JP4055839B2 - 液面検出装置及び方法 - Google Patents

液面検出装置及び方法 Download PDF

Info

Publication number
JP4055839B2
JP4055839B2 JP2000127972A JP2000127972A JP4055839B2 JP 4055839 B2 JP4055839 B2 JP 4055839B2 JP 2000127972 A JP2000127972 A JP 2000127972A JP 2000127972 A JP2000127972 A JP 2000127972A JP 4055839 B2 JP4055839 B2 JP 4055839B2
Authority
JP
Japan
Prior art keywords
signal
detection
liquid
liquid level
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000127972A
Other languages
English (en)
Other versions
JP2001304937A (ja
Inventor
勝利 杢尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2000127972A priority Critical patent/JP4055839B2/ja
Priority to TW090110006A priority patent/TW480573B/zh
Priority to KR1020010023079A priority patent/KR100846813B1/ko
Priority to US09/844,838 priority patent/US6715348B2/en
Publication of JP2001304937A publication Critical patent/JP2001304937A/ja
Application granted granted Critical
Publication of JP4055839B2 publication Critical patent/JP4055839B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67057Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing with the semiconductor substrates being dipped in baths or vessels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/14Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of pressure
    • G01F23/16Indicating, recording, or alarm devices being actuated by mechanical or fluid means, e.g. using gas, mercury, or a diaphragm as transmitting element, or by a column of liquid
    • G01F23/165Indicating, recording, or alarm devices being actuated by mechanical or fluid means, e.g. using gas, mercury, or a diaphragm as transmitting element, or by a column of liquid of bubbler type

