WO2019015497A1 - 一种智能停车库及其停车方法 - Google Patents

一种智能停车库及其停车方法 Download PDF

Info

Publication number
WO2019015497A1
WO2019015497A1 PCT/CN2018/094870 CN2018094870W WO2019015497A1 WO 2019015497 A1 WO2019015497 A1 WO 2019015497A1 CN 2018094870 W CN2018094870 W CN 2018094870W WO 2019015497 A1 WO2019015497 A1 WO 2019015497A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
trolley
parking
clamping
tray
Prior art date
Application number
PCT/CN2018/094870
Other languages
English (en)
French (fr)
Inventor
李远明
王政
王磊
张孙敏
Original Assignee
武汉智象机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉智象机器人有限公司 filed Critical 武汉智象机器人有限公司
Publication of WO2019015497A1 publication Critical patent/WO2019015497A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/08Garages for many vehicles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/08Garages for many vehicles
    • E04H6/12Garages for many vehicles with mechanical means for shifting or lifting vehicles
    • E04H6/18Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in vertical direction only or independently in vertical and horizontal directions
    • E04H6/28Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in vertical direction only or independently in vertical and horizontal directions characterised by use of turntables or rotary rings for horizontal transport
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition

Definitions

  • the invention relates to the technical field of intelligent parking garages, in particular to a smart parking garage and a parking method thereof.
  • the handling methods of vehicles mainly include comb-tooth type, tire-clamping type and truck-mounted type. No matter which of the above methods is used, the vehicle needs to be driven into a small tray or area before parking. Moreover, there are certain requirements for the parking orientation and angle of the vehicle, which undoubtedly increases the driver's requirements for driving skills, increases the psychological burden of the driver when parking, and reduces the parking efficiency.
  • the object of the present invention is to solve the deficiencies of the above background art, and to provide a smart parking garage and a parking method thereof that do not require the driver to have good parking skills and quickly stop the vehicle.
  • the intelligent parking garage designed by the present invention comprises a garage frame comprising a three-dimensional overhead layer with a plurality of parking spaces and a frame beam connected to each layer of the three-dimensional overhead layer in front of the three-dimensional overhead layer.
  • An integrated vehicle traverse frame the vehicle traverse frame is provided with a traverse track along a horizontal X-axis direction, and the traverse track is provided with a traverse tray sliding along the traverse tray, and the traverse tray is provided along the traverse tray a vehicle that moves in a horizontal Y-axis direction, and two sides of the three-dimensional overhead layer are respectively provided with an elevator, and a front side of the ground layer of the three-dimensional overhead layer is a vehicle transfer slot that is recessed below the ground, and the vehicle is dumped.
  • a rotating tray trolley moving in a horizontal X-axis direction is disposed in the slot, and a top of the rotating tray trolley is provided with a rotating tray, and the rotating tray is provided with a vehicle holding trolley, and the top surface of the rotating tray is flush with the ground .
  • the vehicle holding trolley includes a clamping trolley body with a roller at the bottom, and the clamping trolley body is provided with four wheel clamping mechanisms, and the wheel clamping mechanism includes a clamping seat and a hinged clamp.
  • the wheel clamping mechanism includes a clamping seat and a hinged clamp.
  • Two clamping arms on the seat, the clamping seat is provided with a clamping arm driving mechanism for driving the rotation of the two clamping arms, and the contact surface of the clamping arm with the wheel corresponds to the curved surface of the wheel The slope.
  • the clamping arm driving mechanism includes a clamping arm reduction motor and a clamping arm driving gear connected to a motor shaft of the clamping arm reduction motor, and the bottom surface of the clamping arm and the hinge end of the clamping seat is provided with The clamping arm drives the gear teeth corresponding to the gear.
  • the wheel clamping mechanism further includes a frame adjusting mechanism for driving the clamping seat to move back and forth, the frame adjusting mechanism includes a screw gear motor, and an output end of the screw gear motor is connected with a screw.
  • the two ends of the screw rod are disposed in the bearing housing, and the side of the clamping seat is fixed with a screw nut, and the screw nut is sleeved on the screw rod.
  • the gripping cart body includes a first gripping cart body and a second gripping cart body, and one end of the first gripping cart body and one end of the second gripping cart body are hinged Connecting, a roller is respectively disposed at four corners of the bottom of the first clamping carriage body, and two rollers are respectively disposed at four corners of the bottom of the second clamping carriage body, the first Two sets of wheel clamping mechanisms are respectively disposed on the body of the clamping carriage and the body of the second clamping trolley, and two guiding wheels are respectively disposed on the left and right sides of the body of the first clamping trolley, and the second clamping There are also two guide wheels on the left and right sides of the car body.
  • the rotating tray car comprises a pallet car body, and a walking wheel is respectively disposed at four corners of the bottom of the tray car body, and the gear car is vertically fixed with a gear driving motor, the gear a motor drive shaft of the drive motor is coupled to the rotary drive gear, and a top of the pallet body is vertically fixed with a gear shaft, and the gear shaft is provided with a tray rotating gear that meshes with the rotary drive gear, and the rotary tray is fixed to the tray Rotating gear top
  • the parking method of the intelligent parking garage described above includes the following steps:
  • Step 1 The driver drives the vehicle into the access area, parks at random, and leaves the vehicle to close the door;
  • Step 2 The rotating pallet trolley located in the vehicle transfer slot is mounted on the horizontal X axis according to the vehicle information acquired from the identification system, and the rotating tray is rotated to make the axis of the vehicle holding the trolley on the rotating tray and the vehicle Alignment of the axes;
  • Step 3 The vehicle holding trolley moves along its axis direction and drills into the bottom of the vehicle. According to the wheel position information acquired from the identification system, the position of the clamping arm of the vehicle clamping trolley is adjusted, the wheel is clamped, and the vehicle is lifted. Move back to the rotating tray;
  • Step 4 Rotate the tray to rotate, so that the axis of the vehicle is parallel to the horizontal Y-axis. If there is a free parking space on the first floor of the three-dimensional overhead layer, the rotating pallet trolley moves along the horizontal X-axis direction to the designated empty parking space, and the vehicle holds the trolley along the horizontal level. The Y-axis direction moves into the empty parking space, the clamping arm rotates, the wheel is released, the vehicle is placed on the empty parking space, and finally the vehicle clamping carriage moves backward to the rotating tray;
  • the rotating pallet trolley moves to the front of the elevator, the vehicle holding trolley moves along the horizontal Y-axis direction, enters the elevator, the clamping arm rotates, the wheel is released, and the vehicle is placed in the elevator.
  • the vehicle holding trolley moves backwards and returns to the rotating tray.
  • the vehicle moves in the vertical Z-axis direction to the parking space layer with the empty parking space, and the traversing tray of the layer is loaded with the vehicle clamping trolley along the carriage.
  • the horizontal X-axis direction moves to the front of the elevator, and the vehicle holding trolley moves in the horizontal Y-axis direction into the elevator and drills into the bottom of the vehicle.
  • the position of the clamping arm is adjusted, and the wheel is clamped.
  • the vehicle is lifted, the vehicle holding trolley is moved backward to the traverse tray, the traverse tray is equipped with the vehicle holding the trolley and the vehicle is moved in the horizontal X-axis direction to the designated empty parking space, and the vehicle clamping trolley is along the horizontal Y-axis direction.
  • the clamping arm rotates and the vehicle is lowered.
  • the vehicle clamping trolley moves backward to the traverse tray.
  • the identification system in the second step is a fixed radar based vehicle identification system or an optical image based vehicle identification system or a fixed radar and mobile radar based vehicle identification system.
  • the identification system is a fixed radar based vehicle identification system: the driver puts the parked vehicle into the parking area and arbitrarily parks, the radar scanning device scans the entire parking area, acquires point cloud data, and the industrial computer extracts the outer contour of the vehicle and Processing the position coordinate of the vehicle and the parking space angle; the industrial computer transmits the obtained vehicle position coordinate and the parking space angle to the upper computer; the upper computer drives the rotating tray trolley to move to the waiting vehicle position and rotates the corresponding parking space angle, the vehicle clamp Hold the vehicle to be parked with a trolley.
  • the recognition system is an optical image-based vehicle recognition system: the driver puts the parked vehicle into a parking area with a coded pattern and parks it freely, and the industrial camera captures the to-be-stopped vehicle in the parking area to obtain the image size of the vehicle and uploads it.
  • the upper computer obtains the physical size of the vehicle according to the image size of the vehicle ⁇ the imaging ratio of the industrial camera and obtains the coordinate value of each point of the vehicle in the parking area coordinate system, and processes the physical size of the vehicle and the coordinate value of each point After that, the position coordinates of the vehicle to be parked in the parking area and the parking space angle are obtained; the industrial computer transmits the obtained vehicle position coordinates and the parking space angle to the upper computer; the upper computer drives the rotating tray trolley to move to the waiting vehicle position and rotates correspondingly. The parking space angle, the vehicle holding the car holds the vehicle to be parked.
  • the identification system is a vehicle identification system based on fixed radar and mobile radar: the driver drives the parked vehicle into the parking area and arbitrarily parks, the radar scanning device scans the entire parking area, acquires point cloud data, and the industrial computer extracts the outside of the vehicle.
  • the operating range of the vehicle holds the trolley to hold the vehicle to be parked.
  • the utility model has the beneficial effects that the vehicle can be parked in the access vehicle area at random, without the driver having a superb parking technology; the driver and the passenger do not need to enter the three-dimensional garage to park the vehicle, and the access vehicle can be reserved in advance, thereby saving the access time. , improve efficiency; access speed is fast, and the existing stereo garage can be upgraded, increase the number of parking spaces, reduce the driver's stop car steps, without the driver has good parking skills, has a good Practicality and market application value.
  • Figure 1 is a front view of a smart parking garage designed according to the present invention
  • FIG. 2 is a top view of a smart parking garage designed according to the present invention.
  • Figure 3 is a left side view of the intelligent parking garage designed according to the present invention.
  • Figure 4 is a top view of the rotating tray trolley of the present invention.
  • Figure 5 is a front view of the rotary tray trolley of the present invention.
  • Figure 6 is a top view of the vehicle holding trolley of the present invention.
  • Figure 7 is a front elevational view of the clamping arm of the present invention.
  • Figure 8 is a top plan view of a vehicle identification system based on a fixed radar in the present invention.
