WO2019015451A1 - 一种具有晶圆位置检测装置的气相腐蚀腔体 - Google Patents

一种具有晶圆位置检测装置的气相腐蚀腔体 Download PDF

Info

Publication number
WO2019015451A1
WO2019015451A1 PCT/CN2018/093267 CN2018093267W WO2019015451A1 WO 2019015451 A1 WO2019015451 A1 WO 2019015451A1 CN 2018093267 W CN2018093267 W CN 2018093267W WO 2019015451 A1 WO2019015451 A1 WO 2019015451A1
Authority
WO
WIPO (PCT)
Prior art keywords
photo
wafer
module
receiving module
emissive
Prior art date
Application number
PCT/CN2018/093267
Other languages
English (en)
French (fr)
Inventor
许开东
Original Assignee
江苏鲁汶仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏鲁汶仪器有限公司 filed Critical 江苏鲁汶仪器有限公司
Priority to JP2019571421A priority Critical patent/JP6900136B2/ja
Publication of WO2019015451A1 publication Critical patent/WO2019015451A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere

Definitions

  • the present invention relates to the field of semiconductor manufacturing equipment, and more particularly to a vapor phase etching chamber having a wafer position detecting device.
  • vapor phase corrosion has many advantages: 1. The release of MEMS devices without adhesion; 2. Because of the surface tension, the diffusion capacity of the reactants is 4 orders of magnitude higher than that of the liquid phase. Therefore, the chemical reaction is easier to carry out; 3. Compatibility with various materials, such as aluminum, alumina, photoresist, etc.; 4. Because it is usually used under vacuum, it can be integrated as a surface pre-cleaning module in modular On a combined device, such as a physical vapor deposition machine.
  • Fluorinated hydrogen phase corrosion is used not only in the preparation of MEMS devices, but also as a surface pretreatment chamber integrated in a Vapor Phase Decomposition (VPD) system.
  • VPD Vapor Phase Decomposition
  • the chemical reaction of the following formula (1) occurs on the fluorinated hydrogen phase etching chamber, so that the natural oxide layer on the surface of the bulk silicon is decomposed and consumed by vapor phase etching, leaving a hydrophobic silicon hydrogen bond (Si-H)
  • Si-H hydrophobic silicon hydrogen bond
  • the gas phase hydrogen fluoride machine can be divided into: 1. An anhydrous hydrogen fluoride source machine, using an HF gas with a purity of 99.99% or more; 2. An aqueous vapor phase hydrogen fluoride machine (HF-H) 2 O system). Because of the cost of use, the mainstream VPD machine is configured with an aqueous HF source system compared to expensive anhydrous HF gas (5N or more purity). Unless high-end applications (such as millions of micromirror arrays) must use a waterless HF machine, usually, based on the cost of use, a machine based on an aqueous HF source is used when process requirements are not too high. This is especially true in the VPD market.
  • VHF chamber fluorinated hydrogen phase etching chamber
  • the VHF process is inseparable from the process of loading and unloading, that is, transferring the wafer to the chuck of the vapor phase etching chamber, or removing the wafer from the wafer holder.
  • This process is briefly described as the following steps: carrier; open the cavity; the robot takes the wafer into the cavity; the robot unwinds; the cavity thimble rises and the wafer is over the height of the robot; the robot is pulled out of the cavity; The cavity thimble carries the wafer down onto the wafer fixture; the cavity is closed.
  • the film taking process can be described as the following small steps: taking the film; opening the cavity; the cavity thimble carries the wafer up to a position higher than the robot entering position; the robot enters the cavity to the bottom of the wafer The thimble carries the wafer down and the wafer is placed on the robot, and the thimble continues to descend, returning to the initial position; the robot opens the vacuum; the robot carries the wafer out of the cavity; the cavity is closed or the next wafer is to be placed .
  • the slide and take-up are a process in which several thimbles of a cavity are closely matched with the robot. Improper cooperation can cause wafers to slip from the robot or the robot hits the wafer, causing damage to the wafer or robot.
  • a wafer position detector is usually disposed in the cavity to alarm and stop all mechanical movements when the wafer position is abnormal.
  • the position of the wafer is detected by the photosensor through the transparent observation window.
  • the reflective single optical sensor can determine whether the wafer and the wafer position in the cavity are parallel to the horizontal plane, but it is impossible to determine whether the wafer is displaced in the horizontal plane.
  • Patent Document 1 JP4903764B2
  • the present invention provides a vapor phase etching chamber having a wafer position detecting device, comprising: an upper chamber, a lower chamber, a lifting control device, a wafer mounting table, and a wafer ejector, and a sensor loaded thereon a lifting device, the lifting control device is connected to the upper cavity, and controls the up and down movement of the upper cavity, wherein the wafer mounting table and the wafer ejector are disposed in the lower cavity, wherein A wafer position detecting unit is disposed outside the lower chamber.
  • the wafer position detecting unit of the cavity includes a first photo emitting module, a first photo receiving module, a second photo emitting module, and a second Photoelectric receiving module, control module, driving module and alarm module.
  • a wafer presence detecting unit is further provided inside the lower cavity.
  • the wafer presence detecting unit is a proximity sensor, a capacitance sensor, an inductance sensor, or an optical sensor.
  • the wafer position detecting unit further includes a first photo-emissive receiving module and a second photo-emissive receiving module, and the first photo-emissive receiving module And the second photo-emissive receiving module is respectively disposed at two ends of the arm of the wafer carrying robot that cooperates with the vapor phase etching chamber.
  • the first photoelectric emitting module and the second photoelectric emitting module are laser emitting modules, and the first photoelectric receiving module, the first The second photoelectric receiving module is a laser receiving module.
  • the first photo-emissive receiving module and the second photo-emissive receiving module are capable of emitting laser light by themselves and capable of performing the reflected laser light.
  • a laser emitting and receiving module that receives and detects.
  • the upper cavity and the lower cavity are made of perfluoroalkoxy resin (PFA) or polytetrafluoroethylene (PTFE).
  • PFA perfluoroalkoxy resin
  • PTFE polytetrafluoroethylene
  • EFE ethylene tetrafluoroethylene
  • PCTFE polychlorotrifluoroethylene
  • PVDF polyvinylidene fluoride
  • PVVC polyvinyl chloride
  • PP polypropylene
  • PEEK polyetheretherketone
  • the gas phase source to be supplied is hydrogen fluoride (HF), hydrogen chloride (HCl), hydrogen bromide (HBr), hydrogen iodide (HI), One or a combination of bismuth difluoride (XeF 2 ).
  • the lifting control device includes a driving device and a displacement sensor
  • the driving device is a cylinder or an electric cylinder
  • the displacement sensor is an optical sensor. Or proximity sensor.
  • the wafer position detecting device of the present invention determines whether the wafer on the wafer holder in the cavity or the position of the wafer on the robot arm is parallel to the horizontal plane or there is no lateral direction on the horizontal surface The displacement can be detected. Also, the wafer position detecting device is disposed outside the cavity so that it is not disturbed by the solid residue described above.
  • FIG. 1 is a perspective view showing a vapor phase etching chamber having a wafer position detecting device in a closed state according to a first embodiment of the present invention
  • Figure 2 is a perspective view showing the gas phase etching chamber of the first embodiment of the present invention in a state in which the vapor phase etching chamber is opened;
  • FIG. 3 is a plan view showing a lower chamber of a vapor phase etching chamber having a wafer position detecting device according to a first embodiment of the present invention
  • FIG. 4 is a functional block diagram of a wafer position detecting unit of a vapor phase etching chamber having a wafer position detecting device according to the first embodiment of the present invention
  • FIG. 5 is a plan view showing a lower chamber of a vapor phase etching chamber having a wafer position detecting device according to a second embodiment of the present invention
  • FIG. 6 is a functional block diagram of a wafer position detecting unit of a vapor phase etching chamber having a wafer position detecting device according to a second embodiment of the present invention
