WO2019007198A1 - 一种线性传输系统 - Google Patents

一种线性传输系统 Download PDF

Info

Publication number
WO2019007198A1
WO2019007198A1 PCT/CN2018/091190 CN2018091190W WO2019007198A1 WO 2019007198 A1 WO2019007198 A1 WO 2019007198A1 CN 2018091190 W CN2018091190 W CN 2018091190W WO 2019007198 A1 WO2019007198 A1 WO 2019007198A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing element
stator
mover
phase
transmission system
Prior art date
Application number
PCT/CN2018/091190
Other languages
English (en)
French (fr)
Inventor
池峰
Original Assignee
上海果栗自动化科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海果栗自动化科技有限公司 filed Critical 上海果栗自动化科技有限公司
Publication of WO2019007198A1 publication Critical patent/WO2019007198A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/08Control devices operated by article or material being fed, conveyed or discharged
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/22Optical devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/04Detection means
    • B65G2203/042Sensors

Definitions

  • This invention relates to delivery devices, and in particular to linear delivery systems.
  • the conventional drive system uses a rotary motor drive structure, and the components commonly used in conventional rotary motor transmissions such as gear heads, shafts, keys, sprocket teeth, chains, belts, etc. in the transmission system are very complicated and cumbersome.
  • Linear motors use a moving magnetic field to directly drive moving parts, reducing structural complexity, and reducing costs and speed increases due to reduced inertia, compliance, damping, friction, and wear.
  • the core actuator component of the motion control system - linear motor under the action of electromagnetic thrust, the motor mover can drive the load to produce high-speed, high-thrust drive.
  • Multiple linear motors can be combined to construct two-dimensional or multi-dimensional motion, using linear
  • the motor can be designed with precise linear transmission equipment and precise XY table. The structure is simple and compact, the machine size is small, the response speed is fast, the precision is high, and there is no relative friction between the mover and the stator, so there is no wear and long service life. .
  • grating or magnetic grid measurement is used.
  • the encoder read head is mounted on the mover and moves along with the mover.
  • the measured data information of the encoder needs to be connected to the controller through a cable. Bring interference and reliability issues.
  • the present application provides a linear transmission system, the linear transmission system comprising:
  • stator base being composed of one or more sub-bases
  • stator coil assembly the stator coil assembly being fixed to the sub base
  • each of the movers being provided with a permanent magnet array and a position sensing element, wherein a magnetic field generated by the permanent magnet array and an excitation magnetic field generated by the stator coil assembly can interact to drive the mover generation Translational motion
  • a guide rail mounted on the stator base, and the mover is disposed on the guide rail and moves along the guide rail;
  • a sensor array distributed along the rail and arranged to read a signal from the position sensing element disposed on the mover
  • a controller electrically coupled to the stator coil assembly and the sensor array and controlling energization of the respective stator coil assembly based on the position information of the mover detected from the sensor array.
  • the stator base includes a linear stator base and a curved stator base, wherein the linear stator base is mounted with a rectangular stator coil assembly to form a linear stator module, and the curved stator base is mounted There is a curved stator coil assembly to form an arcuate stator module.
  • each of the movers is mounted with a first sensing element and a second sensing element, wherein the first sensing element and the second sensing element are arranged such that when the mover is When moving on the linear stator module, the first signal emitted by the first sensing element is read by the sensor array on the linear stator module, and when the mover is on the curved stator base When moving, the second signal emitted by the second sensing element is read by the sensor array on the curved stator module.
  • the mounting positions of the first sensing element and the second sensing element on the mover are arranged to be adjacent to the stator at any time during the movement of the mover Both sensors are capable of acquiring a first signal from the first sensing element or a second signal from the second sensing element.
  • the distance between adjacent two sensors is less than the effective signal transmission distance of the first and second sensing elements of the mover.
  • the first sensing element and the second sensing element are magnetic grids
  • the sensor array is a magnetic grid read head
  • the distance between each adjacent two magnetic grid read heads is less than a length of the first sensing element and the second sensing element of the mover; or, the first sensing element and the second sensing element are gratings
  • the sensor array is raster read The distance between the head and each adjacent two raster read heads is less than the length of the first and second sensing elements of the mover.
  • the shape of the first sensing element is linear, and the shape of the second sensing element is curved.
  • each of the movers is configured to be independently movable relative to the stator.
  • the mover includes two upper and lower permanent magnet arrays, wherein the stator coil assembly is located between the two permanent magnet arrays.
  • controller and the stator coil assembly and the sensor array are both electrically connected by a cable.
  • the rail is detachably mounted to the stator base.
  • the linear transmission system further includes a mounting bracket fixed to the stator base, and the sensor array is mounted on the mounting bracket.
  • the stator coil assembly comprises at least two layers of coil units arranged in a stack, two adjacent layers of the coil unit comprising a plurality of armature winding units, each armature winding unit having three coil windings
  • the three coil windings are the U phase, the V phase, and the W phase of the armature winding unit, respectively, wherein the U phase and the W phase of the armature winding unit are adjacently arranged in the same layer, and the V phase is in the U phase and the W phase.
  • the upper layer or the next layer is aligned with the center of the U phase and the W phase, and the adjacent two layer coil units, if one of the two adjacent armature winding units is V of the armature winding unit In the upper layer of the U phase and the W phase of the armature winding unit, the V phase of the armature winding unit of the other armature winding unit is in the lower layer of the U phase and the W phase of the armature winding unit.
  • each of the coil windings is formed by a multilayer coil stack in which the connection interfaces of the inter-layer coils are vertically interconnected such that the layers of the coils are connected in series.
  • the coil is a coreless coil and the coil is fabricated by a printed circuit board process.
  • the mover comprises:
  • first auxiliary support plate mounted on an upper side of the base
  • the second auxiliary support plate is spaced apart from the first auxiliary support plate
  • the first back iron is mounted on the first auxiliary support plate;
  • the second back iron is mounted on the second auxiliary support plate and spaced apart from the first back iron;
  • the back iron support plate is disposed between the first back iron and the second back iron and forms a U-shaped structure together with the first back iron and the second back iron;
  • first permanent magnet array a first permanent magnet array, the first permanent magnet array being disposed on a surface of the first back iron;
  • the second permanent magnet array being disposed on a surface of the second back iron, wherein the first permanent magnet array and the second permanent magnet array face are oppositely disposed and spaced apart.
  • the first sensing element and the second sensing element are magnetic grids
  • the encoder array is a magnetic grid read head, wherein the first sensing element is mounted on the base On a side opposite to the side on which the first back iron is located, and the second sensing element is mounted on a side of the base that is perpendicular to a side on which the first sensing element is mounted;
  • the first sensing element and the second sensing element are gratings
  • the encoder array is a grating read head, wherein the first sensing element is mounted on the base and the first The opposite side of the side on which the back iron is located, and the second sensing element are mounted on a side of the base that is perpendicular to the side on which the first sensing element is mounted.
  • the base is provided with an arcuate block, and the second sensing element is mounted on an arcuate surface of the arcuate block.
  • the mover further includes a slide seat and a roller, the slide seat is mounted on a lower side of the base, and the roller is mounted on the slide seat.
  • the mover further includes an anti-collision block mounted on the base and located on a side that is the same and opposite to the direction of movement of the mover.
  • the linear transmission system of the present invention has no cable drag, and the conventional linear motor product using the coil as the mover and the permanent magnet array as the stator has no cable drag, which improves the thrust application efficiency and Increasing servo accuracy also reduces the number of permanent magnet arrays used due to the use of short magnetic array applications, resulting in lower costs.
  • the linear transmission system of the invention realizes the application of the standardized module, and the stator adopts the standard modular technology to realize the free splicing and expansion between the plurality of stators, which can meet the application requirements of the customer for any length, and the stator can simultaneously run multiple Mover.
  • the mover can perform motion switching on the guide rails of different shapes without the problem of continuous motion.
  • FIG. 1 is a block diagram showing the structure of a linear transmission system in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the structure of a linear segment of a linear motor according to an embodiment of the present invention.
  • FIG 3 is a structural schematic view of a straight line segment and an arc segment of a linear motor according to an embodiment of the invention.
  • FIG. 4 is a schematic structural view of a stator coil according to an embodiment of the present invention.
  • Figure 5 is a block diagram showing the structure of a linear motor mover in accordance with an embodiment of the present invention.
  • Figure 6 is a diagram of a magnet array distribution of a linear motor mover in accordance with an embodiment of the present invention.
  • Figure 7 is a diagram of a magnet array distribution of a linear motor mover in accordance with another embodiment of the present invention.
  • Figure 8 is a block diagram showing the structure of a linear motor module in accordance with an embodiment of the present invention.
  • FIG. 9 is a schematic structural view of a linear motor module according to another embodiment of the present invention.
  • Fig. 10 is a view showing an example of a thrust constant effect curve of the linear motor of the present invention.
  • references to "one embodiment” or “an embodiment” in the specification are intended to mean that the particular features, structures, or features described in connection with the embodiments are included in at least one embodiment. Thus, appearances of the “a” or “an” In addition, the particular features, structures, or characteristics may be combined in any manner in one or more embodiments.
  • D1 direction mainly refers to a direction parallel to the horizontal direction
  • D2 direction mainly refers to a direction parallel to the horizontal direction and perpendicular to the direction D1
  • first direction or The term “first axis” mainly refers to a direction or coordinate axis parallel to the horizontal direction
  • second direction or “second axis” mainly refers to a direction or axis parallel to the horizontal direction and perpendicular to the first direction.
  • third direction or “third axis” mainly refers to a direction or coordinate perpendicular to the horizontal direction.
  • the linear transmission system includes a plurality of movers 108, two linear motor stator modules 104 and two constant radius curved motor stator modules 106, a magnetic grid or grating 110, a magnetic grid or a grating encoder array. 109, rail unit 103, fixing bracket 102 and stator base 101.
  • the mover 108 is mounted on the stator module of the linear motor and is translated in translation along the guide rail by the roller guide 103. Each mover 108 moves independently of each other with respect to all other movers.
  • the mover 108 includes an array of permanent magnets mounted to the inner side surface of the mover yoke.
  • the linear motor stator module and the curved motor stator module formed by the stator modules 104, 106 are connected to the fixed bracket 102.
  • the fixing bracket 102 is mounted on the stator base 101.
  • the roller guide 103 is fixed to the stator base 101 by a fastening screw.
  • a grid or grating encoder array 109 is mounted on the mounting bracket 102. The signal of the encoder array 109 is used for position measurement of the mover.
  • the stator modules 104, 106 pass the excitation current so that the designated coils are energized and excited, and the exciting magnetic fields generated by the coils interact in the permanent magnet magnetic field generated by the permanent magnet array of the mover unit 108 to form a thrust so that the mover unit 108 along the guide rails Translational movement.
  • the stator modules 104, 106 and the mover 108 independently control each mover 108 to move along the roller guide 103 as a combined function of the motion control system.
