WO2019007183A1 - 一种资源选择方法及装置 - Google Patents

一种资源选择方法及装置 Download PDF

Info

Publication number
WO2019007183A1
WO2019007183A1 PCT/CN2018/090010 CN2018090010W WO2019007183A1 WO 2019007183 A1 WO2019007183 A1 WO 2019007183A1 CN 2018090010 W CN2018090010 W CN 2018090010W WO 2019007183 A1 WO2019007183 A1 WO 2019007183A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
transmission resource
candidate transmission
frequency
resource block
Prior art date
Application number
PCT/CN2018/090010
Other languages
English (en)
French (fr)
Inventor
赵锐
赵丽
李晨鑫
房家奕
彭莹
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Publication of WO2019007183A1 publication Critical patent/WO2019007183A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a resource selection method and apparatus.
  • V denotes a vehicle
  • various entities represented by X for example: V2V means vehicle to vehicle, V2P means vehicle to pedestrian, V2I means vehicle to pedestrian, V2I means vehicle to pedestrian Vehicle to infrastructure, V2N means vehicle to network.
  • V2X direct communication refers to direct communication between V2X terminals
  • V2X indirect communication refers to indirect communication between V2X terminals through an infrastructure (such as a base station or other network entity).
  • V2X terminals communicate through a straight-through link (also known as a PC5 interface, described as "Sidelink” on the protocol).
  • a V2X terminal involves two types of channels for data transmission on a direct link.
  • One is a physical sidelink control channel (PSCCH) for transmitting scheduling assignment (SA) information; the other is It is a physical side link shared channel (PSSCH), also called a data channel, for transmitting data.
  • the SA information indicates all necessary indication information for performing data reception, for example, time-frequency resource information occupied by data transmission, modulation and coding mode of data transmission, indication information of a reference signal for demodulation of data transmission, and the like.
  • the receiving end detects the SA information transmitted in the PSCCH channel, and performs data reception according to the SA information.
  • the data sender V2X terminal can spontaneously select time-frequency resources on the through link for data transmission.
  • a new resource selection method is needed to enable the data sender V2X terminal to select time-frequency resources on the direct link for data transmission.
  • the embodiment of the present application provides a resource selection method and apparatus.
  • a resource selection method including:
  • the terminal selects M candidate transmission resource blocks from the candidate transmission resource set as the transmission resource of the terminal on the through link, where M is an integer greater than or equal to 1.
  • the time domains of at least two candidate transmission resource blocks in the candidate transmission resource block set do not overlap.
  • the terminal selects M candidate transmission resource blocks from the set of candidate transmission resource blocks, including: the terminal excluding, from the candidate transmission resource block set, a candidate for resource conflict between the terminal and other terminals Transmitting a resource block; the terminal selects M candidate transmission resource blocks from the excluded candidate transmission resource block set.
  • excluding, from the candidate transmission resource block set, the candidate transmission resource block that the resource conflicts with the other terminal including: determining the interference time frequency according to the SA information sent by other terminals monitored in the sensing window. a resource, where the interference time-frequency resource is all or part of a time-frequency resource associated with the SA information;
  • a candidate transmission resource block that partially or completely overlaps with the reserved time-frequency resource corresponding to the interference time-frequency resource and the interference time-frequency resource in the candidate transmission resource block set, from the candidate transmission resource block Excluding from the set; wherein the reserved time-frequency resource is determined according to the location of the interference time-frequency resource and the reservation period.
  • the interference time-frequency resource is a time-frequency resource in which the data channel reference signal received power is greater than a received power threshold in the time-frequency resource associated with the SA information; and after the removing, the method further includes: determining the candidate Whether the ratio of the number of time-frequency resources of the transmission resource block set after the exclusion and before the exclusion is lower than a set threshold, if yes, increasing the received power threshold, and performing the step of determining the interference time-frequency resource and the removing again step.
  • the method further includes: if there is a data transmission time-frequency resource occupied by the terminal in the sensing window, all possible reservations corresponding to the data transmission time-frequency resource in the candidate transmission resource block set A time-frequency resource, a candidate transmission resource block having some or all overlapping, is excluded from the candidate transmission resource block set.
  • selecting M candidate transmission resource blocks from the excluded candidate transmission resource block set including: according to the received signal strength on the candidate transmission resource block in the excluded candidate transmission resource block set, according to the received signal strength from a small In the large order, M candidate transmission resource blocks are selected.