  • FIG. 9 is a schematic diagram of a parking area of a vehicle identification system based on a fixed radar according to the present invention.
  • FIG. 10 is a schematic diagram showing the position of a single-line radar scanning device in a parking area based on a fixed radar-based vehicle identification system according to the present invention
  • FIG. 11 is a schematic diagram of a parking area coordinate conversion principle of a vehicle identification system based on a fixed radar according to the present invention
  • FIG. 12 is a front view of a radar scanning device of a vehicle identification system based on a fixed radar according to the present invention
  • Figure 13 is a top plan view of a radar scanning device based on a fixed radar based vehicle identification system of the present invention
  • Figure 14 is a plan view 1 of the optical image based vehicle identification system of the present invention.
  • Figure 15 is a plan view 2 of the vehicle image recognition system based on the optical image of the present invention.
  • 16 is a first schematic diagram showing the working state of a single industrial camera of an optical image-based vehicle identification system according to the present invention
  • 17 is a second schematic diagram showing the working state of a single industrial camera of an optical image-based vehicle identification system according to the present invention.
  • the intelligent parking garage shown in FIG. 1-3 includes a garage frame, and the garage frame includes a three-dimensional overhead layer 1 having a plurality of parking spaces and a frame beam in front of the three-dimensional shelf layer 1 and connected to each layer of the three-dimensional shelf layer 1
  • the integrated vehicle traverse frame 8, the vehicle traverse frame 8 is provided with a traverse track 9 along the horizontal X-axis direction, and the traverse track 9 is provided with a traverse tray 10 sliding along the traverse tray 10, and the traverse tray 10 is provided with a horizontal
  • the vehicle clamping carriage 11 moving in the Y-axis direction is provided with elevators 23 on both sides of the three-dimensional overhead layer 1, and the front ground layer of the three-dimensional overhead layer 1 is a vehicle storage tank 2 recessed below the ground, and the vehicle storage tank 2
  • the top of the rotary tray trolley 3 is provided with a rotating tray 3.1, and the rotating tray 3.1 is provided with a vehicle holding
  • the gripping cart body 11 includes a first gripping cart body 11.1 and a second gripping cart body 11.2, one end of the first gripping cart body 11.1 and the second gripping cart body.
  • One end of the 11.2 is connected by a hinge 25, and a roller 20 is respectively arranged at the four corners of the bottom of the first clamping carriage body 11.1, and a roller 20 is also respectively arranged at the four corners of the bottom of the second clamping carriage body 11.2.
  • Two sets of wheel clamping mechanisms are respectively disposed on the first clamping carriage body 11.1 and the second clamping trolley body 11.2, and two guiding wheels 21 are respectively disposed on the left and right sides of the first clamping trolley body 11.1.
  • the wheel clamping mechanism includes a clamping seat 12 and two clamping arms 13 hinged on the clamping seat 12.
  • the clamping seat 12 is provided with a clamping arm driving mechanism for driving the rotation of the two clamping arms 13, and the clamping arm
  • the contact surface with the wheel 24 is a slope corresponding to the curved surface of the wheel 24.
  • the clamping arm driving mechanism includes a clamping arm reduction motor 14 and a clamping arm driving gear 15 connected to the motor shaft of the clamping arm reduction motor 14, and the bottom surface of the clamping end of the clamping arm 13 and the clamping seat 12 is provided and clamped.
  • the arm drive gear 15 corresponds to the teeth.
  • the wheel clamping mechanism further includes a frame adjusting mechanism for driving the clamping seat 12 to move back and forth, the frame adjusting mechanism includes a screw gear motor 16 , and the output end of the screw gear motor 16 is connected with a screw rod 17 , and the two ends of the screw rod 17 are disposed In the bearing housing 18, a screw nut 19 is fixed to the side of the clamping seat 12, and the screw nut 19 is sleeved on the screw 17.
  • the rotating tray car 3 includes a pallet car body 3.2, and a traveling wheel 26 is respectively disposed at four corners of the bottom of the pallet car body 3.2.
  • the pallet car body 3.2 is vertically fixed with a gear drive.
  • a motor 4 a motor shaft of the gear drive motor 4 is connected with a rotary drive gear 5
  • a top of the tray carriage body 3.2 is vertically fixed with a gear shaft 6, and a gear rotating shaft 7 is provided on the gear shaft 6 to engage the rotary drive gear 5,
  • the rotating tray 3.1 is fixed to the top of the tray rotating gear 7.
  • the parking method of the intelligent parking garage designed by the invention comprises the following steps:
  • Step 1 The driver drives the vehicle 22 into the access area, parks at random, and leaves the vehicle to close and exit;
  • Step 2 The rotating pallet cart 3 located in the vehicle docking slot 2 is mounted on the horizontal X axis according to the vehicle information acquired from the identification system, and the rotating tray 3.1 is rotated to clamp the vehicle on the rotating tray 3.1.
  • the axis of the cart 11 is aligned with the axis of the vehicle 22;
  • Step 3 The vehicle gripper carriage 11 moves along its axial direction and drills into the bottom of the vehicle 22, and according to the wheel position information acquired from the identification system, adjusts the position of the gripping arm 13 of the vehicle gripping cart 11, and clamps the wheel 24, The vehicle 22 is lifted up and moved backward to the rotating tray 3.1;
  • Step 4 Rotate the tray 3.1 to rotate, so that the axis of the vehicle 22 is parallel to the horizontal Y-axis. If the layer of the three-dimensional overhead layer 1 has a free parking space, the rotating tray 3.1 trolley moves along the horizontal X-axis direction to the designated empty parking space, the vehicle clamp The carriage 11 moves in the horizontal Y-axis direction into the empty parking space, the clamping arm 13 rotates, the wheel 24 is released, the vehicle 22 is placed on the empty parking space, and finally the vehicle clamping carriage 11 is reversely moved to the rotating tray 3.1;
  • the rotating pallet trolley 3 moves to the front of the elevator 23, the vehicle clamping carriage 11 moves in the horizontal Y-axis direction, enters the elevator 23, and the clamping arm 13 rotates to release the wheel.
  • the vehicle 22 is placed in the elevator 23, the vehicle gripper carriage 11 is moved in the reverse direction, and returned to the rotating tray 3.1, and the vehicle 22 is moved by the elevator 23 in the vertical Z-axis direction to the parking space layer with the empty parking space.
  • the traversing tray 10 of the layer is mounted with the vehicle gripping carriage 11 moving in the horizontal X-axis direction to the front of the elevator 23, and the vehicle gripping carriage 11 is moved in the horizontal Y-axis direction into the elevator 23 and drilled into the bottom of the vehicle 22, according to
  • the position information of the wheel is obtained from the identification system, the position of the clamp arm 13 is adjusted, the wheel 24 is clamped, the vehicle 22 is lifted, the vehicle gripper carriage 11 is reversely moved to the traverse tray 10, and the traverse tray 10 is loaded with the vehicle clamp.
  • a plurality of access vehicle areas are arranged outside the intelligent parking garage, and the length and width of the access vehicle area should be sufficient for the majority of the passenger cars on the market to be parked at an angle of not less than 15° with the horizontal horizontal line.
  • a dump area is set on the ground floor of the smart parking garage, and the vehicle traverse frame 8, the traverse tray 10, the vehicle gripping cart 11 and the elevator 23 are arranged on the intelligent parking garage to realize the vehicle 22 in the horizontal X axis, the horizontal Y axis and the vertical Movement in three directions of the straight Z axis.
  • the vehicle 22 is conveniently placed in storage.
  • the identification system acquires data such as the model, coordinates, azimuth, and size of the vehicle parked in the access area, and the rotating tray car 3 in the dumping area adjusts the position and angle of the rotating tray 3.1 according to the data, and drills through the vehicle holding cart 11
  • the vehicle 22 is lifted into the bottom of the vehicle body, and then the vehicle 22 is transported to the first floor of the rotating storage area.
  • the rotating tray trolley 3 can adjust its own angle to be parallel to the Y-axis, and the vehicle is parked to the vehicle by the vehicle holding trolley 11.
  • the vacant parking space can also be used to park the vehicle 22 to the upper free parking space by means of the Z-axis dumping device (elevator 23).
  • the pickup process is reversed to the storage process, the vehicle 22 is dumped to the transfer area, and the position and angle of the vehicle 22 are adjusted by the dump device, and the vehicle 22 is transported to the access vehicle area.
  • the identification system may be a fixed radar based vehicle identification system or an optical image based vehicle identification system or a fixed radar and mobile radar based vehicle identification system.
  • a fixed radar based vehicle identification system for a smart garage shown in FIGS. 8-14 includes a parking area 29 for parking a vehicle, a radar scanning device 31 for scanning for acquiring vehicle position coordinates in the parking area 29, and a host computer for controlling the operation of the rotating tray cart 3 and the vehicle gripping cart 11; the parking area 31 is provided with radar scanning devices 31 at both ends in the longitudinal direction thereof; and a plurality of vehicles for acquiring the vehicles are arranged on the long sides of the parking area 31 a single-line radar scanning device 33 at a center point of the tire; a laser emission point of the single-line radar scanning device 33 is less than one hundred millimeters from the ground; a laser emission line of the single-line radar scanning device 33 is parallel to the horizontal ground; and the radar scanning device 31 includes a support 31.1, The driving motor 31.2 and the laser radar 31.3; the driving motor 31.2 is vertically fixed to the upper end of the bracket 31.1; the output end of the driving motor 31.2 is connected with the laser radar 31.3; and the vehicle traverse frame 8
  • the vehicle warehousing method based on the fixed radar-based vehicle identification system is to use the point cloud of the entire parking area 29 and the elevation data of the point cloud of the vehicle located in the parking area 29 to obtain the position coordinates of the vehicle in the parking area 29; the rotating tray trolley 3 Moving to the corresponding position in front of the vehicle 22 according to the above-described vehicle position coordinates, while rotating the tray 3.1 to rotate the corresponding angle, the vehicle gripping cart 11 adjusts the position of its gripping arm 13 according to the vehicle position coordinates, and moves to the bottom of the vehicle 22 to grip the vehicle 22.
  • the method of acquiring the vehicle position coordinates of the parking area 29 is as follows: two radar scanning devices 31 on the smart garage cooperate to scan to acquire the outer contour point cloud data of the entire parking area 29 and the outer contour point cloud data of the vehicle located in the parking area 29 (
  • the elevation value of the outer contour point cloud data of the parking area 29 is not equal to the elevation value of the outer contour point cloud data of the vehicle), and is transmitted to the data processing device;
  • the high value of the outer contour point cloud data of the vehicle 22 in the parking area 29 divides all of the above data into ground data and non-ground data, and projects the non-ground data onto the ground with a shadow mark (because when the vehicle 22 is in the parking area 29) It is inevitable that the ground of one area cannot be scanned by the laser, and when the laser crosses the vehicle 22 and scans to the ground again, it is equivalent to the vehicle 22 forming a shadow area on the ground); the data processing equipment passes the comparison Whether the shadow