Description

【0001】
【発明の属する技術分野】
本発明は,液面を検出する液面検出装置及び方法に関する。
【0002】
【従来の技術】
半導体デバイスの製造工程では,半導体ウェハ(以下,「ウェハ」という。)を所定の薬液や純水等の処理液によって洗浄し,ウェハの表面に付着したパーティクル,有機汚染物,金属不純物等のコンタミネーションを除去する液処理装置が使用されている。その中でも処理液が充填された液処理槽内に,ウェハを浸漬させて洗浄処理等を行うウェット型の液処理装置は広く普及している。
【0003】
かかる液処理装置において,適切な液処理を実施するためには液処理槽内に所定の液量の処理液が充填されていることが必要である。そこで,液処理槽に液面検出装置を取り付け,処理液の供給を行う場合には,液面検出装置により液処理槽内の液面を検出して所定の高さに到達したところで,処理液の供給を停止するようにしている。
【0004】
かかる液面検出装置は,液面を検出されるべき処理液の中に先端部が沈められ,かつ液処理槽内の所定位置に先端口が開口しているセンサ管と,処理液の液面上の気圧よりも高い圧力を有する所定の気体をセンサ管の先端口まで充満するようにセンサ管内に供給する気体供給手段と,センサ管内の気体の圧力を検出して圧力検出信号を出力する圧力センサと,圧力センサから出力される圧力検出信号に基づいて液面の高さを検出する電気回路部とを備え,処理液中の所定位置(深さ)での圧力を測定し,その圧力測定値から液面の高さを検出する方法を採用している。
【0005】
即ち,処理液中にセンサ管の先端部を沈める一方で,気体供給手段により,液面上の気圧(例えば大気圧)よりも高い圧力を有する気体例えば圧縮空気または不活性ガスを管の先端口まで充満するようにセンサ管内に供給する。そうすると,センサ管内の気体の圧力は,センサ管の先端口が処理液から受ける圧力に等しく,この先端口から液面までの距離(深さ)に比例するという関係が成立し,これを利用して液面の高さを検出する。この場合,センサ管の先端口を液処理槽内の所定位置 (既知の値)に設定しているので,供給された処理液が溜まって液面が上昇して先端口に接触するまでの間,センサ管内の気体の圧力は液面上の気圧(例えば大気圧)と等しくなる。このため,この間,圧力センサは,一定水準の信号レベル(検出値)に保たれた圧力検出信号を出力することになる。このときの圧力検出信号を基準検出信号として設定する。
【0006】
そして,液処理槽に処理液を供給し,処理液が溜まるにつれて液面の高さが上昇する。液面の高さがセンサ管の先端口(所定位置)に到達するまで,圧力センサは,基準検出信号を出力している。その後,圧力センサから出力される圧力検出信号の信号レベルが,基準検出信号の信号レベルを越えると,液面の高さがセンサ管の先端口(所定位置)に到達したことが判明する。以後,センサ管の先端部が処理液中に沈められるに従って,圧力センサから出力される圧力検出信号の信号レベルは,徐々に上昇する。電気回路部では,この圧力検出信号の信号レベルにより,センサ管の先端口の深さ,ひいては液面の高さを検出することになる。その後,圧力センサから所定の信号レベルの圧力検出信号が出力されると,処理液の液面が液処理槽内の所定の高さに到達したことが判明し,処理液の供給を首尾よく停止することが可能となる。
【0007】
圧力センサには,例えば気体の圧力に応じて変位するダイヤフラムと,ダイヤフラム変位による圧力を電気信号に変換するストレンジゲージとを有する通常の圧力トランスデューサが用いられている。一例を挙げると,ダイヤフラムには,N型シリコンを加工したものを用い,このダイヤフラムの一部にボロンを拡散してP型ストレジゲージを形成する,ピエゾ抵抗効果を利用した高感度の半導体圧力センサがある。
【0008】
【発明が解決しようとする課題】
しかしながら,外部環境(温度や湿度等)による影響や経時変化によって, 圧力センサにドリフトが起こり,基準検出信号にずれが生じる場合がある。例えばセンサ管の先端部が処理液中に未だ沈められていないのに,通常の基準検出信号よりも高い信号レベルの基準検出信号が出力されていると,センサ管の先端部が沈められた場合には,センサ管内の圧力に対して嵩上げされた圧力検出信号が出力されることになる。そうなると,実際よりも早く圧力センサから所定の信号レベルの圧力検出信号が出力されることになり,処理液の液面が所定の高さに到達していないのに,処理液の供給が停止されてしまう。また逆に通常の基準検出信号よりも低い信号レベルの基準検出信号が出力されていると,実際よりも遅く圧力センサから所定の信号レベルの圧力検出信号が出力されることになり,処理液の液面が所定の高さをオーバーしてしまう。その結果,液処理槽内の処理液の液量が足りなくなって洗浄能力が低下したり,又は処理液が必要以上に液処理槽内に充填されて浪費を招くおそれがある。
【0009】
従って,本発明の目的は,検出手段にドリフトが起こっても,正確に処理液の液面の高さを検出することができる,液面検出装置及び方法を提供する。
【0010】
【課題を解決するための手段】
上記課題を解決するために,本発明によれば,処理槽内での処理液の液面の高さを検出する装置であって,前記処理槽内の所定位置で処理液の状態を検出し,検出信号を出力する検出手段と,前記検出手段から出力される検出信号に基づいて前記液面の高さが前記所定位置に到達したことを検出する有無検出回路と,前記液面の高さが前記所定位置に到達する前から,前記液面の高さが前記所定位置に到達した直後の間における前記検出手段から出力される検出信号の信号レベルに基づいて,前記検出手段から出力される検出信号の信号レベルと前記液面の高さとの関係を補正して前記液面の高さを決定する液面検出回路と,前記液面を検出されるべき処理液に先端部が沈められ,かつ前記所定位置に先端口が開口している検出管と,前記処理液の液面上の気圧よりも高い圧力を有する所定の気体を前記検出管の先端口まで充満するように前記検出管内に供給する気体供給手段とを備え,前記検出手段は,前記検出管内の気体の圧力に基づいて検出信号を出力するように構成され,前記有無検出回路は,前記検出信号から変動成分のみを抽出してAC信号を出力するハイパス・フィルタと,前記ハイパス・フィルタから出力されたAC信号を整流した信号を出力する信号処理部とを備え,前記液面の高さが前記所定位置の先端口に到達したかどうかを検出し,前記液面検出回路は,前記検出信号から変動成分を除去した信号を出力するローパス・フィルタと,予め基準検出信号を記憶し,前記検出管の先端口に前記処理液の液面が接触する前から直後の間における,前記ローパス・フィルタから出力された信号から前記基準検出信号を減算して補正信号ΔSを得る記憶部と,一方の入力端子にローパス・フィルタの出力端子が接続され,他方の入力端子に前記記憶部の出力端子が接続され,前記ローパス・フィルタから出力される信号から前記記憶部から出力される補正信号ΔSを減算した出力信号を得る演算部とを備え,前記記憶部は,前記有無検出回路によって前記液面の高さが前記所定位置の先端口に到達した時点において補正信号ΔSを得ることを特徴とする,液面検出装置が提供される。
【0011】
この液面検出装置によれば,まず処理槽内に処理液を供給し,処理液が溜まるにつれて液面が上昇する。検出手段は,処理槽内の所定位置で処理液の状態を検出し,検出信号を出力する。この場合,検出手段は,液面が処理槽内の所定位置に到達するまでは,処理液の状態を検出することはできず,この間,一定水準の信号レベルの検出信号を出力することになる。ここで,例えば検出手段が正常に機能している場合の,液面の高さが所定位置に到達する前から直後の間における検出手段から出力される検出信号を,基準検出信号として設定する。その後,液面の高さが処理槽内の所定位置まで到達すると,検出手段から出力される検出信号は,基準検出信号の信号レベルから上昇することになる。一方,有無検出回路は,液面の高さが所定位置に到達したことを検出する。所定位置における深さ(高さ)は,既知の値であり,この時点で処理液がどのくらい溜まっているか判明する。所定位置到達後も液面が上昇すれば,これに伴って検出手段から出力される検出信号の信号レベルも上昇する。なお,信号レベルは,検出信号の検出値を示している。
【0012】
外部環境(温度や湿度等)による影響や経時変化により,検出手段にドリフトが起これば,実際の処理液の液面に対して信号レベルが嵩上げされた(下がった)検出信号が出力される。しかしながら,本発明によれば,液面検出回路は,液面の高さが所定位置に到達する前から直後の間における検出手段から出力される検出信号の信号レベルに基づいて,検出手段から出力される検出信号の信号レベルと液面の高さとの関係を補正するので,検出手段が正常に機能しているときと同じような液面の高さに対応した信号レベルを常に得ることができる。即ち,検出手段にドリフトが起こった場合の,液面の高さが所定位置に到達する前から直後の間における検出手段から出力される検出信号の信号レベルと,前記基準検出信号の信号レベル(既知の値)との差から嵩上げされた(下がった)分をみて,この嵩上げされた(下がった)分を補正すれば,検出手段から出力される検出信号を正常な信号レベルに正すことができる。従って,検出手段にドリフトが起こっても,正確に液面の高さを検出することができる。
【0013】
前記液面を検出されるべき処理液に先端部が沈められ,かつ前記所定位置に先端口が開口している検出管と,前記処理液の液面上の気圧よりも高い圧力を有する所定の気体を前記検出管の先端口まで充満するように前記検出管内に供給する気体供給手段とを備え,前記検出手段は,前記検出管内の圧力に基づいて検出信号を出力するように構成され,前記有無検出回路は,前記検出信号から変動成分のみを抽出してAC信号を出力するハイパス・フィルタと,前記ハイパス・フィルタから出力されたAC信号を整流した信号を出力する信号処理部とを備えている。
【0014】
かかる構成によれば,気体供給手段により,まず液面上の気圧よりも高い圧力を有する気体例えば圧縮空気または不活性ガスを検出管の先端口まで充満するように検出管内に供給する。液面の高さが所定位置に到達するまで,検出管内の気体の圧力は液面上の気圧に保たれることになり,検出手段は,前述したように,一定水準の信号レベルに保たれた(平坦な)検出信号を有無検出回路のハイパス・フィルタに出力する。ハイパス・フィルタは,特に抽出する成分がないので,例えば信号レベルが零の信号を出力し,これを信号処理部に入力する。信号処理部は,“Lレベル”の信号を出力する。
【0015】
その後,液面の高さが所定位置に到達して検出管が処理液中に沈められると,気体供給手段は,常に検出管の先端口まで気体が充満するように、換言すれば液体が管内に入り込まないように,検出管内に気体を流し続ける。このため,検出管の先端口からは気泡(バブル)が断続的または周期的に出ることになり,検出管内の気体の圧力が変動し,検出手段は,変動成分を含んだ検出信号を有無検出回路のハイパス・フィルタに出力する。ハイパス・フィルタは,変動成分を抽出してAC信号を出力し,これを信号処理部に入力する。信号処理部は,AC信号を整流して“Hレベル”の信号を出力する。この“Hレベル”の信号により,液面の高さが所定位置に到達したことが判明する。このように,変動成分に基づいて液面の高さが所定位置に到達しているか判断しているので,有無検出回路は,確実な検出を行うことができる。
【0016】
また,検出管内の気体の圧力は,検出管の先端口が処理液から受ける圧力に等しく,管先端口の液面からの距離(深さ)に比例するという関係が成立する。検出管内の圧力を検出手段によって検出し,それによって得られる検出信号の信号レベルから検出管の先端口の深さを測定し,ひいては液面の高さを検出することが可能となる。そこで,前記検出手段により,前記液面の高さが前記処理槽の所定の高さに到達したことを検出するように構成しても良い。そうすれば,例えば処理槽内に処理液を所定の液量だけ充填することができるようになり,処理液の不足による処理能力低下や処理液の浪費を防止することができる。さらに処理槽の上部に,例えば処理槽内の液面の高さに上限を設定するリミットセンサ等を設ける必要がなくなる。
【0017】
処理槽内での処理液の液面の高さを検出する装置であって,前記処理槽内の所定位置で処理液の状態を検出し,検出信号を出力する検出手段と,前記処理液の液面が検出されていない状態における前記検出手段から出力される検出信号の信号レベルを基準検出信号の信号レベルとの間で補正して得た補正信号により,前記検出手段から出力される検出信号の信号レベルを補正して前記液面の高さを決定する液面検出回路とを備えていることを特徴とする,液面検出装置を提供する。
【0018】
まず処理槽内に処理液を供給し,処理液が溜まるにつれて液面が上昇する。検出手段は,処理槽内の所定位置で処理液の状態を検出し,検出信号を液面検出回路に出力する。液面の高さが処理槽内の所定位置まで到達後,検出手段は,液面の高さに対応した信号レベルの検出信号を出力する。ここで,液面検出回路において,基準検出信号の信号レベルは,例えば検出手段が正常に機能している場合の,液面の高さが所定位置に到達した時点における検出手段から出力される検出信号の信号レベルに設定されている。
【0019】
外部環境(温度や湿度等)による影響や経時変化により,検出手段にドリフトが起これば,実際の処理液の液面に対して信号レベルが嵩上げされた(下がった)検出信号が出力される。そこで,本発明によれば,液面検出回路は,例えば処理液の液面が検出されていない状態における検出手段から出力される検出信号の信号レベルと,前記基準検出信号の信号レベルとの差を演算することで,嵩上げされた(下がった)分を補正信号として得る。次いで,検出手段から出力される検出信号から補正信号を減算(加算)して補正を行い,ずれて嵩上げらされた(下がった)分を相殺する。このように補正された検出信号の信号レベルは,常に液面の高さに対応したものとなり,この検出信号の信号レベルに基づいて液面の高さを決定すれば,検出手段にドリフトが起こっても,正確に液面の高さを検出することができる。
【0020】