  • FIG. 7A is a top plan view showing a wafer in a lower chamber of a vapor phase etching chamber having a wafer position detecting device according to a third embodiment of the present invention at a correct position;
  • FIG. 7B is a top plan view showing that the wafer is shifted to the left in the lower cavity of the vapor phase etching chamber having the wafer position detecting device according to the third embodiment of the present invention.
  • 7C is a top plan view showing that the wafer is shifted to the right in the lower cavity of the vapor phase etching chamber having the wafer position detecting device according to the third embodiment of the present invention.
  • FIG. 8 is a functional block diagram of a wafer position detecting unit of a vapor phase etching chamber having a wafer position detecting device according to a third embodiment of the present invention.
  • FIG. 1 is a perspective view showing a vapor phase etching chamber having a wafer position detecting device in a closed state according to a first embodiment of the present invention
  • FIG. 2 is a vapor phase etching chamber opening state having a wafer position detecting device according to a first embodiment of the present invention
  • 3 is a plan view of a lower chamber of a vapor phase etching chamber having a wafer position detecting device according to a first embodiment of the present invention.
  • the vapor phase etching chamber of the present invention having a wafer position detecting device includes an upper chamber 1, a lower chamber 2, a lifting control device 3, a wafer mounting table 4, and a wafer thimble. (not shown).
  • the elevation control device 3 is connected to the upper chamber 1, and controls the vertical movement of the upper chamber 1, and the wafer mounting table 4 and the wafer ejector are disposed in the lower chamber 2.
  • a wafer position detecting unit 6 is provided outside the lower chamber 2.
  • the wafer position detecting unit 6 in the vapor phase etching chamber having the wafer position detecting device according to the first embodiment of the present invention, includes a first photo emitting module 61 and a first photo receiving module 62.
  • the first photo-emissive module 61 and the first photo-receiving module 62 and the second photo-emissive module 63 are The second photoreceiving modules 64 are disposed on the outer side of the periphery of the lower cavity 1 in two and two phases. Specifically, the first photo-emission module 61 and the first photo-receiving module 62 are disposed facing each other on the outer periphery of the lower cavity 1, preferably, the connection between the first photo-emission module 61 and the first photo-receiving module 62. Pass through the center of the lower chamber 1.
  • the second photo-emission module 63 and the second photo-receiving module 64 are disposed facing each other on the outer side of the periphery of the lower cavity 1.
  • the connection between the second photo-emission module 63 and the second photo-receiving module 64 also passes through the lower cavity.
  • the line connecting the first photo-emissive module 61 and the first photo-receiving module 62 forms an angle with the line connecting the second photo-emission module 63 and the third photo-receiving module 64, and the angle is preferably 90 degrees, that is, two The people are perpendicular to each other. That is, it is preferable that the first photo-emissive module 61, the first photo-acceptance module 62, the second photo-emissive module 63, and the second photo-acceptance module 64 are evenly distributed outside the periphery of the lower chamber 1.
  • the first photo-emissive module 61, the first photo-receiving module 62, the second photo-emissive module 63, and the second The photo receiving modules 64 are respectively connected to the control module 65.
  • the first photo-emissive module 61, the first photo-receiving module 62, the second photo-emissive module 63, and the second photo-receiving module 64 are respectively disposed outside the periphery of the lower cavity 1, when the robot carrying the wafer mounts the wafer into the wafer
  • the control module 65 sends a control signal for transmitting the light wave to the first photo-emitting module 61 and the second photo-emitting module 63, respectively, so that the first photo-emission module 61 and the second photo-emission module 63 emits light waves.
  • control module 65 detects the presence and absence of the signals from the first photo receiving module 62 and the second photo receiving module 64, if the control module 65 detects the signals from the first photo receiving module 62 and the second photo receiving module 64. If the signal strength is consistent with the predetermined signal strength that is pre-calibrated, it is determined that the wafer is not tilted relative to the occurrence.
  • control module 65 does not detect the signal strength from the first photo receiving module 62 or the second photo receiving module 64, or the detected signal strength from the first photo receiving module 62 or the second photo receiving module 64, One of them is inconsistent with the pre-calibrated prescribed signal strength, and strictly speaking, the detected signal strength from the first photoreceiving module 62 or the second photoreceiving module 64 is greatly reduced with respect to the pre-calibrated prescribed signal strength. Then, it is determined that the wafer is inclined with respect to the horizontal direction and the light waves emitted from the first photo-emissive module 61 and the second photo-emissive module 63 are blocked.
  • the control module 65 sends a drive control signal to the drive module 66, and the drive module 66 controls the movement mechanism of the wafer thimble to adjust the wafer.
  • FIG. 5 is a plan view of a lower chamber of a vapor phase etching chamber having a wafer position detecting device according to a second embodiment of the present invention
  • FIG. 6 is a vapor phase etching chamber having a wafer position detecting device according to a second embodiment of the present invention
  • the wafer has a functional block diagram of the detection unit.
  • the structure of the vapor phase etching chamber having the wafer position detecting device according to the second embodiment of the present invention is basically the same as the structure of the vapor phase etching chamber having the wafer position detecting device according to the first embodiment of the present invention, and the difference is that
  • the vapor phase etching chamber having the wafer position detecting device according to the second embodiment of the present invention further includes a wafer presence detecting unit 7.
  • the circle presence detecting unit 7 is disposed on the wafer stage 4 of the lower chamber 2 for detecting the presence or absence of a wafer on the wafer stage 4.
  • the wafer presence detecting unit 7 is also connected to the control module 65, and shares the control module 65, the driving module 66, and the alarm module 67 with the wafer position detecting unit 6.
  • the wafer detecting unit 6 in the first embodiment of the present invention can determine whether the wafer is tilted with respect to the horizontal direction, but may not be able to detect the wafer loading.
  • the presence or absence of the wafer is first detected by providing the wafer presence detecting unit 7.
  • a capacitive proximity sensor can be disposed in the wafer presence detecting unit 7, and when the wafer mounting table 4 is placed on the wafer and the wafer is not placed, the capacitance value of the sensor changes.
  • the signal intensity from the wafer presence detecting unit 7 detected by the control module 65 is also different, so that it is possible to accurately determine whether or not the wafer is placed on the wafer mounting table 4.
  • an optical sensor may be used in the wafer presence detecting unit 7 to determine whether or not a wafer is placed on the wafer mounting table 4.
  • FIGS. 7A to 7C are schematic plan views of a wafer position detecting unit of a vapor phase etching chamber having a wafer position detecting device according to a third embodiment of the present invention.
  • a vapor phase etching chamber having a wafer position detecting device according to a third embodiment of the present invention is further provided on a vapor phase etching chamber having a wafer position detecting device according to a second embodiment of the present invention, further on a robot 9 carrying a wafer
  • a first photo-emissive receiving module 11 and a second photo-emissive receiving module 12 are disposed on both sides of the robot arm portion 10, respectively.
