WO2019015579A1 - 柔性减震装置 - Google Patents

柔性减震装置 Download PDF

Info

Publication number
WO2019015579A1
WO2019015579A1 PCT/CN2018/095951 CN2018095951W WO2019015579A1 WO 2019015579 A1 WO2019015579 A1 WO 2019015579A1 CN 2018095951 W CN2018095951 W CN 2018095951W WO 2019015579 A1 WO2019015579 A1 WO 2019015579A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible damper
flexible
gear
steering
shaft
Prior art date
Application number
PCT/CN2018/095951
Other languages
English (en)
French (fr)
Inventor
高源�
Original Assignee
大陆智源科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710591325.5A external-priority patent/CN107399360B/zh
Priority claimed from CN201820684039.3U external-priority patent/CN208360400U/zh
Application filed by 大陆智源科技(北京)有限公司 filed Critical 大陆智源科技(北京)有限公司
Priority to EP18834518.5A priority Critical patent/EP3656647A4/en
Priority to US16/611,392 priority patent/US11319997B2/en
Publication of WO2019015579A1 publication Critical patent/WO2019015579A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/02Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions
    • F16D3/12Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted for accumulation of energy to absorb shocks or vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0418Electric motor acting on road wheel carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/02Steering linkage; Stub axles or their mountings for pivoted bogies
    • B62D7/023Steering turntables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/1215Leaf springs, e.g. radially extending
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/124Elastomeric springs
    • F16F15/1245Elastic elements arranged between substantially-radial walls of two parts rotatable with respect to each other, e.g. between engaging teeth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/50Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members
    • F16D3/56Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members comprising elastic metal lamellae, elastic rods, or the like, e.g. arranged radially or parallel to the axis, the members being shear-loaded collectively by the total load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/50Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members
    • F16D3/64Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members comprising elastic elements arranged between substantially-radial walls of both coupling parts
    • F16D3/68Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members comprising elastic elements arranged between substantially-radial walls of both coupling parts the elements being made of rubber or similar material