処理槽内での処理液の液面の高さを検出する装置であって,前記処理槽内の所定位置で処理液の状態を検出し,検出信号を出力する検出手段と,前記検出手段から出力される検出信号に基づいて前記液面の高さが前記所定位置に到達したことを検出する有無検出回路と,前記有無検出回路から検出信号が出力された時点における前記検出手段から出力される検出信号の信号レベルを基準検出信号の信号レベルとの間で補正して得た補正信号により,前記検出手段から出力される検出信号の信号レベルを補正して前記液面の高さを決定する液面検出回路とを備えていることを特徴とする,液面検出装置を提供する。
【0021】
まず処理槽内に処理液を供給し,処理液が溜まるにつれて液面が上昇する。検出手段は,処理槽内の所定位置で処理液の状態を検出し,検出信号を液面検出回路と有無検出回路に出力する。液面の高さが処理槽内の所定位置まで到達すると,有無検出回路がこれを検出し,液面検出回路に検出信号を出力する。液面の高さが処理槽内の所定位置まで到達後,検出手段は,液面の高さに対応した信号レベルの検出信号を出力する。ここで,液面検出回路において,基準検出信号の信号レベルは,例えば検出手段が正常に機能している場合の,液面の高さが所定位置に到達した時点における検出手段から出力される検出信号の信号レベルに設定されている。液面検出回路は,例えば有無検出回路から検出信号が出力された時点における検出手段から出力される検出信号の信号レベルと,前記基準検出信号の信号レベルとの差の演算することで,嵩上げされた(下がった)分を補正信号として得る。次いで,検出手段から出力される検出信号から補正信号を減算(加算)して補正を行い,ずれて嵩上げらされた(下がった)分を相殺する。従って,請求項4と同様に,補正された検出信号の信号レベルに基づいて液面の高さを決定すれば,検出手段にドリフトが起こっても,正確に液面の高さを検出することができる。
【0022】
液面を検出されるべき処理液に先端部が沈められ,かつ所定位置に先端口が開口している検出管と,前記処理液の液面上の気圧よりも高い圧力を有する所定の気体を前記検出管の先端口まで充満するように前記検出管内に供給する気体供給手段と,前記検出管内の気体の圧力に基づいて検出信号を出力する検出手段と,前記検出手段の出力端子が接続され,前記検出管の先端口に前記処理液の液面が接触したかどうかを検出する有無検出回路と,前記検出手段の出力端子が接続され,処理液の液面の高さを検出する液面検出回路とを備え,前記有無検出回路に,前記検出信号から変動成分のみを抽出してAC信号を出力するハイパス・フィルタと,前記ハイパス・フィルタから出力されたAC信号を整流した信号を出力する信号処理部を設け,前記液面検出回路に,前記検出信号から変動成分を除去した信号を出力するロー・フィルタと,前記検出管の先端口に前記処理液の液面が接触する前から直後の間における,前記ローパス・フィルタから出力された信号を記憶して出力する記憶部と,一方の入力端子にローパス・フィルタの出力端子が接続され,他方の入力端子に前記記憶部の出力端子が接続され,前記ローパス・フィルタから出力される信号と前記記憶部から出力される信号の差を演算する演算部とを設けたことを特徴とする,液面検出装置を提供する。
【0023】
処理槽内での処理液の液面の高さを検出する装置であって,前記処理槽内に取り付けられ,先端口が開口し気体が導入される検出管の圧力変化を検出し検出信号を出力する第1の検出手段と,前記第1の検出手段から出力される検出信号に基づいて前記液面の高さが前記所定位置に到達したことを検出する第1の有無検出回路と,前記第1の有無検出回路から出力される検出信号に基づいて,前記第1の検出手段から出力される検出信号の信号レベルを,前記液面の高さが前記所定位置に到達した時点での前記第1の検出手段から出力される検出信号の信号レベルとの間で補正して前記液面の高さを決定する液面検出回路と,前記処理槽内に取り付けられ,先端口が開口し気体が導入される検出管の圧力変化を検出し検出信号を出力する第2の検出手段と,前記第2の検出手段から出力される検出信号に基づいて前記液面の高さが前記所定位置に到達したこと検出する第2の有無検出回路とを備えていることを特徴とする,液面検出装置を提供する。
【0024】
また,本発明によれば、処理槽内での処理液の液面の高さを検出する方法であって,前記処理槽内に処理液を供給する工程と,前記液面を検出されるべき処理液に先端部が沈められ,かつ前記所定位置に先端口が開口している検出管の先端口まで充満するように前記処理液の液面上の気圧よりも高い圧力を有する所定の気体を供給し,検出管の圧力変化を検出する検出手段により,処理槽内の所定位置における圧力変化に基づいて検出信号を出力する工程と,前記検出信号から変動成分のみを抽出してAC信号を出力するハイパス・フィルタと,前記ハイパス・フィルタから出力されたAC信号を整流した信号を出力する信号処理部とを備えた前記有無検出回路により,前記液面の高さが前記所定位置の先端口に到達したことを検出する工程と,前記検出信号から変動成分を除去した信号を出力するローパス・フィルタと,予め基準検出信号を記憶し,前記検出管の先端口に前記処理液の液面が接触する前から直後の間における,前記ローパス・フィルタから出力された信号から前記基準検出信号を減算して補正信号ΔSを得る記憶部と,一方の入力端子にローパス・フィルタの出力端子が接続され,他方の入力端子に前記記憶部の出力端子が接続され,前記ローパス・フィルタから出力される信号から前記記憶部から出力される補正信号ΔSを減算した出力信号を得る演算部とを備え,前記記憶部は,前記有無検出回路によって前記液面の高さが前記所定位置の先端口に到達した時点において補正信号ΔSを得る液面検出回路により、補正信号ΔSを得る工程と,前記検出信号から前記補正信号ΔSを減算して補正して前記液面の高さを検出する工程とを有していることを特徴とする,液面検出方法が提供される。
【0025】
処理槽内の処理液の液面の高さを検出する方法であって,前記処理槽内に処理液を供給する工程と,前記処理槽に取り付けられた検出手段が,処理槽内の所定位置で処理液の状態を測定し,この測定により前記液面の高さを検出して検出信号を出力する工程と,前記液面の高さが前記所定位置に到達したことを検出する工程と,前記処理槽内に処理液を供給した時点における前記検出手段から出力される検出信号の信号レベルに基づいて,前記検出手段から出力される検出信号の信号レベルと前記液面の高さとの関係を補正して前記液面の高さを検出する工程とを有していることを特徴とする,液面検出方法を提供する。
【0026】
液面の高さが所定位置に到達した時点における検出信号の信号レベルと,処理液が供給された時点における検出信号の信号レベルにそれぞれ基づいて,検出手段から出力される検出信号の信号レベルと液面の高さとの関係を補正している。このため,検出手段のドリフトに関係なく,液面の高さの検出を正確に行うことができる。
【0027】
処理槽内での処理液の液面の高さを検出する方法であって,前記処理槽内に処理液を供給する工程と,前記処理槽内に取り付けられ,先端口が開口し気体が導入される検出管の圧力変化を検出する検出手段により,処理槽内の所定位置における圧力変化に基づいて処理液の位置を検出する工程と,前記圧力変化に基づいて検出信号を出力する工程とを有することを特徴とする,液面検出方法を提供する。
【0028】
検出管内に気体が導入されている。このため,処理液の液面が検出管の先端口に到達するまでは,検出管の圧力は変化せずに例えば液面上の気圧に保たれ,処理液の液面が検出管の先端口に到達すると,検出管の先端口からは気泡(バブル)が断続的または周期的に出て検出管の圧力は変化する。また,検出管内の圧力は,検出管の先端口が処理液から受ける圧力に等しく,管先端口の液面からの距離(深さ)に比例するという関係が成立する。このため,圧力変化に基づいて検出信号を出力することで,液面の高さを検出することが可能となる。従って,液面検出装置に好適に適用される。
【0029】
【発明の実施の形態】
以下,添付図面を参照しながら本発明の好ましい実施の形態を説明する。図1は,第1の実施の形態にかかる液面検出装置70を備えた液処理装置1の斜視図である。この液処理装置1は,キャリアC単位での基板としてのウェハWの搬入,ウェハWの洗浄,ウェハWの乾燥,キャリアC単位でのウェハWの搬出までを一貫して行うように構成されている。
【0030】
この液処理装置1において,搬入・取出部2は,洗浄前のウェハWを25枚収納したキャリアCを搬入しウェハWを洗浄に移行させるまでの動作を行う。即ち,搬入ステージ5に載置されたキャリアCを移送装置6によってローダ7へ例えば2個ずつ搬送し,このローダ7でキャリアCからウェハWを取り出す構成になっている。
【0031】
洗浄乾燥処理部10には,搬入・取出部2側から順に,ウェハWを搬送する搬送装置30のウェハチャック36を洗浄および乾燥するためのウェハチャック洗浄・乾燥装置11,各種薬液や純水等の処理液を用いてウェハWを洗浄する各ウェハ液処理装置12〜19,搬送装置33のウェハチャック38を洗浄および乾燥するためのウェハチャック洗浄・乾燥装置20,各ウェハ装置12〜19で洗浄されたウェハWを,例えばイソプロピルアルコール(IPA)蒸気を用いて乾燥させる乾燥装置21が配列されている。なお,一般的な洗浄プロセスに従い,薬液洗浄とリンス洗浄とが交互に行えるように洗浄乾燥処理部10では,ウェハ液処理装置12,14,16,18は薬液処理(例えばアンモニア処理,フッ酸処理,硫酸処理等)を行うように構成され,ウェハ液処理装置13,15,17,19はリンス処理を行うように構成されている。
【0032】
装填・搬出部50は,洗浄乾燥処理部10で洗浄,乾燥された25枚のウェハWをキャリアCに装填後キャリアC単位で搬出する。即ち,アンローダ51によって,洗浄後のウェハWが収納されたキャリアCを,移送装置(図示せず)によって,搬出ステージ52にまで搬送する構成になっている。
【0033】
洗浄乾燥処理部10の前面側(図1における手前側)には,搬入・取出部2側から装填・搬出部50側の順に搬送装置30,31,32,33が配列されている。搬送装置30〜33は何れも同様の構成を備えているので,例えばウェハチャック洗浄・乾燥装置11,ウェハ液処理装置12,13の相互間でウェハWを搬送させる搬送装置30を例にして説明すると,搬送装置30のウェハチャック36は,図2に示すように,キャリアC二つ分の複数枚のウェハW,即ち,この実施の形態においては50枚のウェハWを一括して把持する左右一対の把持部36a,36bを備えている。この把持部36a,36bは,回動自在(図2中のθ方向)に構成され,さらに前後方向(図2中のY方向),上下方向(図2中のZ方向)に移動自在に構成されている。また,搬送装置30自身は,ガイド(図示せず)に沿って液処理装置1の長手方向にスライド方向(図2中のX方向)に移動自在に構成されている。
【0034】
一方,ウェハ液処理装置12に備えられた液処理槽40の底部には,ウェハWを保持するためのウェハガイド41が図示のように設置されている。ウェハガイド41は,ガイド部42と,ガイド部42に水平姿勢で固着された3本の平行な保持部材43a,43b,43cとを備えている。各保持部材43a〜cに,ウェハWの周縁下部を保持する溝44が等間隔で50箇所形成されている。従って,ウェハガイド41は,50枚のウェハWを等間隔で配列させた状態で保持する構成となっている。
【0035】
次に,第1の実施の形態にかかる液面検出装置70について,図3に示すように,ウェハ液処理装置12に取り付けられた場合を例にとって説明する。まず,前記液処理槽40は,ウェハWを収納するのに充分な大きさを有する箱形の内槽65と外槽66から構成されている。液処理槽40内では,薬液として例えば塩酸成分が主体となったHPM(HCl/H/HOの混合液)が供給されて,金属不純物を除去するSC2洗浄が行われる。HPMの液面は大気に接している。外槽66は,内槽65の上端からオーバーフローしたHPMを受け止めるように,内槽65の開口部を取り囲んで装着されている。
【0036】
液面検出装置70は,検出管としてのセンサ管71と,気体供給手段72と,検出手段としての圧力センサ73と,電気回路部74とを備えている。
【0037】
センサ管71は,内槽65内で垂直に配設されている。その先端口71aは,内槽65内の所定位置Mで開口しており,通常のHPMの液面よりも低い高さにある。HPMの液面の高さを検出する際には,センサ管71の先端部がHPM中に沈められる。
【0038】
気体供給手段72は,センサ管71に介装されたフィルタ81,3方口弁82,ニードル弁83及びレギュレータ84を有しており,センサ管71は,これらを介して気体供給源例えばコンプレッサ(図示せず)に通じている。これにより,3方口弁82でセンサ管71の流路が開いているときは,気体供給源からの所定の圧力を有する気体例えば圧縮空気またはN等の不活性ガスGSが,レギュレータ84,ニードル弁83,フィルタ81を通って先端口71aまで供給されるようになっている。センサ管71内を流れる気体の圧力は,レギュレータ84及びニードル弁83によって制御される。気体供給手段72は,液面上の気圧よりも高い圧力を有する所定の気体を,センサ管71の先端口71aまで充満するようにセンサ管71内に供給するように構成されている。
【0039】
図4は,センサ管71の各位置における圧力を示す。この図4において,X0は気体供給源の出力口,X1はレギュレータ84の入力口,X2はニードル弁83の出力口,X3は先端口71aの各位置である。気体供給源より送出される気体の圧力(元圧)Poは,液面上の気圧(本実施形態では大気圧)よりも格段に大きな値たとえば3気圧(3×1.01325×10Pa)に設定される。この元圧Poは,レギュレータ84およびニードル弁83により,先端口71a付近の液体圧力に等しい圧力Pまで減圧される。ニードル弁83の出力口(X2)から先端口71a(X3)までのセンサ管71内は,圧力Pで一定になる。点線FLは,液面の高さが先端口71aよりも低い場合の各位置の圧力を示しており,この場合,ニードル弁83の出力口(X2)から先端口71a(X3)までのセンサ管71内の圧力は,大気圧(1.01325×10Pa)に等しい値Psになる。液面の高さが先端口71aよりも高くなると,換言すれば先端口71aがHPM中に沈むと,実線SLで示すように,ニードル弁83の出力口(X2)から先端口71a(X3)までのセンサ管71内の圧力は,先端口71aと液面の高さとの距離(深さD)に応じた圧力△Pだけ大気圧Psよりも上昇した圧力Pとなる。