  • the mover motion positioning control device further includes a controller (not shown) that is electrically coupled to the encoder array to obtain position information of the mover.
  • the controller is further electrically connected to the stator to activate and energize the corresponding coil of the stator according to the acquired position information of the mover and the given target position of the mover, so that the excitation magnetic field generated by the corresponding coil is generated in the permanent magnet array.
  • the interaction in the permanent magnetic field creates a thrust that causes the mover to produce a translational motion.
  • the linear motor straight section includes two movers 211, 212 and a stator 200.
  • the stator 200 is constituted by a printed circuit board fixed to the stator base 101, wherein 213 is a positioning mounting hole for screwing and fixing the stator 200.
  • the stator coil assembly is constructed by alternately arranging rectangular coil windings.
  • the stator coil assembly includes a plurality of armature winding units.
  • the coil windings 209a, 209b, 209c are U, V, W three-phase coils of one armature winding unit, respectively, and the coil windings 210a, 210b, 210c are respectively U, V, W of the other armature winding unit. Three-phase coil.
  • the coil windings 209b, 210a, and 210c are arranged adjacent to each other in the same layer, and the coils 209a, 209c, and 210b are adjacently arranged in the same layer, that is, corresponding to the upper or lower layer of the U-phase and the W-phase of the V-phase coil, and The center of the U phase and the W phase are aligned.
  • the V-phase coil is arranged in alignment with the geometric centers of the U-phase and the W-phase in the lower layer of the U-phase and the W-phase.
  • the U, V, W three-phase coils constitute a basic armature winding unit, and the armature winding unit is repeatedly arranged along a lateral period, one group, two groups, three groups, ..., a basic unit, and so on, according to linear
  • the stroke of the motor requires the number of sets of armature winding units to be built.
  • each coil winding has a connection terminal, and adjacent connection terminals are connected according to a UVW three-phase connection mode, a triangle or a star connection manner.
  • Each of the coil windings 209a, 209b, 209c, 210a, 210b, 210c is manufactured by laminating a multilayer coil, and the connection interfaces of the coils of the respective layers are vertically interconnected such that each layer of the coils is connected in series to form one winding.
  • the armature winding unit can be cyclically extended and can be manufactured in one piece.
  • the coil windings can be manufactured in accordance with standard length modules and can be assembled for long stroke applications.
  • the armature winding unit can also be stacked up and down to provide greater thrust.
  • the armature winding unit can be adapted for fabrication by a printed circuit board process.
  • the air gap of each coil of the armature winding unit is very small and relatively uniform. Therefore, the thrust ripple of the linear motor is very small, and the influence of cogging force cogging is small, especially suitable for high-precision control application scenarios.
  • Fig. 10 shows an example of a thrust constant effect curve of the linear motor of the present invention. The data in the figure shows that the thrust constant fluctuation in this technology is less than 5%, which is far lower than the thrust fluctuation of the conventional iron core linear motor, or even better than the traditional ironless linear motor.
  • the permanent magnet arrays 211 and 212 of the mover unit are permanent magnet arrays of two movers, each array consisting of a set of periodically arranged NS arrays or Halbach arrays, the permanent magnets
  • the width of the array unit is W m
  • the distance from the center of the N pole to the center of the adjacent S pole is denoted by ⁇
  • the length of the permanent magnet array is denoted as the width of the W m array.
  • the base of the N pole to the N pole has a width of 2 ⁇ as a basic unit, and the distribution is repeatedly arranged along the first axis X direction, one basic unit, two sets of basic units, and so on, according to the thrust demand of the linear motor.
  • the number of sets of the mover magnet array is constructed.
  • the main conversion relationship between the magnet array and the coil winding is as follows:
  • W m is the width of the permanent magnet array
  • p is the width of each coil in the center line of the pitch circle
  • is the angular range corresponding to the pitch circle width of each coil
  • R is the pitch circle radius.
  • is the magnet pole pitch, defined as the distance from the center of the S pole to the center of the N pole
  • n c is the number of coil windings
  • n m is the number of pole pairs of the magnet.
  • the linear transmission control system preliminarily determines the stator coil area covered by the next operation to be moved by the actual position information of each mover measured by the position sensing element, and pre-energizes the area coil to be operated by the mover.
  • the linear motor stator 300 includes a stator base 301, curved stator coil assemblies 302, 303, and linear segment stator coil assemblies 307 and 308.
  • the linear segment stator coil assemblies 307 and 308 are respectively coupled to arcuate stator coil assemblies 302 and 303 having a constant radius arc (180°), which are connected to achieve a seamless interface connection.
  • the stator 300 is constructed of a printed circuit board that is secured to the stator base 301, wherein the arcuate segments of the stator coil assemblies 302, 303 are fan-shaped with a constant center radius R. Among them, the stator coil assemblies 302 and 303 are screwed to the stator base 301.
  • the stator coil assemblies 302, 303 are composed of alternately stacked rows of fan-coil windings, the center of each coil being arranged according to a pitch circle 309 of constant radius, each coil having a width p at the center line of the pitch circle, which is based on the pitch
  • the angle of the circle is ⁇ , and its conversion relationship with the pole pitch ⁇ of the magnet and the radius R of the pitch circle 309 is as follows:
  • is the angular range corresponding to each coil based on the pitch circle width
  • R is the pitch circle radius.
  • is the magnet pole pitch, defined as the distance from the center of the S pole to the center of the N pole
  • n c is the number of coil windings
  • n m is the number of pole pairs of the magnet.
  • the stator coil assembly includes a plurality of armature winding units, wherein the coil windings 304a, 304b, 304c are respectively U, V, W three-phase coils of a set of armature winding units, and 305a, 305b, 305c are respectively another set of armatures U, V, W three-phase coils of the winding unit.
  • the coils 304a, 304b, and 304c are arranged adjacent to each other in the same layer, and the coils 305a, 305b, and 305c are adjacently arranged in the same layer, that is, corresponding to the upper or lower layer of the U-phase and the W-phase of the V-phase coil. Align with the center of the U and W phases.
  • the U-phase and W-phase coils are arranged adjacent to each other in the same layer, and the V-phase coil is arranged in the upper or lower layer of the U phase and the W phase, aligned with the geometric centers of the U phase and the W phase.
  • the V-phase coil is arranged in alignment with the geometric centers of the U-phase and the W-phase in the lower layer of the U-phase and the W-phase.
  • the U, V, W three-phase coils constitute a basic armature winding unit, and the stator coil assembly is repeatedly arranged along a lateral period, one group, two groups, three groups, ..., a basic unit, and so on.
  • the number of sets of coil units is constructed according to the stroke demand of the linear motor.
  • Each of the coil windings 304a, 304b, 304c, 305a, 305b, and 305c is manufactured by laminating a plurality of layers of coils, and is connected by a triangular or star connection according to a UVW three-phase connection method.
  • the linear coil stator coil assembly with constant radius arc (180°) can be cycled and can be manufactured in one piece.
  • the winding coils can also be assembled according to two sets of standard 90° arc length modules, or they can be assembled from multiple winding coils, which can be assembled for long stroke applications.
  • the stator coil assembly can also be stacked up and down to provide greater thrust.
  • the stator coil assembly can be adapted for fabrication by a printed circuit board process.
  • the air gap of each coil of the stator coil assembly is very small and relatively uniform. Therefore, the thrust ripple of the linear motor is very small, and the influence of cogging force cogging is small, especially suitable for high-precision control application scenarios.
  • the fluctuation of the thrust constant of the linear motor proposed by the present invention is much lower than that of the conventional iron core linear motor, or even superior to the conventional ironless linear motor.
  • the stator coil is composed of a multilayer coil including 501, 502, 503, 504, ..., 508, .
  • the coil windings 511, 512, and 513 in the layers where the 501 and 502 are located are respectively U, V, and W three-phase coils of the armature winding unit.
  • the U-phase and W-phase coils are arranged adjacent to each other in the same layer, and the V-phase coil is arranged in alignment with the centers of the U phase and the W phase in the upper layer or the lower layer of the U phase and the W phase.
  • the V-phase coil When the U-phase and W-phase coils are adjacently arranged in the upper layer, the V-phase coil is arranged in alignment with the centers of the U phase and the W phase in the lower layer of the U phase and the W phase.
  • the U, V, W three-phase coils constitute a basic armature winding unit, and the armature winding unit is repeatedly arranged along the first axis direction X period, one group, two groups, three groups, ..., the basic unit, Analogously, the number of sets of armature winding units is constructed according to the stroke demand of the linear motor.
  • the coil windings in the layers in which the 503th and 504th layers are located are constructed in the same manner, and the armature winding units are repeatedly arranged along the first axis direction X period, 1 group, 2 groups, 3 Group, ..., basic unit, and so on, the number of sets of armature winding units is constructed according to the stroke demand of the linear motor.
  • 505, 506, 507, 508, ... repeat the above process layer overlap combination, which can be any number of layer constructions.
  • the armature winding unit can be cyclically extended and can be manufactured in one piece.
  • the winding coils can be manufactured in accordance with standard length modules and can be assembled for long stroke applications.
  • the armature winding unit can also be stacked up and down to provide greater thrust.
  • the coil assembly described can be adapted for fabrication by a printed circuit board process.
  • FIG. 5 is a block diagram showing the structure of a linear motor mover in accordance with an embodiment of the present invention.
  • the linear motor mover includes a base 100, a first permanent magnet array 130a, a second permanent magnet array 130b, a first back iron 131a, a second back iron 131b, a first auxiliary support plate 132a, and a second The auxiliary support plate 132b, the back iron support plate 129, the guide rail guide roller 121, the carriage 122, and the collision block 111.
  • the first auxiliary support plate 132a is mounted on the upper side of the base 100.
  • the second auxiliary support plate 132b is spaced apart from the first auxiliary support plate 132a.
  • the first back iron 131a is mounted on the first auxiliary support plate 132a.
  • the second back iron 131b is mounted to the second auxiliary support plate 132b and spaced apart from the first back iron 131a.
  • the back iron support plate 129 is disposed between the first back iron 131a and the second back iron 131b and forms a U-shaped structure together with the first back iron and the second back iron.
  • the first permanent magnet array 130a of the linear motor is bonded to the first back iron 131a.
  • the second permanent magnet array 130b of the linear motor is bonded to the first back iron 131b.
  • the first permanent magnet array 130a and the second permanent magnet array 130b face each other to form a bilateral permanent magnet U-shaped mover.
  • the carriage 122 is mounted on the lower side of the base 100.
  • a set of guide rail rollers 121 are mounted on the lower side of the carriage 122.
  • the bumper block 111 is attached to both ends of the base 100.
  • the anti-collision block 111 adopts a soft material such as polyurethane. When a plurality of movers run on the same closed moving orbit, when the accidental collision occurs, the anti-collision block first deforms to absorb the impact energy, slow the impact force, and protect the mover. Or the safety of materials on the mover.
  • Sensing elements such as linear segment grids or gratings 125 and/or curved segment grids or gratings 126 are provided on the movers.
  • the linear segment magnetic grid or grating 125 is mounted on the guiding surface of the susceptor 100 and can be detected and measured by an encoder array (i.e., a magnetic grid or a grating read head) mounted on a straight line segment.
  • an encoder array i.e., a magnetic grid or a grating read head mounted on a straight line segment.
  • the distance between two adjacent encoders is less than the effective signal transmission distance of the magnetic grid or grating of the mover. In this embodiment, the distance between two adjacent encoders is smaller than the length of the magnetic grid or grating.
  • the curved segment magnetic grid or grating 126 is mounted on the lateral side of the base 100 and has a curved curved surface conforming to the guide rail, which can be detected and measured by an encoder array mounted on the curved segment.
  • the straight line segment and the curved segment magnetic grid or grating and the encoder do not interfere with each other during motion.
  • the linear segment grid or grating 125 and the arc segment grid or grating 126 may be replaced by other sensing elements such as Hall sensing elements.
  • the sensing element includes a first sensing element and a second sensing element, wherein the first sensing element and the second sensing element are arranged to be issued by the first sensing element when the mover moves on the linear stator module A signal is read by an encoder array on the linear stator module, and when the mover moves over the curved stator module, the second signal emitted by the second sensing element is read by the encoder array on the curved stator module .
  • the first sensing element and the second sensing element are mounted on the mover and their mounting position on the mover is arranged such that at any time during the movement of the mover, two adjacent encoders on the stator are capable of acquiring The first signal sent by the first sensing element or the second signal sent by the second sensing element.
  • the permanent magnet array of the mover generates a driving force under the current excitation of the stator coil, and pushes the entire mover along the guide rail to guide the roller 121 to move along the guide rail.
  • the guide rail guide rollers 121 can move along the linear guide rails as well as along the curved guide rails.
  • the sensing element can detect the moving position of the mover.
  • Figure 6 is a diagram of a magnet array distribution of a linear motor mover in accordance with an embodiment of the present invention.
  • the first permanent magnet array 131a and the second permanent magnet array 131b are two sets of face-to-face permanent magnet arrays, including a first permanent magnet, a second permanent magnet, and a third permanent magnet, wherein the first and the first The second permanent magnet is the main magnet, and the third permanent magnet is the auxiliary magnet.
  • the first permanent magnets 413a, 413b, 417a, 417b, 421a, and 421b have magnetization directions pointing from the S pole to the N pole, that is, toward the Z axis positive direction along the third coordinate axis.
  • the second permanent magnets 415a, 415b, 419a, 419b, 423a, 423b have a magnetization direction pointing from the S pole to the N pole, that is, toward the Z axis negative direction along the third coordinate axis.
  • the third permanent magnets 412a, 412b, 414a, 414b, 416a, 416b, 418a, 418b, 420a, 420b, 422a, 422b, 424a, 424b are auxiliary magnets whose magnetization directions are along the first coordinate axis X direction.
  • the third permanent magnets 412a, 414a have a magnetization direction directed in the direction of the first permanent magnet 413a along the first coordinate axis, a magnetization direction of the 412a pointing in the positive direction of the X-axis, and a magnetization direction of the 414a pointing in the negative direction of the X-axis.
  • the third permanent magnets 414a, 416a have a magnetization direction directed away from the second permanent magnet 415a along the first coordinate axis, and a 411a magnetization direction directed in the positive direction of the X-axis.
  • the third permanent magnets 416a, 418a have a magnetization direction directed to the direction of the first permanent magnet 417a along the first coordinate axis, and a magnetization direction of the 418a is directed to the negative direction of the X-axis.
  • the third permanent magnets 418a, 420a have a magnetization direction directed away from the second permanent magnet 419a along the first coordinate axis, and a magnetization direction of the 420a is directed to the positive direction of the X-axis.
  • the third permanent magnets 418a, 420a have magnetization directions directed away from the first permanent magnet 419a along the first coordinate axis, and 420a magnetization directions are directed to the positive direction of the X-axis.
  • the third permanent magnets 420a and 422a have a magnetization direction directed to the direction of the second permanent magnet 421a along the first coordinate axis, and a magnetization direction of the 422a is directed to the negative direction of the X-axis.
  • the third permanent magnets 422a, 424a have a magnetization direction directed away from the first permanent magnet 423a along the first coordinate axis, and a 241a magnetization direction directed in the positive direction of the X-axis.
  • the third permanent magnets 412b, 414b have a magnetization direction pointing away from the first permanent magnet 413b along the first coordinate axis, a magnetization direction of the 412b pointing in the positive direction of the X-axis, and a magnetization direction of the 414b pointing in the negative direction of the X-axis.
  • the third permanent magnets 414b, 416b have a magnetization direction directed to the direction of the second permanent magnet 415b along the first coordinate axis, and a magnetization direction of the 416b is directed to the negative direction of the X-axis.
  • the third permanent magnets 416b, 418b have a magnetization direction directed away from the first permanent magnet 417b along the first coordinate axis, and a 418b magnetization direction directed in the positive direction of the X-axis.
  • the third permanent magnets 418b and 420b have a magnetization direction directed to the direction of the second permanent magnet 419b along the first coordinate axis, and a magnetization direction of the 420b is directed to the negative direction of the X-axis.
  • the third permanent magnets 420b, 422b have a magnetization direction directed away from the second permanent magnet 421b along the first coordinate axis, and a 422b magnetization direction directed in the positive direction of the X-axis.
  • the third permanent magnets 422b and 424b have a magnetization direction directed in the direction of the first permanent magnet 423b along the first coordinate axis, and a magnetization direction of the 424b in the negative direction of the X-axis.
  • the first, second, and third permanent magnets are typically combined into a Halbach array unit using prismatic magnet blocks that together form a symmetrically arranged permanent magnet array of movers.
  • the width of the Halbach array unit is W m
  • the distance from the N pole to the adjacent S pole permanent magnet center is denoted by ⁇
  • the length of the permanent magnet array is denoted as the W m array width.
  • the first, second, and third permanent magnets are constructed with a complete cycle of Halbach magnets, the distribution is repeated periodically along the first axis X direction, one Halbach basic unit, two sets of Halbach basic units, and so on.
  • the number of sets of the mover magnet array is constructed according to the thrust demand of the linear motor.
  • the first back iron 403 and the second back iron 402 are materials having high magnetic permeability materials such as steel and iron. It builds magnetic flux loops in the magnetic flux of the Halbach base unit in the direction of the back iron to reduce magnetic leakage.
  • the Halbach basic unit has a single-sided magnetic density characteristic, and the magnetic tightness distribution facing the coil side is higher than that of the conventional NS array, and the magnetic density facing the back iron side is weak, so the thickness of the back iron is Applications can be thinner than the back iron of a conventional NS magnetic array.
  • the use of low-density high-strength materials as an auxiliary support can reduce the weight of the mover unit. In order to reduce local magnetic leakage, the thickness of the back iron is maintained at least 1 mm.
  • the width of the third permanent magnets 412a, 412b, 424a, 424b in the direction of the third axis X is half the width of the permanent magnets 414a, 414b.
  • the width of the first and second permanent magnets along the X direction is 0.5 to 0.9 times ⁇ .
  • the first auxiliary support plate 401 and the second auxiliary support plate 404 are auxiliary support members of a low density and high rigidity material for reinforcing the support rigidity of the back iron.
  • FIG. 7 is a diagram of a magnet array distribution of a linear motor mover in accordance with another embodiment of the present invention.
  • the magnet array unit of the mover is composed of two basic units of a face-to-face NS permanent magnet array and a yoke, and the first permanent magnets 512a, 512b, 514a, 514b, 516a, 516b at the center of the base unit,
  • the magnetization direction is from the S pole to the N pole, that is, along the third coordinate axis, pointing to the positive direction of the Z axis;
  • the second permanent magnets 513a, 513b, 515a, 515b, 517a, 517b at the center of the basic unit have magnetization directions from the S pole Pointing to the N pole, that is, pointing to the negative direction of the Z axis along the third coordinate axis.
  • the second permanent magnets are typically combined into prismatic magnet blocks into NS base units which together form a symmetrically arranged permanent magnet array of mover units.
  • the width of the NS permanent magnet array unit is W m
  • the distance from the N pole to the adjacent S pole permanent magnet center is denoted as ⁇ .
  • the first and second permanent magnets construct a complete period of NS magnet group, and the distribution is repeated along the first axis direction X period, one NS basic unit, two sets of NS basic units, and so on, according to linear
  • the thrust demand of the motor is used to construct the number of sets of the moving magnet array.
  • the back irons 601 and 602 are soft magnetic materials, such as cobalt-iron alloy, iron-nickel alloy, silicon steel, iron-aluminum-silicon alloy, etc., and the soft magnetic material refers to the IEC60404-1 standard, which constructs a magnetic line circuit for the magnetic flux of the NS basic unit in the back iron direction. .
  • the NS basic unit has a bidirectional magnetic-tight characteristic. According to the electromagnetic thrust, the magnetic density distribution to the coil side needs to be higher, and the magnetic density facing the back iron side is preferably as small as possible.
  • the thickness should be of sufficient thickness to reduce magnetic leakage and maintain a thickness of at least 5 mm. Further, the width of the first and second permanent magnets along the X direction is 0.5 to 1 times ⁇ .
  • FIG 8 is a block diagram showing the structure of a linear motor module in accordance with an embodiment of the present invention.
  • the linear motor module includes a mover and stator module.
  • the mover module can adopt a mover structure as shown in FIG.
  • the stator module includes a base body and a stator coil assembly fixed to the base body, and the stator coil assembly includes at least two layers of coil units arranged in a stack.
  • the coil unit can be made from a coreless coil through a printed circuit board process.
  • the stator coil assembly is operatively disposed between the first array of permanent magnets and the second array of permanent magnets.
  • the adjacent two-layer coil unit includes a plurality of armature winding units, each armature winding unit having three coil windings 401a, 401b, 401c.
  • the three coil windings 401a, 401b, 401c are respectively the U phase, the V phase and the W phase of the armature winding unit, wherein the U phase and the W phase of each armature winding unit are adjacently arranged in the same layer, and the V phase is in the U
  • the upper or lower layer of the phase and W phase are aligned with the center of the U phase and the W phase.
  • the V phase of one of the adjacent two armature winding units is in the upper layer of the U phase and the W phase of the armature winding unit, the other armature winding
  • the V phase of the armature winding unit of the unit is in the lower layer of the U phase and the W phase of the armature winding unit.
  • the U, V, W three-phase coils constitute the basic armature winding unit and are repeatedly arranged along the first axis direction X period, one group, two groups, three groups, ..., the basic unit, and so on, according to the linear motor
  • the stroke demand is to build the number of sets of armature winding units.
  • the linear motor module includes a magnet mover and a stator coil unit.
  • the mover is composed of two basic units of a face-to-face permanent magnet array and a yoke.
  • the first permanent magnets 430a, 430b at the center of the basic unit have a magnetization direction from the S pole to the N pole, that is, the Z along the third coordinate axis.
  • the positive direction of the axis; the second permanent magnets 431a, 431b at the center of the basic unit have a magnetization direction pointing from the S pole to the N pole, that is, in the negative direction of the Z axis along the third coordinate axis.
  • the second permanent magnets are typically combined into prismatic magnet blocks into NS base units which together form a symmetrically arranged permanent magnet array of mover units.
  • the width of the NS basic unit is W m , and the length of the half period is denoted by ⁇ .
  • the first and second magnets construct a complete cycle of the NS magnet group, the distribution is repeated along the first axis direction X cycle, one NS basic unit, two sets of NS basic units, and so on, according to the linear motor
  • the thrust requirement is to build the number of groups of moving magnet arrays.
  • the NS basic unit has a two-way magnetic-density characteristic.
  • the magnetic dense magnetic intensity distribution facing the coil side needs to be higher, and the magnetic density facing the back iron side is preferably as small as possible, so the back iron thickness is required.
  • the magnetic leakage should be reduced to a sufficient thickness to maintain a thickness of at least 5 mm.
  • the first and second types of permanent magnets have a width in the X direction of 0.5 to 1 times ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Linear Motors (AREA)

Abstract

一种线性传输系统,包括:定子基座(101);定子线圈组件;多个动子(108),各动子(108)设有永磁铁阵列和位置传感元件;导轨(103),动子(108)沿导轨(103)运动;传感器阵列(109),其沿导轨(103)分布并布置成读取设置于动子(108)上的位置传感元件所发出的信号;控制器,其根据来自传感器阵列(109)所检测到的动子(108)位置信息来控制相应的定子线圈组件通电。

Description

一种线性传输系统
相关申请交叉引用
本专利申请要求于2017年07月06日提交的、申请号为2017105475778、发明名称为“一种线性传输系统”的中国专利申请的优先权,上述申请的全文以引用的方式并入本文中。
技术领域
本发明涉及输送装置,具体涉及线性传输系统。
背景技术
随着制造技术向高产率、高精密化方向发展,精密运动控制技术的研究变得越来越重要,相应地,运动定位控制系统需求量也越来越大,广泛应用于自动化生产线、包装与运输、装配自动化、丝网印刷等行业,提供具有更高速度和加工柔性。传统驱动系统采用旋转马达驱动结构,传递系统中齿轮头、轴、键、链轮齿、链条、皮带等常用于传统旋转马达传动的部件非常的复杂笨重。线性马达应用了一种运动磁场来直接驱动运动部件,降低了结构复杂性,还降低了成本和因减小惯量、柔顺性、阻尼、摩擦和磨损而带来的速度增加等优点。
运动控制系统的核心执行器部件——线性马达,它在电磁推力的作用下,电机动子能够带动负载产生高速、大推力的驱动,多个线性马达可以组合构建两维或多维运动,采用线性马达可以设计构造精密的线性传输设备、精密XY工作台,结构简单紧凑,机械尺寸小,响应速度快,精度高,而且由于动子和定子间无相对摩擦,因此不存在磨损,使用寿命很长。
传统采用线性马达的线性传输系统中,采用光栅或磁栅测量,编码器读头安装于动子上跟随动子一起运动,编码器的测量的数据信息需要通过线缆连接到控制器,由此带来干扰和可靠性问题。
另外,现有的线性传输系统中,当各动子在不同形状的导轨上进行运动切换时,会存在不能连续运动问题。
发明内容
本发明的目的是提供一种运动可靠性高,动子可在不同形状的轨道上连续运动的线性传输系统。
为实现上述目的,本申请提供了一种线性传输系统,所述线性传输系统包括:
定子基座,所述定子基座由一个或多个子基座组成;
定子线圈组件,所述定子线圈组件固定于所述子基座上;
多个动子,各所述动子设有永磁铁阵列和位置传感元件,其中所述永磁铁阵列产生的磁场和所述定子线圈组件产生的励磁磁场能够相互作用而推动所述动子产生平移运动;
导轨,所述导轨安装于所述定子基座上,并且所述动子布置于所述导轨上并沿所述导轨运动;
传感器阵列,所述传感器阵列沿所述导轨分布并布置成读取设置于所述动子上的所述位置传感元件所发出的信号;以及
控制器,所述控制器与所述定子线圈组件和所述传感器阵列均电连接,并根据来自所述传感器阵列所检测到的动子位置信息来控制相应的定子线圈组件通电。
一实施例中,所述定子基座包括直线定子基座和弧形定子基座,其中所述直线定子基座安装有矩形定子线圈组件而形成直线定子模块,以及所述弧形定子基座安装有弧形定子线圈组件而形成弧形定子模块。
一实施例中,每个所述动子上安装有第一传感元件和第二传感元件,其中所述第一传感元件和所述第二传感元件布置成当所述动子在所述直线定子模块上移动时,由所述第一传感元件发出的第一信号被所述直线定子模块上的传感器阵列读取,而当所述动子在所述弧形定子基座上移动时,由所述第二传感元件发出的第二信号被所述弧形定子模块上的传感器阵列读取。
一实施例中,所述第一传感元件和所述第二传感元件在所述动子上的安装位置布置成在所述动子的运动期间的任何时刻,所述定子上相邻的两个传感器均能够采集到所述第一传感元件发出的第一信号或者所述第二传感元件发出的第二信号。
一实施例中,相邻的两个传感器之间的距离小于所述动子的所述第一传感元件和所述第二传感元件的有效信号传递距离。
一实施例中,所述第一传感元件和所述第二传感元件为磁栅,所述传感器阵列为磁栅读头,以及每相邻的两个磁栅读头之间的距离小于所述动子的所述第一传感 元件和所述第二传感元件的长度;或者,所述第一传感元件和所述第二传感元件为光栅,所述传感器阵列为光栅读头,以及每相邻的两个光栅读头之间的距离小于所述动子的所述第一传感元件和所述第二传感元件的长度。
一实施例中,所述第一传感元件的形状为直线形,以及所述第二传感元件的形状为弧形。
一实施例中,各所述动子设置成能够独立地相对于所述定子运动。
一实施例中,所述动子包含上下两个永磁铁阵列,其中所述定子线圈组件位于所述两个永磁铁阵列之间。
一实施例中,所述控制器与所述定子线圈组件和所述传感器阵列均通过线缆电连接。
一实施例中,所述导轨可拆卸地安装于所述定子基座上。
一实施例中,所述线性传输系统还包括安装支架,所述安装支架固定于所述定子基座上,且所述传感器阵列安装于所述安装支架上。
一实施例中,所述定子线圈组件包含相互层叠排布的至少两层线圈单元,相邻的两层所述线圈单元包含多个电枢绕组单元,每个电枢绕组单元具有三个线圈绕组,所述三个线圈绕组分别为该电枢绕组单元的U相、V相和W相,其中电枢绕组单元的U相和W相相邻布置在同一层,V相在U相和W相的上一层或下一层,与U相和W相的中心对齐排布,以及相邻的两层线圈单元中,如果相邻的两个电枢绕组单元中的一个电枢绕组单元的V相在该电枢绕组单元的U相和W相的上层,则另一个电枢绕组单元的电枢绕组单元的V相在该电枢绕组单元的U相和W相的下层。
一实施例中,每个线圈绕组由多层线圈叠加工而成,其中各层间线圈的连接接口垂向互联,使得各层线圈串联。
一实施例中,所述线圈为无铁芯线圈,且所述线圈通过印制电路板工艺制造。
一实施例中,所述动子包括:
基座;
第一辅助支撑板,所述第一辅助支撑板安装于所述基座的上侧;
第二辅助支撑板,所述第二辅助支撑板与所述第一辅助支撑板间隔开放置;
第一背铁,所述第一背铁安装于所述第一辅助支撑板;
第二背铁,所述第二背铁安装于所述第二辅助支撑板并与所述第一背铁间隔 开;
背铁支撑板,所述背铁支撑板置于所述第一背铁与所述第二背铁之间并与所述第一背铁和所述第二背铁共同形成U字形结构;
第一永磁铁阵列,所述第一永磁铁阵列布置于所述第一背铁的表面上;以及
第二永磁铁阵列,所述第二永磁铁阵列布置于所述第二背铁的表面上,其中所述第一永磁铁阵列与所述第二永磁铁阵列面面相对布置并间隔开。
一实施例中,所述第一传感元件和所述第二传感元件为磁栅,且所述编码器阵列为磁栅读头,其中所述第一传感元件安装于所述基座的与所述第一背铁所在侧相反的一侧上,以及所述第二传感元件安装于所述基座的与安装有所述第一传感元件的一侧垂直的一侧上;或者,所述第一传感元件和所述第二传感元件为光栅,所述编码器阵列为光栅读头,其中所述第一传感元件安装于所述基座的与所述第一背铁所在侧相反的一侧上,以及所述第二传感元件安装于所述基座的与安装有所述第一传感元件的一侧垂直的一侧上。
一实施例中,所述基座上设有弧形块,所述第二传感元件安装在所述弧形块的弧形面上。
一实施例中,所述动子进一步包括滑座和滚轮,所述滑座安装于所述基座的下侧,以及所述滚轮安装于所述滑座上。
一实施例中,所述动子进一步包括防撞块,所述防撞块安装于所述基座上并位于与所述动子的运动方向相同和相反的侧面上。
本发明与现有技术相比所具有的进步效果:
1)本发明的线性传输系统的动子没有线缆拖动,相比于采用线圈作为动子,永磁阵列作为定子的传统线性马达产品,没有了线缆拖动,提高了推力应用效率和提高伺服精度,也因使用短磁阵列应用而减少了永磁阵列使用数量,使得成本降低。
2)本发明的线性传输系统的实现了标准化模块应用,定子采用标准模块化技术,实现多个定子之间的自由拼接和扩展,可以满足客户任意长度的应用需求,定子上可以同时运行多个动子。
3)本发明的线性传输系统中,动子能够在不同的形状的导轨上进行运动切换,且不会存在连续运动问题。
附图说明
图1是根据本发明的一实施例的线性传输系统的结构示意图。
图2是根据本发明的一实施例的线性马达直线段的结构示意图。
图3是根据本发明的一实施例的线性马达直线段和弧形段衔接的结构示意图。
图4是根据本发明的一实施例的定子线圈的结构示意图。
图5是根据本发明的一实施例的线性马达动子的结构示意图。
图6是根据本发明的一实施例的线性马达动子的磁铁阵列分布。
图7是根据本发明的另一实施例的线性马达动子的磁铁阵列分布。
图8是根据本发明的一实施例的线性马达模块的结构示意图。
图9是根据本发明的另一实施例的线性马达模块的结构示意图。
图10是本发明的线性马达的推力常数效果曲线示例。
具体实施方式
以下将结合附图对本发明的较佳实施例进行详细说明,以便更清楚理解本发明的目的、特点和优点。应理解的是,附图所示的实施例并不是对本发明范围的限制,而只是为了说明本发明技术方案的实质精神。
在下文的描述中,出于说明各种公开的实施例的目的阐述了某些具体细节以提供对各种公开实施例的透彻理解。但是,相关领域技术人员将认识到可在无这些具体细节中的一个或多个细节的情况来实践实施例。在其它情形下,与线性马达相关联的熟知的装置、结构和技术可能并未详细地示出或描述从而避免不必要地混淆实施例的描述。
除非语境有其它需要,在整个说明书和权利要求中,词语“包括”和其变型,诸如“包含”和“具有”应被理解为开放的、包含的含义,即应解释为“包括,但不限于”。
在整个说明书中对“一个实施例”或“一实施例”的提及表示结合实施例所描述的特定特点、结构或特征包括于至少一个实施例中。因此,在整个说明书的各个位置“在一个实施例中”或“在一实施例”中的出现无需全都指相同实施例。另外,特定特点、结构或特征可在一个或多个实施例中以任何方式组 合。
如该说明书和所附权利要求中所用的单数形式“一”和“所述”包括复数指代物,除非文中清楚地另外规定。应当指出的是术语“或”通常以其包括“和/或”的含义使用,除非文中清楚地另外规定。
在以下描述中,为了清楚展示本发明的结构及工作方式,将借助诸多方向性词语进行描述,但是应当将“前”、“后”、“左”、“右”、“外”、“内”、“向外”、“向内”、“上”、“下”等词语理解为方便用语,而不应当理解为限定性词语。
此外,在以下描述中所使用的“D1方向”一词主要指与水平向平行的方向;“D2方向”一词主要指与水平向平行同时与D1方向垂直的方向;“第一方向”或“第一轴”一词主要指与水平向平行的方向或坐标轴;“第二方向”或“第二轴”一词主要指与水平向平行且同时与第一方向垂直的方向或坐标轴;“第三方向”或“第三轴”一词主要指与水平向垂直的方向或坐标。
图1是一种线性传输系统的结构示意图。如图1所示,该线性传输系统包括多个动子108,两段直线马达定子模块104和两段恒定半径的弧形马达定子模块106,磁栅或光栅110,磁栅或光栅编码器阵列109,导轨单元103,固定支架102以及定子基座101。其中,动子108安装于线性马达的定子模块之上,通过滚子导轨103沿着导轨方向平移运动。每个动子108相对于所有的其他动子是相互独立运动的。动子108包含永磁铁阵列,安装于动子磁轭内侧表面。定子模块104、106构成的直线马达定子模块和弧形马达定子模块与固定支架102相连。固定支架102安装于定子基座101之上。滚子导轨103通过紧固螺钉固定在定子基座101之上。磁栅或光栅编码器阵列109安装于固定支架102上。编码器阵列109的信号用于动子的位置测量。定子模块104、106通入励磁电流,使得指定线圈激活通电并励磁,线圈产生的励磁磁场在动子单元108的永磁阵列产生的永磁磁场中相互作用形成推力使得动子单元108沿着导轨平移运动。在实施例中,定子模块104,106与动子108作为运动控制系统的组合功能独立控制每个动子108沿着滚子导轨103运动。
动子运动定位控制装置进一步包括控制器(图未示),控制器与编码器阵列电连接以获取动子的位置信息。控制器还与定子电连接,以根据所获取的动子的位置 信息和给定的动子目标位置,使得定子的对应线圈激活通电并励磁,从而对应线圈产生的励磁磁场在永磁铁阵列产生的永磁磁场中相互作用形成推力使得动子产生平移运动。
图2示出根据本发明的一实施例的线性马达直线段的结构示意图。如图2所示,线性马达直线段包含两个动子211、212和定子200。定子200由一个固定于定子基座101上的印制电路板构成,其中,213为定位安装孔,用于螺钉连接和固定定子200。在印制电路板200上,定子线圈组件由矩形线圈绕组交替层叠排布构成。
定子线圈组件包括多个电枢绕组单元。一实施例中,线圈绕组209a、209b、209c分别为一个电枢绕组单元的U、V、W三相线圈,线圈绕组210a、210b、210c分别为另一个电枢绕组单元的U、V、W三相线圈。线圈绕组209b、210a和210c线圈在同一层相邻排列,209a、209c、210b线圈在同一层相邻排列,即对应于V相线圈在U相和W相的上一层或下一层,与U相和W相的中心对齐排布。当所述的U相和W相线圈相邻排列在上面一层时,V相线圈在U相和W相的下面一层,与U相和W相两相的几何中心对齐排布。U、V、W三相线圈构成基本的电枢绕组单元,该电枢绕组单元沿着横向周期重复排布,1组、2组、3组,……,基本单元,以此类推,根据线性马达的行程需求进行构建电枢绕组单元的组数。其中,每个线圈绕组均有接线端子,相邻的接线端子根据UVW三相连接方式,三角形或星型连接方式进行连接。线圈绕组209a、209b、209c、210a、210b、210c的每一个绕组为多层线圈层叠加工制造而成,各层间线圈的连接接口垂向互联,使得每层线圈串联成一个绕组。
电枢绕组单元可以进行周期延展,可以一体成型制造。线圈绕组可以按照标准长度的模块制造,针对长行程应用可组装拼接定子模块。此外,电枢绕组单元还可以上下层叠的拼接应用,可以提供更大的推力。特别地,电枢绕组单元可适用于通过印制电路板工艺制造。而且,电枢绕组单元的每个线圈的气隙非常小,且比较均匀,因而,线性马达的推力纹波非常小,齿槽力cogging的影响较小,尤其适应于高精密控制应用场景。图10示出本发明的线性马达的推力常数效果曲线示例。图中数据显示结果表明该技术中的推力常数的波动小于5%,远远低于常规的铁芯直线电机的推力波动,甚或优于传统的无铁芯直线电 机。
还如图2所示,动子单元的永磁阵列211和212为两个动子的永磁阵列,每个阵列由一组周期性排布的NS阵列或Halbach阵列构成,所述的永磁阵列单元的宽度为W m,其N极中心到相邻S极中心的距离记为τ,所述永磁阵列的长度记为W m阵列宽度。以N极到N极中心具有2τ宽度作为基本单元,分布沿着第一轴X方向周期重复排布,1个基本单元、2组基本单元……,以此类推,根据线性马达的推力需求进行构建动子磁铁阵列的组数。磁铁阵列与线圈绕组之间的主要换算关系如下:
W m=n m·τ
Figure PCTCN2018091190-appb-000001
Figure PCTCN2018091190-appb-000002
其中,W m为动子永磁阵列宽度,p为每个线圈在节圆中心线的宽度,α为每个线圈基于节圆宽度对应的角度范围,R为节圆半径。τ为磁铁极距,定义为S极中心到N极中心的距离,n c为线圈绕组的个数,n m为磁铁的磁极对数。
当多个动子在定子线圈上方运行时,每个动子永磁铁覆盖区域的对应的线圈绕组通电励磁,产生水平推力。线性传输控制系统通过位置传感元件测量得到的每个动子的实际位置信息,预先判断即将运动的下一运行覆盖的定子线圈区域,在动子即将运行的区域线圈预先通电。
图3示出根据本发明的一实施例的线性马达直线段和弧形段(180°)衔接的结构示意图。如图3所示,线性马达定子300包括定子基座301,弧形定子线圈组件302、303,直线段定子线圈组件307和308。直线段定子线圈组件307和308分别为与具有恒定半径弧型(180°)弧形定子线圈组件302和303相连,二者衔接实现无缝接口连接。
定子300由一个固定于定子基座301上的印制电路板构成,其中弧形段的定子线圈组件302、303为扇环形,具有恒定的中心半径R。其中,定子线圈组件302和303用螺钉固定于定子基座301上。定子线圈组件302、303由具有扇环形线圈绕组交替层叠排布构成,每个线圈的中心按照恒定半径的节圆线309排布,每个线圈在节圆中心线的宽度为p,它基于节圆的角度为α,它与磁铁极 距τ以及节圆线309半径R的换算关系如下式:
p=R·α
Figure PCTCN2018091190-appb-000003
其中,p为每个线圈在节圆中心线的宽度,α为每个线圈基于节圆宽度对应的角度范围,R为节圆半径。τ为磁铁极距,定义为S极中心到N极中心的距离,n c为线圈绕组的个数,n m为磁铁的磁极对数。
定子线圈组件包括多个电枢绕组单元,其中,线圈绕组304a、304b、304c分别为一组电枢绕组单元的U、V、W三相线圈,305a、305b、305c分别为另外一组电枢绕组单元的U、V、W三相线圈。所述的304a、304b、304c线圈在同一层相邻排列,305a、305b、305c线圈在同一层相邻排列,即对应于V相线圈在U相和W相的上一层或下一层,与U相和W相的中心对齐排布。所述的U相和W相线圈在同一层相邻排列,V相线圈在U相和W相的上一层或下一层,与U相和W相两相的几何中心对齐排布。当所述的U相和W相线圈相邻排列在上面一层时,V相线圈在U相和W相的下面一层,与U相和W相两相的几何中心对齐排布。所述的U、V、W三相线圈构成基本的电枢绕组单元,该定子线圈组件沿着横向周期重复排布,1组、2组、3组,……,基本单元,以此类推,根据线性马达的行程需求进行构建线圈单元的组数。其其中,所述的线圈绕组304a、304b、304c、305a、305b、305c的每一个绕组为多层线圈层叠加工制造而成,根据UVW三相连接方式,三角形或星型连接方式进行连接。
具有恒定半径弧型(180°)线性马达定子线圈组件可以进行周期延展,可以一体成型制造。绕组线圈也可以按照两组标准90°弧形长度的模块组装而成,也可以由多个绕组线圈组装而成,针对长行程应用可组装拼接定子模块。此外,定子线圈组件还可以上下层叠的拼接应用,可以提供更大的推力。特别地,定子线圈组件可适用于通过印制电路板工艺制造。而且,定子线圈组件的每个线圈的气隙非常小,且比较均匀,因而,线性马达的推力纹波非常小,齿槽力cogging的影响较小,尤其适应于高精密控制应用场景。本发明提出的线性马达的推力常数的波动远低于常规的铁芯直线电机的推力波动,甚或优于传统的无铁芯直线电机。
图4示出根据本发明的一实施例的定子线圈的结构示意图。如图4所示,定子线圈由多层线圈组成,包括501、502、503、504,…,508,…。其中,第501和502所在的层中的线圈绕组511、512、513分别为电枢绕组单元的U、V、W三相线圈。U相和W相线圈在同一层相邻排列,V相线圈在U相和W相的上一层或下一层,与U相和W相的中心对齐排布。当所述的U相和W相线圈相邻排列在上面一层时,V相线圈在U相和W相的下面一层,与U相和W相的中心对齐排布。U、V、W三相线圈构成基本的电枢绕组单元,该电枢绕组单元沿着第一轴方向X周期重复排布,1组、2组、3组,……,基本单元,以此类推,根据线性马达的行程需求进行构建电枢绕组单元的组数。类似的,第503、504所在的层中的线圈绕组按照同样的方法进行三相绕组的构建,且该电枢绕组单元沿着第一轴方向X周期重复排布,1组、2组、3组,……,基本单元,以此类推,根据线性马达的行程需求进行构建电枢绕组单元的组数。以此类推,第505、506,第507、508,…,重复以上的过程层层重叠组合,可以是任意数量的层数构建。
电枢绕组单元可以进行周期延展,可以一体成型制造。绕组线圈可以按照标准长度的模块制造,针对长行程应用可组装拼接定子模块。此外,所述的电枢绕组单元还可以上下层叠的拼接应用,可以提供更大的推力。特别地,所述的线圈组件可适用于通过印制电路板工艺制造。
图5是根据本发明的一实施例的线性马达动子的结构示意图。如图5所示,线性马达动子包括基座100、第一永磁阵列130a、第二永磁阵列130b、第一背铁131a、第二背铁131b、第一辅助支撑板132a、第二辅助支撑板132b、背铁支撑板129、导轨导向滚子121、滑座122以及防撞块111。第一辅助支撑板132a安装于基座100的上侧。第二辅助支撑板132b与第一辅助支撑板132a间隔开放置。第一背铁131a安装于第一辅助支撑板132a上。第二背铁131b安装于第二辅助支撑板132b并与第一背铁131a间隔开。背铁支撑板129置于第一背铁131a与第二背铁131b之间并与第一背铁和第二背铁共同形成U字形结构。线性马达的第一永磁阵列130a粘接于第一背铁131a上。线性马达的第二永磁阵列130b粘接于第一背铁131b上。第一永磁阵列130a和第二永磁阵列130b面面相对构成双边永磁U 型动子。滑座122安装于基座100的下侧。一组导轨导向滚子121安装于滑座122下侧。
防撞块111安装于基座100的两端。防撞块111采用诸如聚氨酯这样的软性材料,当多个动子运行于同一个闭合的运动轨道上,发生意外碰撞时,防撞块首先变形吸收冲击的能量,减缓撞击力,保护动子或动子上物料的安全。
动子上设有诸如直线段磁栅或光栅125和/或弧形段磁栅或光栅126的传感元件。直线段磁栅或光栅125安装于基座100的导向面上,可由安装于直线段的编码器阵列(即磁栅或光栅读头)进行检测测量。相邻的两个编码器之间的距离小于动子的磁栅或光栅的有效信号传递距离。本实施例中,相邻的两个编码器之间的距离小于磁栅或光栅的长度。弧形段磁栅或光栅126安装于基座100的侧向,具有与导轨一致的曲面弧形,可由安装于弧形段的编码器阵列进行检测测量。直线段和弧形段磁栅或光栅与编码器在运动中互不干涉。
这里,直线段磁栅或光栅125和弧形段磁栅或光栅126可以由诸如霍尔传感元件的其他传感元件来替代。传感元件包括第一传感元件和第二传感元件,其中第一传感元件和第二传感元件布置成当动子在直线定子模块上移动时,由第一传感元件发出的第一信号被直线定子模块上的编码器阵列读取,而当动子在弧形定子模块上移动时,由第二传感元件发出的第二信号被弧形定子模块上的编码器阵列读取。
第一传感元件和第二传感元件安装在动子上,且其在动子上的安装位置布置成在动子的运动期间的任何时刻,定子上相邻的两个编码器均能够采集到第一传感元件发出的第一信号或者第二传感元件发出的第二信号。
工作时,动子的永磁阵列在定子线圈的电流励磁下产生驱动力,推动整个动子通过导轨导向滚子121沿着导轨运动。导轨导向滚子121可以沿着直线导轨运动也可以沿着弧形导轨运动。传感元件可以检测动子的运动位置。
图6是根据本发明的一实施例的线性马达动子的磁铁阵列分布。如图6所示,第一永磁阵列131a和第二永磁阵列131b为2组面对面的永磁阵列,其包含第一永磁铁、第二永磁铁和第三永磁铁,其中第一和第二永磁铁为主磁铁,第三永磁铁为辅助磁铁。第一永磁铁413a、413b、417a、417b、421a、421b,其磁化方向从S极指向N极,即沿着第三坐标轴指向Z轴正方向。第二永磁铁415a、415b、419a、419b、423a、423b,其磁化方向从S极指向N极,即沿着 第三坐标轴指向Z轴负方向。
第三永磁铁412a、412b、414a、414b、416a、416b、418a、418b、420a、420b、422a、422b、424a、424b为辅助磁铁,其磁化方向沿着第一坐标轴X方向。
第三永磁铁412a、414a,其磁化方向沿着第一坐标轴指向第一永磁铁413a的方向,412a磁化方向指向X轴的正方向,414a磁化方向指向X轴的负方向。
第三永磁铁414a、416a,其磁化方向沿着第一坐标轴指向远离第二永磁铁415a的方向,416a磁化方向指向X轴的正方向。
第三永磁铁416a、418a,其磁化方向沿着第一坐标轴指向第一永磁铁417a的方向,418a磁化方向指向X轴的负方向。
第三永磁铁418a、420a,其磁化方向沿着第一坐标轴指向远离第二永磁铁419a的方向,420a磁化方向指向X轴的正方向。
第三永磁铁418a、420a,其磁化方向沿着第一坐标轴指向远离第一永磁铁419a的方向,420a磁化方向指向X轴的正方向。
第三永磁铁420a、422a,其磁化方向沿着第一坐标轴指向第二永磁铁421a的方向,422a磁化方向指向X轴的负方向。
第三永磁铁422a、424a,其磁化方向沿着第一坐标轴指向远离第一永磁铁423a的方向,424a磁化方向指向X轴的正方向。
第三永磁铁412b、414b,其磁化方向沿着第一坐标轴指向远离第一永磁铁413b的方向,412b磁化方向指向X轴的正方向,414b磁化方向指向X轴的负方向。
第三永磁铁414b、416b,其磁化方向沿着第一坐标轴指向第二永磁铁415b的方向,416b磁化方向指向X轴的负方向。
第三永磁铁416b、418b,其磁化方向沿着第一坐标轴指向远离第一永磁铁417b的方向,418b磁化方向指向X轴的正方向。
第三永磁铁418b、420b,其磁化方向沿着第一坐标轴指向第二永磁铁419b的方向,420b磁化方向指向X轴的负方向。
第三永磁铁420b、422b,其磁化方向沿着第一坐标轴指向远离第二永磁铁 421b的方向,422b磁化方向指向X轴的正方向。
第三永磁铁422b、424b,其磁化方向沿着第一坐标轴指向第一永磁铁423b的方向,424b磁化方向指向X轴的负方向。
第一,第二,第三永磁铁典型地采用棱柱型磁铁块组合成Halbach阵列单元,它们共同组成动子的对称布局的永磁阵列。Halbach阵列单元的宽度为W m,其N极到相邻S极永磁中心的距离记为τ,所述永磁阵列的长度记为W m阵列宽度。该第一、第二、第三永磁铁构建具有完整周期的Halbach磁铁组,分布沿着第一轴X方向周期重复排布,1个Halbach基本单元、2组Halbach基本单元……,以此类推,根据线性马达的推力需求进行构建动子磁铁阵列的组数。
第一背铁403、第二背铁402为具有高磁导率材料,如钢、铁等材料。它将Halbach基本单元在背铁方向的磁通构建磁力线回路,减小磁泄露。所述的Halbach基本单元具有单侧磁密特性,其面向线圈侧的磁密分布比传统的NS阵列的磁密强度要高,而面向背铁侧的磁密则很弱,因此背铁的厚度应用可以传统NS磁阵列的背铁更薄。应用低密度高强度材料作辅助支撑,可以减小动子单元重量。为了减小局部磁泄露,背铁的厚度至少保持1mm。此外,为了减小边端漏磁影响,第三永磁铁412a、412b、424a、424b沿着第三轴X方向的宽度为永磁铁414a、414b宽度的一半。第一、二永磁铁沿着X方向的宽度为τ的0.5~0.9倍。第一辅助支撑板401和第二辅助支撑板404为低密度高刚性材料的辅助支撑部件,用以加强背铁的支撑刚性。
图7是根据本发明的另一实施例的线性马达动子的磁铁阵列分布。如图7所示,动子的磁铁阵列单元由2组面对面的NS永磁阵列的基本单元和磁轭组成,该基本单元中心的第一永磁铁512a、512b、514a、514b、516a、516b,其磁化方向从S极指向N极,即沿着第三坐标轴指向Z轴正方向;该基本单元中心的第二永磁铁513a、513b、515a、515b、517a、517b,其磁化方向从S极指向N极,即沿着第三坐标轴指向Z轴负方向。
第一,第二永磁铁典型地采用棱柱型磁铁块组合成NS基本单元,它们共同组成动子单元的对称布局的永磁阵列。NS永磁阵列单元的宽度为W m,其N极到相邻S极永磁中心的距离记为τ。该第一、第二永磁铁构建一个完整周期的NS 磁铁组,分布沿着第一轴方向X周期重复排布,1个NS基本单元、2组NS基本单元……,以此类推,根据线性马达的推力需求进行构建动子磁铁阵列的组数。
背铁601、602为软磁材料,例如钴铁合金、铁镍合金、硅钢、铁铝硅合金等,软磁材料参考IEC60404-1标准,它将NS基本单元在背铁方向的磁通构建磁力线回路。所述的NS基本单元具有双向磁密特性,根据电磁推力需要,其面向线圈侧的磁密强度分布需要越高越好,而面向背铁侧的磁密则希望越小越好,因此背铁厚度应具有足够厚度,以减小磁泄露,其厚度至少保持5mm。此外,所述的第一、二永磁铁沿着X方向的宽度为τ的0.5~1倍。
图8是根据本发明的一实施例的线性马达模块的结构示意图。如图8所示,线性马达模块包括动子和定子模块。动子模块可采用如图5所示的动子结构。定子模块包括基体和固定于基体上的定子线圈组件,定子线圈组件包含相互层叠排布的至少两层线圈单元。线圈单元可由无铁芯线圈通过印制电路板工艺制成。定子线圈组件可操作地置于第一永磁铁阵列与第二永磁铁阵列之间。
相邻的两层线圈单元包含多个电枢绕组单元,每个电枢绕组单元具有三个线圈绕组401a、401b、401c。三个线圈绕组401a、401b、401c分别为该电枢绕组单元的U相、V相和W相,其中每个电枢绕组单元的U相和W相相邻布置在同一层,V相在U相和W相的上一层或下一层,与U相和W相的中心对齐排布。相邻的两层线圈单元中,如果相邻的两个电枢绕组单元中的一个电枢绕组单元的V相在该电枢绕组单元的U相和W相的上层,则另一个电枢绕组单元的电枢绕组单元的V相在该电枢绕组单元的U相和W相的下层。
U、V、W三相线圈构成基本的电枢绕组单元沿着第一轴方向X周期重复排布,1组、2组、3组,……,基本单元,以此类推,根据线性马达的行程需求进行构建电枢绕组单元的组数。
图9是根据本发明的另一实施例的线性马达模块的结构示意图。如图9所示,线性马达模块包括磁铁动子和定子线圈单元。动子由2组面对面的永磁阵列的基本单元和磁轭组成,该基本单元中心的第一永磁铁430a、430b,其磁化方向从S极指向N极,即沿着第三坐标轴指向Z轴正方向;该基本单元中心的第二永磁铁431a、431b,其磁化方向从S极指向N极,即沿着第三坐标轴指向 Z轴负方向。
第一,第二永磁铁典型地采用棱柱型磁铁块组合成NS基本单元,它们共同组成动子单元的对称布局的永磁阵列。NS基本单元的宽度为W m,其半周期长度记为τ。该第一、第二磁铁构建一个完整周期的NS磁铁组,分布沿着第一轴方向X周期重复排布,1个NS基本单元、2组NS基本单元……,以此类推,根据线性马达的推力需求进行构建动子磁铁阵列的组数。
NS基本单元具有双向磁密特性,根据电磁推力需要,其面向线圈侧的磁密磁密强度分布需要越高越好,而面向背铁侧的磁密则希望越小越好,因此背铁厚度应以具有足够厚度,减小磁泄露,其厚度至少保持5mm。此外,所述的第一、二类永磁铁沿着X方向的宽度为τ的0.5~1倍。
以上已详细描述了本发明的较佳实施例,但应理解到,若需要,能修改实施例的方面来采用各种专利、申请和出版物的方面、特征和构思来提供另外的实施例。
考虑到上文的详细描述,能对实施例做出这些和其它变化。一般而言,在权利要求中,所用的术语不应被认为限制在说明书和权利要求中公开的具体实施例,而是应被理解为包括所有可能的实施例连同这些权利要求所享有的全部等同范围。

Claims (21)

  1. 一种线性传输系统,其特征在于,所述线性传输系统包括:
    定子基座,所述定子基座由一个或多个子基座组成;
    定子线圈组件,所述定子线圈组件固定于所述子基座上;
    多个动子,各所述动子设有永磁铁阵列和位置传感元件,其中所述永磁铁阵列产生的磁场和所述定子线圈组件产生的励磁磁场能够相互作用而推动所述动子产生平移运动;
    导轨,所述导轨安装于所述定子基座上,并且所述动子布置于所述导轨上并沿所述导轨运动;
    传感器阵列,所述传感器阵列沿所述导轨分布并布置成读取设置于所述动子上的所述位置传感元件所发出的信号;以及
    控制器,所述控制器与所述定子线圈组件和所述传感器阵列均电连接,并根据来自所述传感器阵列所检测到的动子位置信息来控制相应的定子线圈组件通电。
  2. 如权利要求1所述的线性传输系统,其特征在于,所述定子基座包括直线定子基座和弧形定子基座,其中所述直线定子基座安装有矩形定子线圈组件而形成直线定子模块,以及所述弧形定子基座安装有弧形定子线圈组件而形成弧形定子模块。
  3. 如权利要求2所述的线性传输系统,其特征在于,每个所述动子上安装有第一传感元件和第二传感元件,其中所述第一传感元件和所述第二传感元件布置成当所述动子在所述直线定子模块上移动时,由所述第一传感元件发出的第一信号被所述直线定子模块上的传感器阵列读取,而当所述动子在所述弧形定子基座上移动时,由所述第二传感元件发出的第二信号被所述弧形定子模块上的传感器阵列读取。
  4. 如权利要求3所述的线性传输系统,其特征在于,所述第一传感元件和所述第二传感元件在所述动子上的安装位置布置成在所述动子的运动期间的任何时刻,所述定子上相邻的两个传感器均能够采集到所述第一传感元件发出的第一信号或者所述第二传感元件发出的第二信号。
  5. 如权利要求3所述的线性传输系统,其特征在于,相邻的两个传感器之间的距离小于所述动子的所述第一传感元件和所述第二传感元件的有效信号传递距离。
  6. 如权利要求3所述的线性传输系统,其特征在于,所述第一传感元件和所述第二传感元件为磁栅,所述传感器阵列为磁栅读头,以及每相邻的两个磁栅读头之间的距离小于所述动子的所述第一传感元件和所述第二传感元件的长度;或者,所述第一传感元件和所述第二传感元件为光栅,所述传感器阵列为光栅读头,以及每相邻的两个光栅读头之间的距离小于所述动子的所述第一传感元件和所述第二传感元件的长度。
  7. 如权利要求3所述的线性传输系统,其特征在于,所述第一传感元件的形状为直线形,以及所述第二传感元件的形状为弧形。
  8. 如权利要求1所述的线性传输系统,其特征在于,各所述动子设置成能够独立地相对于所述定子运动。
  9. 如权利要求1所述的线性传输系统,其特征在于,所述动子包含上下两个永磁铁阵列,其中所述定子线圈组件位于所述两个永磁铁阵列之间。
  10. 如权利要求1所述的线性传输系统,其特征在于,所述控制器与所述定子线圈组件和所述传感器阵列均通过线缆电连接。
  11. 如权利要求1所述的线性传输系统,其特征在于,所述导轨可拆卸地安装于所述定子基座上。
  12. 如权利要求1所述的线性传输系统,其特征在于,所述线性传输系统还包括安装支架,所述安装支架固定于所述定子基座上,且所述传感器阵列安装于所述安装支架上。
  13. 如权利要求1所述的线性传输系统,其特征在于,所述定子线圈组件包含相互层叠排布的至少两层线圈单元,相邻的两层所述线圈单元包含多个电枢绕组单元,每个电枢绕组单元具有三个线圈绕组,所述三个线圈绕组分别为该电枢绕组单元的U相、V相和W相,其中电枢绕组单元的U相和W相相邻布置在同一层,V相在U相和W相的上一层或下一层,与U相和W相的中心对齐排布,以及相邻的两层线圈单元中,如果相邻的两个电枢绕组单元中的一个电枢绕组单元的V相在该电枢绕组单元的U相和W相的上层,则另一个电枢绕组单元的电枢绕组单元的V相在该电枢绕组单元的U相和W相的下层。
  14. 如权利要求13所述的线性传输系统,其特征在于,每个线圈绕组由多层线圈叠加工而成,其中各层间线圈的连接接口垂向互联,使得各层线圈串联。
  15. 如权利要求13所述的线性传输系统,其特征在于,所述线圈为无铁芯线圈, 且所述线圈通过印制电路板工艺制造。
  16. 如权利要求1所述的线性传输系统,其特征在于,所述动子包括:
    基座;
    第一辅助支撑板,所述第一辅助支撑板安装于所述基座的上侧;
    第二辅助支撑板,所述第二辅助支撑板与所述第一辅助支撑板间隔开放置;
    第一背铁,所述第一背铁安装于所述第一辅助支撑板;
    第二背铁,所述第二背铁安装于所述第二辅助支撑板并与所述第一背铁间隔开;
    背铁支撑板,所述背铁支撑板置于所述第一背铁与所述第二背铁之间并与所述第一背铁和所述第二背铁共同形成U字形结构;
    第一永磁铁阵列,所述第一永磁铁阵列布置于所述第一背铁的表面上;以及
    第二永磁铁阵列,所述第二永磁铁阵列布置于所述第二背铁的表面上,其中所述第一永磁铁阵列与所述第二永磁铁阵列面面相对布置并间隔开。
  17. 如权利要求16所述的线性传输系统,其特征在于,每个所述动子上安装有第一传感元件和第二传感元件,其中所述第一传感元件和所述第二传感元件布置成当所述动子在所述直线定子模块上移动时,由所述第一传感元件发出的第一信号被所述直线定子模块上的传感器阵列读取,而当所述动子在所述弧形定子基座上移动时,由所述第二传感元件发出的第二信号被所述弧形定子模块上的传感器阵列读取。
  18. 如权利要求17所述的线性传输系统,其特征在于,所述第一传感元件和所述第二传感元件为磁栅,且所述编码器阵列为磁栅读头,其中所述第一传感元件安装于所述基座的与所述第一背铁所在侧相反的一侧上,以及所述第二传感元件安装于所述基座的与安装有所述第一传感元件的一侧垂直的一侧上;或者,所述第一传感元件和所述第二传感元件为光栅,所述编码器阵列为光栅读头,其中所述第一传感元件安装于所述基座的与所述第一背铁所在侧相反的一侧上,以及所述第二传感元件安装于所述基座的与安装有所述第一传感元件的一侧垂直的一侧上。
  19. 如权利要求16所述的线性传输系统,其特征在于,所述基座上设有弧形块,所述第二传感元件安装在所述弧形块的弧形面上。
  20. 如权利要求16所述的线性传输系统,其特征在于,所述动子进一步包括滑座和滚轮,所述滑座安装于所述基座的下侧,以及所述滚轮安装于所述滑座上。
  21. 如权利要求16所述的线性传输系统,其特征在于,所述动子进一步包括防撞块,所述防撞块安装于所述基座上并位于与所述动子的运动方向相同和相反的侧面上。
PCT/CN2018/091190 2017-07-06 2018-06-14 一种线性传输系统 WO2019007198A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710547577.8A CN108328249B (zh) 2017-07-06 2017-07-06 一种线性传输系统
CN201710547577.8 2017-07-06

Publications (1)

Publication Number Publication Date
WO2019007198A1 true WO2019007198A1 (zh) 2019-01-10

Family

ID=62922921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091190 WO2019007198A1 (zh) 2017-07-06 2018-06-14 一种线性传输系统

Country Status (2)

Country Link
CN (1) CN108328249B (zh)
WO (1) WO2019007198A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112027676A (zh) * 2019-06-03 2020-12-04 上海铼钠克数控科技股份有限公司 长定子输送系统的动子控制方法及控制系统
US11500279B2 (en) * 2019-07-24 2022-11-15 Coretronic Corporation Optical module and projection apparatus
EP4163236A1 (de) * 2021-10-11 2023-04-12 Schneider Electric Industries SAS Linearmotorsystem
US11881752B2 (en) 2021-09-13 2024-01-23 Zhejiang University Direct-drive type annular flexible transportation system and collaborative control method thereof

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109217614A (zh) * 2017-07-06 2019-01-15 上海合栗智能科技有限公司 线性马达及其动子
CN109178941B (zh) * 2018-09-06 2023-11-24 果栗智造(上海)技术股份有限公司 线性传输系统的气源接入装置
CN108964358B (zh) * 2018-09-06 2024-05-17 果栗智造(上海)技术股份有限公司 线性传输系统的无缆供电装置
WO2020140178A1 (zh) * 2018-12-30 2020-07-09 中国科学院沈阳自动化研究所 一种在轨发射装置
CN109768691A (zh) * 2019-03-12 2019-05-17 湖北理工学院 一种用于悬浮门的永磁同步直线电机装置
CN109921599A (zh) * 2019-03-28 2019-06-21 深圳市赫瑞科技有限公司 一种具有柔性基座的直线电机
DE112019007247T5 (de) * 2019-04-23 2022-01-05 Yamaha Hatsudoki Kabushiki Kaisha Linearfördersystem, Steuerverfahren für ein Linearfördersystem, Steuerprogramm für ein Linearfördersystem und Aufzeichnungsmedium
DE102019119497A1 (de) 2019-07-18 2021-01-21 Krones Ag Verfahren und Vorrichtung zum Transportieren
CN110613596A (zh) * 2019-10-23 2019-12-27 深圳市慧康精密仪器有限公司 一种电磁腔冲击波源发生器
CN111101274B (zh) * 2020-01-20 2021-06-29 西安工程大学 一种基于直线电机多动子横机纱嘴的导引装置
JP7483397B2 (ja) * 2020-02-07 2024-05-15 キヤノン株式会社 搬送システム
CN111302071A (zh) * 2020-03-09 2020-06-19 哈尔滨工业大学 组合式模块化磁悬浮平面输送系统
KR20210122094A (ko) * 2020-03-30 2021-10-08 스미도모쥬기가이고교 가부시키가이샤 리니어모터반송시스템 및 그 운용방법
CN112260512A (zh) * 2020-09-15 2021-01-22 雅科贝思精密机电(上海)有限公司 一种环形线结构
CN112688450A (zh) * 2020-12-23 2021-04-20 阿尔伯特(苏州)科技有限责任公司 闭环型直线电机动子和直线电机
CN112737269A (zh) * 2020-12-25 2021-04-30 南京航空航天大学 一种永磁同步直线电机
CN113734720B (zh) * 2021-09-13 2022-06-24 浙江大学先进电气装备创新中心 直驱式多轨柔性输送系统及其控制方法
CN113922625B (zh) * 2021-09-15 2022-09-09 中国人民解放军海军工程大学 一种环形结构长初级永磁同步电机
CN113859892A (zh) * 2021-10-09 2021-12-31 上海果栗自动化科技有限公司 一种线性传输系统
CN113937928A (zh) * 2021-10-09 2022-01-14 上海果栗自动化科技有限公司 线性马达、线性马达模块及其动子
CN113937929A (zh) * 2021-10-09 2022-01-14 上海果栗自动化科技有限公司 线性马达定子模块、线性马达及其定子
CN114024426B (zh) * 2021-11-10 2023-03-21 北京航空航天大学 一种直线电机信息编码器及直线电机检测系统
CN114229155A (zh) * 2021-12-14 2022-03-25 苏州镁伽科技有限公司 传送机构及具有其的自动化分装设备
CN114368720A (zh) * 2021-12-14 2022-04-19 苏州镁伽科技有限公司 检测料管合格的方法、自动化分装组件和自动化分装设备
CN114229777A (zh) * 2021-12-14 2022-03-25 苏州镁伽科技有限公司 用于传送机构的定位组件、传送机构及自动化分装设备
CN114229776B (zh) * 2021-12-14 2023-08-01 苏州镁伽科技有限公司 传送机构及自动化分装设备
CN116388434B (zh) * 2022-11-21 2024-02-20 果栗智造(上海)技术股份有限公司 定子及输送系统
CN116873540B (zh) * 2023-09-06 2023-11-21 上海果栗自动化科技有限公司 传送控制方法、传送控制装置及计算机存储介质
CN117691820B (zh) * 2024-02-04 2024-04-26 果栗智造(上海)技术股份有限公司 一种线性电机系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996027544A1 (de) * 1995-03-06 1996-09-12 Sig Schweizerische Industrie-Gesellschaft Vorrichtung zum transportieren von produkten zwischen verschiedenen stationen
CN101924409A (zh) * 2009-06-16 2010-12-22 直得科技股份有限公司 单元线圈、线圈组合件及无铁心式线性马达
CN102414098A (zh) * 2009-04-23 2012-04-11 罗伯特·博世有限公司 具有改进的驱动装置设计的回转式运输装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1083280A (zh) * 1992-07-22 1994-03-02 段汝熙 直线电机
CN1038289C (zh) * 1994-09-29 1998-05-06 东方电机株式会社 线性马达
JP3817677B2 (ja) * 2003-05-30 2006-09-06 現代自動車株式会社 独立型ステアバイワイヤシステムのステアリングアクチュエータ
JP2009120318A (ja) * 2007-11-14 2009-06-04 Kuroda Techno Co Ltd 作業用搬送装置
AT506496B1 (de) * 2008-02-21 2010-12-15 Lunatone Ind Elektronik Gmbh Fadenführer auf rädern
JP4978718B2 (ja) * 2009-08-18 2012-07-18 株式会社安川電機 直曲動モータシステム
CN102259756B (zh) * 2011-07-30 2013-02-13 太原风华信息装备股份有限公司 直线电机式硅片搬送机构
CN102522865B (zh) * 2011-12-07 2013-12-25 中国科学院光电技术研究所 一种能够减少力矩波动的多定子弧形直线电机
CN102594086A (zh) * 2012-02-02 2012-07-18 哈尔滨工业大学 高力密度永磁电机
CN103731005A (zh) * 2014-01-23 2014-04-16 肖俊东 永磁电机及其部件以及永磁电机平台
CN205274623U (zh) * 2016-01-10 2016-06-01 蓝玉 一种具有检测食品功能的传送机构

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996027544A1 (de) * 1995-03-06 1996-09-12 Sig Schweizerische Industrie-Gesellschaft Vorrichtung zum transportieren von produkten zwischen verschiedenen stationen
CN102414098A (zh) * 2009-04-23 2012-04-11 罗伯特·博世有限公司 具有改进的驱动装置设计的回转式运输装置
CN101924409A (zh) * 2009-06-16 2010-12-22 直得科技股份有限公司 单元线圈、线圈组合件及无铁心式线性马达

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112027676A (zh) * 2019-06-03 2020-12-04 上海铼钠克数控科技股份有限公司 长定子输送系统的动子控制方法及控制系统
US11500279B2 (en) * 2019-07-24 2022-11-15 Coretronic Corporation Optical module and projection apparatus
US11881752B2 (en) 2021-09-13 2024-01-23 Zhejiang University Direct-drive type annular flexible transportation system and collaborative control method thereof
EP4163236A1 (de) * 2021-10-11 2023-04-12 Schneider Electric Industries SAS Linearmotorsystem

Also Published As

Publication number Publication date
CN108328249B (zh) 2019-10-25
CN108328249A (zh) 2018-07-27

Similar Documents

Publication Publication Date Title
WO2019007198A1 (zh) 一种线性传输系统
WO2019007199A1 (zh) 线性马达及其动子运动定位控制装置
WO2019007201A1 (zh) 线性马达及其定子
CN109217767B (zh) 线性传输系统及其控制装置和多动子协同控制系统
WO2023056667A1 (zh) 一种线性传输系统
WO2019007200A1 (zh) 线性马达及其动子
US20060006743A1 (en) Linear driving device
US9000626B2 (en) Thrust generation mechanism, drive device, XY stage and XYZ stage
CN101610054B (zh) 采用三维永磁阵列的平面电机
US20100327669A1 (en) Multi-degree-of-freedom actuator and stage device
US3881139A (en) 3-Axis pulse operated linear motor
CN110649782B (zh) 一种初级铁芯交错式驱动结构、直线电机及数控设备
JP2009219199A (ja) リニアモータ
CN101610022B (zh) 一种采用槽型线圈的平面电机
WO2023056665A1 (zh) 线性马达、线性马达模块及其动子
KR102593127B1 (ko) 리니어 모터 및 생산장치
WO2023056666A1 (zh) 线性马达定子模块、线性马达及其定子
KR20120102435A (ko) 선형 전동기
CN103997186A (zh) 直线电机、盘式旋转电机和电机平台
Nguyen et al. A two-phase framework for linear permanent-magnet machines and multi-axis stages with magnetic levitation
CN104052233B (zh) 直线电机及电机平台
JP2006034016A (ja) 工作機械用リニアモータ
JP3817484B2 (ja) 駆動装置,搬送装置及びドアシステム
WO2019240132A1 (ja) リニアモータ、搬送装置、及び生産装置
Yoon et al. High-force linear iron-core fine-tooth motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828316

Country of ref document: EP

Kind code of ref document: A1