Definitions

  • the present invention is a flexible damper device, particularly a chassis for a mobile device, to mitigate the flexible damper device of the mobile device that is impacted by the external force on the wheels and internal components of the moving machine.
  • a steering gear In a general vehicle, in order to implement the steering of the vehicle, a steering gear is required in the vicinity of the wheel to enable the vehicle to smoothly steer.
  • the general steering gears are mostly rigid connections. If the tires are bumped by the pits on the ground during the travel of the vehicle, the tires will instantaneously produce a side angle with respect to the centerline of the wheel. This side angle not only hinders the wheels. As the road progresses, the instantaneous force generated by the tires during bumps is also transmitted to the steering gear. Since most vehicles do not have guards installed on the steering gear to withstand these momentary forces, these transient forces can cause damage to the steering gear, which can be easily worn out over time.
  • the wheels are coupled to a gearbox that is in turn coupled to the steering gear.
  • a plurality of gears are attached to the gearbox, and the gears are meshed with each other or two of them are arranged along the direction of the rotating shaft of the gear. If the plurality of stacked gear rotating shafts are coaxial, if the gearbox receives these instantaneous forces from the wheels, the plurality of stacked gears will not "coaxially" rotate.
  • a coaxial device is used between the plurality of stacked gears in the gearbox to make multiple The gear can be rotated coaxially under external force.
  • Such a coaxial device is mounted between two drive shafts of two mechanical devices (e.g., two gears) that are intended to be coaxial.
  • the drive shaft of the first mechanical device is coupled to the drive shaft of the other of the two mechanical devices via a coaxial device to thereby calibrate the two drive shafts.
  • This type of coaxial device has the following design. One is to use a coaxial device consisting of a flexible part, an external joint, a pin, a nut, an inner joint, a retaining ring, a ring nut and an anti-friction bushing.
  • the elastic member is used as an elastic transmission component of the coaxial device, and the flexible member is wound around each of the parallel shafts of the specific inner and outer coupling portions to form an effective and reliable elastic coupling, thereby absorbing the two transmission shafts.
  • the coaxial device has a complicated structure and includes a plurality of shaft joints, pin shafts, and nut fittings, which makes the production difficult, and a large number of accessories cause the weight of the coaxial device itself to be heavy, which makes the installation difficult and affects.
  • the transmission effect of the drive shaft is extremely inconvenient to use.
  • a coaxial device comprising a first semi-coaxial, a second semi-coaxial, a positioning sleeve and an elastomer, using a first semi-coaxial and a second semi-coaxial
  • the symmetrical design uses the elastic body between the two semi-coaxial devices.
  • the two semi-coaxial joints are combined by screws, and the positioning sleeve is sleeved to protect the entire coaxial device.
  • the coaxial device has too many components, screw holes and screws, and does not form the coaxial device integrally. The cost of manufacturing is extremely high, and the production of this coaxial device is extremely inconvenient.
  • the elastic member is placed in the sealed space formed by the second semi-coaxial device of the first semi-coaxial device, the elastic member is easily deteriorated, so that the elastic member is often replaced and waste is caused.
  • the present invention provides a flexible damping device comprising a flexible damping plate and a plurality of gears and a transmission shaft.
  • the flexible shock absorbing plate is simple in structure, easy to manufacture, convenient to replace and repair, and the integrated forming design can reduce the weight, does not cause load on other parts in the special damper device, and does not require a large number of screws and combination snails. Holes, which greatly reduce the cost of manufacturing, are convenient.
  • the invention provides a flexible damping plate for connecting and absorbing torque with two different mechanical shafts, so that two different machines are coaxial in the transmission process, characterized in that the flexible damping plate is sandwiched between two different Between the machines, and closely with two different machines, and the flexible damping plate is radially arranged on the first plane; wherein the first plane is a plane formed by the X-axis and the Y-axis in the Cartesian coordinate system.
  • the material of the flexible damping plate can be selected from elastic metal or synthetic polymer materials, including steel, synthetic rubber and polyurethane.
  • the configuration of the flexible damper plate is selected from the group consisting of a spring steel plate.
  • the number of the flexible damper plates exceeds one, and is evenly distributed in the circumferential direction of the rotating shaft.
  • the number of the flexible damper plates is an even number, the two pairs are symmetrically distributed; when the number of the flexible damper plates is singular, the angles between the two are equally distributed.
  • the coupling and the flexible damping plate are adopted, and when the external force is impacted and vibrated, the flexible damping plate is deformed, the impact caused by the external force is absorbed, and the impact of the external force on the structure of the steering motor and the gear is reduced, and the pair is realized. Its protection; when the external force disappears, the deformation of the flexible damping plate is restored, so that the wheel can return to the initial motion state to ensure the normal operation of the wheel.
  • the present invention further provides a flexible damper device, which is composed of a flexible damper plate as described above, is used for a chassis of a vehicle, a flexible damper device is connected to a steering motor and a wheel mount in the chassis, and the flexible damper device is characterized in that
  • the utility model comprises: a coupling, a second gear, a steering upper half shaft, a first gear, a flexible damping plate and a steering lower half shaft, one end of the coupling is connected with the steering motor, and the other end is connected with the second gear, the second gear Engaging with the first gear, the first gear drives the shaft above the upper shaft to rotate, the flexible damping plate is sandwiched between the steering upper half shaft and the steering lower half shaft, and the lower half shaft is coupled to the steering upper half
  • the shaft rotates with the lower axis as the axis, the lower half shaft is connected with the wheel mount, and the wheel is disposed on the wheel mount, whereby when the vehicle moves, the tire is subjected to the first direction, when the
  • the flexible damper plate is in an initial state when the wheel is subjected to another external force from the second direction to zero.
  • the projected pattern of the flexible damping plate on the first plane is the first pattern.
  • the projection pattern of the flexible damping plate on the first plane is a second pattern.
  • the first pattern is composed of a plurality of rectangles
  • the second pattern is composed of a plurality of polygons.
  • the flexible damping device is mounted in a gearbox of the mobile device.
  • the flexible shock-absorbing steering device provided by the invention can absorb the large instantaneous external force shock received by the wheel during the running of the mobile device, and reduce the impact of the external force on the structure of the steering gear and the second gear inside the gear box.
  • the protection of these parts when the external force disappears, the deformation of the flexible damping plate is restored, so that the wheel can return to the initial motion state to ensure the normal operation of the mobile device.
  • FIG. 1 is a side view showing the composition of a flexible damper plate in accordance with the disclosed technology
  • FIG. 2 is a plan view showing the composition of a flexible damper plate in accordance with the disclosed technology
  • FIG. 3 is a plan view showing the flexible damping plate in an initial state, schematically showing the arrangement of two different mechanical axes, in accordance with the disclosed technology
  • FIG. 4 is a plan view showing the composition of a flexible damper plate under a stress condition according to the technology disclosed in the present invention
  • Figure 5 is a side view showing a flexible damper device in accordance with the disclosed technology
  • Figure 6 is a side view showing the internal composition of a flexible damper device in accordance with the disclosed technology
  • Figure 7 is a top plan view of a flexible shock absorbing device in accordance with the teachings of the present invention.
  • FIG. 8 is a schematic illustration of another embodiment of the disclosed technology in accordance with the present invention.
  • the coordinate system referred to in the description of the detailed description and the drawings of the specification is a Cartesian coordinate system, that is, a three-axis (x, y, z) orthogonal coordinate system, using left-handed coordinates, three axes.
  • the direction is indicated in the various figures.
  • the direction of the coordinate axes is based on Fig. 1, and the other figures are views in different directions of Fig. 1.
  • the axial direction of the Y-axis is referred to as a first direction
  • the axial direction of the X-axis is referred to as a second direction
  • the axial direction of the Z-axis is referred to as a third direction
  • the X-axis and the Y-axis are constituted.
  • the plane is referred to as a first plane.
  • the plane formed by the Y-axis and the Z-axis is referred to as a second plane
  • the plane formed by the X-axis and the Z-axis is referred to as a third plane
  • the origin of the coordinate axis is set at the upper axis 11 The center point.
  • FIG. 1 is a cross-sectional view of one embodiment of the technology disclosed in accordance with the present invention.
  • the flexible damper plate 41 of Figure 1 is coupled to two different mechanical shafts for coaxial rotation of the two machines during transmission.
  • coaxial as used herein means the axis of rotation of two different machines, that is, the projection line of the upper axis 11 and the lower axis 21 on the third plane is only a straight line, as shown in FIG.
  • the two different machines are pivoted by the steering upper half shaft 1 and the steering lower half shaft 2, respectively.
  • the rotating shaft that turns to the upper half shaft 1 is called the upper shaft center 11 and turns to the lower shaft shaft.
  • the shaft of 2 is referred to as the lower shaft 21.
  • the power unit drives the steering upper shaft 1 to rotate, and the steering upper shaft 1 and the steering lower shaft 2 are connected by the flexible damping plate 41, and then turned to the upper shaft.
  • a torque is generated, and the torque is transmitted to the transmission wheel 40 and the lower half shaft 2 through the flexible damping plate 41, and the steering lower shaft 2 receives the torque and then rotates, and drives the steering lower shaft 2 to contact.
  • the device rotates.
  • the means for contacting the lower half shaft can be any device that can be driven via the steering lower shaft 2, such as a gear or a wheel in a mobile device.
  • the two machines described in all embodiments of the present invention may be two parallel or coaxial gears or mechanical devices.
  • the two machines are the first machine, the first machine in the present embodiment includes a steering upper half shaft and a first gear 3; the second machine in the present embodiment includes a transmission wheel 40 and turn to the lower half shaft 2.
  • the first gear 3 is in contact with the steering upper shaft 1 and the transmission wheel 40 is in contact with the steering lower shaft 2.
  • the two machines may also include one or more transmission members, which are not limited in the present invention.
  • the flexible damper plate 41 may be a plate material.
  • the center of the sheet can be hollowed out so that the hollow portion of the flexible damper plate 41 can be fixed to the rotating shaft.
  • the distribution and diameter of the hollowed out part of the center of the plate (not shown in Figure 1) are not necessarily uniform. It can be combined with the installation of the steering upper half shaft 1 and the steering lower half shaft 2 to have an uneven diameter.
  • the center of the sheet is hollowed out.
  • the range of diameters and diameters of the portions is not limited by the claims of the present invention.
  • the purpose of providing the flexible damper plate 41 to connect the steering upper half shaft 1 and the steering lower half shaft 2 is that if two steering half shafts (steering the upper half shaft 1 and turning the lower shaft shaft 2) are generated during the transmission process The upper shaft 11 and the lower shaft 21 are not coaxial.
  • the flexible damper 41 allows the upper shaft 11 and the lower shaft 21 to be rotated coaxially by the non-coaxial to smoothly perform the transmission process.
  • the flexible damping plate 41 can partially absorb the external force torque that is transmitted to the steering upper half shaft 1 by the steering lower shaft 2, and has a protective effect on the first machine.
  • FIG. 2 is a plan view of the first damper plate 41 taken along the line W-W, showing one embodiment of the installation and connection relationship of the flexible damper plate 41.
  • the flexible damper plate 41 has a radial arrangement of the axis of the upper shaft 11 as a reference point, so that the flexible damper plate 41 forms a sun-like surface on the first plane with respect to the steering upper half shaft 1 shape.
  • the material of the flexible damper plate 41 is generally selected from a flexible material having a good flexural strain, such as a metal plate, a hard rubber plate, a polyurethane block, and the like.
  • the material of the flexible damping plate 41 is a spring steel plate.
  • the number of flexible damping plates 41 is eight, and the above axis 1 is a point of symmetry, exhibiting a point-symmetric arrangement on the first plane. According to the spirit of symmetry disclosed in the symmetric mode of the present embodiment, in other embodiments, the number of flexible dampers 41 may be 6, 4 or 2, and the number of blades may be an even number. In another embodiment of the invention, the number of flexible shock absorbing plates 41 may be an odd number. However, the even number of settings are the best implementation. Viewed from the third direction, the first gear 3 is disposed above the flexible damper plate 41.
  • the shape of the first gear 3 is designed to conform to the shape of the flexible damper plate 41, that is, At a position where the first gear 3 shields the flexible damper plate 41, the first gear 3 has an opening to expose the flexible damper plate 41, so that when the flexible damper plate 41 is viewed from the third direction, the flexible damper plate 41 is exposed The first gear 3 of the.