【0040】
圧力センサ73は,フィルタ81から先端口71aまでの間の流路位置に,コネクタ90および引き込み管91を介して設けられており,センサ管71内の気体の圧力を検出するようになっている。圧力センサ73には,気体の圧力に応じて変位するダイヤフラムと,このダイヤフラム変位による圧力を電気信号(例えば電圧値)に変換するストレンゲージとを有する通常の圧力トランスデューサとして,例えばピエゾ抵抗効果を利用した高感度の半導体圧力センサ等が用いられている。
【0041】
圧力センサ73は,センサ管71内の圧力を表す電気信号として圧力検出信号S0を出力する。ここで,図5(a)の実線S0で示した圧力検出信号S0の経時変化について説明する。まず前述したように,液処理槽40にHPMが供給されて液面が先端口71a(所定位置M)に到達する時刻T1までは,センサ管71内の圧力は大気圧Psに維持されるので,この間,圧力センサ73は,一定水準の信号レベルの圧力検出信号S0を出力する。液面の高さが所定位置Mに到達する前から直後の間における圧力検出信号S0を,基準検出信号S0refとして設定する。なお,信号レベルとは,各検出信号の検出値を示している。
【0042】
その後,液面の高さが先端口71aよりも高くなり,先端口71aと液面の高さとの距離(深さD)が増大するにつれて,センサ管71内の圧力は上昇し,その圧力上昇に対応して圧力センサ73から出力される圧力検出信号S0の信号レベルも上昇する。このとき,気体供給手段72は,常にセンサ管71の先端口71aまで気体が充満するように,換言すればHPMが管内に入り込まないように,センサ管71内に気体を流し続ける。このため,先端口71aからは気泡(バブル)が断続的または周期的に出ることになり,いわゆるバブリングが起こり,センサ管71内の気体の圧力が変動する。このため,図5(a)に示すように,圧力検出信号S0は,変動しながら上昇していく。
【0043】
圧力センサ73の出力端子は,増幅器92を介して分岐した後,電気回路部74の有無検出回路93,液面検出回路94に各々接続されている。圧力検出信号S0は元々信号レベルが低いので,増幅器92によって増幅されて信号処理の可能な圧力検出信号S1となる(図5中の(a)中の実線S1で示す)。この圧力検出信号S1も時刻T1までは,基準検出信号S1refを出力し,また図示のように周期的な変動成分(リップル)を含んでいる。この変動成分は,前述したバブリングに起因するものである。圧力検出信号S1は,電気回路部74の有無検出回路93,液面検出回路94にそれぞれ入力される。
【0044】
有無検出回路93は,圧力検出信号S1から変動成分のみを抽出してAC信号S2を出力するハイパス・フィルタ95と,AC信号S2を整流した出力信号S3を出力する信号処理器96と備え,液面の高さが所定位置M,即ち先端口71aに到達したかどうかを検出する。
【0045】
まず液面の高さが所定位置Mに到達するまで,平坦な基準検出信号S1refはハイパス・フィルタ95に入力される。ハイパス・フィルタ95は,特に抽出する成分がないので零信号を出力する。この零信号は,信号処理器96の入力端子に与えられる。図5(c)に示すように,信号処理部96は,“Lレベル”の出力信号S3を出力する。一方,液面の高さが所定位置Mに到達して圧力検出信号S1が入力されると,ハイパス・フィルタ95は,圧力検出信号S1に含まれる低周波成分を除去して変動成分のみを抽出し,AC信号S2を出力する(図5(b))。このAC信号S2は,信号処理器96の入力端子に与えられる。信号処理器96は,AC信号S2を整流等により積分し,図5(c)に示すように,一定の閾値をもった即ち“Hレベル”の出力信号S3を出力する。この出力信号S3は,後述する記憶部としての信号ホールド器98(増幅器等からなる)に入力される。
【0046】
液面検出回路94は,液面の高さを検出する。液面検出回路94において,圧力検出信号S1は,まずローパス・フィルタ97に入力される。ローパス・フィルタ97は,圧力検出信号S1に含まれる高周波成分または変動成分を除去し,圧力検出信号S4を出力する(図5(d)中の実線S4で示す)。ローパス・フィルタ97の出力端子は分岐して,前述した信号ホールド器98と,演算増幅器99に各々接続されている。
【0047】
信号ホールド器98には,予め基準検出信号S4refが記憶されている。この基準検出信号S4refの信号レベルは,圧力センサ73が正常に機能している場合の,信号処理器96の出力信号が“Lレベル”から“Hレベル”になった時点における(液面の高さが所定位置Mに到達した時点における)ローパス・フィルタ97から出力される圧力検出信号S4L→Hの信号レベルに設定されている。ここで,信号ホールド器98では,液面の高さが所定位置Mに到達した時点におけるローパス・フィルタ97から出力される圧力検出信号S4L→Hから前記基準検出信号S4refを減算して補正信号△Sを得る。この補正信号△Sの値を次式(1)に示す。
【0048】
△S=S4L→H−S4ref ……(1)
【0049】
圧力センサ73が正常に機能している場合には,当然,圧力検出信号S4L→Hは,基準検出信号S4refは等しくなる(S4L→H=S4ref)ため,補正信号△Sの信号レベルは零になる。一方,後述するように,圧力センサ73にドリフトが起こり信号レベルに誤差が生じた場合には,圧力検出信号S4L→Hから基準検出信号S4refを減算することで,この誤差の分を補正信号△Sとして捉えることができる。
【0050】
図5(e)に示すように,信号ホールド器98は,補正信号△Sを出力し続ける。信号ホールド器98の出力端子は分岐して,演算増幅器99と警報器100に各々接続されている。警報器100は,補正信号△Sの信号レベルが,許容範囲を超えた高いものであれば,アラーム信号を出力し,圧力センサ73の異常等を知らせる。
【0051】
演算増幅器99では所定の演算が行われる。即ち,前述したように,一方の入力端子に信号ホールド器98の補正信号△Sが入力され,他方の入力端子にローパス・フィルタ97の圧力検出信号S4が入力され,圧力検出信号S4と補正信号△Sの差を演算して得た出力信号S5を出力する(図5(f))。出力信号S5の値を次式(2)に示す。
【0052】
S5=S4−△S ……(2)
【0053】
演算増幅器99の出力信号S5の信号レベルは,液面の高さが先端口71a(所定位置M)に到達した時点では前記基準検出信号S4refと等しく,その後,液面の高さが先端口71a(所定位置M)よりも高くなるに従って上昇する。このような出力信号S5は,圧力センサ73が正常に機能している場合の圧力検出信号S4と常に同じ波形となる。即ち,このことを先の図5(a)〜(f)に基づいて説明すれば,先ず圧力センサ73が正常に機能している場合には,前述したように補正信号△Sの信号レベルは零になり,前記式(2)から出力信号S5は,圧力センサ73が正常に機能している場合の圧力検出信号S4に等しくなる。
【0054】
一方,例えば圧力センサ73にドリフトが起こった場合,基準検出信号S0refにずれが生じ,実際のセンサ管71内の圧力に対して嵩上げされた圧力検出信号S0’(図5(a)中の二点鎖線S0’で示す)が出力される。そうなると,増幅器92からは,前記圧力検出信号S1よりも信号レベルが△Sだけ高い圧力検出信号S1’(図5(a)中の二点鎖線S1’で示す)が出力される。これに伴い,ローパス・フィルタ97からは,図5(d)に示すように,前記圧力センサ73が正常に機能している場合の圧力検出信号S4に信号レベル△Sを加えた圧力検出信号S4’(図5(d)中の二点鎖線S4’で示す)が出力される。ここで,圧力検出信号S4’の値を次式(3)に示す。
【0055】
S4’=S4+△S ……(3)
【0056】
前述したように信号ホールド器98では,液面の高さが所定位置Mに到達した時点におけるローパス・フィルタ97から出力される圧力検出信号S4L→Hから前記基準検出信号S4refを減算するので,信号ホールド器98からは,図5(e)に示すように,補正信号△Sが出力される。
【0057】
演算増幅器99には圧力検出信号S4’と補正信号△Sとが入力される。演算増幅器99は,圧力検出信号S4’から補正信号△Sを減算して出力信号S5を得る。このときの出力信号S5は,次式(4)から求めることができる。
【0058】
Figure 0004055839
【0059】
このように,液面検出装置70は,圧力検出信号S4(圧力検出信号S0を増幅器92で増幅した後にローパス・フィルタ97に通して得た信号)から補正信号△S(圧力検出信号S4L→Hから基準検出信号S4refを減算して得た信号)を減算して補正するので,ずれて嵩上げされた分(下がった分)を相殺し,外部環境や経時変化によって圧力センサ73にドリフトが起こっても,常に液面の高さ正確に対応した出力信号S5を得ることができる。
【0060】
その後,出力信号S5は,複数のコンパレータ101A,101B…の各々の一方の入力端子に与えられる。これら比較回路101A,101B…の各々の他方の入力端子には,設定回路(図示せず)より設定値J1,J2…が与えられる。これらの設定値J1,J2…は,液処理槽40における第1液面設定値,第2液面設定値…に対応している。液面の高さが第1液面設定値まで上昇すると,演算増幅器99の出力信号S5が設定値J1に達し,この時点T2 で比較回路101Aの出力信号が“Lレベル”から“Hレベル”に変わる(図5(g))。例えば比較回路101Aの出力端子がCPU(図示せず)等に接続されていれば,液面が第1液面設定値まで上昇したことをモニタ画面等に表示する。
【0061】
次に,ウェハ液処理装置12の各種構成について説明する。まず前記搬送装置30が,次の新たなウェハWを液処理槽40に搬入する場合,前に洗浄処理されたウェハWが液処理槽40内に未だ残っていると,これらウェハW同士が衝突して破損してしまう。ウェハWの破損を防止できるように,ウェハ液処理装置12は,液処理槽40内のウェハWの有無を検出できるように構成されている。
【0062】
図2及び図6に示すように,液処理槽40にウェハWを搬送する搬送装置30に,液処理槽40内に光を投光する投光器(図示せず)と,投光された光のなかで液処理槽40内から反射されてきた光を受光する受光器(図示せず)が内蔵された投光・受光部105が設けられている。液処理槽40に,一対の反射板106a,106bが対向するように設けられている。前記ウェハガイド41のガイド部42には,光を通過させるための通過孔107が形成されている。ここで,一方の反射板106aは,反射面を他方の106bに向けている。さらに,他方の反射板106bは,姿勢を斜めに傾けており,反射面を一方の反射板106aと液処理槽40の斜め上方(搬送装置30が移動した際には,ちょうど投光・受光部105に向く位置)に向けている。このため,反射板106bは,投光・受光部105により液処理槽40内に投光された光を反射板106aに反射すると共に,反射板106aから反射されて受けた光を投光・受光部105に反射できるように構成されている。
【0063】
反射板106a,106bは,何れも同様の構成を有しているので,反射板106aを例にとって説明する。図7(a)は,反射板106aの正面図であり,図7(b)は,反射板106aの断面図である。反射板106aは,鏡面を有した金属板108を,耐薬品性のある石英109で包みこんだモールド構造となっている。なお,金属板108の材質にはアルミ等を用いると良い。また,反射板の変形例を挙げると,例えば図8(a),(b)に示すように,反射板110aは,四角錘状のカット面が複数形成されたガラス111を石英109で包みこんだ構造でも良い。
【0064】
ウェハWが無い状態で,搬送装置30が液処理槽40に移動した場合,投光・受光部105から投光された光は,反射板106a,106bを介して反射されて投光・受光部105に入射される。投光・受光部105は,液処理槽40内から光を受けると,図9(a)に示すように,“Hレベル”のセンサ信号を例えばCPU(図示せず)等に出力し,液処理槽40内にウェハWが無いことを知らせる。このとき,液処理槽40内の液中に生じた気泡や液面上の波により,液処理槽40内で反射された光が散乱して投光・受光部105に入射されず,“Lレベル”のセンサ信号が出力されることもあるが,センサ信号の平均を取る事によってセンサ信号の信号レベルを大まかに判断し,このような小さな“Lレベル”のセンサ信号を無視するようになっている。一方,ウェハWが在る場合,投光・受光部105から投光された光は,ウェハWによって別の方向に反射されて投光・受光部105に入射されることはない。そうなると,投光・受光部105は,図9(b)に示すように,“Lレベル”の出力信号を例えばCPU(図示せず)等に出力し,液処理槽40内にウェハWが在ることを知らせる。
【0065】
従来のウェハ液処理装置においては,液処理槽の上部に一対の投光器,受光器を設け,さらに内槽の一方の側壁に形成された窓に投光器を設け,他方の側壁に形成された窓に受光器を設けて,ウェハの有無を検出していた。液処理槽に側壁に取り付けられた一対の投光器,受光器では,液処理槽内にウェハが無ければ,投光器からの光が受光器に受光されて,受光器から出力されるセンサ信号は,“Hレベル”になる。一方,液処理槽内にウェハが在れば,投光器からの光がウェハに遮断されて,受光器から出力されるセンサ信号は,“Lレベル”になる。しかしながら,従来のウェハ液処理装置においては,液処理槽の上部に設けられた一対の投光器,受光器では,当然のことながら液処理槽内のウェハの有無を確認することができない。また,液処理槽に側壁に取り付けられた一対の投光器,受光器に対しては,液処理槽内からオーバーフローした薬液がかかり,腐食して故障等を頻繁に起こすおそれがある。さらに窓が曇るとウェハの有無に関わらず,投光器からの光が受光器に届かないようになり,正確な検出が行えない。
【0066】
