide, sodium carbonate or potassium carbonate or a combination of at least two.
  • a basic substance preferably any one of sodium hydroxide, potassium hydroxide, sodium carbonate or potassium carbonate or a combination of at least two.
  • the molar ratio of the basic substance to the phenolic hydroxyl group contained in the phenolic compound or the phenolic resin in the step (1) is (0.3 to 1.4):1, for example, 0.3:1, 0.4:1, 0.5: 1, 0.6:1, 0.7:1, 0.8:1, 0.9:1 1:1, 1.1:1, 1.2:1, 1.3:1 or 1.4:1.
  • step (1) is carried out in the presence of a phase transfer catalyst.
  • the phase transfer catalyst is a quaternary ammonium salt phase transfer catalyst, preferably tetrabutylammonium chloride, tetrabutylammonium bromide, benzyltriethylammonium chloride, tetrabutylammonium hydrogen sulfate, trioxane Any one or a combination of at least two of methylammonium chloride, dodecyltrimethylammonium chloride or tetradecylbromotrimethylammonium chloride.
  • the phase transfer catalyst is added in an amount of 0.1-5%, such as 0.1%, 0.3%, 0.5%, 0.8%, 1%, 1.3%, of the mass of the phenolic compound or the phenolic resin in the step (1). 1.5%, 1.8%, 2%, 2.3%, 2.5%, 2.8%, 3%, 3.3%, 3.5%, 3.8%, 4%, 4.3%, 4.5%, 4.8% or 5%.
  • the solvent of the reaction in the step (1) is any one of an alcohol solvent, an aromatic hydrocarbon solvent or a ketone solvent or a combination of at least two, preferably ethanol, propanol, butanol, toluene or xylene Any one or a combination of at least two.
  • the solvent is added in an amount of 2-5 times, for example, 2 times, 2.3 times, 2.5 times, 2.8 times, 3 times, 3.3 times, 3.5, of the mass of the phenolic compound or the phenolic resin in the step (1). Times, 3.8, 4, 4.3, 4.5, 4.8 or 5 times.
  • the temperature of the reaction in the step (1) is 60-90 ° C, such as 60 ° C, 63 ° C, 65 ° C, 68 ° C, 70 ° C, 75 ° C, 78 ° C, 80 ° C, 85 ° C, 88 ° C or 90 °C.
  • the reaction time of the step (1) is 4-6 hours, such as 4 hours, 4.3 hours, 4.5 hours, 4.8 hours, 5 hours, 5.2 hours, 5.5 hours, 5.8 hours or 6 hours.
  • the protective gas in step (2) is nitrogen or argon.
  • the heating in step (2) is heating to 180-220 ° C, such as 180 ° C, 185 ° C, 190 ° C, 195 ° C, 200 ° C, 205 ° C, 210 ° C, 215 ° C or 220 ° C.
  • the reaction time in the step (2) is 4-6 hours, such as 4 hours, 4.3 hours, 4.5 hours, 4.8 hours, 5 hours, 5.2 hours, 5.5 hours, 5.8 hours or 6 hours.
  • the phosphorus-containing capping reagent in the step (3) is 9,10-dihydro-9-oxa-10-phosphinophen-10-oxide, 9,10-dihydro-9-oxa-10 -phosphonium-10-oxide, 2-(6H-dibenzo(c,e)(1,2)-5-oxa-6-phosphono-6-phenyl-1,4-p-benzene Diphenol, 2-(6H-dibenzo(c,e)(1,2)-5-oxa-6-phosphono-6-phenyl-4-phenol, 2-(6H-dibenzo (c,e)(1,2)-5-oxa-6-phosphono-6-phenyl-3-phenol, 2-(6H-dibenzo(c,e)(1,2)- 5-oxa-6-phosphono-6-phenyl-4-benzyl alcohol or 2-(6H-dibenzo(c,e)(1,2)-5-oxa-6-phosphono Any one or a combination
  • the molar ratio of the phenolic hydroxyl group in the allylated phenolic resin represented by the formula III in the step (3) to the phosphorus-containing terminal group in the phosphorus-containing terminal reagent is 1: (1 to 1.2), for example, 1: 1, 1:1.05, 1:1.1, 1:1.15 or 1:1.2.
  • the phenolic hydroxyl group in the molecular structure of the resin obtained by the reaction is blocked by the phosphorus-containing end group, so that the resin has no polar hydroxyl group.
  • the reaction of the step (3) is carried out in the presence of a basic substance.
  • the basic substance is an inorganic base or an organic base, preferably any one or a combination of at least two of sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine or pyridine.
  • the molar ratio of the basic substance to the phenolic hydroxyl group in the allylated phenolic resin of the formula III is (1 to 1.4):1, for example, 1:1, 1.05:1, 1.1:1, 1.15: 1. 1.2:1, 1.25:1, 1.3:1, 1.35:1 or 1.4:1.
  • step (3) is carried out in the presence of carbon tetrachloride.
  • the molar ratio of the carbon tetrachloride to the phenolic hydroxyl group in the allylated phenolic resin represented by the formula III in the step (3) is (1 to 2):1, for example, 1:1, 1.1:1. 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1.
  • the solvent of the reaction in the step (3) is a halogenated hydrocarbon solvent, preferably any one of methylene chloride, dichloromethane, chloroform or dichloroethane or a combination of at least two.
  • the solvent is added in an amount of 2-5 times, for example, 2 times, 2.3 times, 2.5 times, 2.8 times, 3 times, 3.3 times, 3.5, of the mass of the allylated phenolic resin in the step (3). Times, 3.8, 4, 4.3, 4.5, 4.8 or 5 times.
  • the temperature of the reaction in the step (3) is 0-30 ° C, such as 0 ° C, 3 ° C, 5 ° C, 8 ° C, 10 ° C, 15 ° C, 18 ° C, 20 ° C, 25 ° C, 28 ° C or 30 °C, preferably 10 °C.
  • the reaction time in the step (3) is 4-6 hours, such as 4 hours, 4.3 hours, 4.5 hours, 4.8 hours, 5 hours, 5.2 hours, 5.5 hours, 5.8 hours or 6 hours.
  • the resin prepared by the method of the invention does not contain polar hydroxyl groups, has stable molecular structure, has low molecular polarity and high reactivity, and does not generate polar hydroxyl groups in the processing process thereof, avoiding
  • the resulting secondary hydroxyl group has an effect on the properties of its product and is terminated with a phosphorus-containing end group to impart intrinsic flame retardancy to the resin.
  • the present invention provides the use of a low polarity intrinsic flame retardant resin as described above in the preparation of a resin composite.
  • the low polarity intrinsic flame retardant resin of the invention can be used for one of the components of the matrix resin in the resin composite material, and can be co-crosslinked and cured with other thermosetting resins such as epoxy resin and bismaleimide resin, and the resin is remarkably lowered. Dielectric constant and dielectric loss.
  • the resin composite material may be an aerospace wave-transparent composite material, a power insulating material, a resin composite material for electronic packaging, and a resin composite material for a copper-clad laminate.
  • the present invention provides the use of a low polarity intrinsic flame retardant resin as described above in the preparation of an electronic packaging material.
  • the low-polarity intrinsic flame retardant resin of the invention has the characteristics of low molecular polarity and high reactivity, and can also be applied to preparation of materials such as encapsulants and potting resins in the field of microelectronics.
  • the present invention provides a low polarity intrinsic flame retardant resin as described above in a metal foil laminate Application in board preparation.
  • the low-polarity intrinsic flame retardant resin according to the present invention can be used for one of the components of the matrix resin in the resin composite material, and can be co-crosslinked and cured with other thermosetting resins such as epoxy resin and bismaleimide resin, and is remarkable. Reducing the dielectric constant and dielectric loss of the resin, and using it in the preparation of the metal foil-clad laminate is advantageous for reducing the dielectric constant and dielectric loss of the metal foil-clad laminate, improving the heat resistance, and at the same time, the resin contains the resistance.
  • the flammable phosphorus-containing structure makes the metal foil-clad laminate have a good flame retardant effect.
  • the present invention has the following beneficial effects:
  • the resin of the invention does not contain a polar hydroxyl group, has a stable molecular structure, has the characteristics of low molecular polarity and high reactivity, and does not generate polar hydroxyl groups in the processing process of the application, thereby avoiding secondary generation.
  • the resin can be used as one of the components of the matrix resin in the resin composite material, and can be co-crosslinked and cured with other thermosetting resins such as epoxy resin and bismaleimide resin, and the dielectric constant of the resin is remarkably lowered.
  • dielectric loss which is used in the preparation of metal foil-clad laminates, which is advantageous for reducing the dielectric constant and dielectric loss of the metal foil-clad laminate, and has high high temperature resistance, and at the same time improving the metal foil-clad laminate.
  • the flame retardancy makes the metal foil-clad laminate have good comprehensive performance, and can be popularized for electronic packaging adhesives, potting resins, etc., and has broad application prospects.
  • Example 1 is an infrared spectrum diagram of a low polarity intrinsic flame retardant resin prepared in Example 1.
  • the low polarity intrinsic flame retardant resin is prepared by the following method, including the following steps:
  • Fig. 1 The infrared spectrum of the phosphorus-containing esterified diallyl bisphenol A prepared in this example is shown in Fig. 1 (T% in Fig. 1 indicates % transmittance), and it can be seen that 3300-3500 cm -1 The hydroxyl structure has disappeared and does not contain polar hydroxyl groups, resulting in a significant decrease in molecular polarity.
  • the low polarity intrinsic flame retardant resin is prepared by the following method, including the following steps:
  • the flame retardant resin has a Mn of 1300 and its structure is as follows:
  • the low polarity intrinsic flame retardant resin is prepared by the following method, including the following steps:
  • the low polarity intrinsic flame retardant resin is prepared by the following method, including the following steps:
  • a phosphorus-containing esterified allyl cyclopentadiene phenolic resin that is, the low polarity intrinsic flame retardant resin Its structure is as follows, and its Mn is 1280.
  • Example 5 The only difference from Example 5 is that the phosphorus-containing esterified diallyl bisphenol A prepared in Example 1 is obtained. Replace with the phosphorus-containing esterified allyl phenolic resin prepared in Example 2.
  • Example 5 The only difference from Example 5 was that the phosphorus-containing esterified diallyl bisphenol A prepared in Example 1 was replaced with the phosphorus-containing esterified allyl o-cresol novolac resin prepared in Example 3.
  • Example 5 The only difference from Example 5 was that the phosphorus-containing esterified diallyl bisphenol A prepared in Example 1 was replaced with the phosphorus-containing esterified allylcyclopentadiene phenol resin prepared in Example 4.
  • the low polarity intrinsic flame retardant resin prepared by the invention can make the copper clad laminate have lower dielectric constant and dielectric loss, and has better high temperature resistance and flame retardant performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Fireproofing Substances (AREA)

Abstract

提供一种低极性本征阻燃树脂及其制备方法和应用,所述低极性本征阻燃树脂具有式I所示结构,其是基于酚类化合物或树脂,经烯丙基醚化、重排和含磷基团封端三步反应制备得到,其分子式中不含有极性的羟基、并且分子结构稳定,极性低、反应活性高,在应用加工过程中不会产生极性羟基,避免了二次羟基对于其产物性能的影响,该树脂在提高介电性能同时,依旧带有可交联反应基团,使固化后耐高温性能无显著变化,引入含磷封端基团,使得树脂具有本征阻燃性能,将其用于覆金属箔层压板制备中有利于降低覆金属箔层压板的介电常数和介电损耗,并具有较高耐高温性能,提高阻燃性,使覆金属箔层压板具有良好的综合性能,应用前景广阔。

Description

一种低极性本征阻燃树脂及其制备方法和应用 技术领域
本发明属于热固性树脂技术领域,涉及一种低极性本征阻燃树脂及其制备方法和应用。
背景技术
高性能热固性树脂以其优异的耐热性、阻燃性、耐候性、电绝缘性,良好的力学性能和尺寸稳定性等特点,被广泛应用于航空航天、轨道交通、电力绝缘、微电子封装等领域复合材料的树脂基体、耐高温绝缘材料和胶粘剂等。常用的高性能热固性树脂有环氧树脂、酚醛树脂、双马来酰亚胺树脂等,但上述树脂存在着脆性导致材料抗冲击能力不足,树脂分子结构极性大导致介电常数和损耗偏高等弱点,从而限制了其在某些领域的推广应用,对热固性树脂改性研究一直是材料工作者关注的研究课题。
近年来,以双马来酰亚胺树脂为代表的耐高温热固性树脂,越来越多的用于航空航天雷达天线罩,轨道交通电路绝缘材料和微电子电路板等领域。随着上述产业的迅猛发展,电磁发射功率和频率不断增大,对材料的透波、绝缘性能要求日益提高,普通耐高温热固性树脂由于介电常数和损耗偏高,其透波绝缘性能已经不能满足雷达、绝缘材料和微电子电路板的设计要求。因此,如何降低树脂极性,进而降低介电常数和损耗一直是研究人员关注的技术瓶颈问题。
合成新结构单体或树脂是降低介电常数和损耗的可行方法。CN104311756A公开了一种含硅双马来酰亚胺树脂,含硅基团的引入可将介电常数降低至3.0以下。CN104479130A公开了一种含氟结构的新型双马单体,显著降低双马树脂的介电常数和损耗。但是,上述新型结构双马单体合成工艺复杂、成本高,难以 批量制备及应用。此外,通过其他树脂共聚改性是改善热固性树脂绝缘性能的重要方法之一。CN101338032A公开了采用氰酸酯改性双马树脂,制备预浸料,复合材料介电常数和损耗显著降低。然而,该方法对于改善树脂介电性能虽有一定效果,但程度有限,距离应用尚有一定差距。
阻燃性能是复合材料重要性能之一,然而随着环保法规日益严格,含溴阻燃剂逐渐退出信息电子领域,取而代之的是含磷、含氮等新型阻燃剂。但是,为达到理想阻燃效果,上述阻燃剂加入量普遍较大,加入后复合材料耐高温、力学强度有显著影响。因此,研制开发具有本征阻燃的基体树脂是今后发展趋势。
因此,在本领域中,期望得到一种低极性的本征阻燃树脂材料以降低其固化物的介电常数和损耗,增强阻燃性能,并同时保持覆铜板的其他方面的优良性能。
发明内容
针对现有技术的不足,本发明的目的在于提供一种低极性本征阻燃树脂及其制备方法和应用。本发明的树脂不含有极性基团(例如羟基)、分子极性低、反应活性高,降低其固化物的介电常数和损耗,树脂结构中的烯丙基结构实现交联固化,保证固化后的力学强度,并且可以保证固化物具有优良的耐热性能,同时该树脂结构中带有阻燃性含磷结构,使其具有很好的本征阻燃效果。
为达到此发明目的,本发明采用以下技术方案:
一方面,本发明提供一种低极性本征阻燃树脂,所述低极性本征阻燃树脂具有如下式I所示的结构:
Figure PCTCN2017110811-appb-000001
其中,R为直链或支链烷基,
Figure PCTCN2017110811-appb-000002
Figure PCTCN2017110811-appb-000003
-O-、
Figure PCTCN2017110811-appb-000004
Figure PCTCN2017110811-appb-000005
X和Y独立地为氢、烯丙基、直链烷基、支链烷基中的任意一种或至少两种的组合;A为含磷封端基团,n为1-20的整数。
在本发明所述的低极性本征阻燃树脂中,所述低极性是指不含有极性基团,尤其是不含有羟基基团,使得树脂具有较低的极性,克服了通用热固性树脂极性大导致的高频介电常数和损耗高的缺陷,同时可通过该结构中的烯丙基结构实现交联固化,保证固化后的力学强度,并使得固化物具有优良的耐热性能,同时,该树脂中含有阻燃性含磷结构,使其具有很好的本征阻燃效果。
优选地,所述R为C1-C6(例如C1、C2、C3、C4、C5或C6)的直链烷基或C3-C6(例如C3、C4、C5或C6)支链烷基,具体地可以为-CH2-、
Figure PCTCN2017110811-appb-000006
Figure PCTCN2017110811-appb-000007
Figure PCTCN2017110811-appb-000008
等。
优选地,R为-CH2-、
Figure PCTCN2017110811-appb-000009
Figure PCTCN2017110811-appb-000010
Figure PCTCN2017110811-appb-000011
-O-或
Figure PCTCN2017110811-appb-000012
Figure PCTCN2017110811-appb-000013
n为1-20的整数,X和Y独立地为氢、烯丙基、直链烷基、支链烷基中的任意一种或至少两种的组合,A为含磷封端基团。
在本发明中,n为1-20的整数,例如n可以为1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20。
优选地,X和Y独立地为C1-C21(例如C1、C2、C3、C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19、C20或C21)的直链烷基或C3-C21(例如C3、C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19、C20或C21)支链烷基。
优选地,A为含有DOPO结构的基团,优选
Figure PCTCN2017110811-appb-000014
Figure PCTCN2017110811-appb-000015
Figure PCTCN2017110811-appb-000016
Figure PCTCN2017110811-appb-000017
中的任意一种。
优选地,所述低极性本征阻燃树脂为具有如下式A-式D所示结构的化合物中的任意一种或至少两种的组合:
Figure PCTCN2017110811-appb-000018
Figure PCTCN2017110811-appb-000019
Figure PCTCN2017110811-appb-000020
Figure PCTCN2017110811-appb-000021
Figure PCTCN2017110811-appb-000022
Figure PCTCN2017110811-appb-000023
其中n为1-20的整数。
另一方面,本发明提供了如上所述的低极性本征阻燃树脂的制备方法,所述方法包括以下步骤:
(1)式II所示酚类化合物或酚类树脂与烯丙基化试剂反应得到式III所示烯丙基醚化树脂,示例反应式如下:
Figure PCTCN2017110811-appb-000024
(2)在保护性气体保护下,将式III所示烯丙基醚化树脂加热,发生分子内重排反应得到式IV所示烯丙基化酚类树脂;
Figure PCTCN2017110811-appb-000025
(3)式III所示烯丙基化酚类树脂与含磷封端试剂发生反应,得到式I所示低极性本征阻燃树脂;
Figure PCTCN2017110811-appb-000026
其中,R1为直链或支链烷基,
Figure PCTCN2017110811-appb-000027
Figure PCTCN2017110811-appb-000028
-O-、
Figure PCTCN2017110811-appb-000029
Figure PCTCN2017110811-appb-000030
R2为直链或支链烷基,
Figure PCTCN2017110811-appb-000031
Figure PCTCN2017110811-appb-000032
-O-、
Figure PCTCN2017110811-appb-000033
R3为直链或支链烷基,
Figure PCTCN2017110811-appb-000034
Figure PCTCN2017110811-appb-000035
-O-、
Figure PCTCN2017110811-appb-000036
R为直链或支链烷基,
Figure PCTCN2017110811-appb-000037
Figure PCTCN2017110811-appb-000038
-O-或
Figure PCTCN2017110811-appb-000039
Figure PCTCN2017110811-appb-000040
X和Y独立地为氢、烯丙基、直链烷基、支链烷基中的任意一种或至少两种的组合;A为含磷封端基团,n为1-20的整数。
在本发明中,步骤(2)的重排步骤中,当R2
Figure PCTCN2017110811-appb-000041
Figure PCTCN2017110811-appb-000042
时,包括其中的烯丙醚基会发生重排的情况,导致在式IV所示烯丙基化酚类树脂的中间单元R3中含有由于重排而产生烯丙基,进而在产物式I所示低极性树脂的R单元中包括由于重排而产生的烯丙基,本发明中为了表述的简单未将该烯丙基直接表示至R3和R的相应结构中,而仅仅由X来代表了苯环上所有的取代基,然而在此明确此处X包含由于重排而产生的烯丙基,如果在重排反应前R2
Figure PCTCN2017110811-appb-000043
Figure PCTCN2017110811-appb-000044
苯环上带有其他取代基X,在步骤(2)的重排反应后,则在R3的结构
Figure PCTCN2017110811-appb-000045
中X可以表示重排产生的烯丙基和反应前的其他取代基的组合。当然在步骤(2)的重排步骤中,也包括R2
Figure PCTCN2017110811-appb-000046
时,R2单元中烯丙醚基不发生重排反应的情况,此时,反应后R3以及产物R中的X与反应前式III所示烯丙基醚化树脂中R2中的X基团相同。
优选地,步骤(1)所述酚类化合物或酚类树脂为酚、二元酚、多元酚或它们的衍生树脂,优选为苯酚、邻甲酚、双酚A、双酚F、四甲基双酚A、酚醛树脂、邻甲酚酚醛树脂或环戊二烯酚醛树脂中的任意一种或至少两种的组合。
优选地,所述烯丙基化试剂为烯丙基硅醇、烯丙基氯、烯丙基溴、烯丙基碘或烯丙基胺中的任意一种或至少两种的组合。
优选地,所述酚类化合物或酚类树脂中酚羟基与烯丙基化试剂中烯丙基的摩尔比为1∶(0.3~1.2),例如1∶0.3、1∶0.4、1∶0.5、1∶0.6、1∶0.7、1∶0.8、1∶0.9、1∶1、1∶1.1或1∶1.2。
优选地,步骤(1)所述反应在碱性物质存在下进行,所述碱性物质优选氢氧化钠、氢氧化钾、碳酸钠或碳酸钾中的任意一种或至少两种的组合。
优选地,所述碱性物质与步骤(1)所述酚类化合物或酚类树脂中所含酚羟基的摩尔比为(0.3~1.4)∶1,例如0.3∶1、0.4∶1、0.5∶1、0.6∶1、0.7∶1、0.8∶1、0.9∶1、 1∶1、1.1∶1、1.2∶1、1.3∶1或1.4∶1。
优选地,步骤(1)所述反应在相转移催化剂存在下进行。
优选地,所述相转移催化剂为季铵盐类相转移催化剂,优选四丁基氯化铵、四丁基溴化铵、苄基三乙基氯化铵、四丁基硫酸氢铵、三辛基甲基氯化铵、十二烷基三甲基氯化铵或十四烷基溴三甲基氯化铵中的任意一种或至少两种的组合。
优选地,所述相转移催化剂的加入量为步骤(1)所述酚类化合物或酚类树脂质量的0.1-5%,例如0.1%、0.3%、0.5%、0.8%、1%、1.3%、1.5%、1.8%、2%、2.3%、2.5%、2.8%、3%、3.3%、3.5%、3.8%、4%、4.3%、4.5%、4.8%或5%。
优选地,步骤(1)所述反应的溶剂为醇类溶剂、芳香烃溶剂或酮类溶剂中的任意一种或至少两种的组合,优选为乙醇、丙醇、丁醇、甲苯或二甲苯中的任意一种或至少两种的组合。
优选地,所述溶剂的加入量为步骤(1)所述酚类化合物或酚类树脂质量的2-5倍,例如2倍、2.3倍、2.5倍、2.8倍、3倍、3.3倍、3.5倍、3.8倍、4倍、4.3倍、4.5倍、4.8倍或5倍。
优选地,步骤(1)所述反应的温度为60-90℃,例如60℃、63℃、65℃、68℃、70℃、75℃、78℃、80℃、85℃、88℃或90℃。
优选地,步骤(1)所述反应的时间为4-6小时,例如4小时、4.3小时、4.5小时、4.8小时、5小时、5.2小时、5.5小时、5.8小时或6小时。
优选地,步骤(2)所述保护性气体为氮气或氩气。
优选地,步骤(2)所述加热为加热至180-220℃,例如180℃、185℃、190℃、195℃、200℃、205℃、210℃、215℃或220℃。
优选地,步骤(2)所述反应的时间为4-6小时,例如4小时、4.3小时、4.5小时、4.8小时、5小时、5.2小时、5.5小时、5.8小时或6小时。
优选地,步骤(3)所述含磷封端试剂为9,10-二氢-9-氧杂-10-膦菲-10-氧化物、9,10-二氢-9-氧杂-10-膦菲-10-氧化物、2-(6H-二苯并(c,e)(1,2)-5-氧杂-6-膦酰杂-6-苯基-1,4-对苯二酚、2-(6H-二苯并(c,e)(1,2)-5-氧杂-6-膦酰杂-6-苯基-4-苯酚、2-(6H-二苯并(c,e)(1,2)-5-氧杂-6-膦酰杂-6-苯基-3-苯酚、2-(6H-二苯并(c,e)(1,2)-5-氧杂-6-膦酰杂-6-苯基-4-苯甲醇或2-(6H-二苯并(c,e)(1,2)-5-氧杂-6-膦酰杂-6-苯基-3-苯甲醇中的任意一种或至少两种的组合。
优选地,步骤(3)所述式III所示烯丙基化酚类树脂中酚羟基与含磷封端试剂中含磷封端基的摩尔比为1∶(1~1.2),例如1∶1、1∶1.05、1∶1.1、1∶1.15或1∶1.2。使得反应得到的树脂分子结构中酚羟基均被含磷封端基封端,从而使树脂中无极性羟基基团。
优选地,步骤(3)所述反应在碱性物质存在下进行。
优选地,所述碱性物质为无机碱或有机碱,优选氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、三乙胺或吡啶中的任意一种或至少两种的组合。
优选地,所述碱性物质与式III所示烯丙基化酚类树脂中酚羟基的摩尔比为(1~1.4)∶1,例如1∶1、1.05∶1、1.1∶1、1.15∶1、1.2∶1、1.25∶1、1.3∶1、1.35∶1或1.4∶1。
优选地,步骤(3)所述反应在四氯化碳存在下进行。
优选地,所述四氯化碳与步骤(3)所述式III所示烯丙基化酚类树脂中酚羟基摩尔比为(1~2)∶1,例如1∶1、1.1∶1、1.2∶1、1.3∶1、1.4∶1、1.5∶1、1.6∶1、1.7∶1、1.8∶1、1.9∶1或2∶1。
优选地,步骤(3)所述反应的溶剂为卤代烃类溶剂,优选为一氯甲烷、二氯甲烷、三氯甲烷或二氯乙烷中的任意一种或至少两种的组合。
优选地,所述溶剂的加入量为步骤(3)所述烯丙基化酚类树脂质量的2-5倍,例如2倍、2.3倍、2.5倍、2.8倍、3倍、3.3倍、3.5倍、3.8倍、4倍、4.3倍、4.5倍、4.8倍或5倍。
优选地,步骤(3)所述反应的温度为0-30℃,例如0℃、3℃、5℃、8℃、10℃、15℃、18℃、20℃、25℃、28℃或30℃,优选10℃。
优选地,步骤(3)所述反应的时间为4-6小时,例如4小时、4.3小时、4.5小时、4.8小时、5小时、5.2小时、5.5小时、5.8小时或6小时。
通过本发明的方法制备得到的树脂中不含有极性的羟基、并且分子结构稳定,具有分子极性低、反应活性高的特点,在其应用的加工过程中也不会产生极性羟基,避免了产生的二次羟基对于其产物的性能的影响,并且以含磷封端基封端,赋予树脂本征阻燃性能。
另一方面,本发明提供了如上所述的低极性本征阻燃树脂在树脂复合材料制备中的应用。
本发明的低极性本征阻燃树脂可用于树脂复合材料中基体树脂的组分之一,能够与环氧树脂、双马来酰亚胺树脂等其他热固性树脂共交联固化,显著降低树脂介电常数和介电损耗。
在本发明中,所述树脂复合材料可以为航空航天透波复合材料、电力绝缘材料、电子封装用树脂复合材料以及覆铜板用树脂复合材料等。
另一方面,本发明提供了如上所述的低极性本征阻燃树脂在电子封装材料制备中的应用。
本发明的低极性本征阻燃树脂由于具有分子极性低、反应活性高的特点,还可以应用于微电子领域封装胶黏剂、灌封树脂等材料的制备。
另一方面,本发明提供了如上所述的低极性本征阻燃树脂在覆金属箔层压 板制备中的应用。
本发明所述的低极性本征阻燃树脂可用于树脂复合材料中基体树脂的组分之一,能够与环氧树脂、双马来酰亚胺树脂等其他热固性树脂共交联固化,显著降低树脂介电常数和介电损耗,将其用于覆金属箔层压板制备中有利于降低覆金属箔层压板的介电常数和介电损耗,提高耐热性能,同时,该树脂中含有阻燃性含磷结构,使得覆金属箔层压板具有很好的阻燃效果。
与现有技术相比,本发明具有如下有益效果:
本发明的树脂中不含有极性的羟基、并且分子结构稳定,具有分子极性低、反应活性高的特点,在其应用的加工过程中也不会产生极性羟基,避免了产生的二次羟基对于其产物的性能的影响,因此该树脂在提高介电性能同时,依旧带有可交联反应基团,使得固化后耐高温性能无显著变化,引入含磷封端基团,使得树脂具有本征阻燃性能,该树脂可用于树脂复合材料中基体树脂的组分之一,能够与环氧树脂、双马来酰亚胺树脂等其他热固性树脂共交联固化,显著降低树脂介电常数和介电损耗,将其用于覆金属箔层压板制备中有利于降低覆金属箔层压板的介电常数和介电损耗,并具有较高的耐高温性能,同时提高覆金属箔层压板的阻燃性,使得覆金属箔层压板具有良好的综合性能,并且可推广用于电子封装胶黏剂、灌封树脂等,应用前景广阔。
附图说明
图1为实施例1制备得到的低极性本征阻燃树脂的红外光谱图。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
实施例1
在本实施例中,通过以下方法制备低极性本征阻燃树脂,包括以下步骤:
(1)三口反应瓶中加入188g丙酮,将228g双酚A加入反应瓶中,搅拌溶解后,加入106g碳酸钠。缓慢滴加153g氯丙烯溶液,然后升温反应4小时后停止反应。过滤,除去大部分溶剂,洗涤,再除去残留的溶剂和水,即得到双酚A二烯丙基醚。
(2)将步骤(1)制备的134g双酚A二烯丙基醚放入反应瓶中,加热进行重排反应6小时,降温出料,得到棕色粘稠液体即二烯丙基双酚A。
(3)三口瓶中通惰性气体保护,加入300g二氯甲烷,将步骤2制备的134g二烯丙基双酚A放入反应瓶中,搅拌溶解后,加入40g氢氧化钠,并加入152g四氯化碳。缓慢滴加230g 2-(6H-二苯并(c,e)(1,2)-5-氧杂-6-膦酰杂-6-苯基-4-苯酚,反应4小时,停止反应,加入氢氧化钠水溶液洗涤至中性,再洗涤数次,除去残留的溶剂和水,即得到含磷酯化二烯丙基双酚A,即所述低极性本征阻燃树脂,其结构如下所示:
Figure PCTCN2017110811-appb-000047
对该实施例制备得到的含磷酯化二烯丙基双酚A的红外光谱图如图1(图1中T%表示%透过率)所示,可以看出,3300-3500cm-1处的羟基结构已经消失,不含有极性的羟基基团,使分子极性显著降低。
实施例2
在本实施例中,通过以下方法制备低极性本征阻燃树脂,包括以下步骤:
(1)三口反应瓶中加入300g正丁醇,将114g线型酚醛树脂加入反应瓶中,搅拌溶解后,加入56g氢氧化钾。缓慢滴加153g溴丙烯溶液,然后升温反应4 小时后停止反应。过滤,洗涤,再除去残留的溶剂和水,即得到烯丙基醚化酚醛树脂。
(2)将步骤(1)制备的141g烯丙基醚化酚醛树脂放入反应瓶中,加热进行重排反应4小时,降温出料,得到棕色粘稠液体即烯丙基酚醛树脂。
(3)三口瓶中通惰性气体保护,加入350g二氯甲烷,将步骤2制备的141g二烯丙基双酚A放入反应瓶中,搅拌溶解后,加入72g三乙胺,并加入152g四氯化碳。待温度降至30℃以下后,缓慢滴加230g 2-(6H-二苯并(c,e)(1,2)-5-氧杂-6-膦酰杂-6-苯基-4-苯酚,反应4小时,停止反应,加入氢氧化钠水溶液洗涤至中性,再洗涤数次,除去残留的溶剂和水,即得到含磷酯化烯丙基酚醛树脂,即所述低极性本征阻燃树脂,其Mn为1300,其结构如下所示:
Figure PCTCN2017110811-appb-000048
实施例3
在本实施例中,通过以下方法制备低极性本征阻燃树脂,包括以下步骤:
(1)三口反应瓶中加入250g甲苯,将118g邻甲酚酚醛树脂加入反应瓶中,搅拌溶解后,加入100g氢氧化钠水溶液(浓度40%),再加入1g四丁基溴化铵。待温度恒定后,缓慢滴加153g氯丙烯溶液,然后升温反应4小时后停止反应,洗涤,再除去溶剂,即得到烯丙基醚化邻甲酚酚醛树脂。
(2)将步骤(1)制备的159g烯丙基醚化邻甲酚酚醛树脂放入反应瓶中,加热进行重排反应4小时,降温出料,得到深棕色半固体为烯丙基邻甲酚酚醛树脂。
(3)三口瓶中通惰性气体保护,加入350g二氯甲烷,将步骤2制备的159g二烯丙基双酚A放入反应瓶中,搅拌溶解后,加入103g吡啶,并加入152g四氯化碳。缓慢滴加230g 2-(6H-二苯并(c,e)(1,2)-5-氧杂-6-膦酰杂-6-苯基-3-苯酚,反应4小时,停止反应,加入氢氧化钠水溶液洗涤至中性,再洗涤数次,除去残留的溶剂和水,即得到含磷酯化烯丙基邻甲酚酚醛树脂,即所述低极性本征阻燃树脂,Mn为1200。
Figure PCTCN2017110811-appb-000049
实施例4
在本实施例中,通过以下方法制备低极性本征阻燃树脂,包括以下步骤:
(1)三口反应瓶中加入250g甲苯,将118g环戊二烯酚醛树脂加入反应瓶中,搅拌溶解后,加入100g氢氧化钠水溶液(浓度40%),再加入1g四丁基溴化铵。缓慢滴加153g烯丙基硅醇,然后升温反应4小时后停止反应,洗涤,再除去溶剂,即得到烯丙基醚化环戊二烯酚醛树脂。
(2)将步骤(1)制备的159g烯丙基醚化环戊二烯酚醛树脂放入反应瓶中,加热进行重排反应4小时,降温出料,得到深棕色半固体为烯丙基环戊二烯酚 醛树脂。
(3)三口瓶中通惰性气体保护,加入350g二氯甲烷,将步骤2制备的159g二烯丙基双酚A放入反应瓶中,搅拌溶解后,加入103g吡啶,并加入152g四氯化碳。缓慢滴加230g 2-(6H-二苯并(c,e)(1,2)-5-氧杂-6-膦酰杂-6-苯基-4-苯甲醇,反应4小时,停止反应,加入氢氧化钠水溶液洗涤至中性,再洗涤数次,除去残留的溶剂和水,即得到含磷酯化烯丙基环戊二烯酚醛树脂,即所述低极性本征阻燃树脂,其结构如下所示,其Mn为1280。
Figure PCTCN2017110811-appb-000050
实施例5
将80重量份的液体丁苯树脂Ricon100,20重量份的实施例1制备的含磷酯化二烯丙基双酚A,85重量份的二氧化硅(525),6.5重量份的引发剂DCP混合,用溶剂甲苯调至合适的粘度,搅拌混合均匀,使填料均一的分散在树脂中,制得胶液。用1080玻璃纤维布浸渍以上胶液,然后烘干去掉溶剂后制得半固化片。将八张已制成的半固化片相叠合,在其两侧压覆loz(盎司)厚度的铜箔,在压机中进行2小时固化,固化压力为50Kg/cm2,固化温度为190℃,得到覆铜板。
实施例6
与实施例5的区别仅在于将实施例1制备得到的含磷酯化二烯丙基双酚A 替换为实施例2制备得到的含磷酯化烯丙基酚醛树脂。
实施例7
与实施例5的区别仅在于将实施例1制备得到的含磷酯化二烯丙基双酚A替换为实施例3制备得到的含磷酯化烯丙基邻甲酚酚醛树脂。
实施例8
与实施例5的区别仅在于将实施例1制备得到的含磷酯化二烯丙基双酚A替换为实施例4制备得到的含磷酯化烯丙基环戊二烯酚醛树脂。
比较例1
将80重量份的液体丁苯树脂Ricon100,85重量份的二氧化硅(525),5.8重量份的引发剂DCP混合,用溶剂甲苯调至合适的粘度,搅拌混合均匀,使填料均一的分散在树脂中,制得胶液。用1080玻璃纤维布浸渍以上胶液,然后烘干去掉溶剂后制得半固化片。将八张已制成的半固化片相叠合,在其两侧压覆loz(盎司)厚度的铜箔,在压机中进行2小时固化,固化压力为50Kg/cm2,固化温度为190℃,得到覆铜板。
实施例6-10以及对比例1所应用到的原料来源如表1所示,制备得到的覆铜板的物性数据如表2所示。
表1
Figure PCTCN2017110811-appb-000051
表2
Figure PCTCN2017110811-appb-000052
由表2可知,本发明制备得到的低极性本征阻燃性树脂可以使得覆铜板具有较低的介电常数和介电损耗,具有较好的耐高温性能以及阻燃性能。
申请人声明,本发明通过上述实施例来说明本发明的低极性本征阻燃树脂及其制备方法和应用,但本发明并不局限于上述实施例,即不意味着本发明必须依赖上述实施例才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

  1. 一种低极性本征阻燃树脂,其特征在于,所述低极性本征阻燃树脂具有如下式I所示的结构:
    Figure PCTCN2017110811-appb-100001
    其中,R为直链或支链烷基,
    Figure PCTCN2017110811-appb-100002
    Figure PCTCN2017110811-appb-100003
    X和Y独立地为氢、烯丙基、直链烷基、支链烷基中的任意一种或至少两种的组合;A为含磷封端基团,n为1-20的整数。
  2. 根据权利要求1所述的低极性本征阻燃树脂,其特征在于,R为-CH2-、
    Figure PCTCN2017110811-appb-100004
    Figure PCTCN2017110811-appb-100005
    n为1-20的整数,X和Y独立地为氢、烯丙基、直链烷基、支链烷基中的任意一种或至少两种的组合,A为含磷封端基团;
    优选地,A为含有DOPO结构的基团,优选
    Figure PCTCN2017110811-appb-100006
    Figure PCTCN2017110811-appb-100007
    中的任意一种;
    优选地,所述低极性本征阻燃树脂为具有如下式A-式E所示结构的化合物中的任意一种或至少两种的组合:
    Figure PCTCN2017110811-appb-100008
    Figure PCTCN2017110811-appb-100009
    其中n为1-20的整数。
  3. 根据权利要求1或2所述的低极性本征阻燃树脂的制备方法,其特征在于,所述方法包括以下步骤:
    (1)式II所示酚类化合物或酚类树脂与烯丙基化试剂反应得到式III所示烯丙基醚化树脂,反应式如下:
    Figure PCTCN2017110811-appb-100010
    (2)在保护性气体保护下,将式III所示烯丙基醚化树脂加热,发生分子内重排反应得到式IV所示烯丙基化酚类树脂;
    Figure PCTCN2017110811-appb-100011
    (3)式III所示烯丙基化酚类树脂与含磷封端试剂发生反应,得到式I所示低极性本征阻燃树脂;
    Figure PCTCN2017110811-appb-100012
    其中,R1为直链或支链烷基,
    Figure PCTCN2017110811-appb-100013
    Figure PCTCN2017110811-appb-100014
    R2为直链或支链烷基,
    Figure PCTCN2017110811-appb-100015
    Figure PCTCN2017110811-appb-100016
    R3为直链或支链烷基,
    Figure PCTCN2017110811-appb-100017
    R为直链或支链烷基,
    Figure PCTCN2017110811-appb-100018
    Figure PCTCN2017110811-appb-100019
    X和Y独立地为氢、烯丙基、直链烷基、支链烷基中的任意一种或至少两种的组合;A为含磷封端基团,n为1-20的整数。
  4. 根据权利要求3所述的制备方法,其特征在于,步骤(1)所述酚类化合物或酚类树脂为酚、二元酚、多元酚或它们的衍生树脂,优选为苯酚、邻甲酚、双酚A、双酚F、四甲基双酚A、酚醛树脂、邻甲酚酚醛树脂或环戊二烯酚醛树脂中的任意一种或至少两种的组合;
    优选地,所述烯丙基化试剂为烯丙基硅醇、烯丙基氯、烯丙基溴、烯丙基碘或烯丙基胺中的任意一种或至少两种的组合;
    优选地,所述酚类化合物或酚类树脂与烯丙基化试剂的摩尔比为1∶(0.3~1.2);
    优选地,步骤(1)所述反应在碱性物质存在下进行,所述碱性物质优选氢氧化钠、氢氧化钾、碳酸钠或碳酸钾中的任意一种或至少两种的组合;
    优选地,所述碱性物质与步骤(1)所述酚类化合物或酚类树脂中所含酚羟基的摩尔比为(0.3~1.4)∶1。
  5. 根据权利要求3或4所述的制备方法,其特征在于,步骤(1)所述反应在相转移催化剂存在下进行;
    优选地,所述相转移催化剂为季铵盐类相转移催化剂,优选四丁基氯化铵、四丁基溴化铵、苄基三乙基氯化铵、四丁基硫酸氢铵、三辛基甲基氯化铵、十二烷基三甲基氯化铵或十四烷基溴三甲基氯化铵中的任意一种或至少两种的组合;
    优选地,所述相转移催化剂的加入量为步骤(1)所述酚类化合物或酚类树脂质量的0.1-5%;
    优选地,步骤(1)所述反应的溶剂为醇类溶剂、芳香烃溶剂或酮类溶剂中的任意一种或至少两种的组合,优选为乙醇、丙醇、丁醇、甲苯或二甲苯中的任意一种或至少两种的组合;
    优选地,所述溶剂的加入量为步骤(1)所述酚类化合物或酚类树脂质量的2-5倍;
    优选地,步骤(1)所述反应的温度为60-90℃;
    优选地,步骤(1)所述反应的时间为4-6小时。
  6. 根据权利要求3-5中任一项所述的制备方法,其特征在于,步骤(2)所述保护性气体为氮气或氩气;
    优选地,步骤(2)所述加热为加热至180-220℃;
    优选地,步骤(2)所述反应的时间为4-6小时。
  7. 根据权利要求3-6中任一项所述的制备方法,其特征在于,步骤(3)所述含磷封端试剂为9,10-二氢-9-氧杂-10-膦菲-10-氧化物、9,10-二氢-9-氧杂-10-膦菲-10-氧化物、2-(6H-二苯并(c,e)(1,2)-5-氧杂-6-膦酰杂-6-苯基-1,4-对苯二酚、2-(6H-二苯并(c,e)(1,2)-5-氧杂-6-膦酰杂-6-苯基-4-苯酚、2-(6H-二苯并(c,e)(1,2)-5-氧杂-6-膦酰杂-6-苯基-3-苯酚、2-(6H-二苯并(c,e)(1,2)-5-氧杂-6-膦酰杂-6-苯基-4-苯甲醇或2-(6H-二苯并(c,e)(1,2)-5-氧杂-6-膦酰杂-6-苯基-3-苯甲醇中的任意一种或至少两种的组合;
    优选地,步骤(3)所述式III所示烯丙基化酚类树脂中酚羟基与含磷封端试剂中含磷封端基的摩尔比为1∶(1~1.2);
    优选地,步骤(3)所述反应在碱性物质存在下进行;
    优选地,所述碱性物质为无机碱或有机碱,优选氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、三乙胺或吡啶中的任意一种或至少两种的组合;
    优选地,所述碱性物质与式III所示烯丙基化酚类树脂中酚羟基的摩尔比为(1~1.4)∶1;
    优选地,步骤(3)所述反应在四氯化碳存在下进行;
    优选地,所述四氯化碳与步骤(3)所述式III所示烯丙基化酚类树脂中酚羟基摩尔比为(1~2)∶1;
    优选地,步骤(3)所述反应的溶剂为卤代烃类溶剂,优选为一氯甲烷、二氯甲烷、三氯甲烷或二氯乙烷中的任意一种或至少两种的组合;
    优选地,所述溶剂的加入量为步骤(3)所述烯丙基化酚类树脂质量的2-5倍;
    优选地,步骤(3)所述反应的温度为0-30℃,优选10℃;
    优选地,步骤(3)所述反应的时间为4-6小时。
  8. 根据权利要求1或2所述的低极性本征阻燃树脂在树脂复合材料制备中的应用。
  9. 根据权利要求1或2所述的低极性本征阻燃树脂在电子封装材料制备中的应用。
  10. 根据权利要求1或2所述的低极性本征阻燃树脂在覆金属箔层压板制备中的应用。
PCT/CN2017/110811 2017-07-26 2017-11-14 一种低极性本征阻燃树脂及其制备方法和应用 WO2019019483A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019556930A JP6802390B2 (ja) 2017-07-26 2017-11-14 低極性の固有の難燃性樹脂、その調製方法、および使用
EP17919503.7A EP3660028A4 (en) 2017-07-26 2017-11-14 INTRINSIC LOW POLARITY FIRE RETARDANT RESIN, RELATED PREPARATION PROCESS AND RELATED USE
US16/632,997 US20200208057A1 (en) 2017-07-26 2017-11-14 Intrinsic flame-retardant resin with low polarity, and preparation method therefor and use thereof
KR1020207000364A KR102292464B1 (ko) 2017-07-26 2017-11-14 저극성 고유 난연성 수지 및 그의 제조방법과 응용

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710618308.6 2017-07-26
CN201710618308.6A CN109306044A (zh) 2017-07-26 2017-07-26 一种低极性本征阻燃树脂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2019019483A1 true WO2019019483A1 (zh) 2019-01-31

Family

ID=65039973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110811 WO2019019483A1 (zh) 2017-07-26 2017-11-14 一种低极性本征阻燃树脂及其制备方法和应用

Country Status (7)

Country Link
US (1) US20200208057A1 (zh)
EP (1) EP3660028A4 (zh)
JP (1) JP6802390B2 (zh)
KR (1) KR102292464B1 (zh)
CN (1) CN109306044A (zh)
TW (1) TWI660966B (zh)
WO (1) WO2019019483A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117261378B (zh) * 2023-11-23 2024-01-23 四川烈火胜服科技有限公司 一种防火隔热复合面料及其在消防服中的应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101338032A (zh) 2008-08-20 2009-01-07 中国科学院长春应用化学研究所 一种双马树脂改性氰酸酯预浸料的制备方法
CN101974156A (zh) * 2010-09-03 2011-02-16 苏州生益科技有限公司 无卤阻燃预聚物及其制备和在覆铜板中的应用
CN104311756A (zh) 2014-11-07 2015-01-28 中国科学院上海有机化学研究所 含硅双马来酰亚胺树脂及其制备
CN104447869A (zh) * 2014-10-27 2015-03-25 复旦大学 一种含dopo且分子结构不对称的双马来酰亚胺、其制备方法及在制备复合树脂中的应用
CN104479130A (zh) 2014-12-02 2015-04-01 中国科学院化学研究所 一种含氟低介电损耗的双马来酰亚胺树脂及其制备方法和应用
CN104861652A (zh) * 2015-05-28 2015-08-26 苏州生益科技有限公司 一种热固性树脂组合物及使用其制作的半固化片及层压板
CN104877134A (zh) * 2015-05-28 2015-09-02 苏州生益科技有限公司 无卤阻燃聚酰亚胺树脂组合物及使用其制作的半固化片及层压板
CN104961895A (zh) * 2014-11-24 2015-10-07 西安元创化工科技股份有限公司 一种阻燃双马来酰亚胺树脂
CN105037723A (zh) * 2015-06-26 2015-11-11 苏州生益科技有限公司 一种无卤阻燃预聚物及使用其制作的半固化片及层压板
CN106543228A (zh) * 2016-10-25 2017-03-29 北京工商大学 一种含磷杂菲基团的烷基次膦酸盐衍生物阻燃剂及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5356250A (en) * 1976-11-02 1978-05-22 Toyobo Co Ltd Polyeser composition
US4678849A (en) * 1986-02-21 1987-07-07 Ciba-Geigy Corporation Heat-curable mixture containing substituted bicyclo(2.2.1)hept-5-ene-2,3-dicarboximide and polymaleimide
US4923928A (en) * 1988-02-18 1990-05-08 Basf Aktiengesellschaft Thermosetting bismaleimide resin composition containing an adduct of a propenylphenol and an epoxy compound
JP2690761B2 (ja) * 1988-11-25 1997-12-17 三田工業株式会社 電子写真感光体
JPH08188638A (ja) * 1995-01-11 1996-07-23 Hitachi Ltd 樹脂封止型半導体装置並びにその製造方法
CN100526351C (zh) * 2006-07-10 2009-08-12 中国科学院化学研究所 一种热固性树脂组合物及其制备方法
JP5860239B2 (ja) * 2011-07-28 2016-02-16 丸菱油化工業株式会社 難燃性樹脂組成物
KR101252063B1 (ko) * 2011-08-25 2013-04-12 한국생산기술연구원 알콕시실릴기를 갖는 에폭시 화합물, 이의 제조 방법, 이를 포함하는 조성물과 경화물 및 이의 용도
TWI544011B (zh) * 2013-05-17 2016-08-01 明和化成股份有限公司 含磷之酚樹脂 、其製造方法及其用途
CN103709717B (zh) * 2013-12-17 2017-10-20 中山台光电子材料有限公司 乙烯苄基醚化‑dopo化合物树脂组合物及制备和应用
WO2016029453A1 (en) * 2014-08-29 2016-03-03 Blue Cube Ip Llc Halogen-free and flame retardant compositions with low thermal expansion for high density printed wiring boards
CN106366128B (zh) * 2015-07-24 2019-05-07 中山台光电子材料有限公司 膦菲类化合物及其制备方法和应用
TWI546319B (zh) * 2015-09-25 2016-08-21 台光電子材料股份有限公司 含磷聚苯醚樹脂及其製法、含磷聚苯醚預聚物之製法、樹脂組成物及其應用
CN106243916B (zh) * 2016-07-31 2018-05-15 河北晨阳工贸集团有限公司 一种阻燃门用阻燃双组份环氧树脂涂料及其应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101338032A (zh) 2008-08-20 2009-01-07 中国科学院长春应用化学研究所 一种双马树脂改性氰酸酯预浸料的制备方法
CN101974156A (zh) * 2010-09-03 2011-02-16 苏州生益科技有限公司 无卤阻燃预聚物及其制备和在覆铜板中的应用
CN104447869A (zh) * 2014-10-27 2015-03-25 复旦大学 一种含dopo且分子结构不对称的双马来酰亚胺、其制备方法及在制备复合树脂中的应用
CN104311756A (zh) 2014-11-07 2015-01-28 中国科学院上海有机化学研究所 含硅双马来酰亚胺树脂及其制备
CN104961895A (zh) * 2014-11-24 2015-10-07 西安元创化工科技股份有限公司 一种阻燃双马来酰亚胺树脂
CN104479130A (zh) 2014-12-02 2015-04-01 中国科学院化学研究所 一种含氟低介电损耗的双马来酰亚胺树脂及其制备方法和应用
CN104861652A (zh) * 2015-05-28 2015-08-26 苏州生益科技有限公司 一种热固性树脂组合物及使用其制作的半固化片及层压板
CN104877134A (zh) * 2015-05-28 2015-09-02 苏州生益科技有限公司 无卤阻燃聚酰亚胺树脂组合物及使用其制作的半固化片及层压板
CN105037723A (zh) * 2015-06-26 2015-11-11 苏州生益科技有限公司 一种无卤阻燃预聚物及使用其制作的半固化片及层压板
CN106543228A (zh) * 2016-10-25 2017-03-29 北京工商大学 一种含磷杂菲基团的烷基次膦酸盐衍生物阻燃剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3660028A4

Also Published As

Publication number Publication date
JP6802390B2 (ja) 2020-12-16
KR20200016346A (ko) 2020-02-14
TWI660966B (zh) 2019-06-01
US20200208057A1 (en) 2020-07-02
TW201910344A (zh) 2019-03-16
EP3660028A1 (en) 2020-06-03
CN109306044A (zh) 2019-02-05
KR102292464B1 (ko) 2021-08-23
JP2020517773A (ja) 2020-06-18
EP3660028A4 (en) 2021-05-05

Similar Documents

Publication Publication Date Title
CN108250675B (zh) 一种含磷活性酯及其无卤组合物与覆铜箔基板
KR102282600B1 (ko) 열경화성 수지 조성물, 이로 제조된 프리프레그, 금속박 적층판 및 고주파 회로기판
EP2770024A1 (en) Epoxy resin composition and prepreg and copper clad laminate manufactured by using the same
KR102282601B1 (ko) 열경화성 수지 조성물, 이로 제조된 프리프레그, 금속박 적층판 및 고주파 회로기판
TWI662051B (zh) 一種低極性樹脂及其製備方法和應用
WO2019019483A1 (zh) 一种低极性本征阻燃树脂及其制备方法和应用
TWI658046B (zh) 一種熱固性樹脂組合物、由其製作之半固化片、覆金屬箔層壓板及高頻電路板
TWI662050B (zh) 一種低極性樹脂及其製備方法和應用
WO2021068658A1 (zh) 一种活性酯化合物及其制备方法
WO2019127389A1 (zh) 环氧树脂组合物、预浸料、层压板和印刷电路板
WO2021068304A1 (zh) 一种含磷活性酯化合物及其制备方法
CN111793348A (zh) 一种高频高速电路基板用的高性能无卤树脂组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919503

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019556930

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207000364

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017919503

Country of ref document: EP

Effective date: 20200226