  • the non-ground data is first projected as ground data (shadow) to obtain a rectangle located in the horizontal plane; the vehicle 22 is determined by the intersection of the rectangular diagonal lines. Position coordinates; the angle of the vehicle 22 is determined by the angle between the central axis of the rectangle and the coordinate system in the parking area 29; the position of the vehicle 22 in the parking area 29 is determined by the position coordinates of the vehicle 22 and the parking space angle; the industrial computer will process The obtained vehicle position coordinate and the parking space angle are sent to the upper computer; the upper computer controls the rotating tray trolley 3 and the vehicle clamping trolley 11 to clamp the vehicle; the vehicle warehousing method based on the fixed radar-based vehicle identification system includes the following steps: Step one, The driver puts the parked vehicle into the parking area 29 and parks it freely.
  • step two after the vehicle 22 stops the driver leaving, the driving motor 31.2 of the radar scanning device 31 drives the laser radar 31.3 to scan the outer contour data of the parked vehicle and sends the data to the upper computer through the industrial computer;
  • step 3 the upper computer processes the outer contour data to obtain the position coordinates of the parking vehicle in the parking area 29 and the parking space angle; in step 4, the upper computer drives the rotating tray trolley 3 to move to the parking vehicle position and the rotating tray 3.1 rotates correspondingly.
  • the vehicle gripping trolley holds the parking vehicle to make it safely stored; when the parking vehicle does not have a number plate, the upper computer gives the parking vehicle a unique vehicle code.
  • the parking area 29 is an area that can accommodate several or even dozens of cars. For such an area, when the driver drives the car into the area, it can be parked at will. At both ends of the area, there are two fixed lidars that scan the area under the cooperation of the motor to obtain the length, width, height, parking angle, wheel position, rear view mirror position, etc. of the entering vehicle. In this area, the number plate machine 30 will obtain the vehicle number plate. If there is no number plate, the upper opportunity gives it a code name, and the code number is unique in the whole system.
  • the point J is the lidar, and the rotation plane of the motor that drives it to rotate back and forth is parallel to the WJV plane, and the scanning plane of the lidar is perpendicular to the WJV plane.
  • the laser radar rotates at a high speed to form a scanning surface, and the motor drives the radar to rotate to form a scan of the three-dimensional space.
  • the lidar J scans to the Data Point and obtains the distance R from the lidar J to the Data Point according to the time flight principle.
  • the foot of the Data Point to the plane UJV is point A.
  • the XYZ coordinate system is a parking area coordinate system, which is a coordinate system used when the vehicle gripping device grabs the vehicle.
  • the coordinate system UVW is the coordinate system XYZ translated by the vector OJ, and the coordinates of the Data Point in the coordinate system XYZ can be obtained by scaling. All reflection point data sets provide a three-dimensional image of the parking area.
  • the industrial computer calculates the length, width, height, parking angle, wheel position, rearview mirror position, etc. of the vehicle, and then sends it to the upper computer.
  • the upper computer sends a catching command to the vehicle-carrying device; when working, first, the radar J itself has A coordinate system UVW, the radar can be 0 to 360 degrees of rotation, there are single-line lidar, there are also multi-line radar, single-line radar motor does not drive it when rotating, it scans a limited three-dimensional space, single-line radar scanning is a surface. The motor rotates to form a three-dimensional space.
  • the scanning principle of the radar is the principle of time arrival.
  • the transmission acceptance time is very accurate, and the distance from the reflection point to the radar can be accurately calculated.
  • the motor is equipped with an encoder. How many degrees the motor rotates is also precisely positioned. Radar scan point distance, R and angle ⁇ are obtained.
  • the radar does not only scan the vehicle. It captures all the reflection points scanned in the scanning range, and then extracts the vehicle according to the characteristics of the vehicle.
  • the two radars are like human eyes, and its data is sent to an industrial control. Machine, industrial computer to process the data it sends. These two radars work synchronously.
  • a fixed single-line laser radar is distributed on the long side of the parking area, and the laser emission point is less than one hundred millimeters from the ground, and the laser emission line is parallel to the horizontal ground.
  • the single-line radar scanning device 33 scans a tire of the car, and according to the time flight principle, the distance from each reflection point to the single-line radar scanning device 33 can be calculated.
  • the laser light emitted by the laser source can only touch the two sides of the rectangle at most, and the length of the two sides can be obtained according to the measured distance of each point. Then calculate the center point of the tire. After obtaining the center point of the four tires of the automobile, the parking space angle of the automobile can be calculated.
  • the radar scanning device 31 scans the vehicle 22, the radar scanning device 31 can only acquire one side of the tire, but the number plate machine beside the radar scanning device 31 5 and the single-line radar scanning device 33 can cooperate with the radar scanning device 31 to complete the scanning of the automobile tire to obtain the center point of the tire.
  • the vehicle identification system based on fixed radar and mobile radar is based on the above fixed radar based vehicle identification system, and a single line laser radar is added, and the angle between the scanning surface of the single line laser radar and the ground is ⁇ , 15°. ⁇ 90°.
  • the single-line laser radar dynamically scans and calibrates the vehicle, and the center coordinates of the vehicle gripping cart 11 coincide with the vehicle center coordinates.
  • the angle of the vehicle gripping cart 11 is consistent with the parking space angle and the vehicle width does not exceed the operating range of the vehicle gripping cart 11 , park the vehicle to make it safe to store.
  • each single-line laser radar itself rotates at a high speed to form a scanning surface.
  • the scanning surface intersects with the vehicle 22 to obtain a line, which is calculated according to TOF and triangulation.
  • the position of the intersecting line at each moment is then fine-tuned by the vehicle gripping cart 11, ensuring that the gripping arm 13 does not touch the vehicle when it is gripped.
  • the single-line lidar scans the vehicle tires, the relative position of the single-line lidar and the corresponding tire is calculated, and the position of the clamp arm is adjusted to accurately grasp the tire.
  • An optical image-based vehicle identification system for a smart garage shown in FIGS. 15 to 18 includes a parking area 29 for parking a vehicle, an industrial camera 32 for acquiring vehicle position coordinates in the parking area 29, and The upper tray of the rotating tray trolley 3 and the vehicle clamping carriage 11 is controlled; a coded pattern for enhancing the contrast is disposed on the ground in the parking area 29; the top of the vehicle traverse frame 8 is provided with a plurality of cantilevers, each cantilever The end of the camera is provided with an industrial camera 32; the industrial camera 32 is located above the parking area 29; the coded pattern includes a two-dimensional code or a bar code or a checkerboard.
  • the coded pattern of the present invention uses a bar code or a checkerboard, its main function is to The contrast is enhanced to improve the accuracy of the industrial camera 32 capturing the coordinates of the outer contour of the vehicle.
  • the coded pattern of the present invention is a two-dimensional code
  • the two-dimensional code is first spread in the parking area 29, and each two-dimensional code is used.
  • a given coordinate value is assigned to the coordinates of the parking area 29 coordinate system.
  • the industrial camera 32 works to photograph the parked vehicle located in the parking area 29, a circle around the vehicle is acquired.
  • the dimension code can obtain the actual coordinates of the vehicle and the data such as the length of the vehicle, the width of the vehicle and the angle of the parking space by converting the two-dimensional code into a single coordinate value and formulating it into the outer contour of the vehicle.
  • the use of the two-dimensional code can effectively improve the industrial camera. 32 obtaining the accuracy of the vehicle position information in the parking area 29, thereby facilitating the vehicle holding cart 11 to grab the storage vehicle; each industrial camera 32 can capture at least a section of the parking area 29 and all industrial cameras 32 can capture The entire parking area is 29.
  • a coordinate system identifier is disposed in the parking area 29, and the industrial camera 32 directly obtains the vehicle position information through the outer contour of the vehicle and the coordinate system identifier located in the parking area 29, and the coordinate system identifier is
  • the coordinate axis is located on the long side and the wide side of the parking area 29, and each industrial camera 32 is provided with an identification coordinate system; the parking area 29 is provided with a garage coordinate system; and the coordinates of each point in the identification coordinate system are converted by the upper computer. After processing, it is converted into coordinates of each point in the garage coordinate system.
  • the imaging ratio of the ground in the industrial camera 32 can be derived from the imaging principle.
  • the image size can be converted to the size of the object.
  • each point in the image will have a coordinate value, and according to the imaging principle and scale, the coordinates of each point in the parking area coordinate system can be converted.
  • take pictures of the entering vehicle select the car in the computer software through feature extraction and edge segmentation, and then according to the car height, we take the value of 0.75m to correct the distance between the camera and the object. If the image of the car in the camera is converted by the distance between the ground and the camera, the size obtained will be larger than the actual size of the car.
  • Step 1 The driver puts the parked vehicle into the parking area 29 with the coded pattern and parks it arbitrarily.
  • the number plate machine 30 obtains the vehicle number plate;
  • the host computer gives the parking vehicle a unique vehicle code; in step two, after the vehicle 22 stops the driver leaving, the industrial camera 32 captures the parked vehicle in the parking area 29 to obtain the image size of the vehicle and uploads it to the upper position.
  • Step 3 the host computer obtains the physical size of the vehicle according to the image size of the vehicle ⁇ the imaging ratio of the industrial camera 32 ⁇ 0.8 and obtains the coordinate value of each point of the vehicle in the parking area coordinate system, the physical size and each point of the vehicle After the coordinate value processing, the position coordinates of the parking vehicle in the parking area 29 and the parking space angle are obtained; in step 4, the upper computer drives the rotating tray car 3 to move to the parking vehicle position and the rotating tray 3.1 rotates the corresponding parking space angle, and the vehicle holds the trolley 11 Grab the vehicle 22.
  • the parking area 29 is an area that can accommodate several or even dozens of cars. For such an area, when the driver drives the car into the area, it can be parked at will.
  • the industrial camera 32 on the upper portion of the area cooperates with the coded pattern in the parking area 29 to capture the length, width, height, parking angle, wheel position, mirror position, etc. of the entering vehicle.
  • the number plate machine 30 will acquire the number plate of the vehicle. If there is no number plate, the upper opportunity gives it a code name, and the code name is unique in the whole system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Warehouses Or Storage Devices (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开了一种智能停车库,包括车库框架,车库框架包括具有多层停车位的立体架空层和位于立体架空层前方、与立体架空层的每一层框架梁连接为一体的车辆横移框架,车辆横移框架沿水平 X 轴方向设有横移轨道,横移轨道上设有沿其滑动的横移托盘,横移托盘上设有沿水平 Y 轴方向移动的车辆夹持小车,立体架空层的两侧分别设有升降电梯,立体架空层的地面层前方为凹陷于地面下方的车辆转存槽,车辆转存槽内设有沿水平 X 轴方向移动的旋转托盘小车,旋转托盘小车的旋转托盘上设有车辆夹持小车,旋转托盘的顶面与地面平齐。车辆可随意停放在存取车区,无需司机具有高超的停车技术,节省了存取车时间,提高了效率。