  • FIG. 3 is a plan view showing the arrangement of two different mechanical axes in an initial state, showing the flexible damper plate 41 in accordance with the disclosed technology. 3 is a simplified view showing only parts such as the turning upper half shaft 1, the second gear 80, the upper shaft center 11, the turning lower shaft shaft 2, the second machine 40, and the lower shaft core 21.
  • Fig. 3 is a plan view showing the arrangement of two different mechanical axes in an initial state, showing the flexible damper plate 41 in accordance with the disclosed technology. 3 is a simplified view showing only parts such as the turning upper half shaft 1, the second gear 80, the upper shaft center 11, the turning lower shaft shaft 2, the second machine 40, and the lower shaft core 21.
  • the steering upper shaft 1 and the steering lower shaft 2 are rotated in a coaxial manner.
  • the axis 11 on the axis of rotation of the upper half shaft 1 is the same as the point of projection of the lower axis 21 of the shaft of the lower shaft 2 on the first plane.
  • the projection points of the upper shaft center 11 and the lower shaft center 21 on the first plane are different coordinate positions. Both machines may cause the two machines to rotate non-coaxially due to external impact or due to their own vibration.
  • the non-coaxial rotation of the two machines causes a poor transmission effect, that is, the energy and work of the first gear 3 cannot be completely transmitted to the transmission wheel 40, resulting in energy loss and waste.
  • the flexible damping plate 41 provided by the present invention between the steering upper half shaft 1 and the steering lower half shaft 2, that is, as shown in FIG. 1 and 2, in order to make the rotation of the two mechanical axes to avoid the situation of non-coaxial rotation.
  • the flexible damper plate 41 can partially absorb the external force torque that is transmitted to the steering upper half shaft 1 by the steering lower half shaft 2, and has a protective effect on the first machine.
  • Fig. 4 is a plan view showing the composition of the damper plate in a state of being subjected to a force according to the technique disclosed in the present invention.
  • Figure 4 is a plan view of the first plane taken along line W-W of Figure 1;
  • the flexible damper plate 41 In the initial condition, the flexible damper plate 41 is rotated with the first gear 3 and the transmission wheel 40, so the rotation axis, the rotation speed, and the force and direction of the first gear 3 and the transmission wheel 40 are the same, that is, The common center of mass of the plurality of flexible dampers 41 is co-located with the centroids of the first gear 3 and the first transmission wheel 40.
  • the second machine receives an external force during the rotation, the torque generated by the external force and the external force is transmitted to the flexible damper plate 41.
  • the flexible damper plate 41 receives the additional force, the flexible damper plate 41 instantaneously generates a displacement relative to the steering upper half shaft 1, that is, the flexible damper plate 41 is twisted and deformed.
  • the flexible damper 41 will Unrecoverable deformation occurs and is destroyed.
  • designing the maximum torque that the flexible damper plate 41 can withstand is an important point in the present invention.
  • the maximum torque that the flexible damper plate 41 can withstand is based on the number, size, and material of the flexible damper plate 41, which is not limited by the present invention. In one embodiment, the flexible damper 41 can withstand a maximum torque of 40 to 70 Newton meters.
  • the details of the details of each of the flexible damper plates 41 are different, the state of deformation and distortion of each of the flexible damper plates 41 is different.
  • the projected pattern of the flexible damper plate 41 on the first plane is the first pattern.
  • the projection pattern of the flexible damper plate 41 on the first plane is the second pattern.
  • the patterns of the first pattern and the second pattern may be the same or different.
  • the first pattern is composed of a plurality of rectangles
  • the second pattern is composed of a plurality of polygons.
  • the polygon may be a polygon, such as a plurality of triangles, a plurality of quadrangles, or a combination of a plurality of diamonds.
  • the flexible damping plate 41 When the deformation of the flexible damping plate 41 occurs, the first gear 3 and the transmission wheel 40 rotate coaxially, and the flexible damping plate 41 also rotates coaxially with the first gear 3 in the form of the deformed flexible damping plate 41. And this extra torque is absorbed by the flexible damping plate 41, and this extra torque is not transmitted to the steering upper shaft 1. After the external force disappears, the flexible damper plate 41 restores the state before the deformation. In another embodiment, after the first gear 3 and the second machine 40 rotate coaxially, the center of mass of the flexible damper plate 41 returns to the original center of mass, that is, the center of mass of the first gear 3 and the transmission wheel 40 are the same. Therefore, the deformation of the flexible damper plate 41 disappears, and the first pattern is restored by the second pattern.
  • the flexible damper plate 41 provided by the above embodiment is not only simple in structure, but also requires complicated fittings such as a pin shaft and a nut, and is lightweight and easy to manufacture. Moreover, the flexible damper plate 41 is not easily deteriorated, so that it is not necessary to change the elastic member from time to time, and it is convenient to use.
  • Fig. 5 is a side view showing the flexible damper device 6 in accordance with the disclosed technology.
  • the flexible damper device 6 is another embodiment of the present invention.
  • the flexible damper device 6 is mounted in a gearbox of the wheel body portion 5 of the mobile device.
  • This mobile device includes mobile and wheeled equipment such as special vehicles, wheeled robots, or spacecraft and aircraft.
  • the gear case is formed by the gear case housing 70 covering various gear members, the shaft member, and the flexible damper 6.
  • the material of the gearbox housing 70 is primarily constructed of metal, such as iron or aluminum, to provide substantial protection of the internal components in the gearbox.
  • the first end of the flexible damper device 6 is connected to the steering motor 50, and the second end wheel mount 100 is connected.
  • a wheel 110 is disposed on the wheel mount 100.
  • the wheel body 5 is coupled to the steering mount 90, thereby steering the mount 90 to erect the housing of the gearbox to the chassis of the mobile device.
  • the steering motor 50 is a machine in which the mobile device controls the direction of rotation of the wheel 110, and a plurality of gears are also attached therein, which output torque for other mechanical rotation.
  • only one set of wheel body portions 5 is illustrated. It is to be understood that the general mobile device is composed of four wheels, so the wheel body portion 5 has four groups in one mobile device, but does not exclude There are six groups, eight groups, and so on.
  • FIG. 6 is a cross-sectional view showing the internal composition of the flexible damper device 6 according to another embodiment of the disclosed technology.
  • the flexible damper device 6 includes a coupling 60, a second gear 80, a steering upper shaft 1, a first gear 3, a flexible damper plate 41 and a steering lower shaft 2, one end of the coupling 60 and the steering motor 50. The other end is connected to the second gear 80.
  • the coupling 60 enables the steering motor 50 to rotate coaxially with the second gear 80, and ensures that the torque of the steering motor 50 can be transferred to the second gear 80 without missing.
  • the second gear 80 is located in the gear case upper casing 701 to mesh with the first gear 3, and the second gear 80 transmits the power of the motor 50 to the first gear 3.
  • the first gear 3 is a gear set having a plurality of gears, and the implementer can freely adjust the diameter of the gears in the first gear 3 to cooperate with the second gear 80 to reduce the rotational speed and increase the torque, or Increase the speed and reduce the torque transmission effect.
  • the present invention does not limit the number of gears included in the first gear 3 and the distance between the gears.
  • the first gear 3 drives the steering upper shaft 1 and the shaft 11 to rotate about the shaft, and the flexible damping plate 41 is interposed between the steering upper shaft 1 and the steering lower shaft 2, and the steering lower shaft 2 is linked to the steering.
  • the upper half shaft 1 and the lower shaft center 21 are coaxially rotated. Turning to the lower axle 2 transmits torque to the wheel 110 via the wheel mount 100 for rotation of the wheel 110.
  • the wheel mount 100 and the wheel 110 are embodiments of the second machine 40 described above.
  • the wheel mount 100 is also attached with a plurality of gears to shift the direction of the torque and transmit it to the wheel 110 for rotation of the wheel 110.
  • the direction of the moment is perpendicular to the upper half shaft 1 and the lower half shaft 2.
  • an external force is applied to the wheel 110 (as indicated by the black arrow in FIG. 6)
  • the wheel 110 and the wheel mount 100 are obliquely offset in the direction of the force, and the lower shaft 2 is skewed together, so that the lower shaft
  • the core 21 is offset from the upper axis 11 so that the two axes are not coaxial.
  • the flexible damper device 6 is mounted in the mobile device, and the flexible damper plate 41 absorbs an external force to rotate the steering lower half shaft 2 and the steering upper half shaft 1 coaxially inside the gear box, thereby ensuring smooth running.
  • the flexible damper plate 41 can partially absorb the external force torque, so that the external force torque transmitted to the steering upper shaft 1 is reduced, and the effect of protecting the second gear 80 and the motor 50 is achieved.
  • the operation mode of the flexible damper device 6 in the initial state and the stressed state is the same as the implementation state of the flexible damper plate 41 of the present invention, and details are not described herein.
  • FIG. 7 is a top plan view showing the flexible damper device 6 according to another embodiment of the disclosed technology.
  • Fig. 7 is a plan view of the first plane viewed from the third direction, taken along line V-V of Fig. 6, according to Fig. 6.
  • the flexible damper plate 41 has the above axis 11 as an axis, and the shaft is disposed on the upper half shaft 1.
  • the flexible damper plate 41 is mounted in the gear case upper housing 702.
  • FIG. 7 only exemplifies the installation position of the flexible damper plate 41 in the gear box.
  • the function, the connection relationship of the flexible damper plate 41 and the embodiment in the initial state and the stressed state are the flexible damper of the present invention.
  • the description of the implementation of the board 41 will not be repeated here.
  • the steering upper half shaft is fixed to the first gear 3
  • the steering lower shaft 2 is fixed to the transmission wheel 40
  • the flexible damping plate 41 is simultaneously fixed to the first gear 3 and the transmission wheel 40.
  • the method of securing includes soldering and also includes slot connections.
  • the manner of connecting the slots includes grooving at a position corresponding to the first gear 3 and the transmission wheel 40, and embedding the flexible damper plate 41 in the groove to function to connect the first gear 3 and the transmission wheel 40.
  • FIG. 8 is a bottom plan view of the first plane taken along line W-W of Figure 1.
  • the first machine includes a steering upper axle 1 (not shown) and the first gear 3, and the steering upper axle 1 is in contact with the first gear 3, and the second machinery includes steering the lower axle 2.
  • the plurality of flexible damping plates 41 are fixed to an annular structure 410, and the plurality of flexible damping plates 41 are radially evenly distributed in the circumferential direction of the annular structure 410, and form a sun-like shape on the first plane.
  • a space is left between adjacent flexible dampers 41, and the number of flexible dampers 41 is equal to the number of said spaces.
  • the flexible damper plate 41 is not fixed to the first gear 3 and the second machine 40.
  • the flexible damper plate 41 is made of a resilient material, including polyurethane or rubber, and the member for fixing the flexible damper plate 41 to the annular structure 410 is obtained by press molding or press forming.
  • One end of the first gear 3 in contact with the flexible damper plate 41 is provided with at least one first boss portion 309, and the shape of the first boss portion 309 is identical to the space between two adjacent flexible dampers 41.
  • One end of the lower half shaft 2 in contact with the flexible damper plate 41 is provided with at least one second boss portion 409, and the shape of the second boss portion 409 and the space between the two adjacent flexible dampers 41 Consistent. And the sum of the number of the first bosses 309 and the number of the second bosses 409 does not exceed the number of the flexible damper plates 41.
  • the position of the first boss 309 and the position of the second boss 409 are offset from each other such that the first boss 309 and the second boss 409 can be interleaved from the two ends to the plurality of flexible dampers 41, respectively.
  • there are six flexible dampers 41 the number of spaces between adjacent flexible dampers 41 is six, and the number of the second bosses 409 is three, the first ridges
  • the number of parts 309 is three.
  • the first gear 3 is in contact with the flexible damper plate 41 through the first boss portion 309, and the flexible damper plate 41 is in contact with the second boss portion 409 of the lower half shaft 2.
  • the plurality of flexible damper plates 41 are sandwiched between the first boss portion 309 and the second boss portion 409 and are in close contact so that torque can be conducted between the steering upper half shaft 1 and the steering lower half shaft 2.
  • the flexible damper plate 41 can absorb the external force torque by its own deformed portion, thereby protecting the first mechanical effect.
  • the flexible shock-absorbing steering device provided by the invention can absorb the large instantaneous external force impact received by the wheel 110 during the running of the vehicle, and reduce the external force on the structure of the steering motor 50 and the large second gear 80 inside the gear box. Impact, the protection of these parts is realized; when the external force disappears, the deformation of the flexible damping plate 41 is restored (and may not be restored), so that the wheel 110 can return to the initial motion state, ensuring the normal operation of the wheel 110, ensuring Driving safely.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Gear Transmission (AREA)
  • Gears, Cams (AREA)
  • Power Steering Mechanism (AREA)

