WO2019012744A1 - 機能剤含有繊維及びその製造方法 - Google Patents

機能剤含有繊維及びその製造方法 Download PDF

Info

Publication number
WO2019012744A1
WO2019012744A1 PCT/JP2018/012169 JP2018012169W WO2019012744A1 WO 2019012744 A1 WO2019012744 A1 WO 2019012744A1 JP 2018012169 W JP2018012169 W JP 2018012169W WO 2019012744 A1 WO2019012744 A1 WO 2019012744A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
silicone
functional agent
agent
functional
Prior art date
Application number
PCT/JP2018/012169
Other languages
English (en)
French (fr)
Inventor
入船真治
金井那矢
田中正喜
杉山稔
森島英暢
佐藤憲宏
Original Assignee
信越化学工業株式会社
倉敷紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社, 倉敷紡績株式会社 filed Critical 信越化学工業株式会社
Priority to KR1020207000874A priority Critical patent/KR102502567B1/ko
Priority to US16/630,316 priority patent/US11834779B2/en
Priority to EP18831865.3A priority patent/EP3653786A4/en
Priority to CN201880046532.5A priority patent/CN110892109B/zh
Publication of WO2019012744A1 publication Critical patent/WO2019012744A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/184Carboxylic acids; Anhydrides, halides or salts thereof
    • D06M13/188Monocarboxylic acids; Anhydrides, halides or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/144Alcohols; Metal alcoholates
    • D06M13/148Polyalcohols, e.g. glycerol or glucose
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/152Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen having a hydroxy group bound to a carbon atom of a six-membered aromatic ring
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/184Carboxylic acids; Anhydrides, halides or salts thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/18Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/18Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
    • D06M14/20Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of natural origin
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/18Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
    • D06M14/20Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of natural origin
    • D06M14/22Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of natural origin of vegetal origin, e.g. cellulose or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/15Proteins or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/6436Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing amino groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/65Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing epoxy groups
    • D06M15/651Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing epoxy groups comprising carboxylic groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/18Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
    • D06M14/20Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of natural origin
    • D06M14/24Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of natural origin of animal origin, e.g. wool or silk
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/10Animal fibres
    • D06M2101/12Keratin fibres or silk
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/25Resistance to light or sun, i.e. protection of the textile itself as well as UV shielding materials or treatment compositions therefor; Anti-yellowing treatments
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/50Modified hand or grip properties; Softening compositions