Description

一种智能停车库及其停车方法 技术领域
本发明涉及智能停车库技术领域,具体地指一种智能停车库及其停车方法。
背景技术
目前市面上存在的立体停车库,车辆的搬运方式主要有梳齿式、轮胎抱夹式、载车板式,无论是上述哪一种方式,停车前都需要将车辆开入狭小的托盘或区域内,而且对车辆的停放方位、角度都有一定的要求,这无疑提高了司机对驾驶技能的要求,增加了司机停车时的心理负担,也降低了停车效率。
发明内容
本发明的目的就是要解决上述背景技术的不足,提供一种无需驾驶员具有良好停车技巧、快速停取车的智能停车库及其停车方法。
为实现此目的,本发明所设计的智能停车库,包括车库框架,所述车库框架包括具有多层停车位的立体架空层和位于立体架空层前方、与立体架空层的每一层框架梁连接为一体的车辆横移框架,所述车辆横移框架沿水平X轴方向设有横移轨道,所述横移轨道上设有沿其滑动的横移托盘,所述横移托盘上设有沿水平Y轴方向移动的车辆夹持小车,所述立体架空层的两侧分别设有升降电梯,所述立体架空层的地面层前方为凹陷于地面下方的车辆转存槽,所述车辆转存槽内设有沿水平X轴方向移动的旋转托盘小车,所述旋转托盘小车的顶部设有旋转托盘,所述旋转托盘上设有车辆夹持小车,所述旋转托盘的顶面与地面平齐。
具体的,所述车辆夹持小车包括底部设有滚轮的夹持小车本体,所述夹持小车本体上设有四个车轮夹持机构,所述车轮夹持机构包括夹持座和铰接于夹持座上的两根夹持臂,所述夹持座上设有驱动两根夹持臂旋转的夹持臂驱动机构,所述夹持臂与车轮的接触面为与车轮的弧形表面对应的斜面。
具体的,所述夹持臂驱动机构包括夹持臂减速电机和与夹持臂减速电机的电机轴连接的夹持臂驱动齿轮,所述夹持臂与夹持座的铰接端的底面设有与夹持臂 驱动齿轮对应的轮齿。
优选的,所述车轮夹持机构还包括一个驱动夹持座前后移动的框架调节机构,所述框架调节机构包括丝杆减速电机,所述丝杆减速电机的输出端连接有丝杆,所述丝杆的两端设置于轴承座内,所述夹持座的侧部固定有丝杆螺母,所述丝杆螺母套设于丝杆上。
更具体的,所述夹持小车本体包括第一夹持小车车体和第二夹持小车车体,所述第一夹持小车车体的一端与第二夹持小车车体的一端通过铰链连接,所述第一夹持小车车体的底部四个转角处分别设有一个滚轮,所述第二夹持小车车体的底部四个转角处也分别设有二个滚轮,所述第一夹持小车车体和第二夹持小车车体上分别设有两套车轮夹持机构,所述第一夹持小车车体的左右两侧分别设有两个导向轮,所述第二夹持小车车体的左右两侧也分别设有两个导向轮。
具体的,所述旋转托盘小车包括托盘小车车体,所述托盘小车车体的底部四个转角处分别设有一个行走轮,所述托盘小车车体内竖直固定有齿轮驱动电机,所述齿轮驱动电机的电机轴连接有旋转驱动齿轮,所述托盘小车车体的顶部竖直固定有齿轮轴,所述齿轮轴上设有与旋转驱动齿轮啮合的托盘旋转齿轮,所述旋转托盘固定于托盘旋转齿轮的顶部
上述所述的一种智能停车库的停车方法,包括以下步骤:
步骤一:司机将车辆开进存取车区,随意停放,下车关好车门后离开;
步骤二:位于车辆转存槽内的旋转托盘小车根据从识别系统获取的车辆信息搭载车辆夹持小车沿水平X轴移动,旋转托盘旋转,使位于旋转托盘上的车辆夹持小车的轴线与车辆的轴线对齐;
步骤三:车辆夹持小车沿其轴线方向移动并钻入车辆的底部,根据从识别系统获取的车轮位置信息,调整车辆夹持小车的夹持臂位置,夹持车轮,将车辆托举起来后反向移动至旋转托盘;
步骤四:旋转托盘旋转,使车辆的轴线与水平Y轴平行,若立体架空层的一层有空余车位,则旋转托盘小车沿水平X轴方向运动至指定空余车位前,车辆夹持小车沿水平Y轴方向运动至空余车位内,夹持臂旋转,松开车轮,将车辆放置在空余车位上,最后车辆夹持小车反向运动至旋转托盘上;
若立体架空层一层没有空余车位,则旋转托盘小车运动至升降电梯前方,车辆夹持小车沿水平Y轴方向运动,进入升降电梯内,夹持臂旋转,松开车轮,将车辆放置在升降电梯内,车辆夹持小车反向移动,回到旋转托盘上,车辆搭乘升降电梯沿竖直Z轴方向运动至有空余车位的停车位层,同时该层的横移托盘搭载车辆夹持小车沿水平X轴方向运动至升降电梯前方,车辆夹持小车沿水平Y轴方向运动至升降电梯内并钻入车辆底部,根据从识别系统获取的车轮位置信息,调整夹持臂位置,夹持车轮,将车辆托举,车辆夹持小车反向运动至横移托盘上,横移托盘搭载车辆夹持小车及车辆沿水平X轴方向运动至指定空余停车位前,车辆夹持小车沿水平Y轴方向运动至空余停车位内,夹持臂旋转,下放车辆,完成停车后,车辆夹持小车反向运动至横移托盘上。
具体的,所述步骤二中的识别系统为基于固定雷达的车辆识别系统或基于光学图像的车辆识别系统或基于固定雷达和移动雷达的车辆识别系统。
当识别系统为基于固定雷达的车辆识别系统时:驾驶员将待停车辆放驶入停车区并任意停放,雷达扫描装置扫描整个停车区域,获取点云数据,工控机提取该车辆的外轮廓并处理得到该车辆的位置坐标以及车位角;工控机将处理得到的该车辆位置坐标、车位角发送给上位机;上位机驱动旋转托盘小车移动至待停车辆位置以及旋转相应的车位角,车辆夹持小车夹持待停车辆。
当识别系统为基于光学图像的车辆识别系统时:驾驶员将待停车辆放驶入带有码化图案的停车区并任意停放,工业相机拍摄停车区内的待停车辆获取车辆图像尺寸并上传至上位机;上位机根据车辆图像尺寸×工业相机的成像比例得到车辆实物尺寸并得到车辆位于停车区域坐标系内的每个点的坐标值,对上述车辆实物尺寸和每个点的坐标值处理后得到待停车辆位于停车区内的位置坐标以及车位角;工控机将处理得到的该车辆位置坐标、车位角发送给上位机;上位机驱动旋转托盘小车移动至待停车辆位置以及旋转相应的车位角,车辆夹持小车夹持待停车辆。
当识别系统为基于固定雷达和移动雷达的车辆识别系统时:驾驶员将待停车辆驶入停车区并任意停放,雷达扫描装置扫描整个停车区域,获取点云数据,工控机提取该车辆的外轮廓并处理得到该车辆的位置坐标以及车位角;工控机将处 理得到的该车辆位置坐标、车位角发送给上位机;上位机驱动旋转托盘小车移动至待停车辆位置以及旋转相应的车位角,车辆夹持小车动作,单线激光雷达同时对全车进行扫描、校核车辆夹持小车的中心坐标与车辆中心坐标重合、车辆夹持小车的角度与车位角一致且车宽未超出车辆夹持小车的操作范围,车辆夹持小车夹持待停车辆。
本发明的有益效果是:车辆可随意停放在存取车区,无需司机具有高超的停车技术;驾乘人员不用随车辆进入立体车库停车,存取车均可提前预约,节省了存取车时间,提高了效率;存取车速度快,且可以对现有立体车库进行升级改造,增加停车位数量,减少了驾驶员的停取车步骤,无需驾驶员具有良好的停车技巧,具有很好的实用性和市场应用价值。
附图说明
图1为本发明所设计的智能停车库主视图;
图2为本发明所设计的智能停车库俯视图;
图3为本发明所设计的智能停车库左视图;
图4为本发明中旋转托盘小车俯视图;
图5为本发明中旋转托盘小车主视图;
图6为本发明中车辆夹持小车俯视图;
图7为本发明中夹持臂夹持车轮的主视图;
图8为本发明中基于固定雷达的车辆识别系统的俯视图;
图9为本发明中基于固定雷达的车辆识别系统的停车区示意图;
图10为本发明中基于固定雷达的车辆识别系统的停车区单线雷达扫描装置位置示意图;
图11为本发明中基于固定雷达的车辆识别系统的停车区坐标转换原理;
图12为本发明中基于固定雷达的车辆识别系统的雷达扫描装置主视图;
图13为本发明中基于固定雷达的车辆识别系统的雷达扫描装置俯视图;
图14为本发明中基于光学图像的车辆识别系统的俯视图一;
图15为本发明中基于光学图像的车辆识别系统的俯视图二;
图16为本发明中基于光学图像的车辆识别系统的单个工业相机工作状态示意图一;
图17为本发明中基于光学图像的车辆识别系统的单个工业相机工作状态示意图二;
其中,1—立体架空层,2—车辆转存槽,3—旋转托盘小车(3.1—旋转托盘,3.2—托盘小车车体),4—齿轮驱动电机,5—旋转驱动齿轮,6—齿轮轴,7—托盘旋转齿轮,8—车辆横移框架,9—横移轨道,10—横移托盘,11—车辆夹持小车(11.1—第一夹持小车车体,11.2—第二夹持小车车体),12—夹持座,13—夹持臂,14—夹持臂减速电机,15—夹持臂驱动齿轮,16—丝杆减速电机,17—丝杆,18—轴承座,19—丝杆螺母,20—滚轮,21—导向轮,22—车辆,23—升降电梯,24—车轮,25—铰链,26—行走轮,27—行走减速机,28—行走电机,29—停车区,30—号牌机,31—雷达扫描装置(31.1—支架,31.2—驱动电机,31.3—激光雷达),32—工业相机,33—单线雷达扫描装置,A1-车位角,B1-后视镜位置,C1-前轮位置,L1-车长,D1-后轮位置,W1-车宽,W-取车机械手操作区域,(X1,Y1)-车辆坐标。