Abstract

一种柔性减震板(41),适用于柔性减震装置(6)中,用于与两个不同机械的轴连接与吸收转矩,使两个不同机械在传动过程中共轴,其特征在于,柔性减震板(41)夹设在二个不同机械之间,且与两个不同机械紧密贴合,且柔性减震板(41)在第一平面上以放射状设置;其中第一平面为笛卡尔坐标系中X轴和Y轴所构成的平面。于柔性减震板(41)安装于车辆时,能使车辆在行驶过程中,吸收由车轮(110)受到的较大瞬时外力冲击,减小外力对转向电机(50)及齿轮箱内部的第二齿轮(80)等结构的冲击,实现对这些零件的保护。

Description

柔性减震装置 技术领域
本发明是一种柔性减震装置,特别是用于移动设备的底盘,以减缓移动设备在行动中,外力对于移动机械的车轮以及内部构件冲击的柔性减震装置。
背景技术
在一般车辆中,为实施车辆的转向,故在车轮附近需附有转向器使车辆能顺利转向。但是,一般的转向器多为刚性连接,若是车辆行进间,轮胎因为地面的坑洞而发生颠簸时,轮胎会在瞬间产生相对于车轮中心线的侧偏角,此侧偏角不仅对妨碍车轮的行进,轮胎在颠簸时产生的瞬时力量亦会传到转向器中。由于多数车辆中并无安装防护装置在转向器上以抵御这些瞬时力,故这些瞬时力会对转向器产生伤害,长久下来转向器容易耗损。
以下详述这些瞬时力如何对转向器产生伤害。习知的车辆中,车轮是与齿轮箱连接,齿轮箱再与转向器连接。齿轮箱内附有多个齿轮,这些齿轮会相互啮合或两两的沿着齿轮转动轴的方向迭设。若是此多个迭设的齿轮转动轴为共轴的状况下,假设齿轮箱受到来自于车轮的这些瞬时力时,这些多个迭设的齿轮就不会「共轴」的旋转了。为了使此些多个迭设的齿轮在受到这些瞬时力影响下依然能共轴的旋转,一种共轴装置被使用在齿轮箱中的多个迭设的齿轮之间,以使多个迭设的齿轮能在外力下依然共轴的旋转。
一般此种共轴装置是装设在欲共轴的两机械装置(例如两个齿轮)的两个传动轴之间。在此两机械装置中,第一个机械装置的传动轴经由共轴装置与此两机械装置中的另一个机械装置的传动轴连接,以藉此校准此两个传动轴。此种共轴装置有如下的设计。其一是采用一种包含挠性件、外联轴节、销轴、螺帽、内联轴节、档环、档环螺帽及减摩衬套所组成的共轴装置,以各种挠性件作为共轴装置的弹性传动组件,并将挠性件绕在特定的内、外联轴节各个相互平行的销轴上,以形成有效可靠的弹性联接,并藉此吸收两传动轴不相等的力矩大小与方向,达成两传动轴的共轴的目的。但此种共轴装置构造复杂,包含了多个轴节、销轴、螺帽的配件,造成生产不易,且为数众多的配件造成了共轴装置本身重量重,造成装设不易,并且会影响传动轴的传动效果,故此种设计使用上极为不便。
另外,有一种设计是采用包括了第一半共轴器、第二半共轴器、定位套及弹性体所构成的共轴装置,其采用第一半共轴器、第二半共轴器的对称型设计,使用时将弹性体夹设于两个半共轴器之间,两个半共轴器藉由螺丝结合,结合处以定位套,套设保护以形成整个共轴装置。虽然此设计是易于拆装此两个半共轴器,以方便的更换弹性体,但此共轴装置的所包含的组件、螺孔及螺丝太多,且并非一体式的形成此共轴装置,造成制造时所耗的成本极高,制作此共轴装置亦极为不便。另外,在第一半共轴器第二半共轴器构成的密闭的空间置放弹性件时,易使弹性件容易劣化,故需时常更换弹性件,并造成浪费。
此外,车辆通常在较为平坦的道路或平面上行驶,受外界冲击的次数较少,而且冲击载荷也较小。但对于现代高精密度的机械设备,例如轮式机器人或是特种车辆,由于其活动环境的复杂性,其内部的转向器会比车辆的转向器受到更多的冲击而导致损坏。
发明内容
综上叙述,为改进现有技术所提及的缺陷,本发明提供一种柔性减震装置,包含了柔性减震板及多个齿轮与传动轴。此柔性减震板构造简单,易于制作、方便抽换及维修,一体成形的设计更可减轻重量,不会对专行减震装置中的其他零件造成负荷,且不需要大量的螺丝及组合螺孔,大幅减低制造时的成本,实为方便。
本发明提供一种柔性减震板,用于与二个不同机械的轴连接与吸收转矩,使两个不同机械在传动过程中共轴,其特征在于,柔性减震板夹设在二个不同机械之间,且与两个不同机械紧密贴合,且柔性减震板在第一平面上以放射状设置;其中第一平面为笛卡尔坐标系中X轴和Y轴所构成的平面。
柔性减震板的材质可以选择有弹性的金属材质或者合成高分子材质,包括钢,合成橡胶材质,聚氨酯材质。优选的,柔性减震板的构成选自于弹簧钢板。
优选的,所述柔性减震板的数量超过1个,且在转轴圆周方向均匀分布。当所述柔性减震板的数量为偶数时,则两两对称分布;当所述柔性减震板的数量为单数时,则相互之间的夹角相等分布。
本发明中采用了联轴器和柔性减震板,到受到外力冲击和震动时,柔性减震板发生变形,吸收外力引起的冲击,减小外力对转向电机及齿轮等结构的冲击,实现对其的保护;当外力消失时,柔性减震板的变形得到恢复,使车轮能够回到初始的运动状态,保证车轮的正常工作。
本发明更提供一种柔性减震装置,使用如上述的柔性减震板组成,用于车辆的底盘,柔性减震装置连接底盘中的转向电机与车轮安装座,柔性减震装置其特征在于,包括:联轴器、第二齿轮、转向上半轴、第一齿轮、柔性减震板与转向下半轴,联轴器的一端与转向电机连接,另一端与第二齿轮连接、第二齿轮与第一齿轮啮合,第一齿轮带动转向上半轴以上轴心为轴旋转,柔性减震板夹设在转向上半轴与转向下半轴之间,转向下半轴连动于转向上半轴,并以一下轴心为轴旋转,转向下半轴与车轮安装座连接、车轮设于车轮安装座上,藉此,在车辆移动时,轮胎于第一方向行进的状况下,当车轮受到来自第二方向的不为零的外力时,柔性减震装置处于受力状态,以吸收外力并确保上轴心与下轴心在第一平面上的投影点共点。
优选的,当车轮受到来自第二方向为零的另一外力时,柔性减震板处于初始状态。
优选的,在初始状态时,柔性减震板在第一平面上的投影图案为第一花纹。
优选的,在受力状态时,柔性减震板在第一平面上的投影图案为第二花纹。
优选的,其中第一花纹是由多个长方形所构成,第二花纹是由多个多边形所构成。
优选的,其中柔性减震装置是安装于移动设备的齿轮箱中。
本发明所提供的柔性减震转向装置,能在移动设备行驶过程中,吸收由车轮受到的较大瞬时外力冲击,减小外力对转向电机及齿轮箱内部的第二齿轮等结构的冲击,实现对这些零件的保护;当外力消失时,柔性减震板的变形得到恢复,使车轮能够回到初始的运动状态,保证移动设备的正常工作。
附图说明
图1是根据本发明所揭露的技术,表示柔性减震板组成的侧视图;
图2是根据本发明所揭露的技术,表示柔性减震板组成的俯视图;
图3是根据本发明所揭露的技术,表示柔性减震板处于一初始状态下,示意为二个不同机械的轴心配置的俯视图;
图4是根据本发明所揭露的技术,表示柔性减震板的组成,处于一受力状况下的俯视图;
图5是根据本发明所揭露的技术,表示柔性减震装置的侧视图;
图6是根据本发明所揭露的技术,表示柔性减震装置内部组成的侧视图;以及
图7是根据本发明所揭露的技术,表示柔性减震装置的俯视图。
图8是根据本发明所揭露的技术的另一个实施例的示意图。
具体实施方式
为了使本发明的目的、技术特征及优点,能更为相关技术领域人员所了解,并得以实施本发明,在此配合所附的图式、具体阐明本发明的技术特征与实施方式,并列举较佳具体实施方式进一步说明。以下文中所对照的图式,为表达与本发明特征有关的示意,并未亦不需要依据实际情形完整绘制。而关于本案实施方式的说明中涉及本领域技术人员所熟知的技术内容,亦不再加以陈述。