Definitions

  • the present invention relates to a functional agent-containing fiber in which a functional agent is supported on the fiber via silicone fixed to the fiber, and a method for producing the same.
  • Patent Document 1 proposes that a hydroxyproline or an N-acylated derivative of hydroxyproline known as an amino acid exhibiting a moisturizing effect or a salt thereof be fixed to a fiber product with a silicone based binder.
  • Patent Document 2 proposes that a functional component consisting of at least one of mucopolysaccharides and proteins derived from silk be immobilized on the fiber surface with a binder using a silicone emulsion as a binder base in order to impart contact cooling sensitivity. It is done.
  • Patent Document 3 proposes that a composite oxide containing titanium and silicon be provided on a fiber surface together with a silicone resin in order to impart functionality such as deodorizing property.
  • the present invention provides a functional agent-containing fiber having improved washing durability and a method for producing the same.
  • the present invention relates, in one embodiment, to a functional agent-containing fiber containing a functional agent, wherein the functional agent is carried by silicone fixed to the fiber, and the silicone has an acrylic group in one molecule.
  • the functional agent-containing fiber is characterized in that the functional agent-containing fiber contains an acryl-modified organopolysiloxane having at least one terminal, and the reduction rate of the functional agent after 10 times of washing is less than 40%.
  • the present invention relates, in one embodiment, to a method for producing a functional agent-containing fiber containing a functional agent, comprising irradiating a fiber impregnated with a fiber treatment agent (A) containing silicone with an electron beam to apply silicone to the fiber.
  • a fiber treatment agent (A) containing silicone with an electron beam to apply silicone to the fiber.
  • the step of fixing and the step of impregnating the fiber to which the silicone is fixed with a fiber treatment agent (B) containing a functional agent the silicone is an acrylic modified organopolysiloxane having two or more acrylic groups in one molecule.
  • the present invention relates to a method for producing a functional agent-containing fiber, characterized in that the functional agent is carried by silicone fixed to the fiber.
  • the present invention provides, in one embodiment, a method for producing a functional agent-containing fiber containing a functional agent, comprising the steps of: impregnating the fiber and a fiber treatment agent (C) containing a functional agent into the fiber; And irradiating the fiber with an electron beam to fix the silicone to the fiber, wherein the silicone comprises an acryl modified organopolysiloxane having two or more acryl groups in one molecule, and the functional agent comprises
  • the present invention relates to a method for producing a functional agent-containing fiber characterized by being supported by silicone fixed to the fiber.
  • the functional agent may be one or more selected from the group consisting of fatty acids, polyphenols, proteins and polysaccharides.
  • the fibers preferably include one or more natural fibers selected from the group consisting of cotton, silk, hemp, wool, angora and mohair.
  • the form of the fiber may be one or more selected from the group consisting of staples, filaments, tows, yarns, woven fabrics, knitted fabrics, cotton pads and non-woven fabrics.
  • a functional agent-containing fiber with improved washing durability can be provided. Moreover, according to the method for producing a fiber of the present invention, a functional agent-containing fiber having improved washing durability can be produced.
  • the inventors of the present invention have conducted studies on improving the washing durability of a functional agent-containing fiber containing a functional agent.
  • silicone containing an acryl-modified organopolysiloxane having two or more acryl groups in one molecule the silicone is firmly fixed to a fiber by electron beam irradiation, and a functional agent is supported on the silicone, It has been found that the drop of the functional agent from the functional agent-containing fiber is suppressed even after laundering, and the washing durability of the functional agent-containing fiber is improved, resulting in the present invention.
  • the silicone is fixed to the fiber, whereby the falling of the silicone due to washing is also suppressed.
  • an acryl-modified organopolysiloxane (A) having two or more acryl groups in one molecule as silicone radicals are generated by electron beam irradiation and the silicone is entangled in fibers by graft polymerization etc.
  • the silicone is fixed to the fiber by the progress of the crosslinking reaction between the silicones, and the functional agent is supported on the silicone by structurally entangled with the silicone fixed to the fiber, or the functional agent Because the functional agent is supported on the silicone by the hydrophobic interaction between the silicone and the silicone fixed to the fiber.
  • the acryl-modified organopolysiloxane (A) having two or more acryl groups in one molecule is not particularly limited.
  • it has a unit represented by the following general formula (1) in the molecule, and one molecule It is possible to use an acryl-modified organopolysiloxane in which two or more acryl groups are present.
  • R 1 is the same or different substituted or unsubstituted monovalent hydrocarbon group having 1 to 18 carbon atoms
  • R 2 is a hydrogen atom
  • m is an integer of 1 to 8
  • a is an integer of 1 to 8
  • B is a positive number
  • the substituted or unsubstituted monovalent hydrocarbon group having 1 to 18 carbon atoms is not particularly limited, and examples thereof include alkyl groups such as methyl group, ethyl group, propyl group and butyl group, and alkenyl groups such as vinyl group and allyl group.
  • R 1 is more preferably a methyl group.
  • the viscosity of the acryl-modified organopolysiloxane (A) at 25 ° C. is preferably in the range of 50 to 5000 mPa ⁇ s. If the viscosity at 25 ° C. is less than 50 mPa ⁇ s, it tends to be difficult to adhere to the fiber, and if it is more than 5000 mPa ⁇ s, the viscosity as the composition tends to be high and the treatment to the fiber tends to be difficult.
  • the viscosity at 25 ° C. of the acryl-modified organopolysiloxane (A) is more preferably 100 to 1000 mPa ⁇ s.
  • the acryl-modified organopolysiloxane (A) may be a single acryl-modified organopolysiloxane, or may be a mixture of a plurality of acryl-modified organopolysiloxanes having different degrees of polymerization and functional groups.
  • the silicone may further be an amino having one or more amino groups in one molecule represented by the following general formula (2) It may also contain a modified organopolysiloxane (B).
  • a plurality of R 3 s are the same or different substituted or unsubstituted monovalent hydrocarbon groups having 1 to 18 carbon atoms, a hydroxyl group, an alkoxy group or an amino group.
  • a plurality of R 4 s are the same or different substituted or unsubstituted monovalent hydrocarbon groups having 1 to 18 carbon atoms, or an amino group.
  • at least one of R 3 and R 4 is an amino group.
  • n is a positive number. Examples of the substituted or unsubstituted monovalent hydrocarbon group having 1 to 18 carbon atoms include those described above.
  • the amino group represented by R 3 or R 4 in the general formula (2) is not particularly limited, and examples thereof include an amino group represented by the following general formula (3).
  • R 5 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 8 carbon atoms
  • R 6 , R 7 and R 8 each are a hydrogen atom and a substitution of 1 to 4 carbon atoms Or an unsubstituted monovalent hydrocarbon group or —CH 2 CH (OH) CH 2 OH
  • c is an integer of 0 to 4.
  • the divalent hydrocarbon group having 1 to 8 carbon atoms include ethylene group, trimethylene group, tetramethylene group, hexamethylene group, alkylene group such as isobutylene, methylene phenylene group and methylene phenylene methylene group. Trimethylene group is preferred.
  • Examples of the substituted or unsubstituted monovalent hydrocarbon group having 1 to 4 carbon atoms include alkyl groups such as methyl group, ethyl group, propyl group and butyl group, alkenyl groups such as vinyl group and allyl group, or the like Mention may be made of a group in which a hydrogen atom bonded to a carbon atom of the group is partially substituted by a halogen atom, and among these, a methyl group is particularly preferable in terms of water repellency, smoothness and flexibility.
  • the amino-modified organopolysiloxane (B) preferably has a viscosity at 25 ° C. in the range of 50 to 5000 mPa ⁇ s. If the viscosity at 25 ° C. is less than 50 mPa ⁇ s, it tends to be difficult to adhere to the fiber, and if it is more than 5000 mPa ⁇ s, the viscosity as the composition tends to be high and the treatment to the fiber tends to be difficult.
  • the viscosity at 25 ° C. of the amino-modified organopolysiloxane (B) is more preferably 100 to 1000 mPa ⁇ s.
  • the total mass of the acrylic modified organopolysiloxane (A) and the amino modified organopolysiloxane (B) is not particularly limited, but from the viewpoint of enhancing the adhesion and feeling of silicone to fibers.
  • the blending amount of the acryl-modified organopolysiloxane (A) is 10 to 95% by mass, and the blending amount of the amino-modified organopolysiloxane (B) is 5 to 90% by mass
  • the blending amount of the acryl-modified organopolysiloxane (A) may be 30 to 90% by mass, and the blending amount of the amino-modified organopolysiloxane (B) may be 10 to 70% by mass.
  • the functional agent is not particularly limited as long as it can impart functionality to the fiber.
  • the functional agent may have a functional group such as an alkyl group or a phenyl group. Having such functional groups facilitates hydrophobic interaction with the silicone fixed to the fiber.
  • the functional agent may be a large molecule having a molecular weight of 260 or more. Such a large molecular weight tends to cause the silicone adhered to the fiber to be entangled.
  • the functional agent may have a branch or a side chain. Such branching and side chains make it easy for the silicone adhered to the fiber to be entangled.
  • a substance having a moisturizing effect (hereinafter, also referred to as a moisturizing agent), a substance having an antioxidant action (hereinafter, also referred to as an antioxidant), a substance having an ultraviolet absorbing action (hereinafter referred to as an ultraviolet absorber).
  • substances having an antibacterial deodorizing effect (hereinafter also referred to as antibacterial deodorant).
  • the moisturizer is not particularly limited, and examples thereof include fatty acids, polysaccharides, proteins and the like.
  • the antioxidant is not particularly limited, and examples thereof include polyphenol and protein.
  • the ultraviolet absorber is not particularly limited, and examples thereof include polyphenol and fatty acid. Examples of the antimicrobial deodorizer include polyphenols and proteins.
  • fatty acid For example, a stearic acid, an oleic acid, etc. are mentioned.
  • the polysaccharide is not particularly limited, and examples thereof include fucoidan.
  • sericin etc. are mentioned, for example. Sericin is excellent in moisturizing property and also has an atopic dermatitis suppressing effect, and additionally, has good carrying property to silicone.
  • the polyphenol include catechin, tannin, isosaponalin and the like.
  • the content of the functional agent may be appropriately determined depending on the type of the functional agent, the application of the functional agent-containing fiber, and the like, and is not particularly limited. In one embodiment of the invention, the content of functional agent in the fiber is measured as described below.
  • the reduction rate of the functional agent after washing 10 times is less than 40%, preferably 30% or less, more preferably 25% or less, further preferably 15% or less, Particularly preferably, it is 5% or less. Even after washing, the falling off of the functional agent is suppressed, and the effect of the functional agent is exhibited. That is, it can be used as a functional fiber even after washing.
  • the reduction rate of silicone after 10 times washing is less than 50%, preferably 35% or less, more preferably 15% or less, and further preferably 10% or less Preferably, it is 5% or less. Thereby, it has a good texture even after washing.
  • the silicone can be fixed to the fiber by electron beam irradiation.
  • the content of silicone in the fibers is measured as described below.
  • the reduction rate of the amount of Si after 10 times washing is less than 50%, preferably 35% or less, more preferably 15% or less, and 10% or less More preferably, it is 5% or less. Thereby, it has a good texture even after washing.
  • the silicone can be fixed to the fiber by electron beam irradiation.
  • the amount of Si in the fibers is measured as described below.
  • the fibers are not particularly limited, and may be natural fibers or synthetic fibers.
  • natural fibers include, but are not limited to, cotton, silk, hemp, wool, angora and mohair.
  • the synthetic fiber is not particularly limited, and examples thereof include polyester fiber, nylon fiber, acrylic fiber, spandex and the like. From the viewpoint of enhancing the adhesion of silicone to fibers, the fibers preferably include one or more natural fibers selected from the group consisting of cotton, silk, hemp, wool, angora and mohair.
  • the form of the fiber is not particularly limited, and may be, for example, any form such as staple, filament, tow, yarn, woven fabric, knitted fabric, wadding, non-woven fabric, paper and the like.
  • the functional agent-containing fiber is, for example, a fiber impregnated with a fiber treatment agent (A) containing silicone, which is irradiated with an electron beam to fix the silicone to the fiber, and then the silicone is treated. It can be produced by impregnating the fixed fibers with a fiber treatment agent (B) containing a functional agent and supporting the functional agent on the silicone fixed to the fibers.
  • the silicone contains the acryl modified organopolysiloxane (A), or contains a mixture of the acryl modified organopolysiloxane (A) and the amino modified organopolysiloxane (B).
  • the silicone that is, the acryl-modified organopolysiloxane (A), or a mixture of the acryl-modified organopolysiloxane (A) and the amino-modified organopolysiloxane (B) (hereinafter, also simply referred to as "silicone component"). May be used as a fiber treatment agent (A) as it is.
  • the silicone (silicone component) may be diluted with an organic solvent to be in a solution state and used as the fiber treatment agent (A).
  • the organic solvent is not particularly limited as long as it can dissolve the silicone.
  • the organic solvent include aromatic hydrocarbon solvents such as toluene and xylene, aliphatic hydrocarbon solvents such as hexane, octane and isoparaffin, ether solvents such as diisopropyl ether and 1,4-dioxane, or These mixed solvents etc. are mentioned.
  • the dilution concentration of the silicone component is not particularly limited, but the concentration of the silicone component, that is, the concentration of the acrylic modified organopolysiloxane (A), or the concentration of the acrylic modified organopolysiloxane (A) and the amino modified organopolysiloxane (B)
  • the total concentration may be 1 to 60% by mass, more preferably 1 to 20% by mass.
  • one in which water is used as a dispersion medium and a silicone component is made in an emulsion state may be used as a fiber treatment agent (A).
  • a nonionic surfactant, an anionic surfactant, a cationic surfactant, an amphoteric surfactant etc. can be used for this emulsification.
  • the nonionic surfactant is not particularly limited, and examples thereof include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, sorbitan alkylate, and polyoxyethylene sorbitan alkylate.
  • the anionic surfactant is not particularly limited, and examples thereof include alkyl benzene sulfonates and alkyl phosphates.
  • the cationic surfactant is not particularly limited, and examples thereof include quaternary ammonium salts and alkylamine salts.
  • the amphoteric surfactant is not particularly limited, and examples thereof include alkyl betaines and alkyl imidazolines. One of these surfactants may be used alone, or two or more thereof may be used in combination.
  • the surfactant is not particularly limited, but HLB (Hydrophilic-Lipophilic Balance, hydrophilic-lipophilic balance) is preferably 11 to 18, and more preferably 13 to 16 from the viewpoint of emulsifying silicone easily. .
  • the amount of the surfactant used is the silicone component, that is, 100 parts by mass of the acrylic modified organopolysiloxane (A), or a mixture of the acrylic modified organopolysiloxane (A) and the amino modified organopolysiloxane (B)