具体实施方式
下面结合附图和具体实施例对本发明作进一步的详细说明。
如图1—3所示的智能停车库,包括车库框架,车库框架包括具有多层停车位的立体架空层1和位于立体架空层1前方、与立体架空层1的每一层框架梁连接为一体的车辆横移框架8,车辆横移框架8沿水平X轴方向设有横移轨道9,横移轨道9上设有沿其滑动的横移托盘10,横移托盘10上设有沿水平Y轴方向移动的车辆夹持小车11,立体架空层1的两侧分别设有升降电梯23,立体架空层1的地面层前方为凹陷于地面下方的车辆转存槽2,车辆转存槽2内设有沿水平X轴方向移动的旋转托盘小车3,旋转托盘小车3的顶部设有旋转托盘3.1,旋转托盘3.1上设有车辆夹持小车11,旋转托盘3.1的顶面与地面平齐。
如图6—7所示,夹持小车本体11包括第一夹持小车车体11.1和第二夹持小车车体11.2,第一夹持小车车体11.1的一端与第二夹持小车车体11.2的一端通过 铰链25连接,第一夹持小车车体11.1的底部四个转角处分别设有一个滚轮20,第二夹持小车车体11.2的底部四个转角处也分别设有一个滚轮20,第一夹持小车车体11.1和第二夹持小车车体11.2上分别设有两套车轮夹持机构,第一夹持小车车体11.1的左右两侧分别设有两个导向轮21,第二夹持小车车体11.2的左右两侧也分别设有两个导向轮21。车轮夹持机构包括夹持座12和铰接于夹持座12上的两根夹持臂13,夹持座12上设有驱动两根夹持臂13旋转的夹持臂驱动机构,夹持臂13与车轮24的接触面为与车轮24的弧形表面对应的斜面。夹持臂驱动机构包括夹持臂减速电机14和与夹持臂减速电机14的电机轴连接的夹持臂驱动齿轮15,夹持臂13与夹持座12的铰接端的底面设有与夹持臂驱动齿轮15对应的轮齿。车轮夹持机构还包括一个驱动夹持座12前后移动的框架调节机构,框架调节机构包括丝杆减速电机16,丝杆减速电机16的输出端连接有丝杆17,丝杆17的两端设置于轴承座18内,夹持座12的侧部固定有丝杆螺母19,丝杆螺母19套设于丝杆17上。
如图4—5所示,旋转托盘小车3包括托盘小车车体3.2,托盘小车车体3.2的底部四个转角处分别设有一个行走轮26,托盘小车车体3.2内竖直固定有齿轮驱动电机4,齿轮驱动电机4的电机轴连接有旋转驱动齿轮5,托盘小车车体3.2的顶部竖直固定有齿轮轴6,齿轮轴6上设有与旋转驱动齿轮5啮合的托盘旋转齿轮7,旋转托盘3.1固定于托盘旋转齿轮7的顶部。
本发明所设计的智能停车库的停车方法,包括以下步骤:
步骤一:司机将车辆22开进存取车区,随意停放,下车关好车门后离开;
步骤二:位于车辆转存槽2内的旋转托盘小车3根据从识别系统获取的车辆信息搭载车辆夹持小车11沿水平X轴移动,旋转托盘3.1旋转,使位于旋转托盘3.1上的车辆夹持小车11的轴线与车辆22的轴线对齐;
步骤三:车辆夹持小车11沿其轴线方向移动并钻入车辆22的底部,根据从识别系统获取的车轮位置信息,调整车辆夹持小车11的夹持臂13位置,夹持车轮24,将车辆22托举起来后反向移动至旋转托盘3.1;
步骤四:旋转托盘3.1旋转,使车辆22的轴线与水平Y轴平行,若立体架空层1的一层有空余车位,则旋转托盘3.1小车沿水平X轴方向运动至指定空余车 位前,车辆夹持小车11沿水平Y轴方向运动至空余车位内,夹持臂13旋转,松开车轮24,将车辆22放置在空余车位上,最后车辆夹持小车11反向运动至旋转托盘3.1上;
若立体架空层1一层没有空余车位,则旋转托盘小车3运动至升降电梯23前方,车辆夹持小车11沿水平Y轴方向运动,进入升降电梯23内,夹持臂13旋转,松开车轮24,将车辆22放置在升降电梯23内,车辆夹持小车11反向移动,回到旋转托盘3.1上,车辆22搭乘升降电梯23沿竖直Z轴方向运动至有空余车位的停车位层,同时该层的横移托盘10搭载车辆夹持小车11沿水平X轴方向运动至升降电梯23前方,车辆夹持小车11沿水平Y轴方向运动至升降电梯23内并钻入车辆22底部,根据从识别系统获取的车轮位置信息,调整夹持臂13位置,夹持车轮24,将车辆22托举,车辆夹持小车11反向运动至横移托盘10上,横移托盘10搭载车辆夹持小车11及车辆22沿水平X轴方向运动至指定空余停车位前,车辆夹持小车11沿水平Y轴方向运动至空余停车位内,夹持臂13旋转,下放车辆22,完成停车后,车辆夹持小车11反向运动至横移托盘10上。
本发明中,在智能停车库外设置若干存取车区,存取车区长宽尺寸应满足市面上绝大多数乘用车以与横向水平线不小于15°的夹角随意停放。在智能停车库地面层设置转存区,在智能停车库上设置车辆横移框架8、横移托盘10、车辆夹持小车11和升降电梯23实现车辆22在水平X轴、水平Y轴和竖直Z轴三个方向上的移动。使车辆22方便的入库。
识别系统获取停放在存取车区的车辆的型号、坐标、方位、尺寸等数据,转存区内的旋转托盘小车3根据这些数据,调整旋转托盘3.1位置及角度,通过车辆夹持小车11钻入车身底部托举车辆22,再反向将车辆22运送回转存区一层,此时,旋转托盘小车3可调整自身角度至与Y轴平行,借助车辆夹持小车11将车辆停放至一层空余车位,也可借助Z轴转存装置(升降电梯23)将车辆22停放至上层空余车位上。
取车过程与存车过程相反,车辆22被转存至转存区,再由转存装置调整车辆22的位置及角度,再将车辆22运送至存取车区。
识别系统可以是基于固定雷达的车辆识别系统或基于光学图像的车辆识别系 统或基于固定雷达和移动雷达的车辆识别系统。
由图8—14所示的一种用于智能车库的基于固定雷达的车辆识别系统,包括用于停放车辆的停车区29、用于扫描获取停车区29内车辆位置坐标的雷达扫描装置31和用于控制旋转托盘小车3和车辆夹持小车11工作的上位机;停车区31沿其长度方向的两端设置有雷达扫描装置31;停车区31的长边上布置有多个用于获取车辆车胎中心点的单线雷达扫描装置33;单线雷达扫描装置33的激光发射点距离地面的高度小于一百毫米;单线雷达扫描装置33的激光发射线平行于水平地面;雷达扫描装置31包括支架31.1、驱动电机31.2和激光雷达31.3;驱动电机31.2垂直固接于支架31.1上端;驱动电机31.2的输出端与激光雷达31.3连接;车辆横移框架8上还固接有用于获取停车区29内汽车车牌的号牌机30。基于固定雷达的车辆识别系统的车辆入库方法是利用整个停车区29的点云和位于停车区29内车辆的点云的高程数据比较得出车辆位于停车区29的位置坐标;旋转托盘小车3根据上述车辆位置坐标运动至车辆22前方的相应位置,同时旋转托盘3.1旋转相应角度,车辆夹持小车11根据车辆位置坐标调整其夹持臂13位置,运动至车辆22底部夹取车辆22。位于停车区29的车辆位置坐标的获取方法如下:智能车库上的两个雷达扫描装置31协同扫描获取整个停车区29的外轮廓点云数据和位于停车区29内车辆的外轮廓点云数据(停车区29的外轮廓点云数据的高程值不等于车辆的外轮廓点云数据的高程值),并传送给数据处理设备;数据处理设备根据根据比较停车区29的外轮廓点云数据和位于停车区29内车辆22的外轮廓点云数据的高值将上述所有数据划分为地面数据和非地面数据,并将非地面数据投影到地面采用阴影标记(因为当车辆22在停车区29的时候,就必然有一片区域的地面是无法被激光扫描到的,而在激光越过车辆22再次扫描到地面的时候,就相当于车辆22在地面上形成了一个阴影区域);数据处理设备通过比较非地面数据投影到地面的阴影形状是否符合车辆外轮廓从而确定车辆22位于停车区29的位置坐标(同时利用车辆区域上的有效点云数据,对车辆22的长宽高等数据进行修正);数据处理设备包括上位机和工控机;上位机接收到工控机传输过来的整个停车区29的外轮廓点云数据和位于停车区29内车辆的外轮廓点云数据并判定完毕后,首先将非地面数据投影为地面数据(阴影)从而得到一个位于水平面内的长方形; 通过长方形对角线的交点确定车辆22的位置坐标;通过长方形的中心轴线与停车区29内坐标系的夹角确定车辆22的车位角;通过车辆22的位置坐标和车位角确定车辆22位于停车区29内的位置;工控机将处理得到的该车辆位置坐标、车位角发送给上位机;上位机控制旋转托盘小车3和车辆夹持小车11夹持车辆;基于固定雷达的车辆识别系统的车辆入库方法包括以下步骤:步骤一,驾驶员将待停车辆放驶入停车区29并任意停放,待停车辆驶入停车区29时,号牌机30获取车辆号牌;步骤二,车辆22停稳驾驶员离开后,雷达扫描装置31的驱动电机31.2带动激光雷达31.3扫描获取停放车辆的外轮廓数据并将该数据通过工控机发送至上位机;步骤三,上位机对该外轮廓数据进行处理后得到停放车辆位于停车区29内的位置坐标以及车位角;步骤四,上位机驱动旋转托盘小车3移动至停放车辆位置以及旋转托盘3.1旋转相应的车位角,车辆夹持小车夹持停放车辆使其安全入库;当停放车辆没有号牌时,上位机赋予该停放车辆一个唯一的车辆代号。