かかるウェハ液処理装置12によれば,投光・受光部105を搬送装置30に取り付けると共に,液処理槽40内に一対の反射板106a,106bを配置することにより,外部から液処理槽40内のウェハWの有無を確認することができる。このため,常に投光・受光部105から光を液処理槽40に向かって投光することができ,従来に比べて正確な検出を行うことができる。さらに,投光・受光部105には,液処理槽40からオーバーフローしたHPMがかかることがないので,故障等が起こりにくくなる。このため,長期に渡る使用が可能となり,メンテナンスコストに優れている。
【0067】
次いで,ウェハ液処理装置12にはメガソニック洗浄が用いられている。このメガソニック洗浄は,超音波により液処理槽40内に充填されたHPM(処理液)を振動させ,ウェハW上からパーティクル等をゆり落として除去するものである。メガソニック洗浄を実施できるように,図10に示すように液処理槽40の下方には,超音波を発振する振動板120を有したメガソニック装置121が装着され,このメガソニック装置121と液処理槽40との間には,水槽(中間槽)122が設けられている。振動板120からの超音波は,水槽122内の純水を介して液処理槽40内のHPMに伝搬するようになっている。
【0068】
水槽122には,純水を供給する純水供給管123が接続されていると共に,水槽122内からオーバーフローした純水を例えば回収ラインに流すオーバーフロー管124が接続されている。純水供給管123は,エアオペバルブ125を介して純水供給源(図示せず)に通じている。純水供給管123は,水槽122の下部から純水を供給し,水槽122内の純水を新たに置換したり,足りなくなった純水を適宜補充するようになっている。
【0069】
また,ウェハ液処理装置12において,内槽65と外槽66との間には,洗浄中にHPM(処理液)を循環させる循環回路130が接続されている。この循環回路130の入口はバルブ131を介して外槽66の底面に接続されている。循環回路130の途中には,ポンプ132,ダンパ133,ヒータユニット134,フィルタユニット135が順に配列されている。循環回路130の出口は,内槽65の下方に対をなして配置されたジェットノズル(図示せず)に接続されている。
【0070】
バルブ131を開くことによって,内槽65から外槽66にオーバーフローしたHPMを,循環回路130に流入させ,ポンプ132の稼働によって,ダンパ133,ヒータユニット134,フィルタユニット135の順に流し,温度調整及び清浄化した後,ジェットノズルを経て再び内槽65内に供給するようになっている。このように,HPMの再利用を図り,その消費量を節約している。なお,循環回路130には,バルブ136を介してドレイン管137が接続されており,外槽66内のHPMを排液するようになっている。同様に,内槽65の底部にドレイン管(図示せず)が接続されている。
【0071】
ここで,ウェハ液処理装置12は,純水供給管123に液処理槽40内のHPM(処理液)を中和させる性質を有する液体,例えばアンモニア水溶液(NHOH)を供給するアンモニア水溶液供給管138を接続し,水槽122にアンモニア水溶液する構成となっている。アンモニア水溶液供給管138は,エアオペバルブ139を介してアンモニア水溶液供給源(図示せず)に通じている。なお,エアオペバルブ125,139の代わりに,ミックス(MIX)バルブを用いても良い。
【0072】
メガソニック洗浄が行われる従来のウェハ液処理装置においては,水槽に純水のみが注入されている。このため,液処理槽内の薬液が酸性を有する液体では以下のような問題が考えられる。例えばHPMを用いてSC2洗浄を行う場合,塩酸雰囲気が水槽内に溶け込み振動板を酸化させて劣化させ,その製品寿命を短縮させてしまう可能性がある。
【0073】
かかるウェハ液処理装置12によれば, エアオペバルブ139を開き,アンモニア水溶液供給管138,純水供給管123を通してアンモニア水溶液を水槽122に適量に注入する。アンモニア水溶液の注入は,状況に応じて連続的又は間欠的に行う。このため,塩酸雰囲気が水槽122内に溶け込んで中の液体が酸性になっても,これを中和することができる。このときの化学反応を次式(5)に示す。
【0074】
HCl+NHOH → NHCl+HO ……(5)
【0075】
この場合,塩化アンモニウム(NHCl)が生成されるが,塩化アンモニウムは,水溶性が良く,固体として振動板120等に付着する可能性は極めて少ないので,プロセス上に悪影響を及ぼすことはないと考えられる。従って,振動板120の酸化を防止することができる。
【0076】
また,振動板120の超音波振動により,水槽122内に気泡が頻繁に発生する場合には,図11に示すように,ポンプ140が介装されたアンモニア水溶液供給管141を設け,水槽122の上部からアンモニア水溶液を注入しても良い。この場合,ポンプ140の吐出量を制御すれば,アンモニア水溶液の供給量を自在に調整することができる。なお,図10及び図11中において,略同一の機能及び構成を有する構成要素については,同一符号を付することにより,重複説明を省略する。
【0077】
次いで,ウェハ液処理装置12は,ヒータユニット134の過熱(オーバーヒート)を防止する構成となっている。即ち,図12に示すように,インライン形のヒータユニット134内にはヒータ線(発熱体)150と,ヒータ線150が所定温度以上に発熱すると断線する温度ヒューズ151が設けられている。電源供給源152の電力をヒータ線150に供給する第1の供給回路153には,温度ヒューズ151が断線した場合には第1の供給回路153の線路を遮断する通電閉形のMC(マグネットコンダクト)154が設けられている。
【0078】
温度ヒューズ151に対して,第2の供給回路155を通じてコントローラ156から電流が供給される。MC154は,第2の供給回路155に設けられた操作コイル157と,第1の供給回路153に設けられた遮断器158とを備え,操作コイル157を介して第2の供給回路155の電流を遮断器158に流すようになっている。遮断器158は,通電時には閉じて第1の供給回路153を導通させる。また,前記第1の供給回路153には,SSD(ソリッドステートリレー)159が設けられており,このSSD159は,コントローラ156に接続されている。
【0079】
従来のウェハ液処理装置は,例えば熱伝対等からなる温度センサを取り付けて液処理槽内の処理液の温度を検出している。ヒータユニットが過熱した状態になれば液処理槽内の処理液の温度が上昇し,これに伴って温度センサから出力される温度検出信号の信号レベルも上昇していく。ここで,温度センサの温度検出信号は微少な電気信号であるため,信号増幅部に入力されて信号処理の可能な信号レベルまで増幅される。信号増幅部の出力信号は,ヒータユニットに供給する電力量を制御する電力制御回路部に入力される。この電力制御回路部は,前記入力された出力信号が所定のレベルまで上昇していると,給電を中断させてヒータユニットの加熱を停止させる。しかしながら,従来のウェハ液処理装置においては,信号増幅部や電力制御回路部は,複雑な構成を有しているので,信号増幅部や電力制御回路部の個々の構成要素の一つにでも不具合が起これば,故障や誤動作を生じさせるおそれがある。例えば不具合により信号増幅部の増幅率に変動が生じ,信号増幅部から実際よりも信号レベルが高いか若しくは低い出力信号が電力制御回路部に入力されると,ヒータユニットが過熱していないのに給電を中断したり,逆にヒータユニットが過熱しているのにもかかわらず給電を続けてしまうおそれがある。
【0080】
かかるウェハ液処理装置12によれば,コントローラ156は,第2の供給回路155に電流を流す。遮断器158は閉じ,MC154は第1の供給回路153を導通させる。次いで,電源供給源152は,第1の供給回路153を通じてヒータ線150に電力を供給する。ヒータ線150は発熱して前記循環回路130内のHPMを加熱する。ここで,ヒータ線150が過熱してヒータユニット134内が所定温度以上になると,温度ヒューズ151が直ちに断線する。そうなると,第2の供給回路155には電流が流れなくなり,遮断器158は開き,MC154は第1の供給回路153の線路を遮断する。こうして,電力の供給が止まり,ヒータ線150は発熱しなくなる。
【0081】
このように,簡易な温度ヒューズ151と遮断器154を用いて,第1の供給回路153を断線させるという単純な構成であるため,誤動作が生じ難く,ヒータユニット154内が所定温度以上になると温度ヒューズ151が直ちに切れ,迅速かつ確実にヒータユニット134の過熱を防止することができる。従って,安全を図る上では,極めて信頼性が高い装置を実現する。
【0082】
次いで,ウェハ液処理装置12は,液処理槽40内のHPM(処理液)をサンプリング(採取)するように構成されている。先の図10に示すように,前記フィルタユニット135には,HPMを排液するドレイン管160と,HPMをサンプリングするためのサンプリング管161が接続されている。ドレイン管160にはバルブ162が,サンプリング管161にはバルブ163がそれぞれ介装されている。さらにフィルタユニット135は,循環回路130において液処理槽40の下方に位置する流路に配置されている。
【0083】
従来のウェハ液処理装置は,液処理槽の外槽の上部にサンプリング管が接続されている。液処理槽内の薬液の状態を調べる際には,サンプリング管を通じて外槽内の薬液を吸引して取り出さなくてはならず,サンプリング作業に手間がかかる。
【0084】
かかるウェハ液処理装置12によれば,液処理槽40内のHPMの状態を調べる際には,バルブ162を開ける一方でバルブ163を閉じ,フィルタユニット135に取り付けられたサンプリング管161を通じてHPMを取り出す。この場合,フィルタユニット135は,循環回路130において液処理槽40の下方に位置する流路に配置れているので,自重でサンプリング管161内からHPMを簡単に取り出すことができる。従って,従来のようにHPM(処理液)を吸引する必要がなくなり,サンプリング作業の負担を軽減することができる。なお,バルブ162を開ける一方でバルブ163を閉じれば,フィルタユニット135を通じて循環回路130内からHPMを排液することができる。
【0085】
次いで,配管を設ける際に使用されるサポート(支持)部材(サポート手段)について説明する。配管170を設置する空間S内には,サポート部材171,172が設けられている。なお,配管170には,例えばPFA(四フッ化エチレンとパーフロロアルキルビニルエーテルの共重合樹脂),PTFE(四フッ化エチレン樹脂),PVC(ポリ塩化ビニル)チューブ等が用いられる。
【0086】
サポート部材171は,配管170を保持する一対の配管保持具173a,173bと,一方の配管保持具173aに対して直角に固着されたフレーム174とを有する。一方の配管保持具173aには窪み175aが,他方の配管保持具173bには窪み175bがそれぞれ形成されている。配管保持具173a,173bは,シリコンゴム等の断熱材(図示せず)をかませて窪み175a,175bにより配管170を左右から挟み込み,このような状態で4本のネジ176により結合させられる。さらにフレーム174には,長手方向に沿って長穴177が形成されている。
【0087】
サポート部材172は,水平板180と,水平板180に直角に固着されたフレーム181とを有する。水平板181を,2本のネジ182によりベース183に取り付ければ,サポート部材171はベース183上で固定される。また,フレーム181にも長穴184が形成されている。
【0088】
この場合,サポート部材172に対してサポート部材171は水平方向(X方向),鉛直軸方向(Z方向)に移動であると共に,回動(θ方向)に自在である。また,図示の如くボルト185とナット186により長穴177,184を締め付ければ,サポート部材171,172とを結合することができる。ここで,ボルト185とナット186による締め付けを解き,サポート部材171とサポート部材172を分離させる。その後,サポート部材171をZ方向に昇降させたり,又は水平方向(X方向)に横移動させてサポート部材172とサポート部材171との距離を調整したり,さらにはθ方向に回動して,再びボルト185とナット186により長穴177,184を締め付けてサポート部材171,172とを結合させれば,空間S内における配管170がサポート位置を変更することができる。
【0089】
例えば回路を製作する場合,まず配管をサポート部材により空間内で支持し,このように支持された配管を他の配管等と繋ぎ合わさせる作業が行われる。他の配管と首尾良く繋ぎ合わせるためには,予め設計上決められたサポート位置で配管を支持することが必要である。しかしながら,通常,制作者等は,目でみながら配管の位置決めを正確に行うとするので,作業負担が大きい。また,位置決め作業に誤差が生じ,ずれたサポート位置で配管が固定されてしまうと,後の繋ぎ合わせ作業に支障をきたす。
【0090】
かかる構成によれば,配管170をサポート部材171,172により適当なサポート位置で支持しても,これらサポート部材171,172はいつでも分離し,その後にサポート部材171に対するサポート部材172の高さ(Z方向),距離(X方向)や角度(θ方向)等を調整して再び組み合わせることができるので,後の作業の際に,他の配管等との関係を見極めながら,配管170のサポート位置を簡単に修正することができる。従って,作業負担が減ると共に,繋ぎ合わせ作業等を好適に行えて回路製作等が容易になる。なお,サポート部材172を固定せずに,ベース183上で水平方向(X,Y方向)に移動自在に構成し,配管170のサポート範囲をより広げるようにしても良い。
【0091】
次に,以上のように構成された液処理装置1で行われる処理について説明する。まず,図示しない搬送ロボットが未だ洗浄されていないウェハWを例えば25枚ずつ収納したキャリアCを搬入・取出部2の搬入ステージ5に複数載置する。そして,この搬入・取出部2によって,例えばキャリアC2個分の50枚のウェハWをキャリアCから取り出し,搬送装置30が,ウェハWを50枚単位で一括して把持する。そして,それらウェハWを搬送装置31,32,33に引きつきながら,各ウェハ液処理装置12〜19に順次搬送する。こうして,ウェハWの表面に付着しているパーティクル等の不純物質を除去する洗浄を行う。
【0092】