  • the terminal selects M candidate transmission resource blocks from the candidate transmission resource block set, where the terminal randomly selects M candidate transmission resource blocks from the candidate transmission resource block set; or The terminal selects M candidate transmission resource blocks from the candidate transmission resource block set according to the received signal strength on the candidate transmission resource block in the candidate transmission resource block set.
  • a resource selection apparatus including:
  • a determining module configured to determine a candidate transmission resource block set in the resource selection window according to the time-frequency resource pattern, where the candidate transmission resource block set includes at least one candidate transmission resource block, where the candidate transmission resource block is used for a transmission resource on the link, the candidate transmission resource block includes at least N time-frequency resources for data transmission, and the N time-frequency resources are determined according to the time-frequency resource pattern, where N is an integer greater than or equal to 1;
  • a selection module configured to select, from the candidate transmission resource set, M candidate transmission resource blocks as the transmission resource of the terminal on the through link, where M is an integer greater than or equal to 1.
  • the time domains of at least two candidate transmission resource blocks in the candidate transmission resource block set do not overlap.
  • the selecting module is specifically configured to: exclude, from the candidate transmission resource block set, candidate transmission resource blocks in which the terminal conflicts with other terminals; and select M from the excluded candidate transmission resource block sets. Candidate transmission resource block.
  • the selecting module is specifically configured to: determine an interference time-frequency resource according to the SA information sent by another terminal that is monitored in the sensing window, where the interference time-frequency resource is a time-frequency resource associated with the SA information. All or part of the candidate transmission resource block, the reserved time-frequency resource corresponding to the interference time-frequency resource and the interference time-frequency resource, and the candidate transmission resource block partially or completely overlapping Excluding the candidate transmission resource block set; wherein the reserved time-frequency resource is determined according to a location of the interference time-frequency resource and a reservation period.
  • the interference time-frequency resource is a time-frequency resource in which the data channel reference signal received power is greater than the received power threshold in the time-frequency resource associated with the SA information; the selecting module is further configured to: determine the candidate Whether the ratio of the number of time-frequency resources of the transmission resource block set after the exclusion and before the exclusion is lower than a set threshold, if yes, increasing the received power threshold, and performing the step of determining the interference time-frequency resource and the removing again step.
  • the selecting module is further configured to: if the time-frequency resource is occupied by the data occupied by the terminal, the candidate transmission resource block set corresponds to the data transmission time-frequency resource All possible reserved time-frequency resources, with some or all overlapping candidate transmission resource blocks, are excluded from the candidate transmission resource block set.
  • the selecting module is specifically configured to: select, according to the received signal strength on the candidate transmission resource block in the excluded candidate transmission resource block set, the M candidate transmission resource blocks according to the received signal strength from small to large. .
  • the selecting module is specifically configured to: randomly select M candidate transmission resource blocks from the candidate transmission resource block set; or, according to the received signal on the candidate transmission resource block in the candidate transmission resource block set. Intensity, selecting M candidate transmission resource blocks from the set of candidate transmission resource blocks.
  • a communication device including: a processor, a memory, a transceiver, and a bus interface; the processor is configured to read a program in the memory, and perform the following process:
  • a candidate transmission resource block set in the resource selection window Determining, according to the time-frequency resource pattern, a candidate transmission resource block set in the resource selection window, where the candidate transmission resource block set includes at least one candidate transmission resource block, where the candidate transmission resource block is used for transmission on the through link a resource, a candidate transmission resource block includes at least N time-frequency resources for data transmission, the N time-frequency resources are determined according to the time-frequency resource pattern, and N is an integer greater than or equal to 1;
  • the M candidate transmission resource blocks are selected as the transmission resources of the terminal on the through link, and M is an integer greater than or equal to 1.
  • the time domains of at least two candidate transmission resource blocks in the candidate transmission resource block set do not overlap.
  • the processor is specifically configured to:
  • M candidate transmission resource blocks are selected from the excluded candidate transmission resource block sets.
  • the processor is specifically configured to:
  • Determining an interfering time-frequency resource where the interfering time-frequency resource is all or part of a time-frequency resource associated with the SA information, according to SA information sent by another terminal that is monitored in the sensing window;
  • a candidate transmission resource block that partially or completely overlaps with the reserved time-frequency resource corresponding to the interference time-frequency resource and the interference time-frequency resource in the candidate transmission resource block set, from the candidate transmission resource block Excluding from the set; wherein the reserved time-frequency resource is determined according to the location of the interference time-frequency resource and the reservation period.