  • the first photo-emissive receiving module 11 and the second photo-emissive receiving module 12 have a photo-emission device and a photo-receiving device, wherein the photo-emission device emits a pulsed light wave, and the photo-receiving device detects the reflected light wave.
  • the first photo-emissive receiving module 11 and the second photo-emissive receiving module 12 are also connected to the control module 65.
  • the control module 65 When the robot 9 moves to a predetermined position to carry the wafer 100, the control module 65 emits a light wave emission control signal to the photo-emissive devices in the first photo-emissive receiving module 11 and the second photo-emissive receiving module 12 to control the first photoelectric The photo-emissive devices in the transmitting and receiving module 11 and the second photo-emissive receiving module 12 emit light waves. At the same time, the control module 65 sends a light wave receiving control signal to the photo receiving devices in the first photo transmitting and receiving module 11 and the second photo transmitting and receiving module 12 to control the first photo transmitting and receiving module 11 and the second photo transmitting and receiving module 12 The photoreceiving device receives the reflected light wave.
  • the timer in the control module 65 counts the time difference between the light emitted from the photo-emitting device in the first photo-emissive receiving module 11 and the photo-receiving device in the first photo-emissive receiving module 11 receiving the reflected light wave, and the time difference is The time difference is set to t1.
  • the timer in the control module 65 also counts the time difference between the light emitted from the photo-emissive device in the second photo-emissive receiving module 12 and the photo-receiving device in the second photo-emissive receiving module 12 receiving the reflected light wave. And set the time difference to t2.
  • the first photo-emissive receiving module 11 and the second photo-emissive receiving module 12 are symmetrically disposed with respect to the longitudinal center line of the robot arm portion 10, and the wafer 100 is opposed to the machine when the robot 9 is placed in the correct position to mount the wafer 100.
  • the longitudinal centerline of the arm portion 10 is also symmetrical.
  • the photo-emitting device from the first photo-emissive receiving module 11 emits light waves to the photo-accepting device in the first photo-emissive receiving module 11 to receive
  • the time difference t1 of the reflected light wave should be substantially equal to the time difference t2 from the light emitted from the photo-emissive device in the second photo-emissive receiving module 12 to the photo-receiving device in the second photo-emissive receiving module 12 receiving the reflected light wave, and It is approximately equal to the predetermined time difference t0 pre-calibrated as shown in Fig. 7A.
  • the photo-emitting device in the first photo-emissive receiving module 11 emits light waves into the first photo-emissive receiving module 11
  • the photoreceiving device receives the time difference t1 of the reflected light wave, and/or receives the light wave from the photo-emitting device in the second photo-emissive receiving module 12 to the photo-accepting device in the second photo-emissive receiving module 12 to receive the reflected light wave
  • the time difference t2 will be greater than or less than the predetermined time difference t0 pre-calibrated.
  • the photo-emitting device from the first photo-emissive receiving module 11 emits light waves to the photo-accepting device in the first photo-emissive receiving module 11 to receive the reflected time wave t1, and/or from the second photo-emissive receiving module 12
  • the control module 65 sends a drive control signal to the drive module 66, controls the motion mechanism of the robot 9, and adjusts the position of the robot 9 to the correct load position.
  • the control module 65 also issues a drive control signal to the drive module 66, controls the motion mechanism of the robot 9, and adjusts the position of the robot to the correct load position.
  • the photo-emitting device from the first photo-emissive receiving module 11 emits light waves to the photo-accepting device in the first photo-emissive receiving module 11 to receive the reflected time wave t1 and the second photo-emissive receiving module 12
  • the photo-emitting device emits light waves to the photo-electric receiving device in the second photo-emissive receiving module 12, and the time difference t2 of the reflected light waves is not substantially equal but a large difference, and it is determined that the wafer 100 is compared to the correct position. The direction has shifted.
  • the reflected light wave signal is detected in both the first photo-emissive receiving module 11 and the second photo-emissive receiving module 12 and the light-emitting device from the first photo-emissive receiving module 11 emits light waves to the first photo-emissive receiving module
  • the time difference t1 at which the photoreceiving device of 11 receives the reflected light wave is smaller than the light wave emitted from the photo-emitting device in the second photo-emissive receiving module 12 to the photo-accepting device in the second photo-emissive receiving module 12 receives the reflected light wave
  • the time difference t2 determines that the wafer 100 is offset from the correct position in the left direction of the drawing (as shown in FIG. 7B).
  • the control module 65 will send a driving control signal to the driving module 66 to control the robot 9
  • the motion mechanism adjusts the position of the robot to the correct carrying position.
  • both the first photo-emissive receiving module 11 and the second photo-emissive receiving module 12 detect the reflected light wave signal and emit light waves from the photo-emitting device in the first photo-emissive receiving module 11 to the first photo-emissive receiving module 11
  • the time difference t1 at which the photoreceiving device receives the reflected light wave is greater than the time difference t2 from the light emitted from the photo-emitting device in the second photo-emissive receiving module 12 to the photo-receiving device in the second photo-emissive receiving module 12 receiving the reflected light wave
  • the control module 65 will also send a driving control signal to the driving module 66 to control the movement of the robot
  • the wafer presence detecting unit 7 excludes the wafer mounting table 8 from being placed on the wafer mounting table 8, and secondly, the cavity is used.
  • the first photo-emissive module 61, the first photo-receiving module 62, the second photo-emissive module 63, and the second photo-accepting module 64 disposed outside the body can determine whether the wafer has tilted in the vertical direction.
  • the control module 65 controls the alarm module 67 to issue an alarm signal to notify the operator and operate.
  • the manual operation accurately adjusts the wafer 100 to the correct position. This makes it possible to avoid abnormal contact of the moving parts with the wafer and prevent wafer breakage or equipment damage.
  • the transmitting module is a laser emitting module
  • the first photo receiving module, the second photo receiving module, and the second photo receiving module are laser receiving modules.
  • the first photo-emissive receiving module and the second photo-emissive receiving modular laser-emitting receiving module Since the laser has unique advantages in terms of monochromaticity, directivity, and short wavelength, the use of a laser as the light wave in the present invention can further improve the accuracy and accuracy of the wafer position detection of the module. It is preferable to use a short-wavelength semiconductor laser emitted from a semiconductor laser element.
  • the upper cavity 1 and the lower cavity 2 are made of perfluoroalkoxy resin (PFA), polytetrafluoroethylene (PTFE), and ethylene tetrafluoroethylene.
  • PFA perfluoroalkoxy resin
  • PTFE polytetrafluoroethylene
  • ethylene tetrafluoroethylene Combination of one or more of (ETFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), polyvinyl chloride (PVC), polypropylene (PP), polyetheretherketone (PEEK) .
  • the gas phase source to be introduced is one or a combination of hydrogen fluoride (HF), hydrogen chloride (HCl), hydrogen bromide (HBr), hydrogen iodide (HI), xenon difluoride (XeF 2 ).
  • the elevation control device 3 includes a driving device and a displacement sensor.
  • the drive device can be a cylinder or an electric cylinder
  • the displacement sensor can be an optical sensor or a proximity sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