本发明的技术方案中停车区29是一个可以容纳几辆甚至几十辆汽车的区域,对于这样一个区域,当司机将车开进该区域时,可以随意停放。该区域的两端有两个固定激光雷达在电机的配合下对该区域不停扫描,来获取进入车辆的长、宽、高、车位角度、车轮位置、后视镜位置等,而在车进入该区域时,号牌机30会对车辆号牌进行获取,若无号牌,上位机会为其赋予一个代号,代号在整个系统中是独一无二的。J点为激光雷达,带动它来回旋转的电机的旋转平面平行于WJV平面,激光雷达的扫描面垂直于WJV平面。激光雷达高速旋转形成扫描面,电机带动雷达旋转形成对立体空间的扫描。图中,激光雷达J扫描到Data Point,根据时间飞行原理得到激光雷达J到Data Point的距离R。Data Point到平面UJV的垂足为点A。根据三角换算,JA的长度为:JA=R×COS(ω);Data Point在UVW坐标系中的坐标值分别为:U1=R×COS(ω)×SIN(α);V1=R×COS(ω)×COS(α);W1=R×SIN(ω)。附图5中,XYZ坐标系为停车区域坐标系,是抓车装置抓取车辆时采用的坐标系。而坐标系UVW是坐标系XYZ通过向量OJ平移而来,通过换算,即可求得Data Point在坐标系XYZ中的坐标。所有反射点数据集合可得停车区域的三维图像。工控机计算出车辆的长、宽、高、车位角度、车轮位置、后视镜位置等,再发送给上位机,上位机给抓车装置发出抓车指令;工作时,首先,雷达J自身有一个 坐标系UVW,该雷达可以是0到360度旋转,有单线激光雷达、也有多线雷达,单线雷达的电机不带动它旋转时,它扫描的时一个有限的立体空间,单线雷达扫描就是一个面。电机旋转就形成了一个立体空间。雷达的扫描原理就是时间到达原理,发射激光,遇到物体反射回来,这个发送接受时间是非常精准的,那么该反射点到雷达的距离就可以精准算出。而电机是带编码器的,电机旋转了多少度,也是精确定位的。雷达扫描点距离,图中R以及角度ω就获取了。雷达不是只扫描车辆,它把扫描范围内扫描到的反射点全部获取,再根据车的特征通过算法提取出车辆,这两个雷达就像是人的眼睛,它的数据会发送给一台工控机,工控机来处理它发过来的数据。这两个雷达是同步工作的。为了加强对汽车轮胎的定位,在停车区的长边上分布有固定的单线激光雷达,其激光发射点离地高度小于一百毫米,激光发射线平行于水平地面。单线雷达扫描装置33的前方有车辆进入,我们模拟掉车的其他部分只剩下轮胎。单线雷达扫描装置33扫描到汽车的一个轮胎,根据时间飞行原理,可以计算出每个反射点到单线雷达扫描装置33的距离。我们可以把汽车轮胎的俯视图像近视为一个长方形,即轮胎垂直投射到水平地面的投影。激光光源发射的激光最多只能接触到该长方形的两条边,根据测量出的每点的距离大小不一样,可以获取这两条边的长度。然后计算出该轮胎的中心点。得到汽车四个轮胎的中心点后,可以计算出汽车的车位角度,雷达扫描装置31扫描车辆22时,雷达扫描装置31只能获取到车胎的一条边,但是雷达扫描装置31旁边的号牌机5和单线雷达扫描装置33能协同雷达扫描装置31完成对该汽车轮胎的扫描,从而获取车胎的中心点。
基于固定雷达和移动雷达的车辆识别系统则是在上述基于固定雷达的车辆识别系统的基础上,增加了单线激光雷达,且单线激光雷达的扫描面与地面之间存在一夹角θ,15°<θ<90°。单线激光雷达对全车进行动态扫描、校核的车辆夹持小车11的中心坐标与车辆中心坐标重合、车辆夹持小车11的角度与车位角一致且车宽未超出车辆夹持小车11操作范围,夹持停放车辆使其安全入库。单线激光雷达扫描时,每个单线激光雷达自身是高速旋转的,从而形成一个扫描面,在扫描到车辆22后,该扫描面和车辆22相交得到一条线,根据TOF,以及三角换算,计算出每一刻的相交线的位置,然后车辆夹持小车11微调,确保夹持臂13夹取 时不会触碰到车辆。当单线激光雷达扫描到车辆轮胎,计算出单线激光雷达与相对应的轮胎的相对位置,调整夹持臂的位置,从而准确抓取轮胎。
由图15至图18所示的一种用于智能车库的基于光学图像的车辆识别系统,包括用于停放车辆的停车区29、用于获取停车区29内车辆位置坐标的工业相机32和用于控制旋转托盘小车3和车辆夹持小车11的上位机;停车区29区域内的地面上设置有用于加强对比度的码化图案;车辆横移框架8的顶端设置有多个悬臂,每个悬臂的端部设置有工业相机32;工业相机32位于停车区29上方;码化图案包括二维码或条形码或棋盘格,当本发明的码化图案采用条形码或者棋盘格时,其主要作用是为了增强对比度,从而提高工业相机32捕捉车辆外轮廓坐标点的精确性,当本发明的码化图案时二维码时,首先在停车区29内铺满二维码,并将每一个二维码赋予一定给定的坐标值对应于停车区29坐标系的坐标,当工业相机32工作拍摄位于停车区29内的停放车辆时,会获取车辆周围一圈的二维码,通过对二维码换算为单一的坐标值并拟化为车辆的外轮廓从而得到车辆的实际坐标以及车长、车宽、车位角等数据,二维码的使用可以有效提高工业相机32获取停车区29内车辆位置信息的精确度,从而便于车辆夹持小车11抓取存放车辆;每个工业相机32至少可拍摄到停车区29内的一段区域且所有的工业相机32可拍摄到整个停车区29。当停车区29内铺设有条形码或者棋盘格时,停车区29内设置有坐标系标识,工业相机32通过位于停车区29内的车辆外轮廓和坐标系标识直接得到车辆位置信息,坐标系标识为位于标识于停车区29长边和宽边的坐标轴,每个工业相机32内设置有识别坐标系;停车区29内设置有车库坐标系;识别坐标系内的各点坐标值通过上位机换算处理后转化为车库坐标系内的各点坐标值。使用本系统时,首先,在每台工业相机32安装完毕后,会做一个标定。根据其对码化地面的成像以及两者之间的距离,由成像原理可以得出地面在工业相机32中的成像比例。根据比例,图像尺寸就可以换算成实物的尺寸。我们对图像建立一个坐标,那么图像中每一点都会有一个坐标值,同样根据成像原理及比例,即可换算出停车区域坐标系中每一点的坐标。再次,对进入的车辆拍照,通过特征提取、边缘分割,在计算机软件中框选出该汽车,然后根据车高,我们取0.75m这个值来修正相机与被拍物之间的距离。小汽车在相机中的成像若按地面与相机之 间的距离来换算,得到的尺寸会较大于汽车实际尺寸。我们在计算机软件中取了0.75m这个值来修正距离,最后得到的框如附图18中的矩形框。该矩形框的长和宽即可近似于汽车实际的长和宽;再选取矩形框的中点作为汽车的坐标。具体实施步骤包括:步骤一,驾驶员将待停车辆放驶入带有码化图案的停车区29并任意停放,待停车辆驶入停车区29时,号牌机30获取车辆号牌;当停放车辆没有号牌时,上位机赋予该停放车辆一个唯一的车辆代号;步骤二,车辆22停稳驾驶员离开后,工业相机32拍摄停车区29内的停放车辆获取车辆图像尺寸并上传至上位机;步骤三,上位机根据车辆图像尺寸×工业相机32的成像比例×0.8得到车辆实物尺寸并得到车辆位于停车区域坐标系内的每个点的坐标值,对上述车辆实物尺寸和每个点的坐标值处理后得到停放车辆位于停车区29内的位置坐标以及车位角;步骤四,上位机驱动旋转托盘小车3移动至停放车辆位置以及旋转托盘3.1旋转相应的车位角,车辆夹持小车11实现对车辆22的抓取。本发明的技术方案中停车区29是一个可以容纳几辆甚至几十辆汽车的区域,对于这样一个区域,当司机将车开进该区域时,可以随意停放。该区域的上部的有工业相机32配合停车区29内的码化图案获取进入车辆的长、宽、高、车位角度、车轮位置、后视镜位置等。而在车进入该区域时,号牌机30会对车辆号牌进行获取,若无号牌,上位机会为其赋予一个代号,代号在整个系统中是独一无二的。
以上所述,仅是本发明的较佳实施例而已,并非对本发明的结构做任何形式上的限制。凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明的技术方案的范围内。