ここで,HPM(HCl/H/HOの混合液)を用いてSC2洗浄を行うウェハ液処理装置12に取り付けられた液面検出装置70の作用について説明する。先ず液処理槽40内にHPMを供給し,HPMが溜まるにつれて液面が上昇する。
【0093】
圧力センサ73は,センサ管71内の圧力に基づいて圧力検出信号S0を出力している。この場合,圧力センサ73は,液面の高さがセンサ管71の先端口71a(所定位置M)に到達するまでは,一定水準の信号レベルに保たれた(平坦な)圧力検出信号S0を出力する。図5(a)に示したように,この液面の高さが所定位置Mに到達する前から直後の間における圧力センサ73から出力される圧力検出信号S0を,基準検出信号S0refとして設定する。
【0094】
その後,液面の高さが所定位置Mに到達してセンサ管71がHPM中に沈められると,センサ管71内のバブリングにより,圧力センサ71は,変動成分を含んだ圧力検出信号S0を出力する。この圧力検出信号S0は,増幅器92で増幅されて有無検出回路93に入力される。有無検出回路93において,ハイパス・フィルタ95は変動成分のみを抽出してAC信号S2を出力し,信号処理器96は,AC信号S2を整流して“Hレベル”の出力信号S3を出力し(図5(c)),液面の高さが所定位置Mに到達したことが判明する。このように,有無検出回路93は,圧力検出信号S0の変動成分を利用することにより,液面の高さが所定位置Mに到達したかどうかを確実に検出することができる。
【0095】
所定位置Mにおける深さ(内槽65の底面から先端口71aまでの高さ)は,既知の値であり,この時点でHPMがどのくらい溜っているか判明する。一方,前記圧力検出信号S0を増幅器92,ローパス・フィルタ97に通して得た圧力検出信号S4を,信号ホールド器98に入力している。信号ホールド器98では,信号処理器96の出力信号が“Lレベル”から“Hレベル”になった時点における(液面の高さが所定位置Mに到達した時点における)ローパス・フィルタ97から出力される圧力検出信号S4L→Hから,予め記憶されている基準検出信号S4refを減算し,補正信号△Sを出力する(図5中(e))。
【0096】
所定位置Mに到達後も液面の高さが上昇すれば,これに伴って圧力センサ73から出力される圧力検出信号S0の信号レベルも上昇する。液面検出回路94において,演算増幅器99は,前記圧力検出信号S4と信号ホールド器98から出力される補正信号△Sとの差を演算する。そして,演算増幅器99の出力信号S5(図5(f))の信号レベルに基づいて,コンパレータ101A,101B…により液面の高さからセンサ管71の先端口71aまでの深さDを測定し,ひいては液面の高さを検出する。出力信号S5が所定の信号レベルに到達すれば,液面の高さが液処理槽40内の所定の高さに到達したことが判明する。
【0097】
このように,液処理槽40内にHPMを供給する工程と,圧力センサ73から圧力検出信号S0を出力する工程と,圧力検出信号S0を増幅して圧力検出信号S1を出力する工程と,圧力検出信号S1をローパス・フィルタ97に入力して変動成分を取り除いて圧力検出信号S4を出力する工程と,液面の高さが所定位置Mに到達したことを検出する工程と,液面の高さが所定位置Mに到達した時点におけるローパス・フィルタ97から出力される圧力検出信号S4L→Hから基準検出信号S4refを減算して得た補正信号△Sを出力する工程と,液面の高さが所定位置Mに到達した後,圧力検出信号S4から補正信号△Sを減算して得た出力信号S5に基づいて液面の高さを検出する工程とが行われる。また,液面の高さが所定位置Mに到達したことを検出する工程では,圧力検出信号S1をハイパス・フィルタ95に入力して変動成分のみを抽出してAC信号を出力する工程と,AC信号を信号処理して“Hレベル”の出力信号S3を出力する工程とが行われる。また,基準検出信号S4refの信号レベルは,圧力センサ73が正常に機能している場合の,液面の高さが所定位置Mに到達した時点におけるローパス・フィルタ97から出力される圧力検出信号S4L→Hの信号レベルに等しい。
【0098】
ここで,外部環境(温度や湿度等)による影響や経時変化により,圧力センサ73にドリフトが起これば,実際のHPMの液面に対して信号レベルが嵩上げされた(下がった)圧力検出信号S0が出力され,ひいては図14中の二点鎖線S4’(二点鎖線S4”)で示すように,信号レベル△Sだけ嵩上げされた圧力検出信号S4’(信号レベル△Sだけ下がった圧力検出信号S4”)が出力される。
【0099】
かかる液面検出装置70によれば,液面検出回路94は,液面の高さが所定位置Mに到達する前に出力された圧力検出信号S4の信号レベルに基づいて,圧力検出信号S4の信号レベルと液面の高さとの関係を補正するので,圧力センサ73が正常に機能しているときと同じような液面の高さに対応した信号レベルを常に得ることができる。即ち,圧力センサ73が正常に機能している場合の,液面の高さが所定位置Mに到達した時点における圧力検出信号S4,即ち基準検出信号S4refの信号レベルと,圧力センサ73がドリフトが起こった場合の液面の高さが所定位置Mに到達した時点における圧力検出信号S4’(圧力検出信号S4”)の信号レベルとの差から嵩上げされた(下がった)信号レベル△Sをみて,この嵩上げされた(下がった)信号レベル△Sを補正(減算又は加算)すれば,図14中の圧力検出信号S4に示すような正常な信号レベルに正すことができる。従って,圧力センサにドリフトが起こっても,正確に液面を検出することが可能となる。
【0100】
しかも,圧力センサ73の圧力検出信号S0が,先端口71aと液面の高さとの距離(深さD)に対応し,この圧力検出信号S0に基づいて液面の高さを検出するので,液面の高さが液処理槽40の所定の高さに到達したことかどうかも正確に検出することができる。このため,例えば液処理槽40内にHPMを所定の液量だけ充填することができるようになり,HPMの不足による洗浄能力低下やHPMの浪費を防止することができる。その結果,高精度な製造技術を実現することができ,資源の節約等を図ることができる。また,液処理槽40の上部に,液面の高さの上限を設定するリミットセンサ等を特に設けなくて済むようになる。
【0101】
また,ローパス・フィルタ97から出力される圧力検出信号S4は,HPMが供給されてから液面の高さが所定位置Mに到達するまで,基本的に一定水準の信号レベルに保たれているので,液面の高さが所定位置Mに到達した時点に限らずに,液面の高さが所定位置Mに到達する前の何れかの時点で,信号ホールド器98において,ローパス・フィルタ97から出力される圧力検出信号S4から基準検出信号S4refを減算して補正信号△Sを得ても良い。例えば,気体供給源と信号ホールド器98とを直接電気的に接続し,HPMが供給された時点で気体供給源から“Hレベル”の出力信号を信号ホールド器98に入力する。そうすれば,信号ホールド器98は,信号処理器96の出力信号が“Lレベル”から“Hレベル”になった時点における(HPMが供給された時点における)ローパス・フィルタ97から出力される圧力検出信号S4L→Hから基準検出信号S4refを減算し,液面の高さが所定位置Mに到達する前から補正信号△Sを得ることができる。
【0102】
次に,第2の実施の形態にかかる液面検出装置200について説明する。この液面検出装置200は,液処理槽40の上部にて液面の高さの上限を検出するように構成されている。即ち,図15に示すように,液面検出装置200は,液面の高さの上限を検出するための,センサ管201と,気体供給手段202と,圧力センサ203(第2の検出手段)と,有無検出回路204(第2の有無検出手段)とを備えている。
【0103】
センサ管201の先端口201aは,内槽65の上部で液面の高さの上限を設定する上限所定位置Nに開口している。気体供給手段203は,センサ管201に介装されたフィルタ205,3方口弁206,ニードル弁207及びレギュレータ208を有しており,センサ管201は,これらを介して気体供給源例えばコンプレッサ(図示せず)に通じている。
【0104】
圧力センサ203は,フィルタ205から先端口201aまでの間の流路位置に,コネクタ210および引き込み管211を介して設けられており,センサ管201内の気体の圧力を検出するようになっている。圧力センサ203の出力端子は,増幅器222を介して分岐した後,電気回路部74の有無検出回路204に接続されている。有無検出回路204は,ハイパス・フィルタ223と,信号処理器224とを備えている。
【0105】
図16(a)に示すように,増幅器222から出力される圧力検出信号S6は,液処理槽40内にHPMが充填され,その液面の高さが先端口201a(上限所定位置N)に到達する時刻T3までは,一定水準の信号レベルに保たれる。液面の高さが先端口201aに到達すると,センサ管201内でバブリングが起こり,圧力検出信号S6は,変動しながら上昇していく。圧力検出信号S6が増幅された圧力検出信号S7は,ハイパス・フィルタ223に入力される。図16(b)に示すように,時刻T3以後,ハイパス・フィルタ223は,AC信号S8を出力し,信号処理器224は,Hレベル”の出力信号S9を例えばCPU(図示せず)に出力する。CPUは,このHレベル”の出力信号S9から液面の高さが上限所定位置Nに到達したことを検出し,HPMの供給を停止するように指示する。
【0106】
このように,液面の高さの上限を検出することで,液処理槽40から洗浄液が溢れ出すのを防止することができたり,又は洗浄液が液処理槽40内に所定の液量充填したことを確認することができる。
【0107】
次に,第3の実施の形態にかかる液面検出装置300について説明する。この液面検出装置300は,アナログ方式の前記液面検出装置70,200とは異なり,デジタル方式で液面の高さを検出するように構成されている。即ち,図17に示すように,液面検出回路301において,ローパス・フィルタ97の出力端子は,A/D変換器302に接続され,A/D変換器302の出力端子は,CPU303に接続されている。さらに前記信号処理器96の出力端子も,CPU303に接続されている。
【0108】
以上のように構成された液面検出装置300によれば,ローパス・フィルタ97の圧力検出信号S4は,A/D変換器302でサンプリングされデジタル信号S10に変換されてCPU303に入力される。CPU303は,予め基準デジタル信号S10ref(圧力センサ73が正常に機能している場合の,信号処理器96の出力信号が“Lレベル”から“Hレベル”になった時点におけるデジタル信号S10の信号レベル)を記憶しており,信号処理器96の出力信号が“Lレベル”から“Hレベル”になった時点におけるデジタル信号S10L→Hから前記基準デジタル信号S10refを減算し,デジタル補正信号を得る。以後,CPU303は,A/D変換器302から出力されるデジタル信号S10からデジタル補正信号を減算して液面の高さを検出する。こうして演算した結果,例えば液面の高さが所定の高さに到達したことが判明すれば,それをモニタ画面等に表示する。連続して変化する圧力検出信号S4を数値化されたデジタル信号S10に変換するので,安定した液面検出を行うことができる。
【0109】
なお,本発明の実施の形態の一例ついて説明したが,本発明はこの例に限らず種々の態様を取りうるものである。液面検出装置を,ウェハを洗浄処理する液処理装置以外に,例えばウェハに塗布液を塗布する装置に取り付けても良い。また,基板はウェハWに限定されずに,LCD基板,CD基板,プリント基板,セラミック基板等を処理液により処理する槽に,液面検出装置を取り付けても良い。
【0110】
【発明の効果】
本発明によれば,検出手段にドリフトが起こっても,正確に処理液の液面の高さを検出することができる。従って,例えば処理槽内に処理液を所定の液量だけ充填することができるようになり,処理液の不足による処理能力低下や処理液の浪費を防止することができる。その結果,高精度な製造技術を実現することができ,資源の節約等を図ることができる。
【0111】
特に,検出信号中の変動成分を利用するので,液面の高さが所定位置に到達したかどうかを確実に検出することができる。さらに,処理槽の上部に液面のリミットセンサ等を設ける必要がなくなる。
【0112】
検出手段のドリフトに関係なく,液面の検出を正確に行うことができる。液面検出装置に好適に適用される。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態にかかる液面検出装置を備えた液処理装置の斜視図である。
【図2】搬送装置とウェハ液処理装置を拡大して示す斜視図である。
【図3】本発明の第1の実施の形態にかかる液面検出装置の構成を示す説明図である。
【図4】図3の液面検出装置の回路の各位置における圧力を示す図である。
【図5】図3の液面検出装置の電気回路部の作用を説明するための信号波形図である。
【図6】搬送装置がウェハ液処理装置に移動した様子を示す説明図である。
【図7】反射板の正面と断面の様子を合わせて示した図である。
【図8】反射板の変形例の正面と断面の様子を合わせて示した図である。
【図9】液処理槽内にウェハが無い場合と在る場合の,投光・受光器のセンサ信号の波形を示す図である。
【図10】ウェハ液処理装置にかかる回路図である。
【図11】ウェハ液処理装置にかかる回路図の変形例である。
【図12】ヒータユニットにかかる回路図である。
【図13】配管のサポート部材を示す斜視図である。
【図14】正常な圧力検出信号の波形と,圧力センサにドリフトが起こって嵩上げされた(下がった)圧力検出信号の波形とを合わせて示した図である。
【図15】本発明の第2の実施の形態にかかる液面検出装置の構成を示す説明図である。
【図16】図15の液面検出装置において,液面の高さの上限を検出する圧力センサ,有無検出回路等の作用を説明するための信号波形図である。
【図17】本発明の第3の実施の形態にかかる液面検出装置の構成を示す説明図である。
【符号の説明】
1 液処理装置
12,13,14,15,16,17,18,19 ウェハ液処理装置
40 液処理槽
71 センサ管
71a 先端口
72 気体供給手段
99 演算増幅器
93 有無検出回路
94 液面検出回路
95 ハイパス・フィルタ
97 ローパス・フィルタ
98 信号ホールド器
M 所定位置
W ウェハ