一种具有晶圆位置检测装置的气相腐蚀腔体,包括:上部腔体、下部腔体、升降控制装置、晶圆载置台、晶圆顶针、以及装载传感器的机械手,升降控制装置与上部腔体相连接,控制上部腔体的上下移动,晶圆载置台和晶圆顶针设置于下部腔体中,其中,在下部腔体的外部设置有晶圆位置检测单元。晶圆位置检测单元包括第一光电发射模块、第一光电接收模块、第二光电发射模块、第二光电接收模块、控制模块、驱动模块和报警模块。

Description

一种具有晶圆位置检测装置的气相腐蚀腔体 技术领域
本发明涉及半导体制造设备领域,尤其涉及一种具有晶圆位置检测装置的气相腐蚀腔体。
背景技术
近年来,人们常以气相腐蚀的方式(利用气相的氟化氢)腐蚀氧化硅。相比于液相方式的腐蚀,气相腐蚀有很多优点:1、无粘连地释放微机电系统器件;2、因为不受表面张力的影响,反应物的扩散能力比液相时高4个数量级,所以化学反应更容易进行;3、对各种材料的兼容性,如铝、氧化铝、光刻胶等;4、因为通常是在真空下使用,所以可以作为一个表面预清洗模块集成在模块化组合设备上,如物理气相沉积机台等。氟化氢气相腐蚀不仅在微机电系统器件的制备上使用,也作为表面预处理腔集成在气相分解金属沾污收集系统(Vapor Phase Decomposition:VPD)。在气相分解金属沾污收集系统中,氟化氢气相腐蚀腔体上发生下式(1)的化学反应,使体硅表面的自然氧化层以气相腐蚀的方式分解消耗,留下由疏水的硅氢键(Si-H)所形成的表面,以便用特制的液体扫描液把沾污收集。
4HF(气)+SiO 2(固)→SiF 4(气)↑+2H 2O       (1)
根据氟化氢(HF)源是否含水,气相氟化氢机台可分为:1、无水氟化氢源机台,用的是纯度为99.99%>以上的HF气体;2、含水气相氟化氢机台(HF-H 2O系统)。因为考虑到使用成本,相比于昂贵的无水HF气体(5N或以上纯度),主流的VPD机台配置的是含水HF源系统。除非是高端应用(如几百万组微镜阵列)必须采用无水HF机台,通常,考虑到使用成本,在工艺要求不太高时都采用基于含水HF源的机台。尤其是在VPD市场更是如此。这里我们只考虑含水HF源的机台和它的氟化氢气相腐蚀腔体(以下简称VHF腔体)。因为含水HF源所形成的气相氟化氢是有腐蚀性的,所以它所接触的 管路、接口及腔体必须是防腐的。通常考虑到加工难度及后期维护成本,VHF腔体及管路的材质都采用与之兼容的塑料。
显然,VHF工艺离不开载片(loading)和取片(unloading)的过程,也就是把晶圆传输到气相腐蚀腔体的晶圆夹具(chuck)上,或者从晶圆夹具上取出晶圆。这个过程简单描述为如下几个步骤:载片;打开腔体;机械手带晶圆进入到腔体;机械手解真空;腔体顶针升起并带晶圆超过机械手高度;机械手从腔体里抽出;腔体顶针带着晶圆下降到晶圆夹具上;关闭腔体。相应的,工艺完成以后取片过程可以描述为如下几个小步骤:取片;开腔体;腔体顶针带着晶圆上升到比机械手进入位置高一点的地方;机械手进入腔体到晶圆底下;顶针带着晶圆下降并让晶圆载置于机械手上,而且顶针继续下降,回到初始位置;机械手开启真空;机械手带着晶圆出腔体;关闭腔体或待投入下一个晶圆。
载片与取片是一个腔体的几个顶针与机械手紧密配合的一个过程。如果配合不当会导致晶圆从机械手滑落或者机械手撞击晶圆等情况,从而造成晶圆或者机械手的毁损。为了避免上述问题,通常在腔体设置一个晶圆位置检测器,在晶圆位置不正常情况下提前报警并停止一切机械运动。专利文献1的图2中,由光电传感器透过透明观察窗对晶圆的位置进行检测。这种反射型单光学传感器可以判断腔体里面是否有晶圆和晶圆位置是否与水平面平行,但是无法判断晶圆是否在水平面上产生了位移。
另外,有时这种隔着透视窗装配的光学传感器并不是最优的方案。如果VHF工艺中水的含量过量的话,将会有下式(2)的化学反应;如果腐蚀到氮化硅(SiN)的话,将会有下式(3)的化学反应。两者共同的特点是形成不易挥发的固体残留物。这种固体残留物在透视窗内壁沉积的厚度达到一定程度会影响该光学传感器的检测精度。如果说传感器内置在腔体里面,也有同样的问题,并且在传感器选择上得考虑其耐腐性。
H 2SiF 6(固)+3H 2O→H 2SiO 3(固)+6HF(气)↑       (2)
HF(气)+SiN(固)→(NH 4) 2SiF 6(固)               (3)
因为含水HF源形成的气相氟化氢是有腐蚀性的,所以它所接触的管路、接口及腔体是必须是防腐的。常见的腔体材料中,只有PVC是透明的,所以PVC是一种观察窗的常规材料。有时候为了抑制固体残留物产生,醇类蒸汽会加入到VHF工艺中,但是PVC并不与乙醇等完全兼容,所以必须采用其他方法进行晶圆的位置检测。
专利文献1 JP4903764B2
发明内容
本发明为了解决上述问题而提供一种具有晶圆位置检测装置的气相腐蚀腔体,包括:上部腔体、下部腔体、升降控制装置、晶圆载置台、以及晶圆顶针、以及装载有传感器的机械手,所述升降控制装置与所述上部腔体相连接,控制所述上部腔体的上下移动,所述晶圆载置台和所述晶圆顶针设置于所述下部腔体中,其中,在所述下部腔体的外部设置有晶圆位置检测单元。
本发明的具有晶圆位置检测装置的气相腐蚀腔体中,优选为,所述腔体的晶圆位置检测单元包括第一光电发射模块、第一光电接收模块、第二光电发射模块、第二光电接收模块、控制模块、驱动模块和报警模块。
本发明的具有晶圆位置检测装置的气相腐蚀腔体中,优选为,在所述下部腔体的内部还设有晶圆有无检测单元。
本发明的具有晶圆位置检测装置的气相腐蚀腔体中,优选为,所述晶圆有无检测单元是接近式传感器、电容传感器、电感传感器、或光学传感器。
本发明的具有晶圆位置检测装置的气相腐蚀腔体中,优选为,所述晶圆位置检测单元还包括第一光电发射接收模块和第二光电发射接收模块,所述第一光电发射接收模块和所述第二光电发射接收模块分别设置在与所述气相腐蚀腔体相配合的晶圆运载机械手的手臂的两端。
本发明的具有晶圆位置检测装置的气相腐蚀腔体中,优选为,所述第一光电发射模块、所述第二光电发射模块是激光发射模块,所述第一光电接收模块、所述第二光电接收模块是激光接收模块。
本发明的具有晶圆位置检测装置的气相腐蚀腔体中,优选为,所述第一光电发射接收模块和所述第二光电发射接收模块是能够自身发出激光并能够对所反射回的激光进行接收并检测的激光发射接收模块。
本发明的具有晶圆位置检测装置的气相腐蚀腔体中,优选为,所述上部腔体与所述下部腔体的材质为全氟烷氧基树脂(PFA)、聚四氟乙烯(PTFE)、乙烯四氟乙烯(ETFE)、聚三氟氯乙烯(PCTFE)、聚偏氟乙稀(PVDF)、聚氯乙烯(PVC)、聚丙烯(PP)、聚醚醚酮(PEEK)的一种或多种的组合。