于具体实施方式中的说明与说明书附图的标示中所称的坐标系是采用笛卡尔坐标系,即三轴的(x,y,z)的正交坐标系,采用左旋坐标,三个轴的方向如各个图所标示。坐标轴的方向以图1为基准,其他各图皆是图1不同方向的视图。在本发明中,将Y轴的轴向称为第一方向,将X轴的轴向称为第二方向,将Z轴的轴向称为第三方向;将X轴和Y轴所构成的平面称为第一平面,在此将Y轴和Z轴所构成的平面称为第二平面,将X轴和Z轴所构成的平面称为第三平面,坐标轴原点订在上轴心11的中心点。
请参照图1,图1是根据本发明所揭露的技术,其中一个实施例的剖视图。图1中的柔性减震板41与两个不同机械的转轴连接,使两个机械在传动过程中共轴的旋转。在这边所称的「共轴」,意思为两个不同机械的转轴,即上轴心11与下轴心21在第三平面上的投影线仅为一直线,如图1所示。此两个不同机械分别藉由转向上半轴1与转向下半轴2为轴心旋转,在本发明的实施例中,转向上半轴1的转轴称为上轴心11,转向下半轴2的转轴称 为下轴心21。转向上半轴1连接动力装置(图1未示),动力装置驱动转向上半轴1进行旋转,转向上半轴1与转向下半轴2通过柔性减震板41连接后,转向上半轴1旋转时,产生力矩,并将力矩通过柔性减震板41传给传动轮40和转向下半轴2,转向下半轴2接收此力矩后进行旋转,并带动转向下半轴2所接触的装置旋转。所述与转向下半轴接触的装置可以是任何可以经由转向下半轴2带动的装置,例如是齿轮或是移动设备中的车轮。若是力矩在能量无耗损的状况下进行传递,转向下半轴2与转向上半轴1则会以同轴、同向及同速度进行旋转,接着转向下半轴2再带动转向下半轴2所接触的装置旋转,以完成此传动过程。要说明的是,「同向旋转」是指转向上半轴1与转向下半轴2在旋转时,两半轴旋转时的力矩方向相同。而本发明的所有具体实施方式中所述的两个机械,可以是两个转动轴平行或是共轴的齿轮或是机械设备。在本具体实施方式中,此两个机械一个是第一机械,第一机械在本具体实施方式中包括转向上半轴和一个第一齿轮3;第二机械在本具体实施方式中包括传动轮40和转向下半轴2。第一齿轮3与转向上半轴1接触,传动轮40与转向下半轴2接触。在其他具体实施方式中,此两个机械亦可包括一个或多个传动构件,本发明对此不做限定。另外,柔性减震板41可以是板材。可以将此板材的中心挖空,使得柔性减震板41的挖空部可以固定在转动轴上。板材中心的挖空部(图1未示)的分布与直径并不一定是均匀的,可以配合转向上半轴1与转向下半轴2的安装而有不均匀的直径,板材的中心挖空部的直径大小及直径变化范围并不在本发明的权利要求的限制。
在本发明中,设置柔性减震板41连接转向上半轴1与转向下半轴2的目的在于,若是两转向半轴(转向上半轴1及转向下半轴2)在传动过程中产生上轴心11与下轴心21不共轴的状况,柔性减震板41可以让上轴心11与下轴心21由不共轴恢复共轴的旋转,以顺利进行传动过程。同时柔性减震板41可以部分吸收转向下半轴2向转向上半轴1传导的外力扭矩,对于第一机械起到保护效果。
请接着参考图2,图2是将图1沿W-W剖开后,在第一平面上的俯视图,表示柔性减震板41安装与连接关系的实施例之一。在本实施例中,柔性减震板41是以上轴心11的轴心为基准点呈现放射状设置,故所述柔性减震板41相对于转向上半轴1在第一平面上构成类似太阳的形状。柔性减震板41的材 质一般是选用挠曲应变度较好的可挠性材料,例如金属板,硬质橡胶板,聚氨酯块,等。优选的,柔性减震板41的材质选用弹簧钢板。这些材料在受到应力时会产生形变;应力消失后,这些材料可能会回复形变前的形状,或是维持在形变的状况下。在一个具体实施例中,柔性减震板41的数量为8个,并且以上轴心1为对称点,在第一平面上呈现点对称的设置。根据本实施对称方式所揭露地对称的精神,在其他实施例中,柔性减震板41的数量可以是6个、4个或是2个,叶片数量仅要偶数个皆可。在本发明另一具体实施方式中,柔性减震版41的数量可以是奇数个。但以偶数个的设置为最佳具体实施方式。从第三方向观之,第一齿轮3是设置在柔性减震板41的上方,在本具体实施方式中,第一齿轮3的形状的设计是顺应柔性减震板41的形状,也就是说,在第一齿轮3遮蔽柔性减震板41的位置,第一齿轮3有开口以露出柔性减震板41,故从第三方向观看柔性减震板41时,柔性减震板41是露出于第一齿轮3的。
图1及图2详述了柔性减震板41相连接的各个零件与其构成,以及其在静止时的状态与相对于其他机械的连接关系,后续说明柔性减震板41在使用时的状态。请参考图3,图3是根据本发明所揭露的技术,表示柔性减震板41处于初始状态下,示意为二个不同机械的轴心配置的俯视图。图3为简视图,仅呈现转向上半轴1、第二齿轮80、上轴心11、转向下半轴2、第二机械40与下轴心21等零件。图3中,在初始状况下,即在转向下半轴2和第二机械40所受的外力为零的条件下,转向上半轴1与转向下半轴2是以共轴的方式进行旋转,转向上半轴1的转轴上轴心11,与转向下半轴2的转轴下轴心21在第一平面上的投影点为同一点。但是,当转向下半轴2或是转向上半轴1受到不为零的外力时,上轴心11与下轴心21在第一平面上的投影点就为不同的坐标位置。两机械都可能因为受到外界撞击、或是因为本身的震动使两机械不共轴的旋转。两机械不共轴的旋转会造成传动效果差,即第一齿轮3的能量与功无法完整的传递给传动轮40,造成能量损耗与浪费。若要使不共轴的两机械共轴的旋转,则需要将本发明所提供的柔性减震板41装设于转向上半轴1与转向下半轴2之间,即如图1和图2所示,以使两机械共轴的旋转,以避免不共轴旋转的状况发生。此外,随着传动轮40受到外部力矩的方向与位置的不同,有可能带动转向下半轴2产生外力扭矩,此外力扭 矩通过与转向下半轴2连接的转向上半轴1传导到第一机械后,有可能对第一机械造成损坏。柔性减震板41可以部分吸收转向下半轴2向转向上半轴1传导的外力扭矩,对于第一机械起到保护效果。
使用时,柔性减震板41的状态如图4所表示,图4是根据本发明所揭露的技术,表示柔性减震板的组成,处于受力状况下的俯视图。图4是将图1沿W-W剖开后,在第一平面上的俯视图。当旋转中的转向上半轴1或是第一齿轮3接受到不为零的外力时,此外力会传递到柔性减震板41上,并且此外力会造成一个额外的转矩。在初始状况下,柔性减震板41是随着第一齿轮3与传动轮40旋转,故第一齿轮3与传动轮40的旋转轴、旋转速度和力与方向是相同的,也就是说,多块柔性减震板41共同的质心与第一齿轮3及第传动轮40的质心是共点的。在旋转过程中第二机械受到外力时,会将此外力及外力产生的转矩传递给柔性减震板41。柔性减震板41接受此外力时,柔性减震板41瞬间产生一相对于转向上半轴1的位移,也就是说,柔性减震板41会发生扭曲形变。若此额外的转矩与原先转向上半轴1或是第一齿轮3固有的转矩所合成的总转矩超过柔性减震板41所能承受的最大力矩时,柔性减震板41就会发生不可恢复的变形,进而被破坏。于此,设计柔性减震板41所能承受的最大力矩是本发明中的一个重点。柔性减震板41可以承受的最大力矩是根据柔性减震板41设置的数量、尺寸以及材料有关系,本发明不做限定。在一个具体实施方式中,柔性减震板41可以承受的最大力矩为40至70牛顿·米。另外,因为每个柔性减震板41的细部组成不同,所以每个柔性减震板41的形变及扭曲的状态不相同。在初始状态时,柔性减震板41在第一平面上的投影图案为第一花纹。但在受力状态时,柔性减震板41在第一平面上的投影图案为第二花纹。第一花纹与第二花纹的图案可以相同或是不同。其中此第一花纹是由多个长方形,此第二花纹是由多个多边形,此多边形可以是多角形,例如是多个三角形、多个四边形、或是多个菱形所构成的组合。