  • the amount is preferably 5 to 50 parts by mass, more preferably 10 to 30 parts by mass with respect to 100 parts by mass.
  • the amount of water used during emulsification may be any amount, but the concentration of the acrylic modified organopolysiloxane (A) or the acrylic modified organopolysiloxane (A) and the amino modified organopolysiloxane (B) The amount is generally such that the total concentration is 1 to 60% by mass, and preferably 1 to 20% by mass.
  • a surfactant is mixed and this is mixed with a homomixer, a homogenizer, It may be emulsified with an emulsification machine such as a colloid mill or line mixer.
  • the respective components are mixed in advance to form a solution state or an emulsion state. You may mix and mix what made each component the solution state and the emulsion state separately beforehand.
  • the method for impregnating the fibers with the fiber treatment agent (A) is not particularly limited, and, for example, known methods such as roll coating, gravure coating, wire doctor coating, air knife coating, dipping may be used.
  • the impregnation amount (also referred to as a coating amount) may be 0.01 to 20.0 g / m 2 , and more preferably 0.01 to 5 g / m 2 . By setting the amount of impregnation to the above range, the adhesion of silicone to fibers can be enhanced.
  • the fiber treatment agent (A) in the case of the form of an emulsion in which the fiber treatment agent (A) is a solution obtained by diluting silicone with an organic solvent or dispersed in water, the fiber treatment agent (A) is impregnated into fibers.
  • a drying step may be performed to volatilize water which is a dispersion medium of an organic solvent or an emulsion. Drying may be carried out by hot air spraying, heating furnace or the like, and the drying temperature and time may be arbitrary as long as the fibers are not affected. For example, the drying temperature is 100 to 150 ° C., and the drying time is 10 seconds to 10 seconds You can do it in the range of 5 minutes.
  • the fiber impregnated with the fiber treatment agent (A) is irradiated with an electron beam to fix the silicone to the fiber.
  • the electron beam irradiation apparatus is not particularly limited, and may be a curtain system, a scan system or a double scan system.
  • the accelerating voltage of the electron beam by the electron beam irradiation is not particularly limited, but may be, for example, in the range of 100 to 1000 kV. If the acceleration voltage is less than 100 kV, the amount of energy transmission may be insufficient, and if it exceeds 1000 kV, it is not economical. Further, the irradiation dose of the electron beam is not particularly limited, but may be, for example, in the range of 5 to 100 kGy.
  • the fiber treatment agent (A) is in a solution state in which silicone is diluted with an organic solvent, unreacted silicone is obtained by immersing (washing) the fiber with the organic solvent used to dilute the silicone after electron beam irradiation. May be removed.
  • the fiber treatment agent is an emulsion in which silicone is dispersed in water, unreacted silicone may be removed by washing the fiber with water after electron beam irradiation.
  • the functional agent in the case of a liquid, for example, may be used as it is as a fiber treatment agent (B).
  • the functional agent is not particularly limited, but may be dispersed in water to be in an emulsion state, as a fiber treatment agent (B), from the viewpoint of improving the handleability.
  • a surfactant may be used.
  • the functional agent may be dissolved in water to be an aqueous solution, and used as the fiber treatment agent (B).
  • the concentration of the functional agent in the fiber treatment agent (B) may be appropriately selected according to the type of the functional agent and the like.
  • the method for impregnating the fiber treatment agent (B) with the fiber to which the silicone is fixed is not particularly limited, but the same method as the method for impregnating the fiber treatment agent (A) described above to the fiber can be used.
  • the impregnation amount (also referred to as a coating amount) may be 0.01 to 20.0 g / m 2 , and more preferably 0.01 to 5 g / m 2 . By setting the amount of impregnation to the above-mentioned range, it is possible to improve the loading of the functional agent on the silicone fixed to the fiber.
  • drying may be carried out by hot air spraying, heating furnace or the like, and the drying temperature and time may be arbitrary as long as the fibers are not affected.
  • the drying temperature is 100 to 150 ° C.
  • the drying time is 10 seconds to 10 seconds You can do it in the range of 5 minutes.
  • the functional agent-containing fiber is, for example, after being impregnated with a fiber treatment agent (C) containing a silicone and a functional agent, the fiber treatment is performed because of the simplicity of the process.
  • the fiber impregnated with the agent (C) may be irradiated with an electron beam to fix silicone to the fiber, and the functional agent may be supported on the silicone fixed to the fiber.
  • an emulsion in which the silicone component and the functional agent are dispersed in water may be used.
  • an emulsion in which a silicone component is dispersed in an aqueous solution in which the functional agent is dissolved in water may be used.
  • a surfactant may be used.
  • the surfactant the same one as used in making the above-mentioned silicone component into an emulsion state can be used.
  • the concentration of the silicone component in the fiber treatment agent (C), that is, the concentration of the acrylic modified organopolysiloxane (A), or the total concentration of the acrylic modified organopolysiloxane (A) and the amino modified organopolysiloxane (B) is 1 to It may be 60% by mass, more preferably 1 to 20% by mass.
  • the concentration of the functional agent in the fiber treatment agent (C) may be appropriately selected according to the type of the functional agent and the like.
  • the method for impregnating the fibers with the fiber treatment agent (C) is not particularly limited, and for example, known methods such as roll coating, gravure coating, wire doctor coating, air knife coating, dipping may be used.
  • the impregnation amount (also referred to as a coating amount) may be 0.01 to 20.0 g / m 2 , and more preferably 0.01 to 5 g / m 2 . By setting the amount of impregnation to the above range, the adhesion of silicone to fibers can be enhanced.
  • a drying step may be performed to volatilize water. Drying may be carried out by hot air spraying, heating furnace or the like, and the drying temperature and time may be arbitrary as long as the fibers are not affected. For example, the drying temperature is 100 to 150 ° C., and the drying time is 10 seconds to 10 seconds You can do it in the range of 5 minutes.
  • Electron beam irradiation to the fiber impregnated with the fiber treatment agent (C) is not particularly limited, and the method and conditions are the same as in the case of irradiating the fiber impregnated with the fiber treatment agent (A) to an electron beam. It can be carried out. Alternatively, unreacted silicone may be removed by washing the fiber with water after electron beam irradiation.
  • the fiber treatment agent (A), the fiber treatment agent (B) and the fiber treatment agent (C) are not limited to the properties of the fiber treatment agent, for example, wrinkle agents Flame retardants, antistatic agents, heat-resistant agents, etc. may be added.
  • Total content of initial silicone and functional agent The mass (W0) of the starting material (fabric) before applying the silicone and the functional agent, and the mass (W1) of the sample (fabric) obtained by applying the silicone and the functional agent are measured, and the silicone of the initial formula is And the total content (mass%) of the functional agent was calculated.
  • the value measured and calculated as mentioned above turns into content of the initial functional agent.
  • the mass (W0t) of all elements contained in the sample before washing and the mass (W0s) of Si atoms are measured by EZ scan method using Rigaku X-ray fluorescence analyzer ZSX100e, and the initial amount of Si and The initial amount of silicone (% by mass) was calculated.
  • MWs represents the molecular weight of the silicone used to impregnate the fabric
  • NSi represents the number of Si atoms per molecule in the silicone used to impregnate the fabric.
  • Si amount after 10 washes and silicone content after 10 washes The sample is washed 10 times with JIS L 0217 103 method (detergent is JAFET) and dried, and then included in the sample after 10 times washing with EZ scan method using Rigaku fluorescent X-ray analyzer ZSX100e
  • the mass (W10t) of all the elements to be treated and the mass (W10s) of Si atoms were measured, and the Si amount after 10 washes and the silicone content after 10 washes were calculated according to the following formula.
  • MWs represents the molecular weight of the silicone used to impregnate the fabric
  • NSi represents the number of Si atoms per molecule in the silicone used to impregnate the fabric.
  • Example 1 First, an acrylic modified organopolysiloxane (A1) represented by the following average molecular formula (4), oleic acid and water are mixed, and the concentration of the acrylic modified organopolysiloxane (A1) is 10% by mass; A fiber treatment agent (C1) having a concentration of 5.0% by mass was prepared. Next, 100% by mass of cotton broad cloth (made by Kurabo) was dipped in the fiber treatment agent (C1), then squeezed using a mangle roll under the condition of a squeezing rate of 60%, and dried at 110 ° C. for 90 seconds.
  • a fiber treatment agent (C1) having a concentration of 5.0% by mass was prepared.
  • 100% by mass of cotton broad cloth made by Kurabo
  • was dipped in the fiber treatment agent (C1) was dipped in the fiber treatment agent (C1), then squeezed using a mangle roll under the condition of a squeezing rate of 60%, and dried at 110 ° C. for 90 seconds.
  • an electron beam of 40 kGy was irradiated at an acceleration voltage of 200 kV in a nitrogen atmosphere.
  • the fiber after electron beam treatment (cotton 100% by mass broad cloth) is washed with water, and then squeezed using a mangle roll under the condition of a squeezing rate of 60%, dried at 110 ° C. for 90 seconds, and oleic acid-containing fiber Was produced.
  • Example 2 The acrylic modified organopolysiloxane (A1) represented by the above average molecular formula (4), sericin (Tango Textile Industry Association, product name “sericin-SS”) and water are mixed to obtain acrylic modified organopolysiloxane (A1)
  • a sericin-containing fiber was produced in the same manner as in Example 1 except that the fiber treatment agent (C2) was used instead of the fiber treatment agent (C1).
  • Example 3 The concentration of the acrylic modified organopolysiloxane (A1) by mixing the acrylic modified organopolysiloxane (A1) represented by the above average molecular formula (4), fucoidan (Takara Bio Inc., trade name "Takara seaweed extract”) and water
  • a fiber treatment agent (C3) having a concentration of fucoidan of 10% by mass and a concentration of fucoidan of 1.5% by mass was prepared.
  • a fucoidan-containing fiber was produced in the same manner as in Example 1 except that the fiber treatment agent (C3) was used instead of the fiber treatment agent (C1).
  • Example 4 The acrylic modified organopolysiloxane (A1) represented by the above average molecular formula (4) and water were mixed to prepare a fiber treatment agent (A1) having a concentration of 10% by mass of the acrylic modified organopolysiloxane (A1). After immersing 100% by mass of cotton cloth (made by Kurabo) in the obtained fiber treatment agent (A1), it is squeezed using a mangle roll under the conditions of a drawing rate of 60% and dried at 110 ° C.
  • Electron beams of 40 kGy were irradiated at an accelerating voltage of 200 kV in a nitrogen atmosphere using an electron beam irradiation apparatus EC 250/30/90 L (manufactured by Iwasaki Electric Co., Ltd.).
  • the fiber after electron beam treatment (cotton 100 mass% broad cloth) is washed with water, squeezed using a mangle roll under the condition of 60% throttling rate, dried at 110 ° C. for 90 seconds, and silicone is fixed. Fibers were made.
  • a fiber treatment agent (B1) having a concentration of isosaponaline of 2.0% by mass was prepared by mixing isosaponalin (Golden Co., Ltd., product name: "wasabi flavone”) and water.
  • isosaponalin Golden Co., Ltd., product name: "wasabi flavone”
  • 100% by mass of cotton cloth is dipped in a fiber treatment agent (B1), squeezed using a mangle roll under the condition of a throttling rate of 60%, dried at 110 ° C. for 90 seconds, Made.
  • the concentration of the acryl-modified organopolysiloxane (A1) by mixing the acryl-modified organopolysiloxane (A1) represented by the above average molecular formula (4), glyceryl glucoside (manufactured by Kurama Shuzo, product name “ ⁇ GG-L”) and water
  • the fiber treatment agent (C5) was prepared with a concentration of 10 wt% and a concentration of glyceryl glucoside of 35.0 wt%.
  • a glyceryl glucoside-containing fiber was produced in the same manner as in Example 1 except that the fiber treatment agent (C5) was used instead of the fiber treatment agent (C1).
  • a fiber treatment agent (C2) having a concentration of acrylic modified organopolysiloxane (A1) of 10% by mass and a concentration of sericin of 0.8% by mass was prepared.
  • a fiber treatment agent (C2) After immersing 100% by mass of cotton cloth (made by Kurabo) in a fiber treatment agent (C2), it is squeezed using a mangle roll under the condition of a squeezing rate of 60% and then washed with water and having a squeezing rate of 60% The resulting product was squeezed using mangle roll under the following conditions and dried at 110 ° C. for 90 seconds to prepare a sericin-containing fiber.
  • Comparative example 7 In the same manner as Comparative Example 2, a fiber treatment agent (B3) having a sericin concentration of 0.8% by mass was prepared. Next, 100% by mass of cotton cloth (made by Kurabo) is dipped in a fiber treatment agent (B3) and dried at 110 ° C. for 90 seconds using a mangle roll under the condition of a drawing rate of 60% to produce sericin-containing fibers did. Next, using an area beam type electron beam irradiation apparatus EC250 / 15 / 180L (manufactured by Iwasaki Electric Co., Ltd.), an electron beam of 40 kGy was irradiated at an acceleration voltage of 200 kV in a nitrogen atmosphere.
  • an area beam type electron beam irradiation apparatus EC250 / 15 / 180L manufactured by Iwasaki Electric Co., Ltd.
  • the fiber after electron beam treatment (cotton 100% by mass broad cloth) is washed with water, squeezed using a mangle roll under the condition of a squeezing rate of 60%, and dried at 110 ° C. for 90 seconds to obtain sericin-containing fiber Made.
  • Example 2 The moisture content of the fabric obtained in Example 2 was measured as described above, and the results are shown in Table 2 below. In addition, the moisture content after washing the fabric obtained in Example 2 10 times was measured as described above, and the results are shown in Table 2 below. As a control example, the moisture content before and after washing of 100% by mass cotton (made by Kurabo) was measured, and the results are shown in Table 2 below.
  • Example 2 the fiber of Example 2 in which the moisturizing agent sericin is supported by the silicone adhered to the fiber is compared with the comparative example containing no functional agent, even after laundering, The water retention rate was high.
  • Comparative Examples 1 to 4 in which the functional agent is provided by impregnating the fiber with the fiber treatment agent containing the functional agent, the functional agent is initially attached to the fiber but most of the functional agents are after washing. It was dropped out.
  • the fiber treatment agent (C) containing the acrylic modified organopolysiloxane (A) and the functional agent electron beam irradiation was performed, but in Comparative Example 5 using glyceryl glucoside as the functional agent, although the functional agent was attached to the fiber, most of the functional agent had fallen off after washing.
  • the fiber treatment agent (C) containing an acryl modified organopolysiloxane (A) and a functional agent was impregnated in the fiber, the functional agent adheres to the fiber in the initial stage also in Comparative Example 6 where the electron beam is not irradiated. However, most functional agents were dropped after washing. After impregnating the fiber with the fiber treatment agent (B) containing only the functional agent without containing the acrylic modified organopolysiloxane (A), the functional agent is attached to the fiber in the initial stage also in Comparative Example 7 where the electron beam is irradiated. However, most functional agents were dropped off after washing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Emergency Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