本发明的具有晶圆位置检测装置的气相腐蚀腔体中,优选为,所通入的气相源为氟化氢(HF)、氯化氢(HCl)、溴化氢(HBr)、碘化氢(HI)、二氟化氙(XeF 2)的一种或者几种的组合。
本发明的具有晶圆位置检测装置的气相腐蚀腔体中,优选为,所述所述升降控制装置包括驱动装置和位移传感器,所述驱动装置是气缸或电缸,所述位移传感器是光学传感器或接近传感器。
本发明的具有晶圆位置检测装置的气相腐蚀腔体中,无论在其腔体内晶圆夹具上的晶圆,还是机器人手臂上的晶圆的位置是否平行于水平面、或者在水平面上有没有横向位移都能检测到。并且,晶圆位置检测装置是设置在腔体外面,所以它不受前面所述固体残留物的干扰。
附图说明
图1是本发明第一实施方式的具有晶圆位置检测装置的气相腐蚀腔体闭合状态下的立体图;
图2是本发明第一实施方式的具有晶圆位置检测装置的气相腐蚀腔体开 放状态下的立体图;
图3是本发明第一实施方式的具有晶圆位置检测装置的气相腐蚀腔体的下部腔体的俯视图;
图4是本发明第一实施方式的具有晶圆位置检测装置的气相腐蚀腔体的晶圆位置检测单元的功能框图;
图5是本发明第二实施方式的具有晶圆位置检测装置的气相腐蚀腔体的下部腔体的俯视图;
图6是本发明第二实施方式的具有晶圆位置检测装置的气相腐蚀腔体的晶圆位置检测单元的功能框图;
图7A是本发明第三实施方式的具有晶圆位置检测装置的气相腐蚀腔体的下部腔体中晶圆处于正确位置的俯视示意图;
图7B是本发明第三实施方式的具有晶圆位置检测装置的气相腐蚀腔体的下部腔体中晶圆向左发生了偏移的俯视示意图;
图7C是本发明第三实施方式的具有晶圆位置检测装置的气相腐蚀腔体的下部腔体中晶圆向右发生了偏移的俯视示意图;
图8是本发明第三实施方式的具有晶圆位置检测装置的气相腐蚀腔体的晶圆位置检测单元的功能框图。
附图标记:
1~上部腔体;2~下部腔体;3~升降控制装置;4~晶圆载置台;6~晶圆位置检测单元;61~第一光电发射模块;62~第一光电接收模块;63~第二光电发射模块;64~第二光电接收模块;65~控制模块;66~驱动模块;67~报警模块;7~晶圆有无检测单元;9~机械手;10~机械手臂部;11~第一光电发射接收模块;12~第二光电发射接收模块;100~晶圆。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所 获得的所有其它实施例,都属于本发明保护的范围。
在本实用新型的描述中,需要说明的是,术语“上”、“下”、“水平”、“垂直”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。此外,在本实用新型的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本实用新型中的具体含义。
图1是本发明第一实施方式的具有晶圆位置检测装置的气相腐蚀腔体闭合状态下的立体图,图2是本发明第一实施方式的具有晶圆位置检测装置的气相腐蚀腔体开放状态下的立体图,图3是本发明第一实施方式的具有晶圆位置检测装置的气相腐蚀腔体的下部腔体的俯视图。如图1~图3所示,本发明的具有晶圆位置检测装置的气相腐蚀腔体,包括上部腔体1、下部腔体2、升降控制装置3、晶圆载置台4、和晶圆顶针(未图示)。升降控制装置3与上部腔体1相连接,控制上部腔体1的上下移动,晶圆载置台4和晶圆顶针设置于下部腔体2中。在下部腔体2的外部设置有晶圆位置检测单元6。
图4是本发明第一实施方式的具有晶圆位置检测装置的气相腐蚀腔体中的晶圆位置检测单元6的功能框图。如图3、图4所示,本发明第一实施方式的具有晶圆位置检测装置的气相腐蚀腔体中,晶圆位置检测单元6包括第一光电发射模块61、第一光电接收模块62、第二光电发射模块63、第二光电接收模块64、控制模块65、驱动模块66和报警模块67。
如图3、图4所示,本发明第一实施方式的具有晶圆位置检测装置的气相腐蚀腔体中,第一光电发射模块61与第一光电接收模块62以及第二光电发 射模块63与第二光电接收模块64分别两两相面对设置于下部腔体1的周缘外侧。具体来说,第一光电发射模块61和第一光电接收模块62在下部腔体1的周缘外侧上相面对设置,优选为,第一光电发射模块61和第一光电接收模块62的连线通过下部腔体1的中心。第二光电发射模块63和第二光电接收模块64在下部腔体1的周缘外侧上相面对设置,优选为,第二光电发射模块63和第二光电接收模块64的连线也通过下部腔体1的中心。第一光电发射模块61和第一光电接收模块62的连线与第二光电发射模块63和第三光电接收模块64的连线形成一定角度的夹角,该夹角优选为90度,即两者相互垂直。也就是说,优选为,第一光电发射模块61、第一光电接收模块62、第二光电发射模块63、和第二光电接收模块64在下部腔体1的周缘外侧均匀分布。
如图4所示,本发明第一实施方式的具有晶圆位置检测装置的气相腐蚀腔体中,第一光电发射模块61、第一光电接收模块62、第二光电发射模块63、和第二光电接收模块64分别与控制模块65相连接。第一光电发射模块61、第一光电接收模块62、第二光电发射模块63、和第二光电接收模块64分别配置于下部腔体1的周缘外侧,当运载晶圆的机械手载置晶圆进入腔体而开始对晶圆位置进行检测时,控制模块65分别向第一光电发射模块61和第二光电发射模块63发送发射光波的控制信号,使得第一光电发射模块61和第二光电发射模块63发出光波。同时,控制模块65对来自第一光电接收模块62和第二光电接收模块64的信号有无和强度进行检测,如果控制模块65检测到来自第一光电接收模块62和第二光电接收模块64的信号强度均与预先标定的规定信号强度一致,则判断为晶圆没有相对于发生倾斜。相反,如果控制模块65没有检测到来自第一光电接收模块62或第二光电接收模块64的信号强度,或者所检测到的来自第一光电接收模块62或第二光电接收模块64的信号强度的其中之一与预先标定的规定信号强度不一致,严格地说所检测到的来自第一光电接收模块62或第二光电接收模块64的信号强度相对于预先标定的规定信号强度有大幅度的减弱,则判断为晶圆相对于水平方向发生倾斜而对从第一光电发射模块61和第二光电发射模块63发射的光波发生了遮挡。本发明第一实施方式的具有晶圆位置检测装置的气相腐蚀腔体中,基于来自第一光电接收模块62或第二光电接收模块64的信号强度与预先标定 的规定信号强度的差值,对晶圆是否相对于水平方向发生了倾斜这一情况进行检测并判断。在判断为晶圆相对于水平方向发生了倾斜的情况下,由报警模块67发出报警信息,通知操作者。同时,由控制模块65向驱动模块66发出驱动控制信号,由驱动模块66控制晶圆顶针的运动机构,对晶圆进行调整。
图5是本发明第二实施方式的具有晶圆位置检测装置的气相腐蚀腔体的下部腔体的俯视图,图6是本发明第二实施方式的具有晶圆位置检测装置的气相腐蚀腔体的晶圆有无检测单元的功能框图。本发明第二实施方式的具有晶圆位置检测装置的气相腐蚀腔体的结构与本发明第一实施方式的具有晶圆位置检测装置的气相腐蚀腔体的结构基本相同,不同之处在于,本发明第二实施方式的具有晶圆位置检测装置的气相腐蚀腔体中,还包括晶圆有无检测单元7。该圆有无检测单元7配置于下部腔体2的晶圆载置台4上,用于检测晶圆载置台4上是否存在晶圆。晶圆有无检测单元7同样与控制模块65相连接,与晶圆位置检测单元6共用控制模块65、驱动模块66、和报警模块67。当运载晶圆的机械手载置晶圆进入腔体而需要对晶圆的位置进行检测时,首先需要对晶圆的有无进行检测。由于晶圆的厚度较薄(通常小于775微米),因此本发明第一实施方式中的晶圆检测单元6虽然能够判断晶圆是否相对于水平方向发生了倾斜,但是可能无法检测出晶圆载置台4上没有载置晶圆的情况,因此有可能把晶圆载置台4上没有载置晶圆的情况误判为已经载置晶圆且晶圆相对于水平方向无任何倾斜。本发明第二实施方式的的具有晶圆位置检测装置的气相腐蚀腔体中,通过设置晶圆有无检测单元7而首先对晶圆是否存在进行检测。由此,有效地排除了晶圆载置台4上没有载置晶圆的情况。具体来说,可以在晶圆有无检测单元7中配置电容式接近传感器,在晶圆载置台4上载置有晶圆和没有载置晶圆的情况下,传感器的电容值会发生变化,由此控制模块65所检测到的来自晶圆有无检测单元7的信号强度也不同,从而可以准确判断晶圆载置台4上是否载置有晶圆。当然,晶圆有无检测单元7中也可以采用光学传感器,来判断晶圆载置台4上是否载置有晶圆。
图7A~图7C是本发明第三实施方式的具有晶圆位置检测装置的气相腐蚀腔体的晶圆位置检测单元的俯视示意图。本发明第三实施方式的具有晶圆 位置检测装置的气相腐蚀腔体在本发明第二实施方式的具有晶圆位置检测装置的气相腐蚀腔体的基础上,进一步在运载晶圆的机械手9的机械手臂部10的两侧分别设置第一光电发射接收模块11和第二光电发射接收模块12。该第一光电发射接收模块11和第二光电发射接收模块12中具有光电发射器件和光电接收器件,其中的光电发射器件发出脉冲光波,光电接收器件对反射回来的光波进行检测。第一光电发射接收模块11和第二光电发射接收模块12也与控制模块65连接。在机械手9移动到规定位置而对晶圆100进行承载时,控制模块65向第一光电发射接收模块11和第二光电发射接收模块12中的光电发射器件发出光波发射控制信号,控制第一光电发射接收模块11和第二光电发射接收模块12中的光电发射器件发射光波。同时,控制模块65向第一光电发射接收模块11和第二光电发射接收模块12中的光电接收器件发出光波接收控制信号,控制第一光电发射接收模块11和第二光电发射接收模块12中的光电接收器件接收反射回来的光波。控制模块65中的计时器对从第一光电发射接收模块11中的光电发射器件发出光波到第一光电发射接收模块11中的光电接收器件接收到反射回来的光波的时间差进行计时,并将该时间差设为t1。同样,控制模块65中的计时器也对从第二光电发射接收模块12中的光电发射器件发出光波到第二光电发射接收模块12中的光电接收器件接收到反射回来的光波的时间差进行计时,并将该时间差设为t2。第一光电发射接收模块11和第二光电发射接收模块12相对于机械手臂部10的纵向中心线对称设置,在机械手9处于正确位置而对晶圆100进行载置时,晶圆100相对于机械手臂部10的纵向中心线也对称。因此,在机械手9处于正确位置而对晶圆100进行载置的情况下,从第一光电发射接收模块11中的光电发射器件发出光波到第一光电发射接收模块11中的光电接收器件接收到反射回来的光波的时间差t1,应该大致等于从第二光电发射接收模块12中的光电发射器件发出光波到第二光电发射接收模块12中的光电接收器件接收到反射回来的光波的时间差t2,并大致等于预先标定的规定时间差t0,如图7A所示。如果机械手9并没有处于正确位置对晶圆100进行载置而是在前后方向有一定错位,则从第一光电发射接收模块11中的光电发射器件发出光波到第一光电发射接收模块11中的光电接收器件接收到反射回来的光波的时间差t1,和/或从第二光电发射接收模块12中的光电发射器件发出光波到第二光电发射接 收模块12中的光电接收器件接收到反射回来的光波的时间差t2,将大于或小于预先标定的规定时间差t0。若从第一光电发射接收模块11中的光电发射器件发出光波到第一光电发射接收模块11中的光电接收器件接收到反射回来的光波的时间差t1,和/或从第二光电发射接收模块12中的光电发射器件发出光波到第二光电发射接收模块12中的光电接收器件接收到反射回来的光波的时间差t2大于预先标定的规定时间差t0,则判定为晶圆100相比于正确位置更加远离机械手臂部10,此时控制模块65向驱动模块66发出驱动控制信号,控制机械手9的运动机构,将机械手9的位置调整到正确的承载位置。反之,若从第一光电发射接收模块11中的光电发射器件发出光波到第一光电发射接收模块11中的光电接收器件接收到反射回来的光波的时间差t1,和/或从第二光电发射接收模块12中的光电发射器件发出光波到第二光电发射接收模块12中的光电接收器件接收到反射回来的光波的时间差t2小于预先标定的规定时间差t0,则判定为晶圆100相比于正确位置更加靠近机械手臂部10,此时控制模块65同样向驱动模块66发出驱动控制信号,控制机械手9的运动机构,调整机械手的位置到正确的承载位置。
另外,若从第一光电发射接收模块11中的光电发射器件发出光波到第一光电发射接收模块11中的光电接收器件接收到反射回来的光波的时间差t1与从第二光电发射接收模块12中的光电发射器件发出光波到第二光电发射接收模块12中的光电接收器件接收到反射回来的光波的时间差t2并非大致相等而是相差较大,则判定为晶圆100相比于正确位置沿左右方向发生了偏移。具体来说,若第一光电发射接收模块11和第二光电发射接收模块12中都检测到了反射光波信号且从第一光电发射接收模块11中的光电发射器件发出光波到第一光电发射接收模块11中的光电接收器件接收到反射回来的光波的时间差t1小于从第二光电发射接收模块12中的光电发射器件发出光波到第二光电发射接收模块12中的光电接收器件接收到反射回来的光波的时间差t2,则判定为晶圆100相比于正确位置向图中左边方向发生了偏移(如图7B所示),此时控制模块65将向驱动模块66发出驱动控制信号,控制机械手9的运动机构,调整机械手的位置到正确的承载位置。相反,若第一光电发射接收模块11和第二光电发射接收模块12都检测到了反射光波信号且从第一光电发 射接收模块11中的光电发射器件发出光波到第一光电发射接收模块11中的光电接收器件接收到反射回来的光波的时间差t1大于从第二光电发射接收模块12中的光电发射器件发出光波到第二光电发射接收模块12中的光电接收器件接收到反射回来的光波的时间差t2,则判定为晶圆100相比于正确位置向图中右边方向发生了偏移(如图7C所示),此时控制模块65同样将向驱动模块66发出驱动控制信号,控制机械手9的运动机构,调整机械手的位置到正确的承载位置。
如此,本发明第三实施方式的具有晶圆位置检测装置的气相腐蚀腔体中,首先利用晶圆有无检测单元7将晶圆载置台8上没有载置晶圆的情况排除,其次利用腔体外侧配置的第一光电发射模块61、第一光电接收模块62、第二光电发射模块63、第二光电接收模块64能够判断晶圆在竖直方向是否发生了倾斜。最后,通过在机械手9的机械手臂部10的中心线两侧对称地设置第一光电发射接收模块11和第二光电发射接收模块12,能够准确地判断晶圆100相对于机械手9在水平面内的前后方向或左右方向是否发生了偏移。在此过程中,若判断为晶圆在竖直方向倾斜或者在水平面内的前后方向或左右方向发生了偏移,控制模块65均会控制报警模块67发出报警信号,通知操作者,并由操作者人工操作将晶圆100精确调整到正确位置。由此能够避免运动部件与晶圆的非正常接触,防止晶圆破碎或者设备损坏。
本发明第一实施方式至第三实施方式的具有晶圆位置检测装置的气相腐蚀腔体中,优选为,所述第一光电发射模块、所述第二光电发射模块、和所述第三光电发射模块是激光发射模块,所述第一光电接收模块、所述第二光电接收模块、和所述第二光电接收模块是激光接收模块。并且,优选为,所述第一光电发射接收模块和所述第二光电发射接收模块式激光发射接收模块。因为激光在单色性、方向性和短波长方面具有独特的优势,采用激光作为本发明中的光波,能够进一步提高模块的晶圆位置检测的精度和准确率。优选采用半导体激光元件发出的短波长半导体激光。
本发明的具有晶圆位置检测装置的气相腐蚀腔体中,上部腔体1与下部腔体2的材质为全氟烷氧基树脂(PFA)、聚四氟乙烯(PTFE)、乙烯四氟乙烯(ETFE)、聚三氟氯乙烯(PCTFE)、聚偏氟乙稀(PVDF)、聚氯乙烯(PVC)、聚丙烯(PP)、聚醚醚酮(PEEK)的一种或多种的组合。所通入的气相源为氟化氢(HF)、氯化氢(HCl)、溴化氢(HBr)、碘化氢(HI)、二氟化氙(XeF 2)的一种或者几种的组合。
本发明的具有晶圆位置检测装置的气相腐蚀腔体中,升降控制装置3包括驱动装置和位移传感器。驱动装置可以是气缸或电缸,位移传感器可以是光学传感器或接近传感器。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种具有晶圆位置检测装置的气相腐蚀腔体,包括:上部腔体、下部腔体、升降控制装置、晶圆载置台、晶圆顶针、以及机械手,所述升降控制装置与所述上部腔体相连接,控制所述上部腔体的上下移动,所述晶圆载置台和所述晶圆顶针设置于所述下部腔体中,其特征在于,
    在所述下部腔体的外部设置有晶圆位置检测单元。
  2. 根据权利要求1所述的具有晶圆位置检测装置的气相腐蚀腔体,其特征在于,
    所述晶圆位置检测单元包括第一光电发射模块、第一光电接收模块、第二光电发射模块、第二光电接收模块、控制模块、驱动模块和报警模块。
  3. 根据权利要求1或2所述的具有晶圆位置检测装置的气相腐蚀腔体,其特征在于,
    在所述下部腔体的内部还设有晶圆有无检测单元。
  4. 根据权利要求3所述的具有晶圆位置检测装置的气相腐蚀腔体,其特征在于,
    所述晶圆有无检测单元是接近式传感器、电容传感器、电感传感器、或光学传感器。
  5. 根据权利要求2所述的具有晶圆位置检测装置的气相腐蚀腔体,其特征在于,
    所述晶圆位置检测单元还包括第一光电发射接收模块和第二光电发射接收模块,所述第一光电发射接收模块和所述第二光电发射接收模块分别设置在与所述气相腐蚀腔体相配合的晶圆运载机械手的手臂的两端。
  6. 根据权利要求2所述的具有晶圆位置检测装置的气相腐蚀腔体,其特征在于,
    所述第一光电发射模块、所述第二光电发射模块是激光发射模块,所述第一光电接收模块、所述第二光电接收模块是激光接收模块。
  7. 根据权利要求5所述的具有晶圆位置检测装置的气相腐蚀腔体,其特征在于,
    所述第一光电发射接收模块和所述第二光电发射接收模块是能够自身发出激光并能够对所反射回的激光进行接收并检测的激光发射接收模块。
  8. 根据权利要求1所述的具有晶圆位置检测装置的气相腐蚀腔体,其特征在于,
    所述上部腔体与所述下部腔体的材质为全氟烷氧基树脂(PFA)、聚四氟乙烯(PTFE)、乙烯四氟乙烯(ETFE)、聚三氟氯乙烯(PCTFE)、聚偏氟乙稀(PVDF)、聚氯乙烯(PVC)、聚丙烯(PP)、聚醚醚酮(PEEK)的一种或多种的组合。
  9. 根据权利要求1所述的具有晶圆位置检测装置的气相腐蚀腔体,其特征在于,
    所通入的气相源为氟化氢(HF)、氯化氢(HCl)、溴化氢(HBr)、碘化氢(HI)、二氟化氙(XeF 2)的一种或者几种的组合。
  10. 根据权利要求1所述的具有晶圆位置检测装置的气相腐蚀腔体,其特征在于,
    所述所述升降控制装置包括驱动装置和位移传感器,所述驱动装置是汽缸或电缸,所述位移传感器是光学传感器或电容传感器。
PCT/CN2018/093267 2017-07-20 2018-06-28 一种具有晶圆位置检测装置的气相腐蚀腔体 WO2019015451A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019571421A JP6900136B2 (ja) 2017-07-20 2018-06-28 ウエハ位置検出装置を有する気相腐食キャビティ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710597149.6A CN107610997A (zh) 2017-07-20 2017-07-20 一种具有晶圆位置检测装置的气相腐蚀腔体
CN201710597149.6 2017-07-20

Publications (1)

Publication Number Publication Date
WO2019015451A1 true WO2019015451A1 (zh) 2019-01-24

Family

ID=61060031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093267 WO2019015451A1 (zh) 2017-07-20 2018-06-28 一种具有晶圆位置检测装置的气相腐蚀腔体

Country Status (3)

Country Link
JP (1) JP6900136B2 (zh)
CN (1) CN107610997A (zh)
WO (1) WO2019015451A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111968923A (zh) * 2020-08-24 2020-11-20 北京北方华创微电子装备有限公司 半导体设备
US20220359245A1 (en) * 2019-08-06 2022-11-10 Hangzhou Sizone Electronic Technology Inc. Wafer detection device and wafer detection method using the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107610997A (zh) * 2017-07-20 2018-01-19 江苏鲁汶仪器有限公司 一种具有晶圆位置检测装置的气相腐蚀腔体
CN110164787B (zh) * 2018-02-11 2021-05-25 江苏鲁汶仪器有限公司 腔室晶圆位置检测装置及检测方法
CN110534466A (zh) * 2018-05-25 2019-12-03 北京北方华创微电子装备有限公司 机械手取片方法及系统
CN111336792B (zh) * 2018-12-19 2022-03-11 江苏鲁汶仪器有限公司 一种干燥微水珠的腔体
CN110849281B (zh) * 2019-11-13 2021-03-16 江苏鲁汶仪器有限公司 一种能够实现光学系统自动闭环控制的孔径仪及测量方法
CN111180378B (zh) * 2019-12-31 2023-12-29 中芯集成电路(宁波)有限公司 一种检测晶舟内晶圆斜插的方法及装置
CN113764247A (zh) * 2020-06-02 2021-12-07 江苏鲁汶仪器有限公司 一种用于真空腔室的顶针升降装置及等离子刻蚀系统
CN114496689B (zh) * 2020-11-11 2024-05-28 中国科学院微电子研究所 一种顶环被蚀刻量检测系统及方法、检测调整系统及方法
CN112490149B (zh) * 2020-11-13 2024-04-12 北京北方华创微电子装备有限公司 半导体工艺设备、检测工艺腔室中是否存在晶圆的方法
CN113206031B (zh) * 2021-07-05 2021-10-29 宁波润华全芯微电子设备有限公司 一种晶圆自动定位示教系统及方法
CN113675123B (zh) * 2021-07-29 2024-01-05 长鑫存储技术有限公司 一种晶圆校准装置、方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103515264A (zh) * 2012-06-26 2014-01-15 盛美半导体设备(上海)有限公司 晶圆位置检测装置和检测方法
US20140036274A1 (en) * 2012-07-31 2014-02-06 Asm Ip Holding B.V. Apparatus and method for calculating a wafer position in a processing chamber under process conditions
CN107610997A (zh) * 2017-07-20 2018-01-19 江苏鲁汶仪器有限公司 一种具有晶圆位置检测装置的气相腐蚀腔体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3186008B2 (ja) * 1994-03-18 2001-07-11 株式会社日立製作所 ウエハ保持装置
WO1997033300A1 (en) * 1996-03-06 1997-09-12 Mattson Technology, Inc. Icp reactor having a conically-shaped plasma-generating section
JP3526284B2 (ja) * 2001-07-13 2004-05-10 エム・エフエスアイ株式会社 基板表面の処理方法
JP2008041896A (ja) * 2006-08-04 2008-02-21 Tokyo Electron Ltd 基板検知機構およびそれを用いた基板処理装置
JP2009054630A (ja) * 2007-08-23 2009-03-12 Tokyo Electron Ltd シリンダ停止位置可変機構及びそれを備えた基板処理装置
JPWO2009081720A1 (ja) * 2007-12-21 2011-05-06 株式会社Sumco エピタキシャルシリコンウェーハの製造方法
JP5062057B2 (ja) * 2008-06-25 2012-10-31 東京エレクトロン株式会社 真空処理装置
CN101964321B (zh) * 2009-07-22 2012-09-05 北京北方微电子基地设备工艺研究中心有限责任公司 一种基片处理设备及其顶针升降装置
CN105470187B (zh) * 2014-09-12 2018-08-14 沈阳芯源微电子设备有限公司 一种防止晶圆滑动的升降盘体装置
CN105097616B (zh) * 2015-06-17 2018-01-26 北京七星华创电子股份有限公司 基于机械手移动的硅片分布状态组合检测方法及装置
KR101731537B1 (ko) * 2015-09-21 2017-04-28 코스텍시스템(주) 임시 접합 웨이퍼 디본딩장치 및 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103515264A (zh) * 2012-06-26 2014-01-15 盛美半导体设备(上海)有限公司 晶圆位置检测装置和检测方法
US20140036274A1 (en) * 2012-07-31 2014-02-06 Asm Ip Holding B.V. Apparatus and method for calculating a wafer position in a processing chamber under process conditions
CN107610997A (zh) * 2017-07-20 2018-01-19 江苏鲁汶仪器有限公司 一种具有晶圆位置检测装置的气相腐蚀腔体

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220359245A1 (en) * 2019-08-06 2022-11-10 Hangzhou Sizone Electronic Technology Inc. Wafer detection device and wafer detection method using the same
US11961749B2 (en) * 2019-08-06 2024-04-16 Hangzhou Sizone Electronic Technology Inc. Wafer detection device and wafer detection method using the same
CN111968923A (zh) * 2020-08-24 2020-11-20 北京北方华创微电子装备有限公司 半导体设备
CN111968923B (zh) * 2020-08-24 2023-12-22 北京北方华创微电子装备有限公司 半导体设备

Also Published As

Publication number Publication date
CN107610997A (zh) 2018-01-19
JP2020524915A (ja) 2020-08-20
JP6900136B2 (ja) 2021-07-07

Similar Documents

Publication Publication Date Title
WO2019015451A1 (zh) 一种具有晶圆位置检测装置的气相腐蚀腔体
JP4748816B2 (ja) 密閉容器の蓋開閉システム
JP7431880B2 (ja) 基板搬送装置及びその運転方法
KR20190025851A (ko) 기판 홀더, 전자 디바이스 제조 장치에 있어서 기판을 반송하는 반송 시스템, 및 전자 디바이스 제조 장치
KR20130086914A (ko) 로봇 핸드 및 로봇
WO2005098934A1 (ja) 半導体処理装置及び方法
JP4055839B2 (ja) 液面検出装置及び方法
TWI796587B (zh) 用於替換部件存儲容器的映射的方法和電子處理系統
US10964575B2 (en) Transfer robot system, teaching method and wafer receptacle
TWI721860B (zh) 基板對映裝置、其對映方法及對映教示方法
KR102468631B1 (ko) 기판 반송 장치 및 기판 반송 방법
JP4118592B2 (ja) ロードポート及び半導体製造装置
KR20160066824A (ko) 기판 이송 방법
US7219676B2 (en) Substrate detecting apparatus
CN116581135A (zh) 基于bsi工艺不同尺寸晶圆键合后背部腐蚀装置及方法
US20150340250A1 (en) Wet etching nozzle, semiconductor manufacturing equipment including the same, and wet etching method using the same
KR20070070435A (ko) 기판 이송 장치
JPH07201952A (ja) 半導体製造装置
WO2022142113A1 (zh) 腔室装置、晶片输送设备和晶片处理方法
JP7445532B2 (ja) 実行装置及び実行方法
CN208674092U (zh) 承载盘组件和机械手臂
KR20070084979A (ko) 웨이퍼 이송로봇 및 이를 구비한 반도체 제조설비
US20030075936A1 (en) Wafer blade equipped with piezoelectric sensors
KR20160063090A (ko) 기판 이송 장치 및 기판 이송 방법
KR100686453B1 (ko) 반도체 웨이퍼 파드

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835385

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019571421

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18835385

Country of ref document: EP

Kind code of ref document: A1