当柔性减震板41形变发生后,第一齿轮3与传动轮40就会同轴旋转,柔性减震板41亦会以形变的柔性减震板41态样与第一齿轮3同轴转动。且此额外的转矩就会被柔性减震板41所吸收,此额外的转矩就不会传递给转向上半轴1。在外力消失后,柔性减震板41会恢复形变前的态样。在另一具体实施方式中,在第一齿轮3与第二机械40同轴旋转后,柔性减震板41的质 心就会恢复原始质心,即与第一齿轮3与传动轮40的质心相同,所以柔性减震板41的形变消失,由第二花纹恢复程第一花纹。
上述实施例所提供的柔性减震板41不仅构造简单,不需要销轴、螺帽等复杂的配件,本身重量轻巧,制作时极为方便。且柔性减震板41不容易劣化,故不需时常更换弹性件,使用方便。
接着请看图5,图5是根据本发明所揭露的技术,表示柔性减震装置6的侧视图。柔性减震装置6是本发明的另一具体实施方式。本具体实施方式中,柔性减震装置6是安装在移动设备的轮体部5的齿轮箱中。此移动设备包括了可移动,且附有轮子的设备,例如是特种车辆、轮式机器人,或是航天器与航空器等等。在图5中,齿轮箱是由齿轮箱壳体70包覆各种齿轮构件、转轴构件及柔性减震装置6所形成的。齿轮箱壳体70的材料主要是以金属构成,例如铁或是铝等,以能确实保护齿轮箱中的内部构件。本柔性减震装置6的第一端与转向电机50连接,第二端车轮安装座100连接。车轮110轮设于所述车轮安装座100上。轮体部5与转向安装座90连接,藉由此转向安装座90以将齿轮箱的壳体架设于移动设备的底盘上。转向电机50是移动设备控制车轮110转动方向的机械,内部亦附有多个齿轮,其输出转矩以供其他机械旋转。在本具体实施方式中仅示意一组轮体部5,要知道的是,一般移动设备中是由四个轮子所组成的,所以轮体部5在一个移动设备中具有四组,但不排除有六组、八组等等。
接着请看图6,图6是根据本发明所揭露技术的另一个具体实施方式,表示柔性减震装置6内部组成的剖视图。柔性减震装置6包括:联轴器60、第二齿轮80、转向上半轴1、第一齿轮3、柔性减震板41与转向下半轴2,联轴器60的一端与转向电机50连接,另一端与第二齿轮80连接。其中联轴器60能使转向电机50与第二齿轮80同轴旋转,以及确保转向电机50的力矩能够无缺漏的转移给第二齿轮80。第二齿轮80位于齿轮箱上壳体701中,与第一齿轮3啮合,第二齿轮80将电机50的动力传递给第一齿轮3。本实施例中,第一齿轮3是一个具有复数个齿轮的齿轮组,实施者可以自由调节第一齿轮3中齿轮的直径,使之与第二齿轮80相配合,达到降低转速增加扭矩,或提高转速减小扭矩的传动效果。本发明对于第一齿轮3包含的齿轮数量、及齿轮相互之间的距离不加限定。第一齿轮3带动与转向上半轴1以上 轴心11为轴旋转,柔性减震板41夹设在转向上半轴1与转向下半轴2之间,转向下半轴2连动于转向上半轴1,并以下轴心21为轴共轴的旋转。转向下半轴2将力矩藉由车轮安装座100传递给车轮110以供车轮110旋转,此车轮安装座100与车轮110及是上述第二机械40的实施例。车轮安装座100亦附有多个齿轮,以将力矩方向转换,并传递给车轮110以供车轮110旋转。车轮110旋转时,力矩方向是垂直于转向上半轴1与转向下半轴2。当外力施加于车轮110时(如图6中的黑色箭头所示),车轮110与车轮安装座100会往受力方向歪斜偏移,连带使转向下半轴2一并歪斜,因此,下轴心21偏离上轴心11,进而使两轴心不共轴。若是不共轴的状况发生在移动设备内部时,轻则使内部齿轮零件损耗、转向电机50异常,重则使轮胎打滑,车子有失控的可能。将柔性减震装置6安装于移动设备内,藉由上述柔性减震板41吸收外力,以使齿轮箱内部的转向下半轴2与转向上半轴1共轴的旋转,有效确保行车顺畅。同时,随着车轮110受到力矩的角度和位置不同,其中一部分力矩会转化成为对转向下半轴2的外力扭矩。柔性减震板41可以部分吸收所述外力扭矩,使得传导到转向上半轴1的外力扭矩减小,起到保护第二齿轮80和电机50的效果。在本具体实施方式中,柔性减震装置6在初始状态与受力状态下的运作方式是同本发明的柔性减震板41的实施状况的叙述,于此不在赘述。
请参考图7,图7是根据本发明所揭露技术的另一个具体实施方式,表示柔性减震装置6的俯视图。图7是根据图6,将图6中的V-V联机剖开后,以第三方向观之,在第一平面的俯视图。如图7所揭露,柔性减震装置6中,柔性减震板41是以上轴心11为轴心,轴设于此转向上半轴1。柔性减震板41系安装于齿轮箱上壳体702内。图7仅例视柔性减震板41于齿轮箱中的装设位置,柔性减震板41的功效、连接关系与在初始状态与受力状态下的实施态样系如本发明的柔性减震板41的实施状况的叙述,于此不再赘述。
本发明的一个实施例中,转向上半轴与第一齿轮3固接,转向下半轴2与传动轮40固接,柔性减震板41同时固接于第一齿轮3和传动轮40相对应的位置。所述固接的方法包括焊接,还包括槽连接。所述槽连接的方式包括在第一齿轮3和传动轮40相对应的位置开槽,将柔性减震板41嵌入槽内,起到连接第一齿轮3和传动轮40的作用。
请参考图8,是本发明又一实施例。图8系将图1沿W-W剖开后,在第一平面上的仰视图。在本实施例中,第一机械包含转向上半轴1(图中未显示)与第一齿轮3,且转向上半轴1与第一齿轮3接触,第二机械包含转向下半轴2。多个柔性减震板41固接于一个环形结构410,且所述多个柔性减震板41在环形结构410圆周方向呈放射状均匀分布,在第一平面上构成类似太阳的形状。相邻柔性减震板41之间留有空间,且柔性减震板41的数量与所述空间的数量相等。柔性减震板41不与第一齿轮3及第二机械40固接。优选的,柔性减震板41采用有弹性的材质,包括聚氨酯或橡胶,通过模压成型或冲压成型得到将柔性减震板41固接于环形结构410的构件。
第一齿轮3与柔性减震板41接触的一端设置有至少1个第一凸起部309,第一凸起部309的形状与两个相邻的柔性减震板41之间的空间相一致;转向下半轴2与柔性减震板41接触的一端设置有至少1个第二凸起部409,第二凸起部409的形状与两个相邻的柔性减震板41之间的空间相一致。且第一凸起部309的数量与第二凸起部409的数量之和不超过柔性减震板41的数量。第一凸起部309的位置与第二凸起部409的位置相互错开,使得第一凸起部309与第二凸起部409可分别从两端交错插入到多个柔性减震板41之间不同的所述空间中。在图8中,共有6个柔性减震板41,相邻柔性减震板41之间的空间数量为6个,所述第二凸起部409的数量为3个,所述第一凸起部309的数量为3个。
第一齿轮3通过第一凸起部309与柔性减震板41接触,柔性减震板41与转向下半轴2的第二凸起部409接触。籍此,多个柔性减震板41夹在第一凸起部309和第二凸起部409之间并紧密接触,使得扭矩可以在转向上半轴1和转向下半轴2之间传导。当有外扭矩加载到转向下半轴2上时,柔性减震板41可以通过自身的形变部分吸收所述外力扭矩,起到保护第一机械的效果。
本发明所提供的柔性减震转向装置,能在车辆行驶过程中,吸收由车轮110受到的较大瞬时外力冲击,减小外力对转向电机50及齿轮箱内部的大第二齿轮80等结构的冲击,实现对这些零件的保护;当外力消失时,柔性减震板41的变形得到恢复(亦可能不会恢复),使车轮110能够回到初始的运动状态,保证车轮110的正常工作,确保驾驶安全。
以上此仅为本发明之各种具体实施方式,并非用以限定本发明之权利范围;同时以上的描述,对于相关技术领域之专门人士应可明了及实施,因此其他未脱离本发明所揭示之精神下所完成的等效改变或修饰,均应包含在申请专利范围中。