Claims (2)

  1. 処理槽内での処理液の液面の高さを検出する装置であって,
    前記処理槽内の所定位置で処理液の状態を検出し,検出信号を出力する検出手段と,
    前記検出手段から出力される検出信号に基づいて前記液面の高さが前記所定位置に到達したことを検出する有無検出回路と,
    前記液面の高さが前記所定位置に到達する前から,前記液面の高さが前記所定位置に到達した直後の間における前記検出手段から出力される検出信号の信号レベルに基づいて,前記検出手段から出力される検出信号の信号レベルと前記液面の高さとの関係を補正して前記液面の高さを決定する液面検出回路と,
    前記液面を検出されるべき処理液に先端部が沈められ,かつ前記所定位置に先端口が開口している検出管と,
    前記処理液の液面上の気圧よりも高い圧力を有する所定の気体を前記検出管の先端口まで充満するように前記検出管内に供給する気体供給手段とを備え,
    前記検出手段は,前記検出管内の気体の圧力に基づいて検出信号を出力するように構成され,
    前記有無検出回路は,前記検出信号から変動成分のみを抽出してAC信号を出力するハイパス・フィルタと,前記ハイパス・フィルタから出力されたAC信号を整流した信号を出力する信号処理部とを備え,前記液面の高さが前記所定位置の先端口に到達したかどうかを検出し,
    前記液面検出回路は,前記検出信号から変動成分を除去した信号を出力するローパス・フィルタと,予め基準検出信号を記憶し,前記検出管の先端口に前記処理液の液面が接触する前から直後の間における,前記ローパス・フィルタから出力された信号から前記基準検出信号を減算して補正信号ΔSを得る記憶部と,一方の入力端子にローパス・フィルタの出力端子が接続され,他方の入力端子に前記記憶部の出力端子が接続され,前記ローパス・フィルタから出力される信号から前記記憶部から出力される補正信号ΔSを減算した出力信号を得る演算部とを備え,前記記憶部は,前記有無検出回路によって前記液面の高さが前記所定位置の先端口に到達した時点において補正信号ΔSを得ることを特徴とする,液面検出装置。
  2. 処理槽内での処理液の液面の高さを検出する方法であって,
    前記処理槽内に処理液を供給する工程と,
    前記液面を検出されるべき処理液に先端部が沈められ,かつ前記所定位置に先端口が開口している検出管の先端口まで充満するように前記処理液の液面上の気圧よりも高い圧力を有する所定の気体を供給し,検出管の圧力変化を検出する検出手段により,処理槽内の所定位置における圧力変化に基づいて検出信号を出力する工程と,
    前記検出信号から変動成分のみを抽出してAC信号を出力するハイパス・フィルタと,前記ハイパス・フィルタから出力されたAC信号を整流した信号を出力する信号処理部とを備えた前記有無検出回路により,前記液面の高さが前記所定位置の先端口に到達したことを検出する工程と,
    前記検出信号から変動成分を除去した信号を出力するローパス・フィルタと,予め基準検出信号を記憶し,前記検出管の先端口に前記処理液の液面が接触する前から直後の間における,前記ローパス・フィルタから出力された信号から前記基準検出信号を減算して補正信号ΔSを得る記憶部と,一方の入力端子にローパス・フィルタの出力端子が接続され,他方の入力端子に前記記憶部の出力端子が接続され,前記ローパス・フィルタから出力される信号から前記記憶部から出力される補正信号ΔSを減算した出力信号を得る演算部とを備え,前記記憶部は,前記有無検出回路によって前記液面の高さが前記所定位置の先端口に到達した時点において補正信号ΔSを得る液面検出回路により、補正信号ΔSを得る工程と,
    前記検出信号から前記補正信号ΔSを減算して補正して前記液面の高さを検出する工程とを有していることを特徴とする,液面検出方法。
JP2000127972A 2000-04-27 2000-04-27 液面検出装置及び方法 Expired - Fee Related JP4055839B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000127972A JP4055839B2 (ja) 2000-04-27 2000-04-27 液面検出装置及び方法
TW090110006A TW480573B (en) 2000-04-27 2001-04-26 Method and apparatus for detecting liquid level
KR1020010023079A KR100846813B1 (ko) 2000-04-27 2001-04-27 액면검출장치 및 방법
US09/844,838 US6715348B2 (en) 2000-04-27 2001-04-27 Method and apparatus for detecting liquid level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000127972A JP4055839B2 (ja) 2000-04-27 2000-04-27 液面検出装置及び方法