Claims (10)

  1. 一种智能停车库,包括车库框架,其特征在于:所述车库框架包括具有多层停车位的立体架空层(1)和位于立体架空层(1)前方、与立体架空层(1)的每一层框架梁连接为一体的车辆横移框架(8),所述车辆横移框架(8)沿水平X轴方向设有横移轨道(9),所述横移轨道(9)上设有沿其滑动的横移托盘(10),所述横移托盘(10)上设有沿水平Y轴方向移动的车辆夹持小车(11),所述立体架空层(1)的两侧分别设有升降电梯(23),所述立体架空层(1)的地面层前方为凹陷于地面下方的车辆转存槽(2),所述车辆转存槽(2)内设有沿水平X轴方向移动的旋转托盘小车(3),所述旋转托盘小车(3)的顶部设有旋转托盘(3.1),所述旋转托盘(3.1)上设有车辆夹持小车(11),所述旋转托盘(3.1)的顶面与地面平齐。
  2. 如权利要求1所述的一种智能停车库,其特征在于:所述车辆夹持小车(11)包括底部设有滚轮(20)的夹持小车本体,所述夹持小车本体上设有四个车轮夹持机构,所述车轮夹持机构包括夹持座(12)和铰接于夹持座(12)上的两根夹持臂(13),所述夹持座(12)上设有驱动两根夹持臂(13)旋转的夹持臂驱动机构,所述夹持臂(13)与车轮(24)的接触面为与车轮(24)的弧形表面对应的斜面。
  3. 如权利要求2所述的一种智能停车库,其特征在于:所述夹持臂驱动机构包括夹持臂减速电机(14)和与夹持臂减速电机(14)的电机轴连接的夹持臂驱动齿轮(15),所述夹持臂(13)与夹持座(12)的铰接端的底面设有与夹持臂驱动齿轮(15)对应的轮齿。
  4. 如权利要求2所述的一种智能停车库,其特征在于:所述车轮夹持机构还包括一个驱动夹持座(12)前后移动的框架调节机构,所述框架调节机构包括丝杆减速电机(16),所述丝杆减速电机(16)的输出端连接有丝杆(17),所述丝杆(17)的两端设置于轴承座(18)内,所述夹持座(12)的侧部固定有丝杆螺母(19),所述丝杆螺母(19)套设于丝杆(17)上。
  5. 如权利要求2所述的一种智能停车库,其特征在于:所述夹持小车本体(11)包括第一夹持小车车体(11.1)和第二夹持小车车体(11.2),所述第一夹持小车 车体(11.1)的一端与第二夹持小车车体(11.2)的一端通过铰链(25)连接,所述第一夹持小车车体(11.1)的底部四个转角处分别设有一个滚轮(20),所述第二夹持小车车体(11.2)的底部四个转角处也分别设有一个滚轮(20),所述第一夹持小车车体(11.1)和第二夹持小车车体(11.2)上分别设有两套车轮夹持机构,所述第一夹持小车车体(11.1)的左右两侧分别设有两个导向轮(21),所述第二夹持小车车体(11.2)的左右两侧也分别设有两个导向轮(21)。
  6. 如权利要求1所述的一种智能停车库,其特征在于:所述旋转托盘小车(3)包括托盘小车车体(3.2),所述托盘小车车体(3.2)的底部四个转角处分别设有一个行走轮(26),所述托盘小车车体(3.2)内竖直固定有齿轮驱动电机(4),所述齿轮驱动电机(4)的电机轴连接有旋转驱动齿轮(5),所述托盘小车车体(3.2)的顶部竖直固定有齿轮轴(6),所述齿轮轴(6)上设有与旋转驱动齿轮(5)啮合的托盘旋转齿轮(7),所述旋转托盘(3.1)固定于托盘旋转齿轮(7)的顶部。
  7. 如权利要求1所述的一种智能停车库的停车方法,其特征在于:包括以下步骤:
    步骤一:司机将车辆(22)开进存取车区,随意停放,下车关好车门后离开;
    步骤二:位于车辆转存槽(2)内的旋转托盘小车(3)根据从识别系统获取的车辆信息搭载车辆夹持小车(11)沿水平X轴移动,旋转托盘(3.1)旋转,使位于旋转托盘(3.1)上的车辆夹持小车(11)的轴线与车辆(22)的轴线对齐;
    步骤三:车辆夹持小车(11)沿其轴线方向移动并钻入车辆(22)的底部,根据从识别系统获取的车轮位置信息,调整车辆夹持小车(11)的夹持臂(13)位置,夹持车轮(24),将车辆(22)托举起来后反向移动至旋转托盘(3.1);
    步骤四:旋转托盘(3.1)旋转,使车辆(22)的轴线与水平Y轴平行,若立体架空层(1)的一层有空余车位,则旋转托盘(3.1)小车沿水平X轴方向运动至指定空余车位前,车辆夹持小车(11)沿水平Y轴方向运动至空余车位内,夹持臂(13)旋转,松开车轮(24),将车辆(22)放置在空余车位上,最后车辆夹持小车(11)反向运动至旋转托盘(3.1)上;
    若立体架空层(1)一层没有空余车位,则旋转托盘小车(3)运动至升降电梯(23)前方,车辆夹持小车(11)沿水平Y轴方向运动,进入升降电梯(23) 内,夹持臂(13)旋转,松开车轮(24),将车辆(22)放置在升降电梯(23)内,车辆夹持小车(11)反向移动,回到旋转托盘(3.1)上,车辆(22)搭乘升降电梯(23)沿竖直Z轴方向运动至有空余车位的停车位层,同时该层的横移托盘(10)搭载车辆夹持小车(11)沿水平X轴方向运动至升降电梯(23)前方,车辆夹持小车(11)沿水平Y轴方向运动至升降电梯(23)内并钻入车辆(22)底部,根据从识别系统获取的车轮位置信息,调整夹持臂(13)位置,夹持车轮(24),将车辆(22)托举,车辆夹持小车(11)反向运动至横移托盘(10)上,横移托盘(10)搭载车辆夹持小车(11)及车辆(22)沿水平X轴方向运动至指定空余停车位前,车辆夹持小车(11)沿水平Y轴方向运动至空余停车位内,夹持臂(13)旋转,下放车辆(22),完成停车后,车辆夹持小车(11)反向运动至横移托盘(10)上。
  8. 如权利要求7所述的一种智能停车库的停车方法,其特征在于:所述步骤二中的识别系统为基于固定雷达的车辆识别系统;驾驶员将待停车辆放驶入停车区(29)并任意停放,待停车辆驶入停车区(29)时,雷达扫描装置(31)扫描整个停车区域,获取点云数据,工控机提取该车辆的外轮廓并处理得到该车辆的位置坐标以及车位角;工控机将处理得到的该车辆位置坐标、车位角发送给上位机;上位机驱动旋转托盘小车(3)移动至待停车辆位置以及旋转相应的车位角,车辆夹持小车(11)夹持待停车辆。
  9. 如权利要求7所述的一种智能停车库的停车方法,其特征在于:所述步骤二中的识别系统为基于光学图像的车辆识别系统;驾驶员将待停车辆放驶入带有码化图案的停车区(29)并任意停放,工业相机(32)拍摄停车区(29)内的待停车辆获取车辆图像尺寸并上传至上位机;上位机根据车辆图像尺寸×工业相机的成像比例得到车辆实物尺寸并得到车辆位于停车区域坐标系内的每个点的坐标值,对上述车辆实物尺寸和每个点的坐标值处理后得到待停车辆位于停车区(29)内的位置坐标以及车位角;工控机将处理得到的该车辆位置坐标、车位角发送给上位机;上位机驱动旋转托盘小车(3)移动至待停车辆位置以及旋转相应的车位角,车辆夹持小车(11)夹持待停车辆。
  10. 如权利要求7所述的一种智能停车库的停车方法,其特征在于:所述步 骤二中的识别系统为基于固定雷达和移动雷达的车辆识别系统;驾驶员将待停车辆驶入停车区(29)并任意停放,雷达扫描装置(31)扫描整个停车区域,获取点云数据,工控机提取该车辆的外轮廓并处理得到该车辆的位置坐标以及车位角;工控机将处理得到的该车辆位置坐标、车位角发送给上位机;上位机驱动旋转托盘小车(3)移动至待停车辆位置以及旋转相应的车位角,车辆夹持小车(11)动作,移动的单线激光雷达同时对全车进行扫描、校核车辆夹持小车(11)的中心坐标与车辆中心坐标重合、车辆夹持小车(11)的角度与车位角一致且车宽未超出车辆夹持小车(11)的操作范围,车辆夹持小车(11)夹持待停车辆。
PCT/CN2018/094870 2017-07-18 2018-07-06 一种智能停车库及其停车方法 WO2019015497A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710587307.XA CN107575073B (zh) 2017-07-18 2017-07-18 一种智能停车库及其停车方法
CN201710587307.X 2017-07-18

Publications (1)

Publication Number Publication Date
WO2019015497A1 true WO2019015497A1 (zh) 2019-01-24

Family

ID=61049183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094870 WO2019015497A1 (zh) 2017-07-18 2018-07-06 一种智能停车库及其停车方法

Country Status (2)

Country Link
CN (1) CN107575073B (zh)
WO (1) WO2019015497A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113744556A (zh) * 2021-08-24 2021-12-03 深圳市捷顺科技实业股份有限公司 一种立体车库非视频车位车辆反寻的方法及相关设备
CN113753760A (zh) * 2020-06-04 2021-12-07 重庆柯沃起重机械有限公司 一种智能码砖装车系统
CN115223132A (zh) * 2021-11-10 2022-10-21 广州汽车集团股份有限公司 一种空车位识别方法与系统、计算机可读存储介质
CN116380675A (zh) * 2023-04-20 2023-07-04 临沂千源包装印刷有限公司 一种包装袋生产用抗拉扯强度测试装置
CN117684802A (zh) * 2024-02-02 2024-03-12 河北新时空智能科技有限公司 一种用于立体车库的车辆搬运装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107575073B (zh) * 2017-07-18 2019-12-27 武汉智象机器人有限公司 一种智能停车库及其停车方法
CN109339527B (zh) * 2018-11-22 2021-08-03 住友富士电梯有限公司 一种电梯停车系统
CN109339526A (zh) * 2018-11-22 2019-02-15 住友富士电梯有限公司 一种立体停车库安全停车方法
CN109339530B (zh) * 2018-11-23 2021-05-18 住友富士电梯有限公司 一种立体停车库多开门电梯
CN109339528B (zh) * 2018-11-23 2020-11-17 住友富士电梯有限公司 一种立体停车库电梯
CN109681004A (zh) * 2018-12-25 2019-04-26 安徽乐库智能停车设备有限公司 一种城市高架下多层智能停车系统
JP2020186563A (ja) * 2019-05-14 2020-11-19 本田技研工業株式会社 制御装置、駐車場システム、制御方法、及びプログラム
CN110221607A (zh) * 2019-05-22 2019-09-10 北京德威佳业科技有限公司 一种夹抱式车辆存取agv的控制系统及控制方法
CN110145151A (zh) * 2019-06-04 2019-08-20 安徽博微联控科技有限公司 一种仓储式机械车库的停车装置及其使用方法
CN110805336A (zh) * 2019-11-13 2020-02-18 武汉智象机器人有限公司 一种带旋转托盘的地下智能车库及使用方法
CN111561208B (zh) * 2020-05-22 2021-09-10 重庆贻晨兴工业设计有限责任公司 一种智能停车场诱导设备及其使用方法
CN111550106A (zh) * 2020-05-26 2020-08-18 天津理工大学 一种小区泊车装置
CN113622725B (zh) * 2021-07-24 2022-05-13 浙江龙马建设有限公司 一种市政停车场

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101892756A (zh) * 2010-07-27 2010-11-24 深圳怡丰自动化科技有限公司 一种全自动平面移动类机械式立体停车库
US20130078063A1 (en) * 2011-09-22 2013-03-28 Unitronics Parking Solutions Ltd. Vehicle positioning system
CN106088738A (zh) * 2016-07-29 2016-11-09 李国勇 一种移车装置及立体车库
CN106337581A (zh) * 2016-10-11 2017-01-18 安徽乐库智能停车设备有限公司 一种立体车库停车出入口装置
CN107575073A (zh) * 2017-07-18 2018-01-12 武汉智象机器人有限公司 一种智能停车库及其停车方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101886487B (zh) * 2010-07-09 2012-01-11 朱建华 一种立体停车库
CN201802102U (zh) * 2010-07-27 2011-04-20 深圳怡丰自动化科技有限公司 一种全自动平面移动类机械式立体停车库
CN202596222U (zh) * 2012-05-03 2012-12-12 山东莱钢泰达车库有限公司 具有无对重堆垛机的巷道堆垛类停车库
CN104612443A (zh) * 2014-12-22 2015-05-13 中冶南方(武汉)自动化有限公司 一种立体停车库运载系统及其控制方法
CN105937323B (zh) * 2016-06-22 2019-07-09 武汉智象机器人有限公司 一种智能停车机器人及其工作方法
CN105937320B (zh) * 2016-06-22 2018-12-25 武汉智象机器人有限公司 一种智能停车库

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101892756A (zh) * 2010-07-27 2010-11-24 深圳怡丰自动化科技有限公司 一种全自动平面移动类机械式立体停车库
US20130078063A1 (en) * 2011-09-22 2013-03-28 Unitronics Parking Solutions Ltd. Vehicle positioning system
CN106088738A (zh) * 2016-07-29 2016-11-09 李国勇 一种移车装置及立体车库
CN106337581A (zh) * 2016-10-11 2017-01-18 安徽乐库智能停车设备有限公司 一种立体车库停车出入口装置
CN107575073A (zh) * 2017-07-18 2018-01-12 武汉智象机器人有限公司 一种智能停车库及其停车方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113753760A (zh) * 2020-06-04 2021-12-07 重庆柯沃起重机械有限公司 一种智能码砖装车系统
CN113753760B (zh) * 2020-06-04 2023-10-03 重庆柯沃起重机械有限公司 一种智能码砖装车系统
CN113744556A (zh) * 2021-08-24 2021-12-03 深圳市捷顺科技实业股份有限公司 一种立体车库非视频车位车辆反寻的方法及相关设备
CN113744556B (zh) * 2021-08-24 2022-12-20 深圳市捷顺科技实业股份有限公司 一种立体车库非视频车位车辆反寻的方法及相关设备
CN115223132A (zh) * 2021-11-10 2022-10-21 广州汽车集团股份有限公司 一种空车位识别方法与系统、计算机可读存储介质
CN115223132B (zh) * 2021-11-10 2023-10-27 广州汽车集团股份有限公司 一种空车位识别方法与系统、计算机可读存储介质
CN116380675A (zh) * 2023-04-20 2023-07-04 临沂千源包装印刷有限公司 一种包装袋生产用抗拉扯强度测试装置
CN116380675B (zh) * 2023-04-20 2024-01-05 临沂千源包装印刷有限公司 一种包装袋生产用抗拉扯强度测试装置
CN117684802A (zh) * 2024-02-02 2024-03-12 河北新时空智能科技有限公司 一种用于立体车库的车辆搬运装置
CN117684802B (zh) * 2024-02-02 2024-04-12 河北新时空智能科技有限公司 一种用于立体车库的车辆搬运装置

Also Published As

Publication number Publication date
CN107575073B (zh) 2019-12-27
CN107575073A (zh) 2018-01-12

Similar Documents

Publication Publication Date Title
WO2019015497A1 (zh) 一种智能停车库及其停车方法
WO2019015494A1 (zh) 一种智能停车库结构及其停车方法
WO2019015495A1 (zh) 一种智能地下停车库及其停车方法
WO2019015496A1 (zh) 基于固定雷达和移动雷达的车辆识别系统及入库方法
WO2019015498A1 (zh) 用于智能车库的基于固定雷达的车辆识别系统及入库方法
CN105888338B (zh) 一种基于uwb定位的智能汽车搬运机器人及其控制方法
CN207211874U (zh) 一种智能停车库结构
CN206128772U (zh) 一种基于uwb定位的智能汽车搬运机器人
US10612261B2 (en) AGV comb-type transfer robot
WO2019015493A1 (zh) 用于智能车库的基于光学图像的车辆识别系统
WO2016197611A1 (zh) 一种可侧向搬运汽车的智能机器人
CN103196434A (zh) 一种港口集装箱定位装置和方法
CN108437955B (zh) 一种车辆姿态的调整方法及装置
CN111891927B (zh) 第一层集装箱放置方法及计算机可读存储介质
JPS63206575A (ja) 自動車の昇降及び平搬装置
CN207211873U (zh) 一种智能地下停车库
CN207794732U (zh) 用于实现安全停车的立体车库
CN108086762A (zh) 用于实现安全停车的立体车库及其停车方法
CN207917856U (zh) 一种智能物流小车及其控制系统
JP2020131943A (ja) 駐車制御システム、車載装置、駐車制御方法、及びコンピュータプログラム
JP2831110B2 (ja) コンテナ位置検出装置
US20220073329A1 (en) Transport device, control method, and computer program product
CN115285167A (zh) 一种用于列车的自动摘钩控制方法以及装置
CN209728298U (zh) 一种激光扫描装置的调节装置
CN114455531A (zh) 一种流体罐车装车用自动对接装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18835298

Country of ref document: EP

Kind code of ref document: A1