本発明の一実施形態の機能剤含有繊維において、前記機能剤は繊維に固着されたシリコーンに担持されており、前記シリコーンは、一分子中にアクリル基を2個以上持つアクリル変性オルガノポリシロキサンを含み、前記機能剤含有繊維において、10回洗濯後の機能剤の減少率が40%未満である。本発明において、シリコーンを含む繊維処理剤Aを含浸させた繊維に電子線を照射し、シリコーンを繊維に固着させた後、前記シリコーンが固着された繊維に機能剤を含む繊維処理剤Bを含浸させることで、機能剤含有繊維を作製してもよく、シリコーン及び機能剤を含む繊維処理剤Cを繊維に含浸させた後、繊維処理剤Cを含浸させた繊維に電子線を照射し、シリコーンを繊維に固着させ、機能剤を繊維に固着されたシリコーンに担持させることで、機能剤含有繊維を作製してもよい。これにより、洗濯耐久性が向上した機能剤含有繊維及びその製造方法を提供する。

Description

機能剤含有繊維及びその製造方法
 本発明は、繊維に固着されたシリコーンを介して機能剤が繊維に担持されている機能剤含有繊維及びその製造方法に関する。
 近年、繊維に保湿性、消臭性などの機能性を付与するため、各種機能剤を繊維に付着させることが行われている。例えば、特許文献1には、保湿効果を示すアミノ酸として知られているヒドロキシプロリンもしくはヒドロキシプロリンのN-アシル化誘導体又はその塩をシリコーン系バインダーにて繊維製品に固着させることが提案されている。特許文献2には、接触冷感性を付与するため、ムコ多糖類及びシルク由来のタンパク質の少なくとも一種からなる機能成分を、シリコーンエマルジョンをバインダー基剤とするバインダーにて繊維表面に固定することが提案されている。特許文献3には、消臭性などの機能性を付与するため、チタンとケイ素を含む複合酸化物をシリコーン系樹脂とともに繊維表面上に付与することが提案されている。
国際公開公報第2006/120851号 特開2007-224429号公報 特開2001-181964号公報
 しかしながら、特許文献1~3に記載のジメチルポリシロキサンやヒドロキシル基含有シリコーン樹脂をバインダーとして用いた機能性繊維は、洗濯耐久性に劣り、洗濯によって、機能剤が繊維から脱落しやすいという問題があった。
 本発明は、上記問題を解決するため、洗濯耐久性が向上した機能剤含有繊維及びその製造方法を提供する。
 本発明は、一実施形態において、機能剤を含有する機能剤含有繊維であって、前記機能剤は繊維に固着されたシリコーンに担持されており、前記シリコーンは、一分子中にアクリル基を2個以上持つアクリル変性オルガノポリシロキサンを含み、前記機能剤含有繊維において、10回洗濯後の機能剤の減少率が40%未満であることを特徴とする機能剤含有繊維に関する。
 本発明は、一実施形態において、機能剤を含有する機能剤含有繊維の製造方法であって、シリコーンを含む繊維処理剤(A)を含浸させた繊維に電子線を照射し、シリコーンを繊維に固着させる工程と、前記シリコーンが固着された繊維に機能剤を含む繊維処理剤(B)を含浸させる工程を含み、前記シリコーンは、一分子中にアクリル基を2個以上持つアクリル変性オルガノポリシロキサンを含み、前記機能剤は繊維に固着されたシリコーンに担持されていることを特徴とする機能剤含有繊維の製造方法に関する。
 本発明は、一実施形態において、機能剤を含有する機能剤含有繊維の製造方法であって、シリコーン及び機能剤を含む繊維処理剤(C)を繊維に含浸させる工程と、繊維処理剤(C)を含浸させた繊維に電子線を照射し、シリコーンを繊維に固着させる工程を含み、前記シリコーンは、一分子中にアクリル基を2個以上持つアクリル変性オルガノポリシロキサンを含み、前記機能剤は繊維に固着されたシリコーンに担持されていることを特徴とする機能剤含有繊維の製造方法に関する。
 本発明の一実施形態において、前記機能剤は、脂肪酸、ポリフェノール、タンパク質及び多糖類からなる群から選ばれる一つ以上であってもよい。
 本発明の一実施形態において、前記繊維は、綿、絹、麻、ウール、アンゴラ及びモヘアからなる群から選ばれる一種以上の天然繊維を含むことが好ましい。本発明の一実施形態において、前記繊維の形態は、ステープル、フィラメント、トウ、糸、織物、編み物、詰め綿及び不織布からなる群から選ばれる一種以上であってもよい。
 本発明によれば、洗濯耐久性が向上した機能剤含有繊維を提供することができる。また、本発明の繊維の製造方法によれば、洗濯耐久性が向上した機能剤含有繊維を製造することができる。
 本発明者らは、機能剤を含有する機能剤含有繊維において、洗濯耐久性を改善することについて検討を重ねた。その結果、一分子中にアクリル基を2個以上持つアクリル変性オルガノポリシロキサンを含むシリコーンを用い、電子線照射によりシリコーンを繊維に強固に固着させるとともに、該シリコーンに機能剤を担持させることで、洗濯後においても、機能剤含有繊維からの機能剤の脱落が抑制され、機能剤含有繊維の洗濯耐久性が向上することを見出し、本発明に至った。前記機能剤含有繊維においては、シリコーンが繊維に固着されていることにより、洗濯によるシリコーンの脱落も抑制される。これは、シリコーンとして、一分子中にアクリル基を2個以上持つアクリル変性オルガノポリシロキサン(A)を用いることで、電子線照射により、ラジカルが発生し、グラフト重合などによりシリコーンが繊維に絡みつくとともに、シリコーン同士の架橋反応が進行することでシリコーンが繊維に固着されることと、機能剤が繊維に固着されたシリコーンに構造的に絡みつくことで機能剤がシリコーンに担持される、或いは、機能剤と繊維に固着されたシリコーンの疎水性相互作用によって機能剤がシリコーンに担持されるためである。
 前記一分子中にアクリル基を2個以上持つアクリル変性オルガノポリシロキサン(A)としては、特に限定されないが、例えば、分子中に下記一般式(1)で表される単位を有し、一分子中にアクリル基が2個以上存在するアクリル変性オルガノポリシロキサンを用いることができる。
Figure JPOXMLDOC01-appb-C000001
 前記一般式(1)中、R1は、同一又は異種の炭素数1~18の置換若しくは非置換の1価炭化水素基、R2は水素原子であり、mは1~8の整数、a、bは正数で、かつa+b≦3である。炭素数1~18の置換若しくは非置換の1価炭化水素基としては、特に限定されないが、例えば、メチル基、エチル基、プロピル基、ブチル基などのアルキル基、ビニル基、アリル基などのアルケニル基、フェニル基、トリル基などのアリール基、またはこれらの基の炭素原子に結合している水素原子の一部若しくは全部をハロゲン原子またはシアノ基などで置換したクロロメチル基、トリフルオロプロピル基、シアノエチル基などが挙げられる。前記一般式(1)中、R1はメチル基であることがより好ましい。
 前記アクリル変性オルガノポリシロキサン(A)は、25℃における粘度が50~5000mPa・sの範囲であることが好ましい。25℃における粘度が50mPa・s未満であると繊維に付着しづらい傾向があり、5000mPa・sより大きくなると組成物としての粘度が高くなって繊維への処理が難しくなる傾向がある。前記アクリル変性オルガノポリシロキサン(A)の25℃における粘度は、100~1000mPa・sであることがより好ましい。前記アクリル変性オルガノポリシロキサン(A)は、単一のアクリル変性オルガノポリシロキサンであってもよいし、重合度や官能基量の異なる複数のアクリル変性オルガノポリシロキサンの混合物であってもよい。
 本発明の一実施形態において、特に限定されないが、繊維の柔軟性を高める観点から、前記シリコーンは、さらに、下記一般式(2)で表される1分子中にアミノ基を1個以上持つアミノ変性オルガノポリシロキサン(B)を含んでもよい。
Figure JPOXMLDOC01-appb-C000002
 前記一般式(2)中、複数存在するR3は、同一又は異種の炭素数1~18の置換若しくは非置換の1価炭化水素基、水酸基、アルコキシ基、或いはアミノ基である。また、複数存在するR4は、同一又は異種の炭素数1~18の置換若しくは非置換の1価炭化水素基、或いはアミノ基である。また、R3及びR4の内、少なくとも一つはアミノ基である。nは正数である。炭素数1~18の置換若しくは非置換の1価炭化水素基としては、上述したものが挙げられる。前記一般式(2)中、R3又はR4が表されるアミノ基としては、特に限定されないが、例えば、下記一般式(3)で表されるアミノ基などが挙げられる。
Figure JPOXMLDOC01-appb-C000003
 前記一般式(3)中、R5は炭素数1~8の置換又は非置換の2価炭化水素基、R6、R7及びR8は、それぞれ、水素原子、炭素数1~4の置換若しくは非置換の1価炭化水素基又は-CH2 CH(OH)CH2OHであり、cは0~4の整数である。炭素数1~8の2価炭化水素基としては、例えば、エチレン基、トリメチレン基、テトラメチレン基、ヘキサメチレン基、イソブチレンなどのアルキレン基、メチレンフェニレン基、メチレンフェニレンメチレン基などが挙げられ、中でもトリメチレン基が好ましい。炭素数1~4の置換又は非置換の1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基などのアルキル基、ビニル基、アリル基などのアルケニル基、又はこれらの基の炭素原子に結合した水素原子が部分的にハロゲン原子で置換された基を挙げることができ、これらの中では、特にメチル基が、撥水性、平滑性、柔軟性の面から好ましい。
 前記アミノ変性オルガノポリシロキサン(B)は、25℃における粘度が50~5000mPa・sの範囲であることが好ましい。25℃における粘度が50mPa・s未満であると繊維に付着しづらい傾向があり、5000mPa・sより大きくなると組成物としての粘度が高くなって繊維への処理が難しくなる傾向がある。アミノ変性オルガノポリシロキサン(B)の25℃における粘度は、100~1000mPa・sであることがより好ましい。