Publications (2)

Publication Number Publication Date
JP2001304937A JP2001304937A (ja) 2001-10-31
JP4055839B2 true JP4055839B2 (ja) 2008-03-05

Family

ID=18637485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000127972A Expired - Fee Related JP4055839B2 (ja) 2000-04-27 2000-04-27 液面検出装置及び方法

Country Status (4)

Country Link
US (1) US6715348B2 (ja)
JP (1) JP4055839B2 (ja)
KR (1) KR100846813B1 (ja)
TW (1) TW480573B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219409A (ja) * 2013-05-08 2014-11-20 リュトン ゲーエムベーハー 液体を検出する為のセンサ機器、及びその為の方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4059056B2 (ja) * 2002-10-18 2008-03-12 株式会社デンソー センサ装置およびセンサ装置の出力特性切換方法
US7536274B2 (en) * 2004-05-28 2009-05-19 Fisher-Rosemount Systems, Inc. System and method for detecting an abnormal situation associated with a heater
JP4576270B2 (ja) * 2005-03-29 2010-11-04 昭和電工株式会社 ハンダ回路基板の製造方法
US20060247803A1 (en) * 2005-03-29 2006-11-02 Kazushi Mori Control system, control method, process system, and computer readable storage medium and computer program
US7251998B2 (en) * 2005-05-25 2007-08-07 Bae Systems Information And Electronic Systems Integration Inc. Liquid measurement system having a plurality of differential pressure probes
WO2007007865A1 (en) * 2005-07-11 2007-01-18 Showa Denko K.K. Method for attachment of solder powder to electronic circuit board and solder-attached electronic circuit board
WO2007029866A1 (en) * 2005-09-09 2007-03-15 Showa Denko K.K. Method for attachment of solder powder to electronic circuit board and soldered electronic circuit board
KR100721291B1 (ko) * 2005-11-23 2007-05-25 세메스 주식회사 약액 저장장치 및 약액 저장장치의 버블 제거방법
US20080035181A1 (en) * 2006-08-09 2008-02-14 Tokyo Seimitsu Co., Ltd. Cleaning apparatus
DE102009033586A1 (de) * 2009-07-16 2011-01-20 Rena Gmbh Trägerloses Handhabungssystem
CA2843209C (en) * 2011-08-05 2019-09-24 Fisher Controls International Llc Methods and apparatus for level loop control
US11348860B2 (en) * 2012-04-23 2022-05-31 Enermax Technology Corporation Water-cooling thermal dissipating method
GB2556775B (en) * 2015-09-16 2019-10-09 Halliburton Energy Services Inc Method and apparatus for measuring characteristics of fluid in a reservoir
CN111375107B (zh) * 2020-01-19 2022-09-02 湖南明康中锦医疗科技发展有限公司 呼吸支持设备水盒水位监测系统、方法和呼吸支持设备
CN111504418B (zh) * 2020-05-20 2022-08-12 福建省微柏工业机器人有限公司 一种金属熔融液的液位检测装置及熔化炉液位检测方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845986A (en) * 1985-08-14 1989-07-11 Toyoda Gosei Co., Ltd. Liquid level indication device
US4739658A (en) * 1986-04-02 1988-04-26 Nuvatec, Inc. Level sensing system
JPS63292022A (ja) * 1987-05-26 1988-11-29 Toyoda Gosei Co Ltd 液面レベル計
DE3725752A1 (de) * 1987-08-04 1989-03-02 Vdo Schindling Verfahren und vorrichtung zur anzeige des fluessigkeitsniveaus in einem kraftfahrzeugtank
DE4115292A1 (de) * 1991-02-12 1992-11-12 Pfister Messtechnik Fuellstandsmessvorrichtung mit druckmessvorrichtung
JP2987731B2 (ja) 1992-09-28 1999-12-06 東京エレクトロン株式会社 液面検出装置及び方法
JP3076893B2 (ja) * 1994-04-20 2000-08-14 東京エレクトロン株式会社 液面検出装置及び圧力検出装置
JPH09189705A (ja) * 1996-01-12 1997-07-22 Olympus Optical Co Ltd 自動分注装置の液面検出方法及び液面検出装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219409A (ja) * 2013-05-08 2014-11-20 リュトン ゲーエムベーハー 液体を検出する為のセンサ機器、及びその為の方法

Also Published As

Publication number Publication date
KR20010099759A (ko) 2001-11-09
TW480573B (en) 2002-03-21
KR100846813B1 (ko) 2008-07-17
JP2001304937A (ja) 2001-10-31
US6715348B2 (en) 2004-04-06
US20020124646A1 (en) 2002-09-12

Similar Documents

Publication Publication Date Title
JP4055839B2 (ja) 液面検出装置及び方法
KR102450184B1 (ko) 기판 액처리 장치
US8393227B2 (en) Substrate processing method, storage medium storing program for executing the same, substrate processing apparatus, and fault detection method for differential pressure flowmeter
US7191545B2 (en) Apparatus to dry substrates
US11410861B2 (en) Substrate liquid processing apparatus
US6089377A (en) Semiconductor wafer carrier
KR102374403B1 (ko) 기판 반송 모듈 및 기판 반송 방법
JP7040871B2 (ja) 基板処理装置、及び基板処理装置の部品検査方法
US20040035449A1 (en) Wet cleaning facility having bubble-detecting device
US10366932B2 (en) Method and system for wet chemical bath process
KR102456832B1 (ko) 기판 처리 장치 및 기판 처리 방법
JP3343651B2 (ja) 洗浄処理方法
JP3343650B2 (ja) 洗浄処理装置
JP2023043501A (ja) 流量計校正システム、基板処理装置および流量計校正方法
CN110408982B (zh) 检查方法、检查装置以及具备该检查装置的电镀装置
JP2006234382A (ja) 温度測定システム
KR102612855B1 (ko) 누설 판정 방법 및 도금 장치
JP2010067811A (ja) 基板乾燥装置及び濃度算出方法
JP2007258564A (ja) 基板処理装置及びその方法
CN114864434A (zh) 基板处理装置、基板处理方法以及计算机可读记录介质
KR100653706B1 (ko) 반도체 제조설비의 케미컬 공급장치
JP2024065052A (ja) 基板検査装置およびそれを含む基板処理システム
KR20050071116A (ko) 포스트클리너의 불산농도측정장치 및 불산농도측정방법
KR20050020266A (ko) 반도체 제조설비
KR20040040538A (ko) 반도체 제조설비에서 초순수 레벨감지장치

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050601

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050617

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4055839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees