WO2019017468A1 - 2,5-ビス(アミノメチル)フランの製造方法 - Google Patents

2,5-ビス(アミノメチル)フランの製造方法 Download PDF

Info

Publication number
WO2019017468A1
WO2019017468A1 PCT/JP2018/027251 JP2018027251W WO2019017468A1 WO 2019017468 A1 WO2019017468 A1 WO 2019017468A1 JP 2018027251 W JP2018027251 W JP 2018027251W WO 2019017468 A1 WO2019017468 A1 WO 2019017468A1
Authority
WO
WIPO (PCT)
Prior art keywords
furfural
catalyst
reaction
aminomethyl
furan
Prior art date
Application number
PCT/JP2018/027251
Other languages
English (en)
French (fr)
Inventor
良 浅井
智明 桐野
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to US16/631,763 priority Critical patent/US11214559B2/en
Priority to CN201880047465.9A priority patent/CN110914249B/zh
Priority to EP18835526.7A priority patent/EP3656766B1/en
Priority to JP2019530611A priority patent/JP7173009B2/ja
Publication of WO2019017468A1 publication Critical patent/WO2019017468A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/52Radicals substituted by nitrogen atoms not forming part of a nitro radical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J25/00Catalysts of the Raney type
    • B01J25/02Raney nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a process for the preparation of 2,5-bis (aminomethyl) furan.
  • the furan derivatives which are compounds containing a furan ring, are useful as raw materials and intermediates for resins, pharmaceuticals and perfumes.
  • 2,5- (hydroxymethyl) furfural (hereinafter also referred to as HMF)
  • HMF 2,5- (hydroxymethyl) furfural
  • fructose which is a sugar
  • Patent Document 1 2,5- (hydroxymethyl) furfural
  • Non-Patent Document 1 BMF is obtained by oxidizing HMF to obtain 2,5-diformylfuran and then performing reductive amination using Raney nickel treated with hydrogen peroxide as a catalyst.
  • Patent Document 2 discloses that BAF can be synthesized using a catalyst such as Raney nickel, Mo-Raney nickel, Raney cobalt, copper, copper-nickel, ruthenium, etc. for 2,5-diformylfuran.
  • a catalyst such as Raney nickel, Mo-Raney nickel, Raney cobalt, copper, copper-nickel, ruthenium, etc. for 2,5-diformylfuran.
  • Non-Patent Document 1 and Patent Document 2 when using HMF as a starting material, it comprises a step of oxidizing a hydroxy group and a step of reductive amination of aldehyde, and a two-step reaction from HMF to BAF It takes Therefore, there is a need for an efficient BAF manufacturing method.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a manufacturing method capable of efficiently manufacturing BAF.
  • the present invention is as follows.
  • a method for producing 2,5-bis (aminomethyl) furan which comprises reacting hydrogen and an amine compound with 5- (halogenated methyl) furfural using a hydrogenation catalyst, A production method comprising the step of obtaining (aminomethyl) furan.
  • the above 5- (halogenated methyl) furfural is derived from at least one selected from the group consisting of woody biomass, cellulose, and C6 sugar which is a sugar composed of 6 carbon atoms, [1] or The manufacturing method as described in [2].
  • the amine compound is ammonia or an amide represented by RCONH 2 (R represents a hydrogen atom or -C n H 2n + 1 (n is an integer of 1 or more)).
  • RCONH 2 R represents a hydrogen atom or -C n H 2n + 1 (n is an integer of 1 or more)
  • the manufacturing method in any one of 4].
  • [6] The process according to any one of [1] to [5], wherein the reaction is carried out at a hydrogen pressure of more than 0 MPaG and less than 25 MPaG.
  • the production method of the present invention can efficiently obtain BAF and is an industrially advantageous production method.
  • 5- (halogenated methyl) furfural can use natural products derived from organisms such as biomass materials as raw materials, the production method of the present invention has a small environmental impact.
  • BAF obtained by the production method of the present invention is useful as a raw material or an intermediate for resins, pharmaceuticals and perfumes.
  • this embodiment for carrying out the present invention is explained in detail below, the present invention is not limited to this, and various modification in the range which does not deviate from the gist Is possible.
  • the production method of this embodiment is a method for producing 2,5-bis (aminomethyl) furan, which comprises reacting hydrogen and an amine compound with 5- (halogenated methyl) furfural using a hydrogenation catalyst, A method of production comprising the step of obtaining 2,5-bis (aminomethyl) furan.
  • 2,5-bis (aminomethyl) furan can be produced from 5- (halogenated methyl) furfural in one reaction system.
  • the 2,5-bis (aminomethyl) furan in the present embodiment can be represented by Formula (1).
  • X is a halogen atom selected from the group consisting of chlorine, bromine and iodine.
  • X in the formula (2) is chlorine, that is, 5- (chloromethyl) furfural.
  • 5- (halogenated methyl) furfural is derived from at least one selected from the group consisting of woody biomass, cellulose, and C6 sugar which is a sugar composed of 6 carbon atoms, and by derivatizing them, You can get it.
  • 5- (halogenated methyl) furfural can be obtained from C6 sugar which is a sugar composed of 6 carbon atoms
  • C6 sugar which is a sugar composed of 6 carbon atoms is a woody biomass It can be easily obtained from cellulose which is a component of Woody biomass means "biological resources made of wood” and is a resource widely held in large quantities all over the world.
  • 5- (methyl halide) furfural can be obtained, for example, in a single step reaction by hydrolyzing cellulose.
  • 5- (halogenated methyl) furfural is obtained by hydrolysis of cellulose, specifically, such 5- (halogenated methyl) furfural is added to cellulose by hydrogen chloride, hydrogen bromide, iodination in an aqueous solvent. It can be obtained by reacting hydrogen halide such as hydrogen.
  • 5- (halogenated methyl) furfural may be a commercially available product.
  • 5- (halogenated methyl) furfural can also be obtained in a one-step reaction by hydrolyzing wood biomass with hydrogen halide such as hydrogen chloride, hydrogen bromide or hydrogen iodide.
  • 5- (halogenated methyl) furfural can also be obtained by derivatization from C6 sugar which is a sugar composed of 6 carbon atoms.
  • C6 sugar examples include glucose and fructose.
  • 5- (halogenated methyl) furfural is, for example, converting these C6 sugars into HMF as described in WO 2003-024947, and performing a halogenation reaction such as Appel reaction on the hydroxy group in the HMF. It can be obtained by the two-stage reaction to be performed.
  • the C6 sugar is reacted with hydrogen halide such as hydrogen chloride, hydrogen bromide, hydrogen iodide or the like in an aqueous solvent, 5
  • hydrogen halide such as hydrogen chloride, hydrogen bromide, hydrogen iodide or the like
  • the (halogenated methyl) furfural can also be obtained in a one-step reaction.
  • the amine compound in the present embodiment is ammonia (NH 3 ) and / or an amide represented by RCONH 2 (R is a hydrogen atom, or —C n H 2n + 1 (n is an integer of 1 or more) Preferably represents ammonia), more preferably ammonia.
  • R is a hydrogen atom, or —C n H 2n + 1 (n is an integer of 1 or more)
  • N in —C n H 2n + 1 is preferably 1 to 20, more preferably 1 to 10.
  • the hydrogenation catalyst in the present embodiment is not particularly limited as long as it is usually used as a catalyst in the catalytic hydrogenation reaction.
  • the hydrogenation catalyst preferably contains a metal such as Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt, Re, or Os. These metals may be used alone or in a combination of two or more.
  • the metal mentioned above may be supported by a carrier.
  • the carrier is not particularly limited as long as it is a carrier generally used as a carrier for catalysts, and examples thereof include inorganic oxides, activated carbon, ion exchange resins and the like.
  • Specific examples of the inorganic oxide include silica (SiO 2 ), titania (TiO 2 ), zirconia (ZrO 2 ), alumina (Al 2 O 3 ), magnesium oxide (MgO), and two types of these inorganic oxides.
  • the above-mentioned complex for example, zeolite etc. etc. are mentioned.
  • iron (Fe) catalyst such as reduced iron
  • cobalt (Co) catalyst such as reduced cobalt and Raney cobalt
  • reduced nickel, nickel oxide and Raney nickel hereinafter referred to as Raney-Ni) Etc.
  • copper (Cu) catalysts such as copper (II) chloride, copper (I) chloride, copper (0), copper suboxide (I), copper (II) oxide, etc .
  • ruthenium / carbon And ruthenium (Ru) catalysts such as ruthenium / alumina
  • rhodium (Rh) catalysts such as rhodium / carbon and rhodium / alumina
  • Palladium (Pd) catalyst such as palladium / barium carbonate
  • iridium such as chloro (cycloocta
  • Ni nickel
  • Raney-Ni Raney-Ni is more preferable.
  • a noble metal catalyst in particular, a rhodium (Rh) catalyst
  • Rh rhodium
  • a specific example of the production method of the present embodiment is a method in which 5- (halogenated methyl) furfural, an amine compound, a hydrogenation catalyst, and hydrogen are mixed and reacted.
  • the order of mixing 5- (methyl halide) furfural, an amine compound, a hydrogenation catalyst and hydrogen is arbitrary. From the viewpoint of working efficiency, in the production method of the present embodiment, it is preferable to previously mix 5- (methyl halide) furfural and a hydrogenation catalyst, and then introduce hydrogen after adding an amine compound.
  • a hydrogenation catalyst depending on the hydrogenation catalyst to be used, in order to prevent ignition, it may be carried out under an inert gas atmosphere such as nitrogen or argon,
  • the hydrogenation catalyst may be suspended in water and added as a suspension.
  • the reaction it is preferable to carry out the reaction at a hydrogen pressure exceeding 0 MPaG and 25 MPaG or less.
  • the hydrogen pressure is more preferably 0.5 MPaG or more, still more preferably 1.0 MPaG or more.
  • the hydrogen pressure is also more preferably 15 MPaG or less, still more preferably 10 MPaG or less, still more preferably less than 9 MPaG, still more preferably 8 MPaG or less.
  • a noble metal catalyst in particular, rhodium (Rh) catalyst
  • the reaction is effective even if the reaction is performed under a hydrogen pressure of 3 MPaG or less, and further, 1.0 MPaG or less.
  • the ratio of amine compound to 5- (halogenated methyl) furfural is preferably in the range of 1 to 1000, more preferably in the range of 1 to 500 in molar ratio (5- (halogenated methyl) furfural / amine compound) More preferably, it is in the range of 1 to 100, more preferably, in the range of 1 to 50, and still more preferably, in the range of 1 to 20. Amination can be advanced more effectively by setting it as such a range.
  • the amount of the catalyst for 5- (halogenated methyl) furfural may be appropriately adjusted according to the type of substrate to be reacted, etc. Generally, it is 1 to 5 with respect to the mass of 5- (halogenated methyl) furfural It is 200% by mass.
  • the amount of the catalyst is preferably 1 to 150% by mass, more preferably 1 to 100% by mass, based on the mass of 5- (halogenated methyl) furfural.
  • the reaction temperature may be appropriately adjusted according to the type of substrate to be reacted, etc., and is generally in the range of 40 to 200 ° C., preferably 50 to 120 ° C., more preferably 50 to 110 ° C.
  • the reaction temperature is, for example, 10 ° C. or more and less than 40 ° C., and further 15 to 35 ° C.
  • the reaction time may be appropriately adjusted by monitoring the progress of the reaction using GC-MS or the like, and is generally 1 minute to 24 hours, preferably 0.5 to 3 hours, more preferably 0.5. ⁇ 2 hours.
  • the reaction of the present embodiment may be carried out in the presence of a solvent.
  • the solvent is not particularly limited, and is appropriately selected depending on the reaction temperature, the reaction product, and the like.
  • the solvent for example, water; aromatic hydrocarbon solvents such as benzene and toluene; amide solvents such as acetonitrile, N, N-dimethylacetamide and N, N-dimethylformamide; tetrahydrofuran (hereinafter referred to as THF).
  • ether solvents such as diethyl ether; alcohol solvents such as methanol, ethanol and isopropanol; halogen solvents such as dichloromethane, dichloroethane and chloroform; and the like.
  • ether solvents are preferable.
  • an ether solvent By using an ether solvent, the solubility of hydrogen gas in the solvent is better.
  • These solvents may be used alone or in combination of two or more.
  • the presence or absence of the use of the solvent and the amount thereof to be used may be appropriately set in consideration of other reaction conditions, and is not particularly limited, but from the viewpoint of productivity and energy efficiency, to 5- (halogenated methyl) furfural
  • it is 0.5 to 100 times by mass, more preferably 1.0 to 50 times by mass, and still more preferably 1.0 to 20 times by mass.
  • the separation of the reaction mixture and the catalyst after the reaction can be carried out by a general method such as sedimentation, centrifugation, filtration and the like.
  • the separation of the catalyst is preferably carried out under an inert gas atmosphere such as nitrogen or argon to prevent ignition as appropriate depending on the catalyst used.
  • the yield can be 50% or more, and 62% or more.
  • known purification methods such as extraction, distillation, chromatography and the like can be mentioned. These purification methods may be performed in combination of two or more.
  • Example 1 After charging 0.5 g of 5- (chloromethyl) furfural, 3 mL of THF and 0.3 g of Raney-Ni as a catalyst into a pressure resistant autoclave, 3 g of liquid ammonia was charged, and the hydrogen pressure was increased to 4 MPaG. Raney-Ni used was suspended in 3 g of water. Then, the reaction was carried out while maintaining the temperature at 90 ° C. for 1 hour, and the pressure-resistant autoclave was cooled with ice water to stop the reaction. The catalyst and the reaction solution were filtered under argon gas flow to remove the catalyst, and the filtrate was subjected to GC-MS measurement. The GC-MS measurement was performed using a GC-MS spectrum apparatus Agilent 7890 BGC / 5977 MSD (manufactured by Agilent Technologies, Inc.).
  • a calibration curve showing the relationship between GC-FID detection intensity (area value) and BAF concentration was prepared and compared with the BAF area value of the reaction solution. Specifically, the BAF concentration was calculated from the GC-FID detection intensity (area value) obtained by GC-MS measurement of the reaction solution using the above calibration curve, and the BAF mass was determined from the reaction solution mass. The mass obtained when the 5- (chloromethyl) furfural used in the reaction was quantitatively converted to BAF was 100, and the yield was calculated to be 62%.
  • Example 2 In Example 1, the catalyst (Raney-Ni) is changed to a Rh / C catalyst (Rh metal content is 5% by mass with respect to the carbon support mass), the hydrogen pressure is 0.3 MPaG, the reaction temperature is 30 ° C., and others are I did the same. It was confirmed that BAF was synthesized.
  • the production method of the present invention can provide 2,5-bis (aminomethyl) furan which is useful as a monomer that is a raw material of a resin, an epoxy resin curing agent, an intermediate raw material of a compound, etc. Industrial applicability in the manufacture of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Furan Compounds (AREA)

Abstract

効率的に2,5-ビス(アミノメチル)フランを製造できる製造方法を提供すること。 5-(ハロゲン化メチル)フルフラールに対して水素化触媒を用いて水素及びアミン化合物を反応させ、2,5-ビス(アミノメチル)フランを得る工程を含む、2,5-ビス(アミノメチル)フランの製造方法。

Description

2,5-ビス(アミノメチル)フランの製造方法
 本発明は、2,5-ビス(アミノメチル)フランの製造方法に関する。
 フラン環を含む化合物であるフラン誘導体は、樹脂、医薬品、及び香料等の原材料や中間体として有用である。例えば、フラン誘導体の一つである、2,5-(ヒドロキシメチル)フルフラール(以下、HMFとも称す。)は、特許文献1に開示されるように、糖であるフルクトースから得ることができ、天然に存在する炭水化物等のバイオマス原料から調製できる、汎用性の高い中間体である。
 バイオマス原料は、安価に入手可能であり、環境保護の観点から化石燃料よりも優れるため、樹脂等の原材料として注目されている。
 HMFに対しさらに官能基の変換反応を行うことによって、汎用性の高いフラン誘導体を得ることが検討されており、2,5-ビス(アミノメチル)フラン(以下、BAFとも称す。)の製造方法が、例えば、特許文献2や非特許文献1に開示されている。
 非特許文献1には、具体的には、HMFを酸化して2,5-ジホルミルフランを得た後、過酸化水素で処理したラネーニッケルを触媒として、還元的アミノ化を行うことによって、BAFを合成できることが開示されている。
 特許文献2にもまた、2,5-ジホルミルフランに対し、ラネーニッケル、Mo-ラネーニッケル、ラネーコバルト、銅、銅-ニッケル、ルテニウム等の触媒を用いて、BAFを合成できることが開示されている。
国際公開第2003-024947号パンフレット 韓国公開特許第20160034084号公報
Green and Sustainable Chemistry, 2015, 5, 115-127.
 非特許文献1や特許文献2の製造方法においては、HMFを出発物とすると、ヒドロキシ基を酸化する工程と、アルデヒドの還元的アミノ化の工程とを含み、HMFからBAFへの反応に2段階を要する。そのため、効率的なBAFの製造方法が求められている。
 本発明は、上記事情に鑑みなされたものであり、効率的にBAFを製造できる製造方法を提供することを課題とする。
 本発明者らがBAFの製造方法について鋭意検討した結果、5-(ハロゲン化メチル)フルフラールを還元的アミノ化反応に供することによって、1段階でBAFを得ることができ、効率的にBAFを製造できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下のとおりである。
[1] 2,5-ビス(アミノメチル)フランの製造方法であって、5-(ハロゲン化メチル)フルフラールに対して水素化触媒を用いて水素及びアミン化合物を反応させ、2,5-ビス(アミノメチル)フランを得る工程を含む、製造方法。
[2] 前記5-(ハロゲン化メチル)フルフラールが、5-(クロロメチル)フルフラールである、[1]に記載の製造方法。
[3] 前記5-(ハロゲン化メチル)フルフラールが、木質バイオマス、セルロース、及び炭素原子6個から構成される糖であるC6糖からなる群より選択される少なくとも一種に由来する、[1]又は[2]に記載の製造方法。
[4] 前記アミン化合物が、アンモニア、又はRCONH2で表されるアミド(Rは、水素原子、又は、-Cn2n+1(nは、1以上の整数である。)を表す。)である、[1]~[3]のいずれかに記載の製造方法。
[5] 前記水素化触媒が、Fe、Co、Ni、Cu、Ru、Rh、Pd、Ir、Pt、Re、Osからなる群より選択される少なくとも一種を含む触媒である、[1]~[4]のいずれかに記載の製造方法。
[6] 前記反応が、水素圧0MPaG超過25MPaG以下で行なわれる、[1]~[5]のいずれかに記載の製造方法。
[7] 前記反応が、水素圧0超過9MPaG未満で行なわれる、[1]~[5]のいずれかに記載の製造方法。
[8]さらに、2,5-ビス(アミノメチル)フランと触媒を分離する工程を含む、[1]~[7]のいずれかに記載の製造方法。
 本発明の製造方法は、効率的にBAFを得ることができ、工業的に有利な製造方法である。また、5-(ハロゲン化メチル)フルフラールはバイオマス原料といった生物由来の天然物を原材料とすることができるため、本発明の製造方法は環境への負荷が小さい。さらにまた、本発明の製造方法によって得られるBAFは、樹脂、医薬品、及び香料の原材料や中間体として有用である。
 以下に本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。
 本実施形態の製造方法は、2,5-ビス(アミノメチル)フランの製造方法であって、5-(ハロゲン化メチル)フルフラールに対して水素化触媒を用いて水素及びアミン化合物を反応させ、2,5-ビス(アミノメチル)フランを得る工程を含む、製造方法である。
 本実施形態の製造方法によって、一つの反応系内にて、5-(ハロゲン化メチル)フルフラールから2,5-ビス(アミノメチル)フランを製造することができる。
(2,5-ビス(アミノメチル)フラン)
 本実施形態における2,5-ビス(アミノメチル)フランは、式(1)で表すことができる。
Figure JPOXMLDOC01-appb-C000001
(5-(ハロゲン化メチル)フルフラール)
 本実施形態における5-(ハロゲン化メチル)フルフラールは、式(2)で表すことができる。
Figure JPOXMLDOC01-appb-C000002
 式(2)中、Xは、塩素、臭素、ヨウ素からなる群より選択されるハロゲン原子である。
 本実施形態における5-(ハロゲン化メチル)フルフラールは、好ましくは、式(2)中のXが塩素、すなわち、5-(クロロメチル)フルフラールである。
 5-(ハロゲン化メチル)フルフラールは、木質バイオマス、セルロース、及び炭素原子6個から構成される糖であるC6糖からなる群より選択される少なくとも一種に由来し、これらを誘導化することによって、得ることができる。
 具体的には、5-(ハロゲン化メチル)フルフラールは、炭素原子6個から構成される糖であるC6糖から得ることができ、炭素原子6個から構成される糖であるC6糖は木質バイオマスの構成主要素であるセルロースから容易に得ることができる。
 木質バイオマスとは「木材からなる生物資源」を意味し、世界中に広く大量に賦存する資源である。
 5-(ハロゲン化メチル)フルフラールは、例えば、セルロースを加水分解することによって一段反応で得ることができる。5-(ハロゲン化メチル)フルフラールをセルロースの加水分解によって得るとき、具体的には、かかる5-(ハロゲン化メチル)フルフラールは、セルロースに対し、水溶媒中で塩化水素、臭化水素、ヨウ化水素等のハロゲン化水素を作用させることによって得ることができる。5-(ハロゲン化メチル)フルフラールは、市販品を使用してもよい。
 5-(ハロゲン化メチル)フルフラールは、木質バイオマスに対し、塩化水素、臭化水素、ヨウ化水素等のハロゲン化水素を作用させ、加水分解することによって一段反応で得ることもできる。
 また、5-(ハロゲン化メチル)フルフラールは、炭素原子6個から構成される糖であるC6糖から誘導化することによって得ることもできる。上記C6糖としては、グルコース、フルクトース等が挙げられる。5-(ハロゲン化メチル)フルフラールは、例えば、これらのC6糖を国際公開第2003-024947号パンフレットに記載されるようにHMFとし、かかるHMF中のヒドロキシ基に対しアッペル反応等のハロゲン化反応を行う二段反応によって、得ることができる。また、セルロースから5-(ハロゲン化メチル)フルフラールを得る方法と同様に、C6糖に対し、水溶媒中で塩化水素、臭化水素、ヨウ化水素等のハロゲン化水素を作用させることによって、5-(ハロゲン化メチル)フルフラールを一段反応で得ることもできる。
(アミン化合物)
 本実施形態におけるアミン化合物は、アンモニア(NH3)、及び/又はRCONH2で表されるアミド(Rは、水素原子、又は、-Cn2n+1(nは、1以上の整数である。)を表す。)であることが好ましく、アンモニアがより好ましい。
 -Cn2n+1中のnは、好ましくは1~20であり、より好ましくは1~10である。
(水素化触媒)
 本実施形態における水素化触媒は、接触水素化反応に触媒として通常使用されるものであれば特に制限されない。水素化触媒は、Fe、Co、Ni、Cu、Ru、Rh、Pd、Ir、Pt、Re、Os等の金属を含むことが好ましい。これらの金属は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 上述した金属は、担体に担持されていてもよい。担体としては、触媒の担体として通常使用される担体であれば特に制限されず、例えば、無機酸化物、活性炭素、イオン交換樹脂等が挙げられる。無機酸化物としては、具体的には、シリカ(SiO2)、チタニア(TiO2)、ジルコニア(ZrO2)、アルミナ(Al23)、酸化マグネシウム(MgO)、これら無機酸化物の二種以上の複合体(例えば、ゼオライト等)等が挙げられる。
 水素化触媒としては、具体的には、還元鉄等の鉄(Fe)触媒;還元コバルト及びラネーコバルト等のコバルト(Co)触媒;還元ニッケル、酸化ニッケル及びラネーニッケル(以下、Raney-Niとも記載する。)等のニッケル(Ni)触媒;塩化銅(II)、塩化銅(I)、銅(0)、亜酸化銅(I)、酸化銅(II)等の銅(Cu)触媒;ルテニウム/炭素及びルテニウム/アルミナ等のルテニウム(Ru)触媒;ロジウム/炭素及びロジウム/アルミナ等のロジウム(Rh)触媒;スポンジ状パラジウム、パラジウム黒、酸化パラジウム、パラジウム/炭素、水酸化パラジウム、パラジウム/硫酸バリウム及びパラジウム/炭酸バリウム等のパラジウム(Pd)触媒;クロロ(シクロオクタジエニル)イリジウムダイマー等のイリジウム(Ir)触媒;白金プレート、スポンジ状白金、白金黒、コロイド白金、酸化白金及び白金線等の白金(Pt)触媒;白金担持過レニウム酸等のレニウム(Re)触媒;オスミウム/炭素等のオスミウム(Os)触媒;等が挙げられ、ニッケル(Ni)触媒であることが好ましく、Raney-Niであることがより好ましい。
 一方、触媒として、貴金属触媒(特に、ロジウム(Rh)触媒)を用いると、反応時の圧力や反応温度を低くすることができる。
(反応条件)
 本実施形態の製造方法は、具体的には、5-(ハロゲン化メチル)フルフラール、アミン化合物、水素化触媒、及び水素を混合して、反応させる方法を挙げることができる。
 5-(ハロゲン化メチル)フルフラール、アミン化合物、水素化触媒及び水素を混合する順番は任意である。作業効率の観点から、本実施形態の製造方法では、あらかじめ5-(ハロゲン化メチル)フルフラールと水素化触媒を混合し、次にアミン化合物を添加した後、水素を導入することが好ましい。
 本実施形態の製造方法において、水素化触媒を添加するときは、使用する水素化触媒に応じ、適宜、発火することを防ぐため、窒素やアルゴン等の不活性ガス雰囲気下で行ってもよく、水素化触媒を水に懸濁させ、懸濁液として添加してもよい。
 本実施形態の製造方法は、反応を水素圧0MPaG超過25MPaG以下で行うことが好ましい。水素圧は、より好ましくは0.5MPaG以上であり、さらに好ましくは1.0MPaG以上である。水素圧は、また、より好ましくは15MPaG以下であり、さらに好ましくは10MPaG以下であり、一層好ましくは9MPaG未満、より一層好ましくは8MPaG以下である。圧力を15MPaG以下、さらには9MPaG未満、特には8MPaG以下とすることにより、5-(ハロゲン化メチル)フルフラールの環の水素化を緩やかにでき、より容易にビス(アミノメチル)フランが得られる。
 また、本実施形態の製造方法は、触媒として、貴金属触媒(特に、ロジウム(Rh)触媒)を用いた場合、反応を水素圧3MPaG以下、さらには、1.0MPaG以下で行っても反応を効果的に進行させることができる。
 5-(ハロゲン化メチル)フルフラールに対するアミン化合物の比は、モル比(5-(ハロゲン化メチル)フルフラール/アミン化合物)で、好ましくは1~1000の範囲であり、より好ましくは1~500の範囲であり、さらに好ましくは1~100の範囲であり、一層好ましくは1~50の範囲であり、さらに一層好ましくは1~20の範囲である。このような範囲とすることにより、アミン化をより効果的に進行させることができる。
 5-(ハロゲン化メチル)フルフラールに対する触媒の量は、反応させる基質の種類等に応じて適宜調整すればよく、一般的には、5-(ハロゲン化メチル)フルフラールの質量に対して、1~200質量%である。触媒の量は、5-(ハロゲン化メチル)フルフラールの質量に対して、好ましくは1~150質量%であり、より好ましくは1~100質量%である。
 反応温度は、反応させる基質の種類等に応じて適宜調整すればよく、一般的には40~200℃、好ましくは50~120℃、より好ましくは50~110℃の範囲である。
 また、本実施形態の製造方法は、触媒として、貴金属触媒(特に、ロジウム(Rh)触媒)を用いた場合、反応温度を、例えば、10℃以上40℃未満、さらには、15~35℃としても、反応を効果的に進行させることができる。
 反応時間は、GC-MS等を用い反応の進行状況をモニタリングすることによって適宜調整すればよく、一般的には1分~24時間、好ましくは0.5~3時間、より好ましくは0.5~2時間である。
 本実施形態の反応は、溶媒の存在下で行ってもよい。溶媒は、特に限定されず、反応温度や反応物等によって適宜選択される。溶媒としては、例えば、水;ベンゼン、トルエン等の芳香族炭化水素系溶媒;アセトニトリル、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド系溶媒;テトラヒドロフラン(以下、THFとも記載する。)、ジエチルエーテル等のエーテル系溶媒;メタノール、エタノール、イソプロパノール等のアルコール系溶媒;ジクロロメタン、ジクロロエタン、クロロホルム等のハロゲン系溶媒;等が挙げられる。これらの中でも、エーテル系溶媒が好ましい。エーテル系溶媒を用いることにより、水素ガスの溶媒への溶解度がより良好になる。
 これら溶媒は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 溶媒の使用の有無及びその使用量は、その他の反応条件を考慮して適宜設定すればよく、特に限定されないが、生産性及びエネルギー効率の観点から、5-(ハロゲン化メチル)フルフラールに対して、好ましくは0.5~100質量倍であり、より好ましくは1.0~50質量倍であり、さらに好ましくは1.0~20質量倍である。
 反応後における反応混合物と触媒との分離は、沈降、遠心分離、濾過等の一般的な方法により行うことができる。触媒の分離は、使用する触媒に応じ、適宜、発火することを防ぐため、窒素やアルゴン等の不活性ガス雰囲気下で行うことが好ましい。本発明では、反応に使用した5-(ハロゲン化メチル)フルフラールが定量的にBAFに変換された場合の質量を100としたとき、収率を50%以上とすることができ、62%以上とすることもできる。
 また、反応混合物は、上記反応で溶媒を用いる場合、得られた反応溶液を必要に応じて濃縮した後、残渣をそのまま原材料や中間体として使用してもよく、反応混合物を適宜後処理して精製してもよい。後処理の具体的な方法としては、抽出、蒸留、クロマトグラフィー等の公知の精製方法を挙げることができる。これらの精製方法は、二種以上を組み合わせて行ってもよい。
 以下、実施例及び比較例を挙げて本発明をさらに詳しく説明するが、本発明は以下の実施例に何ら限定されるものではない。
(実施例1)
 耐圧オートクレーブに5-(クロロメチル)フルフラール0.5g、THF3mL、触媒としてRaney-Ni0.3gを投入後、液体アンモニア3gを充填し、水素圧力4MPaGまで昇圧した。なお、Raney-Niは、水3gに懸濁させたものを使用した。
 その後温度を90℃で1時間保持したまま反応し、耐圧オートクレーブを氷水で冷却して反応を停止した。
 アルゴンガス流通下、触媒と反応液をろ過することによって触媒を除去し、ろ液のGC-MS測定を行った。なお、GC-MS測定は、GC-MSスペクトル装置Agilent7890BGC/5977MSD(Agilent Technologies,Inc.製)を用いて実施した。
<生成物の収率の算出方法と収率>
 GC-FID検出強度(面積値)とBAF濃度との関係を示す検量線を作成し、反応液のBAF面積値と比較した。
 具体的には、反応液のGC-MS測定により得られたGC-FID検出強度(面積値)から、上記検量線を用いてBAF濃度を算出し、反応液質量よりBAF質量を求めた。反応に使用した5-(クロロメチル)フルフラールが定量的にBAFに変換された場合の質量を100とし、収率を算出したところ、収率は、62%であった。
<生成物の同定方法(GC-MSの測定結果)>
 GC-MS測定において、実施例1のろ液を測定して得られたリテンションタイムが、BAF標準サンプルのリテンションタイムと一致し、MS分析からBAFと同じ分子量(126)の分子イオンピークが観測された。また、フラグメントイオンピークも、BAFの片側メチルアミンが外れた化合物の分子量(96)と一致した。以上の結果から、実施例1においてBAFが得られたことを確認した。
(実施例2)
 実施例1において、触媒(Raney-Ni)をRh/C触媒(炭素担体質量に対してRh金属含有量が5質量%)に変更し、水素圧力0.3MPaG、反応温度30℃とし、他は同様に行った。BAFが合成されていることを確認した。
 本発明の製造方法は、樹脂の原材料であるモノマーあるいはエポキシ樹脂硬化剤、化合物の中間原料等として有用な2,5-ビス(アミノメチル)フランを提供することができ、樹脂、医薬品、香料等の製造において産業上の利用可能性を有する。

Claims (8)

  1.  2,5-ビス(アミノメチル)フランの製造方法であって、
     5-(ハロゲン化メチル)フルフラールに対して水素化触媒を用いて水素及びアミン化合物を反応させ、2,5-ビス(アミノメチル)フランを得る工程を含む、製造方法。
  2.  前記5-(ハロゲン化メチル)フルフラールが、5-(クロロメチル)フルフラールである、請求項1に記載の製造方法。
  3.  前記5-(ハロゲン化メチル)フルフラールが、木質バイオマス、セルロース、及び炭素原子6個から構成される糖であるC6糖からなる群より選択される少なくとも一種に由来する、請求項1又は2に記載の製造方法。
  4.  前記アミン化合物が、アンモニア、又はRCONH2で表されるアミド(Rは、水素原子、又は、-Cn2n+1(nは、1以上の整数である。)を表す。)である、請求項1~3のいずれか一項に記載の製造方法。
  5.  前記水素化触媒が、Fe、Co、Ni、Cu、Ru、Rh、Pd、Ir、Pt、Re、Osからなる群より選択される少なくとも一種を含む触媒である、請求項1~4のいずれか一項に記載の製造方法。
  6.  前記反応が、水素圧0超過25MPaG以下で行なわれる、請求項1~5のいずれか一項に記載の製造方法。
  7.  前記反応が、水素圧0超過9MPaG未満で行なわれる、請求項1~5のいずれか一項に記載の製造方法。
  8. さらに、2,5-ビス(アミノメチル)フランと触媒を分離する工程を含む、請求項1~7のいずれか一項に記載の製造方法。
PCT/JP2018/027251 2017-07-21 2018-07-20 2,5-ビス(アミノメチル)フランの製造方法 WO2019017468A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/631,763 US11214559B2 (en) 2017-07-21 2018-07-20 Method for producing 2,5-bis(aminomethyl)furan
CN201880047465.9A CN110914249B (zh) 2017-07-21 2018-07-20 2,5-双(氨基甲基)呋喃的制造方法
EP18835526.7A EP3656766B1 (en) 2017-07-21 2018-07-20 Method for producing 2,5-bis(aminomethyl)furan
JP2019530611A JP7173009B2 (ja) 2017-07-21 2018-07-20 2,5-ビス(アミノメチル)フランの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017141976 2017-07-21
JP2017-141976 2017-07-21

Publications (1)

Publication Number Publication Date
WO2019017468A1 true WO2019017468A1 (ja) 2019-01-24

Family

ID=65015246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027251 WO2019017468A1 (ja) 2017-07-21 2018-07-20 2,5-ビス(アミノメチル)フランの製造方法

Country Status (5)

Country Link
US (1) US11214559B2 (ja)
EP (1) EP3656766B1 (ja)
JP (1) JP7173009B2 (ja)
CN (1) CN110914249B (ja)
WO (1) WO2019017468A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153280A1 (ja) * 2019-01-22 2020-07-30 三菱瓦斯化学株式会社 組成物、硬化物、硬化物の製造方法、コーティング膜の製造方法および組成物の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073987A1 (ja) * 2017-10-11 2019-04-18 三菱瓦斯化学株式会社 2,5-ビス(アミノメチル)テトラヒドロフランの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003024947A1 (en) 2001-09-17 2003-03-27 E.I. Du Pont De Nemours And Company Process for preparing 2,5-diformylfuran from carbohydrates
WO2012004069A1 (de) * 2010-07-06 2012-01-12 Evonik Degussa Gmbh Verfahren zur herstellung von 2,5-diformylfuran und seiner derivate
KR20160034084A (ko) 2014-09-19 2016-03-29 한국화학연구원 2,5-비스(아미노메틸)퓨란의 제조방법
WO2016068712A1 (en) * 2014-10-30 2016-05-06 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Crystallization of furanic compounds

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10231288A (ja) * 1997-02-21 1998-09-02 Kuraray Co Ltd 2−クロロ−4−アミノメチルピリジンの製造方法
CN102844114B (zh) * 2010-04-15 2016-06-08 韩国生产技术研究院 用于从木质类生物质原料物质制备糠醛衍生物的金属催化剂组合物及利用该金属催化剂组合物的糠醛衍生物的制备方法
JP2016521728A (ja) * 2013-06-14 2016-07-25 ローディア オペレーションズ 少なくとも1つのアミン官能基を有するフラン化合物の製造方法
CN104277017B (zh) * 2013-07-02 2016-04-13 中国科学院大连化学物理研究所 2,5-二羟甲基呋喃制备2,5-二甲胺基呋喃的方法
CN104277018B (zh) * 2013-07-02 2016-04-13 中国科学院大连化学物理研究所 2,5-二甲酰基呋喃制备2,5-二甲胺基呋喃的方法
WO2015060827A1 (en) * 2013-10-22 2015-04-30 Empire Technology Development Llc Methods and compounds for producing nylon 6,6
US10407547B2 (en) * 2014-05-12 2019-09-10 Micromidas, Inc. Methods of producing compounds from 5-(halomethyl)furfural
JP6704896B2 (ja) 2014-07-10 2020-06-03 ローディア オペレーションズ 芳香族第一級ジアミンの製造方法
SG11201610658UA (en) * 2014-07-11 2017-01-27 Acacia Communications Inc Multichannel coherent transceiver and related apparatus and methods
WO2018085957A1 (en) * 2016-11-09 2018-05-17 Rhodia Operations Process for production of aromatic compounds comprising at least two amine functions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003024947A1 (en) 2001-09-17 2003-03-27 E.I. Du Pont De Nemours And Company Process for preparing 2,5-diformylfuran from carbohydrates
WO2012004069A1 (de) * 2010-07-06 2012-01-12 Evonik Degussa Gmbh Verfahren zur herstellung von 2,5-diformylfuran und seiner derivate
KR20160034084A (ko) 2014-09-19 2016-03-29 한국화학연구원 2,5-비스(아미노메틸)퓨란의 제조방법
WO2016068712A1 (en) * 2014-10-30 2016-05-06 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Crystallization of furanic compounds

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BRASHOLZ, M. ET AL.: "Highly efficient dehydration of carbohydrates to 5-(chloromethyl) furfural (CMF), 5- (hydroxymethyl) furfural (HMF) and levulinic acid by biphasic continuous flow processing", GREEN CHEMISTRY, vol. 13, no. 5, 1 January 2011 (2011-01-01), pages 1114 - 1117, XP055567469, ISSN: 1463-9262, DOI: 10.1039/c1gc15107j *
EL HAJJ, T. ET AL.: "SYNTHESE DE L'HYDROXYMETHYL-5 FURANNE CARBOXALDEHYDE-2 ET DE SES DERIVES PAR TRAITEMENT ACIDE DE SUCRES SUR RESINES ECHANGEUSES D'IONS", BULLETIN DE LA SOCIETE CHIMIQUE DE FRANCE,19870101SOCIETE FRANCAISE DE CHIMIE. PARIS, FRANCE, vol. 5, 1 January 1987 (1987-01-01), pages 855 - 860, XP009002108, ISSN: 0037-8968 *
GREEN AND SUSTAINABLE CHEMISTRY, vol. 5, 2015, pages 115 - 127

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153280A1 (ja) * 2019-01-22 2020-07-30 三菱瓦斯化学株式会社 組成物、硬化物、硬化物の製造方法、コーティング膜の製造方法および組成物の製造方法

Also Published As

Publication number Publication date
EP3656766A4 (en) 2020-06-03
US20200181105A1 (en) 2020-06-11
US11214559B2 (en) 2022-01-04
EP3656766A1 (en) 2020-05-27
CN110914249A (zh) 2020-03-24
CN110914249B (zh) 2023-10-24
EP3656766B1 (en) 2021-09-15
JP7173009B2 (ja) 2022-11-16
JPWO2019017468A1 (ja) 2020-07-27

Similar Documents

Publication Publication Date Title
JP6624490B2 (ja) メチルアミノ基を有する芳香族化合物又はフラン誘導体の製造法
JP7173009B2 (ja) 2,5-ビス(アミノメチル)フランの製造方法
JP2008063335A (ja) カルボニル化合物から1,2−ジオールを製造する方法
JPH01193246A (ja) 2,3―ジクロロピリジンの製造法
CN111194310B (zh) 2,5-双(氨基甲基)四氢呋喃的制造方法
TWI785127B (zh) 2,5-雙(胺甲基)四氫呋喃之製造方法
JP6999112B2 (ja) 2,5-ビス(アミノメチル)フラン二ハロゲン化水素塩及びその製造方法並びに2,5-ビス(アミノメチル)フランの製造方法
TW201130785A (en) Process for preparing 2,2-difluoroethylamine by hydrogenating 1,1-difluoro-2-nitroethane
JP2021014427A (ja) ヘキサメチレンジアミンの製造方法
CN114805098B (zh) 一种糠醛为初始原料合成5-氨基-1-戊醇的方法
CN114181090B (zh) 由酰胺经铱和硼试剂共同催化硅氢化合成胺类化合物的制备方法
JP5173152B2 (ja) β−アラニン化合物、ピペリドン化合物及びアミノピペリジン化合物の製造方法
KR101329457B1 (ko) 옥타하이드로인돌-2-카르복시산의 제조방법
EP1558597B1 (en) Continuous process for the production of optically pure (s)-beta hydroxy-gamma-butyrolactone
CN107778209A (zh) 一种吲达帕胺及其中间体的制备方法
WO2014034956A1 (ja) 4-(メチルチオ)ブタン-1,2-ジオールの製造方法
RU2404970C1 (ru) Способ получения 4-(3-метоксипропокси)-2,3-диметилпиридин-n-оксида
JPH06501014A (ja) ナフタレン及び2―モノヨードナフタレン富化製品流の製造方法
WO2017052184A1 (ko) 1,4-사이클로헥산디메탄올의 제조 방법
KR20040031989A (ko) 4-아미노-1-부탄올의 제조방법
JPS647986B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835526

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019530611

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018835526

Country of ref document: EP

Effective date: 20200221