 本発明の一実施形態において、特に限定されないが、繊維へのシリコーンの固着性及び風合いを高める観点から、前記アクリル変性オルガノポリシロキサン(A)及び前記アミノ変性オルガノポリシロキサン(B)の合計質量を100質量%とした場合、前記アクリル変性オルガノポリシロキサン(A)の配合量が10~95質量%であり、前記アミノ変性オルガノポリシロキサン(B)の配合量が5~90質量%であってもよく、前記アクリル変性オルガノポリシロキサン(A)の配合量が30~90質量%であり、前記アミノ変性オルガノポリシロキサン(B)の配合量が10~70質量%であってもよい。
 前記機能剤は、繊維に機能性を付与することができるものであればよく、特に限定されない。前記機能剤は、アルキル基、フェニル基などの官能基を有してもよい。このような官能基を有することによって、繊維に固着されたシリコーンと疎水相互作用しやすくなる。また、前記機能剤は、分子量が260以上の大きな分子であってもよい。このように分子量が大きいと、繊維に固着されたシリコーンに絡まりやすくなる。また、前記機能剤は、分枝や側鎖を有してもよい。このように分枝や側鎖を有すると、繊維に固着されたシリコーンに絡まりやすくなる。例えば、保湿効果を有する物質(以下、保湿剤とも記す。)、抗酸化作用を有する物質(以下、抗酸化剤とも記す。)、紫外線吸収作用を有する物質(以下、紫外線吸収剤とも記す。)、抗菌消臭効果を有する物質(以下、抗菌消臭剤とも記す。)などが挙げられる。前記保湿剤としては、特に限定されないが、例えば、脂肪酸、多糖類、タンパク質などが挙げられる。前記抗酸化剤としては、特に限定されないが、例えば、ポリフェノール、タンパク質などが挙げられる。前記紫外線吸収剤としては、特に限定されないが、例えば、ポリフェノール、脂肪酸などが挙げられる。前記抗菌消臭剤としては、例えば、ポリフェノール、タンパク質などが挙げられる。前記脂肪酸としては、特に限定されないが、例えば、ステアリン酸、オレイン酸などが挙げられる。前記多糖類としては、特に限定されないが、例えば、フコイダンなどが挙げられる。前記タンパク質としては、例えば、セリシンなどが挙げられる。セリシンは、保湿性に優れるとともに、アトピー性皮膚炎抑制効果もあり、加えてシリコーンへの担持性も良好である。前記ポリフェノールとしては、例えば、カテキン、タンニン、イソサポナリンなどが挙げられる。
 前記機能剤含有繊維において、機能剤の含有量は、機能剤の種類や機能剤含有繊維の用途などに応じて適宜に決めればよく、特に限定されない。本発明の一実施形態において、繊維における機能剤の含有量は、後述するとおりに測定する。
 前記機能剤含有繊維において、10回洗濯後の機能剤の減少率が40%未満であり、好ましくは30%以下であり、より好ましくは25%以下であり、さらに好ましくは15%以下であり、特に好ましくは5%以下である。洗濯後においても、機能剤の脱落が抑制され、機能剤による効果が発揮される。すなわち、洗濯後も機能性繊維として使用できる。
 前記機能剤含有繊維において、10回洗濯後のシリコーンの減少率が50%未満であり、35%以下であることが好ましく、15%以下であることがより好ましく、10%以下であることがさらに好ましく、特に好ましくは5%以下である。これにより、洗濯後においても良好な風合いを有する。本発明の機能剤含有繊維において、後述するとおり、前記アクリル変性オルガノポリシロキサン(A)を含む繊維処理剤、又は前記アクリル変性オルガノポリシロキサン(A)及び前記アミノ変性オルガノポリシロキサン(B)を含む繊維処理剤を繊維に塗布又は含浸させた後、電子線照射することで、繊維にシリコーンを固着することができる。本発明の一実施形態において、繊維におけるシリコーンの含有量は、後述するとおりに測定する。
 前記機能剤含有繊維において、10回洗濯後のSi量の減少率が50%未満であり、35%以下であることが好ましく、15%以下であることがより好ましく、10%以下であることがさらに好ましく、特に好ましくは5%以下である。これにより、洗濯後においても良好な風合いを有する。本発明の機能剤含有繊維において、後述するとおり、前記アクリル変性オルガノポリシロキサン(A)を含む繊維処理剤、又は前記アクリル変性オルガノポリシロキサン(A)及び前記アミノ変性オルガノポリシロキサン(B)を含む繊維処理剤を繊維に塗布又は含浸させた後、電子線照射することで、繊維にシリコーンを固着することができる。本発明の一実施形態において、繊維におけるSi量は、後述するとおりに測定する。
 前記繊維は、特に限定されず、天然繊維であってもよく、合成繊維であってもよい。天然繊維としては、特に限定されないが、例えば、綿、絹、麻、ウール、アンゴラ及びモヘアなどが挙げられる。合成繊維としては、特に限定されないが、例えば、ポリエステル繊維、ナイロン繊維、アクリル繊維、スパンデックスなどが挙げられる。繊維へのシリコーンの固着性を高める観点から、前記繊維は、綿、絹、麻、ウール、アンゴラ及びモヘアからなる群から選ばれる一種以上の天然繊維を含むことが好ましい。
 前記繊維の形態は、特に限定されず、例えば、ステープル、フィラメント、トウ、糸、織物、編物、詰め綿、不織布、紙などのいずれの形態であってもよい。
 本発明の一実施形態において、前記機能剤含有繊維は、例えば、シリコーンを含む繊維処理剤(A)を含浸させた繊維に電子線を照射し、シリコーンを繊維に固着させた後、前記シリコーンが固着された繊維に機能剤を含む繊維処理剤(B)を含浸させて、前記機能剤を前記繊維に固着されたシリコーンに担持させることで作製することができる。前記シリコーンは、上述したとおり、前記アクリル変性オルガノポリシロキサン(A)を含むか、或いは、前記アクリル変性オルガノポリシロキサン(A)と前記アミノ変性オルガノポリシロキサン(B)の混合物を含む。
 前記シリコーン、すなわち、前記アクリル変性オルガノポリシロキサン(A)、又は前記アクリル変性オルガノポリシロキサン(A)及び前記アミノ変性オルガノポリシロキサン(B)の混合物(以下において、単に「シリコーン成分」とも記す。)は、そのまま繊維処理剤(A)として用いてもよい。
 本発明の一実施形態において、取扱い性の観点から、前記シリコーン(シリコーン成分)は、有機溶剤で希釈して溶液状態にしたものを繊維処理剤(A)として用いてもよい。前記有機溶剤としては、前記シリコーンを溶解することができるものであればよく、特に限定されない。前記有機溶剤としては、例えば、トルエン、キシレンなどの芳香族系炭化水素溶剤、へキサン、オクタン、イソパラフィンなどの脂肪族系炭化水素溶剤、ジイソプロピルエーテル、1,4-ジオキサンなどのエーテル系溶剤、又はこれらの混合溶剤などが挙げられる。トルエン、キシレンなどの芳香族炭化水素溶剤、へキサン、オクタン、イソパラフィンなどの脂肪族系炭化水素溶剤が特に好ましい。またシリコーン成分の希釈濃度に特に限定はないが、シリコーン成分、すなわち前記アクリル変性オルガノポリシロキサン(A)の濃度、又は前記アクリル変性オルガノポリシロキサン(A)及び前記アミノ変性オルガノポリシロキサン(B)の合計濃度が1~60質量%であれば良く、より好ましくは1~20質量%であれば良い。
 本発明の一実施形態において、また、水を分散媒としてシリコーン成分をエマルション状態にしたものを繊維処理剤(A)として用いてもよい。このエマルション化にはノニオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤、及び両性界面活性剤などが使用できる。ノニオン性界面活性剤としては特に制限はないが、例えばポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ソルビタンアルキレート、ポリオキシエチレンソルビタンアルキレートなどが挙げられる。アニオン性界面活性剤としては特に制限はないが、例えば、アルキルベンゼンスルホン酸塩、アルキルリン酸塩などが挙げられる。カチオン性界面活性剤としては特に制限はないが、例えば第4級アンモニウム塩、アルキルアミン塩などが挙げられる。両性界面活性剤としては特に制限はないが、例えば、アルキルベタイン、アルキルイミダゾリンなどが挙げられる。これら界面活性剤は、一種を単独で用いても良く、二種以上を併用してもよい。前記界面活性剤は、特に限定されないが、シリコーンを乳化しやすい観点から、HLB(Hydrophilic-Lipophilic Balance,親水親油バランス)は11~18であることが好ましく、13~16であることがより好ましい。
 前記界面活性剤の使用量は、シリコーン成分、すなわち前記アクリル変性オルガノポリシロキサン(A)100質量部に対し、又は前記アクリル変性オルガノポリシロキサン(A)及び前記アミノ変性オルガノポリシロキサン(B)の混合物100質量部に対し、5~50質量部が好ましく、より好ましくは10~30質量部である。また乳化の際の水の使用量は任意の量でよいが、前記アクリル変性オルガノポリシロキサン(A)の濃度、又は前記アクリル変性オルガノポリシロキサン(A)及び前記アミノ変性オルガノポリシロキサン(B)の合計濃度が1~60質量%となるような量が一般的であり、好ましくは1~20質量%となるような量である。前記アクリル変性オルガノポリシロキサン(A)、又は前記アクリル変性オルガノポリシロキサン(A)及び前記アミノ変性オルガノポリシロキサン(B)を乳化するには、界面活性剤を混合し、これをホモミキサー、ホモジナイザー、コロイドミル、ラインミキサーなどの乳化機で乳化すればよい。
 本発明の一実施形態において、シリコーン成分として、前記アクリル変性オルガノポリシロキサン(A)及び前記アミノ変性オルガノポリシロキサン(B)の両方を用いる場合、各成分をあらかじめ混合し、溶液状態やエマルション状態にしても良いし、それぞれの成分をあらかじめ個別に溶液状態やエマルション状態にしたものを混合しても良い。
 前記繊維処理剤(A)を繊維に含浸させる方法としては、特に限定されないが、例えば、ロール塗布、グラビア塗布、ワイヤードクター塗布、エアーナイフ塗布、ディッピング処理などの公知の方法を用いることができる。含浸量(塗布量とも記す。)としては0.01~20.0g/m2とすればよく、より好ましくは0.01~5g/m2である。含浸量を上記範囲にすることで、繊維へのシリコーンの固着性を高めることができる。
 本発明の一実施形態において、前記繊維処理剤(A)がシリコーンを有機溶剤で希釈した溶液状態又は水に分散させたエマルションの形態の場合、前記繊維処理剤(A)を繊維に含浸させた後、有機溶剤やエマルションの分散媒である水を揮発させるために乾燥工程を行っても良い。乾燥は、熱風吹き付け、加熱炉などで行えばよく、乾燥温度や時間は繊維に影響を与えない範囲で任意とすれば良いが、例えば、乾燥温度は100~150℃、乾燥時間は10秒~5分の範囲で行えばよい。
 前記繊維処理剤(A)を含浸させた繊維に電子線を照射し、前記シリコーンを繊維に固着させる。電子線照射装置は、特に限定されず、カーテン方式、スキャン方式またはダブルスキャン方式のものとすればよい。この電子線照射による電子線の加速電圧は、特に限定されないが、例えば、100~1000kVの範囲のものとすればよい。加速電圧が100kV未満ではエネルギーの透過量が不足する恐れがあり、1000kVを超えると経済性に劣る。また、電子線の照射量は、特に限定されないが、例えば、5~100kGyの範囲とすればよい。電子線の照射量が5kGy未満では硬化不良が生じる恐れがあり、100kGy以上では繊維が劣化する恐れがある。前記繊維処理剤(A)がシリコーンを有機溶剤で希釈した溶液状態の場合、電子線照射後に、シリコーンを希釈するのに用いた有機溶剤で繊維を浸漬(洗浄)することで、未反応のシリコーンを除去してもよい。一方、前記繊維処理剤がシリコーンを水に分散させたエマルションの場合、電子線照射後に、水で繊維を洗浄することで、未反応のシリコーンを除去してもよい。
 本発明の一実施形態において、前記機能剤は、液体の場合は、例えば、そのまま繊維処理剤(B)として用いてもよい。
 本発明の一実施形態において、前記機能剤は、特に限定されないが、取扱い性を良好にする観点から、水に分散してエマルション状態にしたものを繊維処理剤(B)として用いてもよい。この場合、界面活性剤を用いてもよい。界面活性剤としては、上述したシリコーン成分をエマルション状態にする際に用いたものと同様のものを用いることができる。或いは、本発明の一実施形態において、前記機能剤は、水に溶解させて水溶液にしたものを繊維処理剤(B)として用いてもよい。繊維処理剤(B)における機能剤の濃度は、機能剤の種類などに応じて適宜選択すればよい。
 前記繊維処理剤(B)をシリコーンが固着された繊維に含浸させる方法としては、特に限定されないが、上述した繊維処理剤(A)を繊維に含浸させる方法と同様の方法を用いることができる。含浸量(塗布量とも記す。)としては0.01~20.0g/m2とすればよく、より好ましくは0.01~5g/m2である。含浸量を上記範囲にすることで、繊維に固着されたシリコーンへの機能剤の担持を良好にすることができる。
 前記処理剤(B)が機能剤を水に分散させたエマルション状態又は機能剤を水に溶解させた水溶液の場合、水を揮発させるために乾燥工程を行っても良い。乾燥は、熱風吹き付け、加熱炉などで行えばよく、乾燥温度や時間は繊維に影響を与えない範囲で任意とすれば良いが、例えば、乾燥温度は100~150℃、乾燥時間は10秒~5分の範囲で行えばよい。
 本発明の一実施形態において、特に限定されないが、工程の簡便性から、前記機能剤含有繊維は、例えば、シリコーン及び機能剤を含む繊維処理剤(C)を繊維に含浸させた後、繊維処理剤(C)を含浸させた繊維に電子線を照射し、シリコーンを繊維に固着させ、前記機能剤を繊維に固着されたシリコーンに担持させることで作製してもよい。
 前記繊維処理剤(C)としては、前記シリコーン成分と前記機能剤を水に分散したエマルション状態のものを用いてもよい。或いは、前記繊維処理剤(C)としては、前記機能剤を水に溶解させた水溶液にシリコーン成分を分散させたエマルション状態のものを用いてもよい。この場合、界面活性剤を用いてもよい。界面活性剤としては、上述したシリコーン成分をエマルション状態にする際に用いたものと同様のものを用いることができる。前記繊維処理剤(C)におけるシリコーン成分、すなわち前記アクリル変性オルガノポリシロキサン(A)の濃度、又は前記アクリル変性オルガノポリシロキサン(A)及び前記アミノ変性オルガノポリシロキサン(B)の合計濃度が1~60質量%であれば良く、より好ましくは1~20質量%であれば良い。前記繊維処理剤(C)における機能剤の濃度は、機能剤の種類などに応じて適宜選択すればよい。
 前記繊維処理剤(C)を繊維に含浸させる方法としては、特に限定されないが、例えば、ロール塗布、グラビア塗布、ワイヤードクター塗布、エアーナイフ塗布、ディッピング処理などの公知の方法を用いることができる。含浸量(塗布量とも記す。)としては0.01~20.0g/m2とすればよく、より好ましくは0.01~5g/m2である。含浸量を上記範囲にすることで、繊維へのシリコーンの固着性を高めることができる。
 本発明の一実施形態において、前記繊維処理剤(C)を繊維に含浸させた後、水を揮発させるために乾燥工程を行っても良い。乾燥は、熱風吹き付け、加熱炉などで行えばよく、乾燥温度や時間は繊維に影響を与えない範囲で任意とすれば良いが、例えば、乾燥温度は100~150℃、乾燥時間は10秒~5分の範囲で行えばよい。
 前記繊維処理剤(C)を含浸させた繊維への電子線照射は、特に限定されず、前記繊維処理剤(A)を含浸させた繊維に電子線を照射する場合と同様の方法や条件で行うことができる。また、電子線照射後に、水で繊維を洗浄することで、未反応のシリコーンを除去してもよい。
 本発明の一実施形態において、前記繊維処理剤(A)、繊維処理剤(B)及び繊維処理剤(C)には、その特性を阻害しない範囲で、他の繊維用薬剤、例えば防しわ剤、難燃剤、帯電防止剤、耐熱剤などを添加してもよい。
 次に本発明の実施の形態を実施例に基づいて詳しく説明する。本発明は以下の実施例に限定されるものではない。下記実施例及び比較例中の物性値は下記の試験法による測定値を示したものである。
 (初期のシリコーン及び機能剤の合計含有量)
 シリコーン及び機能剤を付与する前の出発材料(布帛)の質量(W0)及びシリコーン及び機能剤を付与して得られた試料(布帛)の質量(W1)を測定し、下記式で初期のシリコーン及び機能剤の合計含有量(質量%)を算出した。
 初期のシリコーン及び機能剤の合計含有量(質量%)=(W1-W0)/W1×100
 なお、機能剤のみで処理した場合、上記のように測定算出した値は、初期の機能剤の含有量となる。
 (初期のSi量及び初期のシリコーンの含有量)
 リガク製蛍光X線分析装置ZSX100eを用い、EZスキャン法にて洗濯前の試料に含まれる全元素の質量(W0t)及びSi原子の質量(W0s)を測定し、下記式で初期のSi量及び初期のシリコーン量(質量%)を算出した。下記式で、MWsは、布帛を含浸するのに用いたシリコーンの分子量を表し、NSiは、布帛を含浸するのに用いたシリコーンにおける1分子当たりのSi原子の個数を表す。
 初期のSi量(質量%)=[(W0s)/(W0t)]×100
 初期のシリコーンの含有量(質量%)=[(W0s)/(W0t)]×[MWs/(NSi×28)]×100
 (初期の機能剤の含有量)
 初期の機能剤の含有量は、下記式で算出した。
 初期の機能剤の含有量(質量%)=(初期のシリコーン及び機能剤の合計含有量)-(初期のシリコーンの含有量)
 (10回洗濯後のシリコーン及び機能剤の合計含有量)
 初期のシリコーン及び機能剤の合計含有量の測定に用いた試料と同じ質量の試料を用い、JIS L 0217 103法に準拠して(洗剤はJAFET)で10回洗濯し、乾燥した後の試料の質量(W2)を測定し、下記式で10回洗濯後のシリコーン及び機能剤の合計含有量(質量%)を算出した。
 10回洗濯後のシリコーン及び機能剤の合計含有量(質量%)=(W2-W0)/W2×100
 なお、機能剤のみで処理した場合、上記のように測定算出した値は、10回洗濯後の機能剤の含有量となる。
 (10回洗濯後のSi量及び10回洗濯後のシリコーンの含有量)
 試料をJIS L 0217 103法に準拠して(洗剤はJAFET)で10回洗濯し、乾燥した後、リガク製蛍光X線分析装置ZSX100eを用い、EZスキャン法にて10回洗濯後の試料に含まれる全元素の質量(W10t)及びSi原子の質量(W10s)を測定し、下記式で10回洗濯後のSi量及び10回洗濯後のシリコーンの含有量を算出した。下記式で、MWsは、布帛を含浸するのに用いたシリコーンの分子量を表し、NSiは、布帛を含浸するのに用いたシリコーンにおける1分子当たりのSi原子の個数を表す。
 10回洗濯後のSi量(質量%)=(W10s)/(W10t)×100
 10回洗濯後のシリコーンの含有量(質量%)=(W10s)/(W10t)×[MWs/(NSi×28)]×100
 (10回洗濯後の機能剤の含有量)
 10回洗濯後の機能剤の含有量は、下記式で算出した。
 10回洗濯後の機能剤の含有量(質量%)=(10回洗濯後のシリコーン及び機能剤の合計含有量)-(10回洗濯後のシリコーンの含有量)
 (10回洗濯後の機能剤の減少率)
 10回洗濯後の機能剤の減少率(%)=(W0f%-W10f%)/W0f%×100
 W0f%は初期の機能剤の含有量であり、W10f%は10回洗濯後の機能剤の含有量である。
 (10回洗濯後のSiの減少率)
 10回洗濯後のSiの減少率(%)=(W0Si%-W10Si%)/W0Si%×100
 W0Si%は初期のSi量であり、W10Si%は10回洗濯後のSi量である。
 (10回洗濯後のシリコーンの減少率)
 10回洗濯後のシリコーンの減少率(%)=(W0s%-W10s%)/W0s%×100
 W0s%は初期のシリコーンの含有量であり、W10s%は10回洗濯後のシリコーンの含有量である。
 (水分率)
 試料(布帛)の絶乾質量、標準条件下(温度:20℃、相対湿度:65%)で2時間放置した後の質量(標準時質量)、湿潤条件下(温度:30℃、相対湿度:90%)に2時間放置した後の質量(湿潤時質量)を測定し、下記式で水分率を算出した。
 標準時水分率(%)=(標準時質量-絶乾質量)/絶乾質量×100
 湿潤時水分率(%)=(湿潤時質量-絶乾質量)/絶乾質量×100
 (実施例1)
 まず、下記平均分子式(4)で表されるアクリル変性オルガノポリシロキサン(A1)、オレイン酸及び水を混合して、アクリル変性オルガノポリシロキサン(A1)の濃度が10質量%であり、オレイン酸の濃度が5.0質量%の繊維処理剤(C1)を調製した。次に、繊維処理剤(C1)に綿100質量%ブロード布(クラボウ製)を浸漬した後、絞り率60%の条件でマングルロールを用いて絞り、110℃で90秒乾燥した。次に、エリアビーム型電子線照射装置EC250/15/180L(岩崎電気社製)を用い、窒素雰囲気下で、加速電圧200kVで40kGyの電子線を照射した。次に、電子線処理後の繊維(綿100質量%ブロード布)を水で洗浄した後、絞り率60%の条件でマングルロールを用いて絞り、110℃で90秒乾燥し、オレイン酸含有繊維を作製した。
Figure JPOXMLDOC01-appb-C000004
 (実施例2)
 上記平均分子式(4)で表されるアクリル変性オルガノポリシロキサン(A1)、セリシン(丹後織物工業組合製、品名「セリシン-SS」)及び水を混合して、アクリル変性オルガノポリシロキサン(A1)の濃度が10質量%であり、セリシンの濃度が0.8質量%の繊維処理剤(C2)を調製した。繊維処理剤(C1)に代えて繊維処理剤(C2)を用いた以外は、実施例1と同様にしてセリシン含有繊維を作製した。
 (実施例3)
 上記平均分子式(4)で表されるアクリル変性オルガノポリシロキサン(A1)、フコイダン(タカラバイオ社製、品名「Takara海藻エキス」)及び水を混合して、アクリル変性オルガノポリシロキサン(A1)の濃度が10質量%であり、フコイダンの濃度が1.5質量%の繊維処理剤(C3)を調製した。繊維処理剤(C1)に代えて繊維処理剤(C3)を用いた以外は、実施例1と同様にしてフコイダン含有繊維を作製した。
 (実施例4)
 上記平均分子式(4)で表されるアクリル変性オルガノポリシロキサン(A1)と水を混合し、該アクリル変性オルガノポリシロキサン(A1)濃度が10質量%となる繊維処理剤(A1)を調製した。得られた繊維処理剤(A1)に綿100質量%ブロード布(クラボウ製)を浸漬した後、絞り率60%の条件でマングルロールを用いて絞り、110℃で90秒乾燥し、エリアビーム型電子線照射装置EC250/30/90L(岩崎電気社製)を用い、窒素雰囲気下で、加速電圧200kVで40kGyの電子線を照射した。次に、電子線処理後の繊維(綿100質量%ブロード布)を水で洗浄した後、絞り率60%の条件でマングルロールを用いて絞り、110℃で90秒乾燥し、シリコーンが固着された繊維を作製した。次に、イソサポナリン(金印社製、品名「わさびフラボン」)と水を混合してイソサポナリンの濃度が2.0質量%の繊維処理剤(B1)を調製した。次に、繊維処理剤(B1)にシリコーンが固着された繊維(生地)を浸漬した後、絞り率60%の条件でマングルロールを用いて絞り、さらに水で洗浄した後、絞り率60%の条件でマングルロールを用いて絞り、110℃で90秒乾燥し、イソサポナリン含有繊維を作製した。
 (比較例1)
 オレイン酸と水を混合してオレイン酸の濃度が5.0質量%の繊維処理剤(B2)を調製した。次に、繊維処理剤(B2)に綿100質量%ブロード布(クラボウ製)を浸漬し、絞り率60%の条件でマングルロールを用いて絞り、110℃で90秒乾燥し、オレイン酸含有繊維を作製した。
 (比較例2)
 セリシン(丹後織物工業組合製、品名「セリシン-SS」)と水を混合してセリシンの濃度が0.8質量%の繊維処理剤(B3)を調製した。次に、繊維処理剤(B3)に綿100質量%ブロード布(クラボウ製)を浸漬し、絞り率60%の条件でマングルロールを用いて絞り、110℃で90秒乾燥し、セリシン含有繊維を作製した。
 (比較例3)
 フコイダン(タカラバイオ社製、品名「Takara海藻エキス」)と水を混合してフコイダンの濃度が1.5質量%の繊維処理剤(B4)を調製した。次に、繊維処理剤(B4)に綿100質量%ブロード布(クラボウ製)を浸漬し、絞り率60%の条件でマングルロールを用いて絞り、110℃で90秒乾燥し、フコイダン含有繊維を作製した。
 (比較例4)
 実施例4の場合と同様にして、イソサポナリン(金印社製、品名「わさびフラボン」)と水を混合してイソサポナリンの濃度が2.0質量%の繊維処理剤(B1)を調製した。次に、繊維処理剤(B1)に綿100質量%ブロード布(クラボウ製)を浸漬し、絞り率60%の条件でマングルロールを用いて絞り、110℃で90秒乾燥し、イソサポナリン含有繊維を作製した。
 (比較例5)
 上記平均分子式(4)で表されるアクリル変性オルガノポリシロキサン(A1)、グリセリルグルコシド(辰馬酒造製、品名「αGG-L」)及び水を混合して、アクリル変性オルガノポリシロキサン(A1)の濃度が10質量%であり、グリセリルグルコシドの濃度が35.0質量%の繊維処理剤(C5)を調製した。繊維処理剤(C1)に代えて繊維処理剤(C5)を用いた以外は、実施例1と同様にしてグリセリルグルコシド含有繊維を作製した。
 (比較例6)
 実施例2と同様にして、アクリル変性オルガノポリシロキサン(A1)の濃度が10質量%であり、セリシンの濃度が0.8質量%の繊維処理剤(C2)を調製した。次に、繊維処理剤(C2)に綿100質量%ブロード布(クラボウ製)を浸漬した後、絞り率60%の条件でマングルロールを用いて絞った後、水で洗浄し、絞り率60%の条件でマングルロールを用いて絞り、110℃で90秒乾燥し、セリシン含有繊維を作製した。
 (比較例7)
 比較例2と同様にして、セリシンの濃度が0.8質量%の繊維処理剤(B3)を調製した。次に、繊維処理剤(B3)に綿100質量%ブロード布(クラボウ製)を浸漬し、絞り率60%の条件でマングルロールを用いて絞り110℃で90秒乾燥し、セリシン含有繊維を作製した。次に、エリアビーム型電子線照射装置EC250/15/180L(岩崎電気社製)を用い、窒素雰囲気下で、加速電圧200kVで40kGyの電子線を照射した。次に、電子線処理後の繊維(綿100質量%ブロード布)を水で洗浄した後、絞り率60%の条件でマングルロールを用いて絞り、110℃で90秒乾燥し、セリシン含有繊維を作製した。
 実施例及び比較例で得られた繊維(綿100%ブロード布)における初期の機能剤の含有量、初期のSi量、初期のシリコーンの含有量、10回洗濯後の機能剤の含有量、10回洗濯後のSi量、10回洗濯後のシリコーンの含有量、10回洗濯後の機能剤の減少率、10回洗濯後のSiの減少率、10回洗濯後のシリコーンの減少率を上述したとおりに測定算出し、その結果を下記表1に示した。
Figure JPOXMLDOC01-appb-T000005
 実施例2で得られた布帛の水分率を上述した通りに測定し、その結果を下記表2に示した。また、実施例2で得られた布帛を10回洗濯した後の水分率を上述した通りに測定し、その結果を下記表2に示した。対照例として、綿100質量%ブロード布(クラボウ製)の洗濯前後の水分率を測定し、その結果を下記表2に示した。
Figure JPOXMLDOC01-appb-T000006
 前記表1のデータから分かるように、アクリル変性オルガノポリシロキサン(A)及び機能剤を含む繊維処理剤(C)を繊維に含浸させた後、電子線照射した実施例1~3、及びアクリル変性オルガノポリシロキサン(A)を含む繊維処理剤(A)を繊維に含浸させた後、電子線照射し、電子照射後の繊維に機能剤を含む繊維処理剤(B)を含浸させた実施例4では、シリコーンが繊維に固着し、繊維に固着されたシリコーンに機能剤が担持されていることで、洗濯耐久性が向上し、洗濯によるシリコーン及び機能剤の脱落が抑制されていた。これは、シリコーンとして、一分子中にアクリル基を2個以上持つアクリル変性オルガノポリシロキサン(A)を用いることで、電子線照射により、ラジカルを発生し、シリコーンがグラフト重合などにより繊維に絡みつくとともに、シリコーン同士の架橋反応が進行してシリコーンが繊維に固着するとともに、機能剤が繊維に固着されたシリコーンに構造的に絡みつくことで機能剤がシリコーンに担持される、或いは、機能剤と繊維に固着されたシリコーンの疎水性相互作用によって機能剤がシリコーンに担持されるためである。
 前記表2のデータから分かるように、保湿剤であるセリシンが繊維に固着されたシリコーンに担持されている実施例2の繊維は、機能剤を含まない比較例と対比すると、洗濯後においても、水分保持率が高かった。
 一方、繊維に機能剤を含む繊維処理剤を含浸させることで機能剤を付与した比較例1~4では、初期には機能剤が繊維に付着されているが、洗濯後にはほとんどの機能剤が脱落していた。また、アクリル変性オルガノポリシロキサン(A)及び機能剤を含む繊維処理剤(C)を繊維に含浸させた後、電子線照射したが、機能剤としてグリセリルグルコシドを用いた比較例5では、初期には機能剤が繊維に付着されているが、洗濯後にはほとんどの機能剤が脱落していた。また、アクリル変性オルガノポリシロキサン(A)及び機能剤を含む繊維処理剤(C)を繊維に含浸させたが、電子線照射をしていない比較例6でも、初期には機能剤が繊維に付着されているが、洗濯後にはほとんどの機能剤が脱落していた。アクリル変性オルガノポリシロキサン(A)を含まず、機能剤のみを含む繊維処理剤(B)を繊維に含浸させた後、電子線照射した比較例7でも、初期には機能剤が繊維に付着されているが、洗濯後にはほとんどの機能剤が脱落していた。

Claims (9)

  1.  機能剤を含有する機能剤含有繊維であって、
     前記機能剤は繊維に固着されたシリコーンに担持されており、
     前記シリコーンは、一分子中にアクリル基を2個以上持つアクリル変性オルガノポリシロキサンを含み、
     前記機能剤含有繊維において、10回洗濯後の機能剤の減少率が40%未満であることを特徴とする機能剤含有繊維。
  2.  前記機能剤は、脂肪酸、ポリフェノール、タンパク質及び多糖類からなる群から選ばれる一つ以上である請求項1に記載の機能剤含有繊維。
  3.  前記繊維が、綿、絹、麻、ウール、アンゴラ及びモヘアからなる群から選ばれる一種以上の天然繊維を含む請求項1又は2に記載の機能剤含有繊維。
  4.  前記繊維の形態が、ステープル、フィラメント、トウ、糸、織物、編物、詰め綿及び不織布からなる群から選ばれる一種以上である請求項1~3のいずれか1項に記載の機能剤含有繊維。
  5.  機能剤を含有する機能剤含有繊維の製造方法であって、
     シリコーンを含む繊維処理剤(A)を含浸させた繊維に電子線を照射し、シリコーンを繊維に固着させる工程と、
     前記シリコーンが固着された繊維に機能剤を含む繊維処理剤(B)を含浸させる工程を含み、
     前記シリコーンは、一分子中にアクリル基を2個以上持つアクリル変性オルガノポリシロキサンを含み、前記機能剤は繊維に固着されたシリコーンに担持されていることを特徴とする機能剤含有繊維の製造方法。
  6.  機能剤を含有する機能剤含有繊維の製造方法であって、
     シリコーン及び機能剤を含む繊維処理剤(C)を繊維に含浸させる工程と、
     繊維処理剤(C)を含浸させた繊維に電子線を照射し、シリコーンを繊維に固着させる工程を含み、
     前記シリコーンは、一分子中にアクリル基を2個以上持つアクリル変性オルガノポリシロキサンを含み、前記機能剤は繊維に固着されたシリコーンに担持されていることを特徴とする機能剤含有繊維の製造方法。
  7.  前記機能剤は、脂肪酸、ポリフェノール、タンパク質及び多糖類からなる群から選ばれる一つ以上である請求項5又は6に記載の機能剤含有繊維の製造方法。
  8.  前記繊維が、綿、絹、麻、ウール、アンゴラ及びモヘアからなる群から選ばれる一種以上の天然繊維を含む請求項5~7のいずれか1項に記載の機能剤含有繊維の製造方法。
  9.  前記繊維の形態が、ステープル、フィラメント、トウ、糸、織物、編物、詰め綿及び不織布からなる群から選ばれる一種以上である請求項5~8のいずれか1項に記載の機能剤含有繊維の製造方法。
PCT/JP2018/012169 2017-07-14 2018-03-26 機能剤含有繊維及びその製造方法 WO2019012744A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207000874A KR102502567B1 (ko) 2017-07-14 2018-03-26 기능제 함유 섬유 및 그 제조 방법
US16/630,316 US11834779B2 (en) 2017-07-14 2018-03-26 Functional-agent-containing fiber and method for manufacturing same
EP18831865.3A EP3653786A4 (en) 2017-07-14 2018-03-26 FIBER WITH A FUNCTIONAL ACTIVE SUBSTANCE AND METHOD FOR MANUFACTURING IT
CN201880046532.5A CN110892109B (zh) 2017-07-14 2018-03-26 含功能剂纤维及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017138255A JP7008438B2 (ja) 2017-07-14 2017-07-14 機能剤含有繊維及びその製造方法
JP2017-138255 2017-07-14

Publications (1)

Publication Number Publication Date
WO2019012744A1 true WO2019012744A1 (ja) 2019-01-17

Family

ID=65002399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012169 WO2019012744A1 (ja) 2017-07-14 2018-03-26 機能剤含有繊維及びその製造方法

Country Status (6)

Country Link
US (1) US11834779B2 (ja)
EP (1) EP3653786A4 (ja)
JP (1) JP7008438B2 (ja)
KR (1) KR102502567B1 (ja)
CN (1) CN110892109B (ja)
WO (1) WO2019012744A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113588705A (zh) * 2021-08-05 2021-11-02 肇庆市高要晋益纤维有限公司 一种精确评判色纱质感的工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132171A (en) * 1976-04-30 1977-11-05 Johnson & Johnson Newly bonded unwoven fabric and its manufacture
JPS63128074A (ja) * 1986-11-04 1988-05-31 ダウ・コーニング・コーポレーシヨン 硬化性オルガノポリシロキサン組成物
JP2001181964A (ja) 1999-10-15 2001-07-03 Toray Ind Inc 繊維構造物
WO2006120851A1 (ja) 2005-05-02 2006-11-16 Kyowa Hakko Kogyo Co., Ltd. 繊維製品への機能性付与剤
JP2007224429A (ja) 2006-02-21 2007-09-06 Sakainagoya Co Ltd 接触冷感繊維及び繊維処理剤
JP2008050743A (ja) * 2006-07-26 2008-03-06 Idemitsu Technofine Co Ltd 繊維集合体へのポリフェノール類固着方法、その繊維集合体および繊維処理剤

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869172A (en) * 1988-03-14 1999-02-09 Nextec Applications, Inc. Internally-coated porous webs with controlled positioning of modifiers therein
JP3243369B2 (ja) * 1994-04-15 2002-01-07 カネボウ株式会社 防虫抗菌繊維構造物
JPH1180711A (ja) * 1997-08-29 1999-03-26 Shiseido Co Ltd 撥水剤及びその処理方法
EP1201814A1 (en) * 2000-10-27 2002-05-02 The Procter & Gamble Company Domestic treatment of fabrics with film-forming materials and blowing agents
US6616980B2 (en) * 2001-04-24 2003-09-09 Crompton Corporation Emulsion polymerized acrylated silicone copolymer for wrinkle reduction
US6998155B2 (en) * 2001-05-23 2006-02-14 Traptek Llc Woven materials with incorporated solids and processes for the production thereof
JP3850016B2 (ja) * 2001-06-29 2006-11-29 シャープ株式会社 不揮発性半導体記憶装置
US6846852B2 (en) * 2001-08-16 2005-01-25 Goldschmidt Ag Siloxane-containing compositions curable by radiation to silicone elastomers
KR20070117688A (ko) * 2005-03-28 2007-12-12 이데미쓰 테크노파인 가부시키가이샤 섬유 처리제, 당해 섬유 처리제로 처리한 섬유, 섬유 포백,적층체 및 섬유 처리 방법
GB2431173B (en) * 2005-09-15 2010-01-13 Alexium Ltd Method for attachment of silicon-containing compounds to a surface
US8815351B2 (en) * 2005-09-15 2014-08-26 The United States Of America As Represented By The Secretary Of The Air Force Method for attachment of silicon-containing compounds to a surface and for synthesis of hypervalent silicon-compounds
JPWO2007083672A1 (ja) * 2006-01-20 2009-06-11 出光テクノファイン株式会社 繊維処理剤、繊維処理方法、この繊維処理剤により処理された繊維および布帛
JP2008297636A (ja) * 2007-05-29 2008-12-11 Ohara Palladium Kagaku Kk 繊維用加工剤ならびに該加工剤を用いた繊維製品
JP2013209338A (ja) * 2012-03-30 2013-10-10 Nbc Meshtec Inc 殺菌剤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132171A (en) * 1976-04-30 1977-11-05 Johnson & Johnson Newly bonded unwoven fabric and its manufacture
JPS63128074A (ja) * 1986-11-04 1988-05-31 ダウ・コーニング・コーポレーシヨン 硬化性オルガノポリシロキサン組成物
JP2001181964A (ja) 1999-10-15 2001-07-03 Toray Ind Inc 繊維構造物
WO2006120851A1 (ja) 2005-05-02 2006-11-16 Kyowa Hakko Kogyo Co., Ltd. 繊維製品への機能性付与剤
JP2007224429A (ja) 2006-02-21 2007-09-06 Sakainagoya Co Ltd 接触冷感繊維及び繊維処理剤
JP2008050743A (ja) * 2006-07-26 2008-03-06 Idemitsu Technofine Co Ltd 繊維集合体へのポリフェノール類固着方法、その繊維集合体および繊維処理剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3653786A4

Also Published As

Publication number Publication date
KR20200029446A (ko) 2020-03-18
CN110892109B (zh) 2023-05-05
EP3653786A4 (en) 2021-04-21
US11834779B2 (en) 2023-12-05
JP2019019424A (ja) 2019-02-07
US20200165772A1 (en) 2020-05-28
KR102502567B1 (ko) 2023-02-21
EP3653786A1 (en) 2020-05-20
JP7008438B2 (ja) 2022-02-10
CN110892109A (zh) 2020-03-17

Similar Documents

Publication Publication Date Title
KR101092038B1 (ko) 섬유, 직물 및 의류에 대한 마이크로캡슐 처리용 결합제 계
JPH03152275A (ja) ウール処理剤
Fahmy et al. Synthesis and application of new silicone based water repellents
US6416558B1 (en) Water based fiber treatment agent and method for treating fibers
EP0474207A1 (en) Fiber treatment agent composition
JP7008438B2 (ja) 機能剤含有繊維及びその製造方法
JP7008432B2 (ja) シリコーンが固着された繊維及びその製造方法
RU2594422C1 (ru) Способ получения ароматизированного текстильного материала
JPH07119043A (ja) 繊維の吸尽処理方法
JP4262513B2 (ja) 繊維製品処理用消臭抗菌剤及び消臭抗菌性繊維製品
JP6549885B2 (ja) 撥水剤組成物及び当該組成物を用いた撥水加工方法
CN110462128B (zh) 电子射线粘固用纤维处理剂
WO2018180615A1 (ja) 電子線固着用繊維処理剤
JP4536752B2 (ja) 繊維処理剤
WO2018180601A1 (ja) シリコーンが固着された繊維及びその製造方法
US11976414B2 (en) Polysiloxane-based water repellants for textiles
JP2013234408A (ja) 中綿用セルロース繊維及びその製造方法
Fahmy et al. Synthesis of castor oil/poly (N-vinyl-2-pyrrolidone)/ammonium persulfate hybrids emulsion as textile softeners
JP6351230B2 (ja) 繊維用消臭加工薬剤及び消臭性繊維の製造方法
JP2852494B2 (ja) セルロース系織物の形態安定加工方法
JPH0473267A (ja) 合成繊維布帛の撥水処理方法
JP2583045B2 (ja) セルロ−ス系繊維製品の消臭加工法
JP2023535941A (ja) シリコーン樹脂と有機ポリマーとの相互侵入網目を含む水性エマルジョン
JPH10110387A (ja) 繊維製品加工用処理剤および繊維製品の製造方法
PL165436B1 (pl) 5mulsja elastomerów silikonowych, zwłaszcza do Impregnacji wyrobów włókienniczych

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018831865

Country of ref document: EP

Effective date: 20200214