Claims (10)

  1. 一种柔性减震板,用于与二个不同机械的轴连接与吸收转矩,使所述两个不同机械在传动过程中共轴,其特征在于,所述柔性减震板夹设在所述二个不同机械之间,与所述两个不同机械紧密贴合,且所述柔性减震板在第一平面上以放射状设置;其中所述第一平面为笛卡尔坐标系中X轴和Y轴所构成的平面。
  2. 如权利要求1所述的柔性减震板,其特征在于,所述柔性减震板的构成材质包括金属材质或高分子合成材质。
  3. 如权利要求1所述的柔性减震板,其特征在于,所述柔性减震板数量超过1个,且在转轴圆周方向均匀分布。
  4. 如权利要求1所述的柔性减震板,其特征在于,所述第一机械包含第一齿轮,所述第二机械包含传动轮,所述柔性减震板与二个不同的机械的连接方式为,所述柔性减震板同时连接于所述第一齿轮和所述传动轮相对应的位置,使得扭矩可以在所述第一齿轮和所述传动轮之间传导。
  5. 如权利要求1所述的柔性减震板,其特征在于,所述第一机械包含第一齿轮,所述第二机械包含转向下半轴,所述第一齿轮接触所述柔性减震板的一端具有第一凸起部,所述第一齿轮通过所述第一凸起部与柔性减震板接触;所述转向下半轴具有第二凸起部,所述柔性减震板与所述转向下半轴的第二凸起部接触。籍此,多个所述柔性减震板夹在所述第一凸起部和所述第二凸起部之间并紧密接触,使得扭矩可以在所述第一齿轮和所述转向下半轴之间传导。
  6. 一种柔性减震装置,使用如权利要求1所述的柔性减震板组成,用于车辆的底盘,所述柔性减震装置连接所述底盘中的转向电机与车轮安装座,其特征在于:
    所述柔性减震装置包括:联轴器、第二齿轮、转向上半轴、第一齿轮、柔性减震板与转向下半轴,所述联轴器的一端与所述转向电机连接,另一端与第二齿轮连接、所述第二齿轮与所述第一齿轮啮合,所述第一齿轮带动所述转向上半轴以所述上轴心为轴旋转,所述多个柔性减震板夹设在所述转向上半轴与所述转向下半轴之间,所述转向下半轴连动于所述转向上半轴,并以所述下轴心为轴旋转,所述转向下半轴与所述车轮安装座连接、车轮轮设于所述车轮安装座上,藉此,在所述车辆移动时,所述车轮于第一方向行进的状况下,当所述车轮受到来自第二方向的不为零的外力时,所述柔性减震装置处于受力状态,以吸收所述外力并确保所述上轴心与所述下轴心在所述第一平面上的投影点共点,其中所述第一方向为笛卡尔坐标系中的Y轴方向,所述第二方向为笛卡尔坐标系中的X轴方向。
  7. 如权利要求5所述的柔性减震装置,其特征在于,当所述车轮受到所述来自第二方向为零的另一外力时,所述柔性减震板处于初始状态。
  8. 如权利要求6所述的柔性减震装置,其特征在于,在所述初始状态时,所述柔性减震板在所述第一平面上的投影图案为第一花纹,其中该第一花纹是多个长方形。
  9. 如权利要求6所述的柔性减震装置,其特征在于,在所述受力状态时,所述柔性减震板在所述第一平面上的投影图案为第二花纹,其中该第二花纹是多个多边形。
  10. 如权利要求6所述的柔性减震装置,其特征在于,所述柔性减震装置是安装于移动设备的齿轮箱中。
PCT/CN2018/095951 2017-07-19 2018-07-17 柔性减震装置 WO2019015579A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18834518.5A EP3656647A4 (en) 2017-07-19 2018-07-17 FLEXIBLE VIBRATION DAMPING DEVICE
US16/611,392 US11319997B2 (en) 2017-07-19 2018-07-17 Flexible shock-absorbing parts and flexible damping device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710591325.5A CN107399360B (zh) 2017-07-19 2017-07-19 柔性减震装置
CN201710591325.5 2017-07-19
CN201820684039.3 2018-05-09
CN201820684039.3U CN208360400U (zh) 2018-05-09 2018-05-09 一种柔性减震转向装置

Publications (1)

Publication Number Publication Date
WO2019015579A1 true WO2019015579A1 (zh) 2019-01-24

Family

ID=65014946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095951 WO2019015579A1 (zh) 2017-07-19 2018-07-17 柔性减震装置

Country Status (3)

Country Link
US (1) US11319997B2 (zh)
EP (1) EP3656647A4 (zh)
WO (1) WO2019015579A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202018104624U1 (de) * 2018-07-06 2019-10-08 Liebherr-Components Biberach Gmbh Bohrgerät
CN109050660B (zh) * 2018-09-05 2024-05-03 中信戴卡股份有限公司 一种汽车转向轮的转向节、转向装置及汽车
KR20210157534A (ko) * 2020-06-22 2021-12-29 현대자동차주식회사 서스펜션 결합 구조
JP7342808B2 (ja) * 2020-06-30 2023-09-12 トヨタ自動車株式会社 車輪配設モジュール
CN115462705B (zh) * 2022-09-15 2023-12-22 歌尔科技有限公司 减震机构和移动装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5573460A (en) * 1993-10-13 1996-11-12 Kabushiki Kaisha Daikin Seisakusho Torsional vibration dampening device having multiple dampening force levels with transitional dampening means between multiple dampening force levels
JP2013160241A (ja) * 2012-02-01 2013-08-19 Honda Motor Co Ltd 星形弾性軸継手
CN203202059U (zh) * 2012-09-14 2013-09-18 王建钧 一种共轴弹性传动副
CN203641308U (zh) * 2013-12-25 2014-06-11 北京英迈特矿山机械有限公司 弹性联轴器
CN204716799U (zh) * 2015-06-30 2015-10-21 资阳蜀达科技有限公司 一种弹性联轴器
CN107399360A (zh) * 2017-07-19 2017-11-28 大陆智源科技(北京)有限公司 柔性减震装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172369A (en) * 1978-03-13 1979-10-30 Hayes Charles J Flexible coupling
US4228664A (en) * 1978-11-08 1980-10-21 Douville-Johnston Corporation Flexible drive coupling
DE19531201A1 (de) * 1995-08-24 1997-02-27 Sgf Gmbh & Co Kg Schwingungsdämpfendes torsionselastisches Wellengelenk, insbesondere für den Antriebsstrang von Kraftfahrzeugen
US7235014B2 (en) * 2004-01-21 2007-06-26 Weber Aircraft Lp Flexible couplings
DE102004006722A1 (de) * 2004-02-11 2005-09-01 Zf Friedrichshafen Ag Lenk- und Radantrieb für ein Flurförderzeug
JP4294657B2 (ja) * 2006-06-20 2009-07-15 アスモ株式会社 カップリング装置、モータ装置、及びワイパモータ
CN102265060A (zh) * 2008-11-26 2011-11-30 南德盘形接轴节工厂股份有限公司 扭矩减振传递装置
JP5476935B2 (ja) * 2009-11-10 2014-04-23 オイレス工業株式会社 軸連結機構
JP5728457B2 (ja) * 2012-10-31 2015-06-03 三木プーリ株式会社 撓み軸継手およびその製造方法
EP2918862B1 (en) * 2012-11-06 2018-04-25 NSK Ltd. Torque transmission joint and electric power steering device
US9121452B2 (en) * 2012-11-30 2015-09-01 Firestone Industrial Products Company, Llc Torsional couplers
JP2016124488A (ja) * 2015-01-07 2016-07-11 株式会社ジェイテクト 電動パワーステアリング装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5573460A (en) * 1993-10-13 1996-11-12 Kabushiki Kaisha Daikin Seisakusho Torsional vibration dampening device having multiple dampening force levels with transitional dampening means between multiple dampening force levels
JP2013160241A (ja) * 2012-02-01 2013-08-19 Honda Motor Co Ltd 星形弾性軸継手
CN203202059U (zh) * 2012-09-14 2013-09-18 王建钧 一种共轴弹性传动副
CN203641308U (zh) * 2013-12-25 2014-06-11 北京英迈特矿山机械有限公司 弹性联轴器
CN204716799U (zh) * 2015-06-30 2015-10-21 资阳蜀达科技有限公司 一种弹性联轴器
CN107399360A (zh) * 2017-07-19 2017-11-28 大陆智源科技(北京)有限公司 柔性减震装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3656647A4 *

Also Published As

Publication number Publication date
US20200224728A1 (en) 2020-07-16
EP3656647A1 (en) 2020-05-27
EP3656647A4 (en) 2021-03-31
US11319997B2 (en) 2022-05-03

Similar Documents

Publication Publication Date Title
WO2019015579A1 (zh) 柔性减震装置
CN107399360B (zh) 柔性减震装置
US8464611B1 (en) Modular and adjustable axle systems for vehicles
WO2016107250A1 (zh) 转向摇臂组件、转向机构和多轴转向轮式重载车辆
JP2015093513A (ja) 全方向移動車輪およびそれを備えた全方向移動車両
US20070107959A1 (en) In-wheel motor system
BR102012011962A2 (pt) Dispositivo para acoplamento, com rotacional de um anel com uma roda e trem de pouso de aeronave equipado com tal dispositivo
CN203752789U (zh) 一种麦克纳姆轮
CN109177648B (zh) 一种麦克纳姆轮平台
CN107416069B (zh) 一种机器人全向驱动装置
US20120283028A1 (en) Flexible coupling and vehicle motive power transmission apparatus
CN109185379B (zh) 可调谐多层阻尼动力吸振器及其制作安装方法、减振方法
KR20040095649A (ko) 비틀림 순응 유니버설 조인트
CN203681134U (zh) 一体化磁吸附麦克纳姆轮
CN101476612B (zh) 一种用于主减速器的扭转减振器
JP2014510676A (ja) 鉄道車両用のトルク支持体及びボギー台車
EP2302256B1 (en) Unbalance correction device of propeller shaft
US7389999B2 (en) Wheel assembly
JP2013023202A (ja) 電動車輪
KR102051511B1 (ko) 스튜어트 플랫폼 기반 자동형 레이돔 연마연삭 시스템
US20200406682A1 (en) Axle structure
US3453971A (en) Resilient railway wheel and axle drive
CN211442545U (zh) 移动机器人底盘
CN210792686U (zh) 一种麦克纳姆全向轮
JP7228967B2 (ja) 継手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18834518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018834518

Country of ref document: EP

Effective date: 20200219