  • the interference time-frequency resource is a time-frequency resource in which the data channel reference signal received power is greater than the received power threshold in the time-frequency resource associated with the SA information;
  • the processor is further configured to: determine whether a ratio of the candidate transmission resource block set after the exclusion and the number of time-frequency resources before the exclusion is lower than a set threshold, and if yes, increase the received power threshold, and execute the Determining the steps of interfering with time-frequency resources and the step of eliminating.
  • the processor is further configured to:
  • all possible reserved time-frequency resources corresponding to the data transmission time-frequency resource in the candidate transmission resource block set are partially or All overlapping candidate transmission resource blocks are excluded from the candidate transmission resource block set.
  • the processor is specifically configured to:
  • M candidate transmission resource blocks are selected in order of received signal strength from small to large.
  • the processor is specifically configured to:
  • M candidate transmission resource blocks are randomly selected from the set of candidate transmission resource blocks.
  • a computer storage medium in a fourth aspect, storing computer executable instructions for causing the computer to perform any of the possible aspects of the first aspect described above Methods.
  • the terminal determines a candidate transmission resource block set in the resource selection window according to the time-frequency resource pattern, and selects M candidate transmission resource blocks from the candidate transmission resource set as the terminal on the through link. Transfer resources.
  • one candidate transmission resource block includes at least N time-frequency resources for data transmission, the selected transmission resources on the through link have more flexibility to meet the prior art. The needs of different businesses. Especially when M is equal to 2 and N is greater than or equal to 2, compared with the prior art, when data transmission is performed according to the selected transmission resource, the reliability of the through link transmission and/or the coverage can be expanded.
  • FIG. 1-1 and 1-2 are schematic diagrams of network architectures applicable to the embodiments of the present application.
  • FIG. 2 is a schematic diagram of resources for data transmission of a through link in the embodiment of the present application
  • FIG. 3-1 to FIG. 3-6 are schematic diagrams of data transmission resources in a through link provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a resource selection process according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a resource selection process provided by another embodiment of the present application.
  • FIG. 8 is a schematic diagram of a resource exclusion process according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of resource selection in an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a resource selection apparatus according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 1-1 and FIG. 1-2 respectively, the network architecture applicable to the embodiment of the present application.
  • the terminal communicates with other terminals using a pass-through link based on the spontaneously selected resources.
  • the terminal may acquire the location of the idle resource by using a perceptual method in the configured or pre-configured resource pool, and select the resource used by the user to transmit the data among the idle resources.
  • the terminal can also randomly select the resources used by the terminal to transmit data in the configured or pre-configured resource pool.
  • the terminal can communicate with other terminals using a pass-through link based on resources allocated by the base station.
  • the base station may use a downlink control channel of the cellular communication system, such as a physical downlink control channel (PDCCH) or an extended physical downlink control channel (The enhanced physical downlink control channel (EPDCCH) performs scheduling on the through link communication between the terminals.
  • the base station indicates the resource location and the like transmitted by the terminal by sending a scheduling grant to the terminal.
  • the above network architecture may be a car networking architecture, wherein the terminal may be a V2X terminal.
  • the foregoing base station includes, but is not limited to, an evolved Node B (eNB), a radio network controller (RNC), a Node B (NB), and a base station controller (Base Station Controller, BSC).
  • Base Transceiver Station BTS
  • home base station for example, Home evolved NodeB, or Home Node B, HNB
  • Base Band Unit BBU
  • new air base station g NodeB, gNB
  • TRP Transmitting and receiving point
  • TP Transmitting point
  • mobile switching center etc.
  • the above base station can also be replaced by other access point devices.
  • a V2X terminal can transmit a packet of 50 bytes to 1200 bytes through a through link.
  • new application scenarios continue to emerge (for example, vehicle formation, advanced driving, sensor information sharing, remote control, etc.), which proposes data transmission between the terminal and the terminal based on the through link.
  • the higher requirements require that the data packets carried are larger, the transmission reliability is higher, and the transmission distance is further.
  • the prior art provides limited support capabilities that cannot meet new business requirements.
  • the existing LTE V2X technology can provide up to two transmissions (called initial transmission and retransmission). If it is to satisfy more reliable and larger coverage, it needs to reduce the modulation and coding scheme. , MCS) rating.
  • MCS modulation and coding scheme
  • the embodiment of the present application proposes an enhanced data transmission method and a device that can implement the method, which can flexibly meet the requirements of different services for transmission reliability and/or coverage, and further, compared to the Rel-14 V2X. Significant increase in signaling overhead.
  • the terminal when the terminal sends data on the through link, the terminal may transmit data through the M (M is an integer greater than or equal to 1) transmission resource block on the through link, where one of the transmission resource blocks includes N ( N is an integer greater than or equal to 1) a time-frequency resource for data transmission.
  • M is an integer greater than or equal to 1
  • N is an integer greater than or equal to 1
  • M 2, N>1; in other examples, M>2, N ⁇ 1.
  • the transmission resource block includes one or more time-frequency resources, and one time-frequency resource corresponds to one data transmission.
  • a time-frequency resource may be in the time domain of a transmission time interval (TTI) or a sub-frame. Of course, the time unit of other lengths may be used.
  • TTI transmission time interval
  • one time-frequency resource is one TTI or one subframe in the time domain.
  • a time-frequency resource may use a physical resource block (PRB) as a resource unit or a PRB group (or a sub-channel) as a resource unit in a frequency domain, and a PRB group may include multiple PRBs. It is of course possible to use frequency units of other sizes as the frequency unit, which is not limited in this embodiment of the present application.
  • one time-frequency resource occupies one or more PRBs or one or more sub-channels in the frequency domain.
  • the frequency resource occupied by the data transmitted by the terminal on the through link may be part or all of the frequency resources available for the downlink channel of the through link.
  • a resource occupied by a transmission resource block in a frequency domain may include: a part of resources in a frequency domain resource pool (ie, a frequency domain resource pool used for transmitting SA information) that can be used by the PSCCH, and Some resources in the frequency domain resource pool (that is, the frequency domain resource pool used to transmit data) used by the PSSCH.
  • N time-frequency resources in one transmission resource block correspond to the same data packet, for example, N time-frequency resources are used in one transmission resource block.
  • the same data packet is repeatedly sent N times, one time-frequency resource corresponds to one transmission, and each time a different automatic hybrid repeat request (HARQ) version of the data packet is sent, so that the receiving end can be based on N time-frequency
  • HARQ automatic hybrid repeat request
  • the data transmitted by the resource is subjected to HARQ combining processing to obtain a transmission gain.
  • the M transmission resource blocks may correspond to the same data packet, or may correspond to different data packets.
  • M the first transmission resource block is used to transmit the data packet 1
  • the second transmission resource block is used to transmit the data packet 2; or both of the transmission resource blocks are used to transmit the data packet 1, wherein These two transport resource blocks transmit different HARQ versions of the packet.
  • the receiving end may perform HARQ combining processing based on the data transmitted by the M transmission resource blocks, thereby obtaining transmission gain.
  • the data transmission of the terminal on the through link may have one or more of the following characteristics:
  • the number of transmission resource blocks (ie, the value of M) used by the data packet transmitted by the terminal on the through link is greater than 2, such that even if one transmission resource block contains only one time-frequency resource, and the time-frequency resource
  • the size of the time-frequency resource used in the data transmission of the existing LTE V2X technology is the same, and the number of transmissions of the embodiment of the present application is more than that of the prior art (one time-frequency resource corresponds to one data transmission). Therefore, higher transmission reliability can be obtained;
  • the number of time-frequency resources used for data transmission in one transmission resource block is greater than 1 (that is, the value of N is greater than or equal to 2), so that even the number of transmission resource blocks (ie, the number of data transmissions) and the existing LTE V2X The number of times of data transmission in the technology is the same.
  • the length of time that the data packet sent in the embodiment of the present application is longer than the length of time that the data packet is sent in the prior art can improve the reliability of the transmission.
  • the M transmission resource block is sent, where one of the transmission resource blocks includes at least N time-frequency resources for data transmission, and the direct between the terminals is implemented.
  • Communication and flexible routing resource configuration to meet the needs of different services.
  • M is equal to 2 and N is greater than or equal to 2, compared with the prior art, in the case where the signaling is not increased much, the reliability of the through link transmission and/or the coverage can be expanded.
  • FIG. 2 exemplarily shows a resource diagram of a through link data transmission in the embodiment of the present application.
  • a V2X terminal uses two transmission resource blocks (such as a first transmission resource block and a second transmission resource block in the figure) when transmitting data on a through link, and each transmission resource block includes four.
  • Time-frequency resources for data transmission The one time-frequency resource is one TTI length in the time domain, and one or more PRBs or sub-channels may be occupied in the frequency domain.
  • a PSCCH for transmitting SA information and a PSSCH for transmitting data are included.
  • the frequency resource of the PSCCH can be selected from the SA resource pool, and the frequency resource of the PSSCH can be selected from the data resource pool.
  • the SA information on each time-frequency resource in one transmission resource block is used to indicate the transmission resource (such as the frequency domain location of the PSSCH) used by the associated data.
  • FIG. 2 is only an example.
  • the frequency domain location of the PSCCH and the PSSCH is not limited in the embodiment of the present application, and the content of the SA transmitted in the PSCCH in each time-frequency resource is the same or not.
  • frequency domain sizes of time-frequency resources in different transmission resource blocks may be the same or different.
  • the number of PRBs occupied by the PSSCH in the first transmission resource block may be equal to or different from the number of PRBs occupied by the PSSCH in the second transmission resource.
  • the time interval between different transmission resource blocks does not exceed a set duration.
  • the time interval between the first transmission resource block and the second transmission resource block does not exceed X TTIs, and X is an integer greater than or equal to 1.
  • the value of X may be configured by a system or by a system.
  • time-frequency resources of different transmission resource blocks may be independently selected, so that there is no association relationship between time domain locations and/or frequency domain locations of different transmission resource blocks.
  • the frequency domain size of the transmission resource blocks used by the two data packets may be different, and in consideration of signaling indication overhead, optionally, between two transmission resource blocks may be limited.
  • the time interval does not exceed a fixed length of time.
  • N when N is greater than or equal to 2, there is a relationship between the time domain location and/or the frequency domain location of the N time-frequency resources in one transmission resource block, that is, the relationship
  • the association relationship may be only in the frequency domain, or only in the time domain, or may be two-dimensionally combined in the time domain and the frequency domain.
  • Different association methods or different association relationships may correspond to corresponding time-frequency resource patterns.
  • the time-frequency resource pattern defines the location and size of the time-frequency resource, and different time-frequency resource patterns correspond to different association relationships.
  • N time-frequency resources are consecutive in the time domain and identical in the frequency domain.
  • FIG. 3-1 exemplarily shows a corresponding time-frequency resource pattern.
  • one transmission resource block includes four time-frequency resources, and the four time-frequency resources occupy four consecutive TTIs, each of which The time-frequency resources occupy one TTI in the time domain, and the frequency domain positions and sizes of the PSCCH and the PSSCH of the four time-frequency resources are the same.
  • N time-frequency resources are consecutive in the time domain, and at least two time-frequency resources have different frequency domain resources (such as different frequency domain locations and/or frequency domain sizes), for example, when the N times in the frequency domain
  • the frequency resource can perform frequency hopping according to the set time-frequency resource pattern.
  • time-frequency resource patterns There are a variety of time-frequency resource patterns that can be used. All or part of all possible time-frequency resource patterns may constitute a time-frequency resource pattern set, and the data sender terminal may use the time-frequency resource pattern in the set to determine the time-frequency resource of the data transmission.
  • the value of N and the index value of the time-frequency resource pattern may be jointly indicated.
  • the index value in the set can indicate either the value of N or the time-frequency resource pattern.
  • the N time-frequency resources adopt frequency hopping in the frequency domain
  • the available time-frequency resource pattern is related to the size of the frequency domain resource occupied by the data packet. For example, if the frequency domain of each time-frequency resource is continuous, the size of different time-frequency resources will affect the selection of the time-frequency resource pattern.
  • FIG. 3-2 exemplarily shows one time-frequency resource pattern.
  • one transmission resource block includes four time-frequency resources, and the four time-frequency resources occupy four consecutive TTIs, each of which The time-frequency resources occupy one TTI in the time domain, and the frequency domain positions of the PSCCHs of the four time-frequency resources are different, and the frequency domain positions of the PSSCHs of the four time-frequency resources are different.
  • FIG. 3-2 is only an example. In another example, the frequency domain positions and sizes of the PSCCHs of the four time-frequency resources may be the same, and the frequency domain positions of the PSSCH are different.
  • At least two time-frequency resources of the N time-frequency resources are discontinuous in the time domain, and the N time-frequency resources are the same in the frequency domain.
  • the N time-frequency resources can be set according to the time domain.
  • the time-frequency resource pattern is set for frequency hopping.
  • FIG. 3-3 exemplarily shows one time-frequency resource pattern.
  • one transmission resource block includes four time-frequency resources, and each time-frequency resource occupies one TTI in the time domain.
  • the adjacent two time-frequency resources are separated by one TTI, and the frequency domain positions and sizes of the PSCCH and the PSSCH of the four time-frequency resources are the same.
  • Figure 3-4 exemplarily shows another time-frequency resource pattern.
  • one transmission resource block includes four time-frequency resources, and each time-frequency resource occupies one TTI in the time domain.
  • One and the second time-frequency resource are consecutive in the time domain, the third and fourth time-frequency resources are consecutive in the time domain, and the second and third time-frequency resources are separated by 2 TTIs, which are 4
  • the frequency domain locations and sizes of the PSCCH and PSSCH of the time-frequency resources are the same.
  • At least two time-frequency resources of the N time-frequency resources are discontinuous in the time domain, and at least two of the N time-frequency resources have different frequency-domain resources (such as a frequency domain location and/or Or the frequency domain is different in size.
  • the N time-frequency resources perform joint frequency hopping according to the set time-frequency resource pattern in the time domain and the frequency domain.
  • There are many types of time-frequency resource patterns that match this type of association. All or part of all possible time-frequency resource patterns may constitute a time-frequency resource pattern set, and the data sender terminal may use the time-frequency resource pattern in the set to determine the time-frequency resource of the data transmission.
  • There may be a corresponding relationship between the number of time-frequency resource patterns in the set and the value of N, and the corresponding relationship may be a protocol agreement or a configuration. That is, a corresponding time-frequency resource pattern set can be set for each N value.
  • the N time-frequency resources adopt frequency hopping in the frequency domain
  • the available time-frequency resource pattern is related to the size of the frequency domain resource occupied by the data packet. For example, if the frequency domain of each time-frequency resource is continuous, the size of different time-frequency resources will affect the selection of the time-frequency resource pattern.
  • FIG. 3-5 exemplarily shows one time-frequency resource pattern.
  • one transmission resource block includes four time-frequency resources, and each time-frequency resource occupies one TTI in the time domain.
  • the adjacent two time-frequency resources are separated by one TTI, and the frequency domain positions of the PSCCHs of the four time-frequency resources are different, and the frequency domain positions of the PSSCHs of the four time-frequency resources are different.
  • 3-6 exemplarily illustrate another time-frequency resource pattern.
  • one transmission resource block includes four time-frequency resources, and each time-frequency resource occupies one TTI in the time domain.
  • One and the second time-frequency resource are consecutive in the time domain
  • the third and fourth time-frequency resources are consecutive in the time domain
  • the second and third time-frequency resources are separated by 2 TTIs, which are 4
  • the frequency domain positions of the PSCCHs of the time-frequency resources are different, and the frequency domain positions of the PSSCHs of the four time-frequency resources are different.
  • the number of transmission resource blocks (that is, the value of M) may be configured by the system, may be pre-configured, or may be dynamically determined (such as determined by a base station or by a data sender terminal). Determining); the number of time-frequency resources (ie, the value of N) included in one transmission resource block may be configured by the system, may be pre-configured, or may be dynamically determined (such as determined by a base station or by The data sender terminal determines).
  • the network device (such as a base station) can be configured based on the terminal, for example, the network device configures the values of M and/or N in a semi-static manner, and The value of the configured M and/or N is sent to the terminal through radio resource control (RRC) signaling; in another example where the value of M and/or N is configured by the system, the network device is all The terminal configures the same value of M and/or N and notifies the terminal by broadcast.
  • RRC radio resource control
  • the values of M and/or N can be pre-agreed in the protocol.
  • a network device such as a base station
  • DCI downlink control information
  • the base station may determine the value of M and/or N according to the service type or the service priority; in another example in which the value of M and/or N is determined dynamically, the data sender terminal may belong to the data according to the need to transmit
  • the service type or service priority determines the value of M and/or N.
  • the corresponding resource pool may be set according to different transmission times in advance, and the data sender terminal or the base station may select the time-frequency resource from the corresponding resource pool according to the number of data transmissions, and determine the through link for the data sender terminal.
  • the data transmission resource on.
  • the value of M may not be carried in the SA information.
  • the value of N is configured by the system or pre-configured, It is not necessary to carry the value of N with the SA information.
  • the value of M is dynamically determined, the value of M can be indicated in an explicit or implicit manner by using the SA information.
  • the value of N is dynamically determined, the The SA information indicates the value of N in an explicit or implicit manner.
  • Method 1 The values of M and N are configured by the system, and the SA information may or may not carry the indication information of the values of M and N, and may also notify the terminal of the values of M and N by other signaling; further When the values of M and N are notified, the values of M and N can be reduced by the joint indication to reduce the signaling overhead.
  • Method 2 The values of M and N are both pre-configured, the SA information may or may not carry the indication information of the values of M and N, and the values of M and N may be notified to the terminal by other signaling; Further, when the values of M and N are notified, the values of M and N may be combined to indicate that the signaling overhead is reduced;
  • Method 3 The value of M is configured or pre-configured, and the value of N is dynamically configured.
  • the SA information may not carry the indication of the value of M.
  • the value of N is carried in the SA information.
  • Method 4 The value of M is dynamically determined, and the value of N is configured by the system or pre-configured, and the value of M is carried in the SA information, and the SA information may not carry the indication information of the value of N;
  • Method 5 The values of M and N are dynamically determined, and are therefore carried in the SA information. Further, in the SA information, the values of M and N can be combined to indicate the signaling overhead.
  • the value of M and/or the value of N may be related to a service type or a service priority.
  • the value of the method is used to improve the reliability of the transmission. This method can reduce the signaling overhead compared with the method of increasing the value of M.
  • the terminal may determine the value of N according to the service type or service priority because different service types or different service priorities have different transmission reliability requirements.
  • the correspondence between the service type or the service priority and the number of transmission resource blocks may be predefined, and/or the service type or the service priority and the time included in one transmission resource block may be defined.
  • the correspondence between the number of frequency resources (that is, the value of N).
  • the value of M and/or N may be the same as the service type or the service priority. Therefore, if the SA information carries the service priority information or the service type information, the SA information may not carry the M and/or the N information.
  • the values of M and/or N are implicitly indicated by the service priority information or the service type information, and the values of M and/or N can be determined according to the service priority information or the service type information.
  • the receiver terminal can be based on the SA information.
  • the service priority information or the service type information determines the value of M or N.
  • a correspondence between a service priority or a service type and a value of N may be set.
  • the data sent by the data sender terminal includes SA information and data associated with the SA information.
  • the location where the SA information is sent and the content it contains can be implemented by the following scheme:
  • FIG. 4 exemplarily shows a schematic diagram of transmitting SA information using the scheme 1.
  • the data sender terminal transmits data on the through link through two transmission resource blocks, each of which includes four time-frequency resources, and each time-frequency resource has a length in the time domain of one TTI.
  • the SA information is only sent in the first TTI in the transport resource block.
  • the SA information includes at least: time-frequency resource indication information of the transmission resource block, where the indication information can pass the first time-frequency resource of the N time-frequency resources included in the transmission resource block.
  • Location characterization The location of the N time-frequency resources included in the transmission resource block may be determined according to the location of the first time-frequency resource and the time-frequency resource pattern of the N time-frequency resources.
  • the index value of the time-frequency resource pattern of the N time-frequency resources may be carried in the SA information.
  • the SA information may not carry the index value of the time-frequency resource pattern of the N time-frequency resources.
  • Scheme 2 In a transmission resource block, SA information is sent on each of the N time-frequency resources included in the transmission resource block, that is, each time-frequency resource is sent in each transmission resource block.
  • the data has an accompanying SA message.
  • An example of the solution may be as shown in FIG. 2, the data sender terminal transmits data on the through link through two transmission resource blocks, and each transmission resource block includes four time-frequency resources, and each time-frequency resource is in time.
  • the length on the domain is one TTI.
  • SA information is sent in each TTI in the transport resource block. In different TTIs, the frequency domain positions occupied by the SA information may be the same or different.
  • the time-frequency resource A represents any time-frequency resource in a transmission resource block
  • the SA information sent on the time-frequency resource A in the transmission resource block includes at least: the transmission resource block
  • the time-frequency resource indication information and the time-frequency resource A are indication information of the first time-frequency resources in the transmission resource block.
  • the time-frequency resource indication information of the transmission resource block may be represented by a location of a first time-frequency resource among the N time-frequency resources included in the transmission resource block.
  • the location of the time-frequency resource A may be based on the location of the first time-frequency resource, the time-frequency resource A is the indication information of the first time-frequency resource in the transmission resource block, and the N time-frequency resources included in the transmission resource block.
  • the time-frequency resource pattern is determined.
  • the index value of the time-frequency resource pattern of the N time-frequency resources may be carried in the SA information.
  • the SA information may not carry the index value of the time-frequency resource pattern of the N time-frequency resources.
  • the time-frequency resource A indicates any time-frequency resource in a transmission resource block
  • the SA information sent on the time-frequency resource A in the transmission resource block includes at least: the time-frequency resource A
  • the location and time-frequency resource A is indication information of the first time-frequency resources in the transmission resource block.
  • the location of the time-frequency resource A may be determined according to the indication information of the time-frequency resource A being the first time-frequency resource in the transmission resource block and the time-frequency resource pattern of the N time-frequency resources included in the transmission resource block.
  • the legacy terminal can determine the transmission resource according to the new terminal SA information, so that the transmission resource of the through link can be performed. Avoid resource conflicts when selecting.
  • the location of one transmission resource block can be indicated by the location of the first time-frequency resource in the transmission resource block.
  • the location of the first time-frequency resource in one transmission resource block may be indicated by the time domain and the frequency domain resource location, respectively, as follows:
  • the frequency domain resource location of the first time-frequency resource in a transmission resource block may be in units of PRBs or a PRB group (or referred to as a sub-channel). If the continuous frequency domain resources are occupied, it can be simplified to the starting point of the frequency domain and the length of the occupied frequency domain resources (such as how many PRBs or how many subchannels).
  • the location of multiple transmission resource blocks may be in the form of a joint indication or an independent indication.
  • the time domain resource location of the first time-frequency resource in a transmission resource block can be indicated in the following manner:
  • Method 3 Determine by an index value of a time-frequency resource pattern in a fixed-length time window starting from a reference TTI.
  • the window length is 8, there are M transmission resource blocks, and M is less than or equal to 8, then the maximum time of the window
  • the number of frequency resource patterns is equivalent to arbitrarily selecting M out of 8 TTIs, and the index of each time-frequency resource pattern corresponds to a time-frequency resource pattern.
  • the index of at least one of the time-frequency resource patterns is used to indicate that M is equal to one.
  • the value of M can be implicitly indicated by the above-mentioned method for indicating the time domain resource of the transmission resource block.
  • the method for determining the SA information and/or the indication method are different, and the method for determining the location of the time-frequency resource in one transmission resource block may also be different, such as the foregoing scheme 1 and scheme 2. Further, the method for determining the location of the time-frequency resource in a transmission resource block may also be related to the number of time-frequency resource patterns used by the N time-frequency resources in one transmission resource block.
  • the data receiver terminal can according to the time-frequency resource pattern (the time-frequency)
  • the resource pattern can be pre-agreed and the content carried in the SA information (such as the location of the first time-frequency resource and the indication information of the first time-frequency resource in the transmission resource block) is determined by the corresponding time-frequency resource. s position.
  • the time-frequency resource pattern index value of the time-frequency resource may be further combined to determine the location of the time-frequency resource.
  • the SA information may include the indication information that the current data transmission is the data transmission of the first time.
  • the indication information may be specifically used to indicate that the TTI currently performing data transmission is the first TTI in the transmission resource block. Instructions.
  • the indication information may also be indication information of the HARQ redundancy version. For example, if there is an agreement relationship between the HARQ redundancy version and the number of transmissions, the two are equivalent. For example, if the order of the fixed HARQ redundancy version is configured, the corresponding HARQ redundancy version can be determined according to the indication information.
  • the SA information may further include one or more of the following information:
  • a time-frequency resource belongs to the indication information of the first transmission resource blocks in the M transmission resource blocks.
  • the indication information may indicate that the current time-frequency resource (such as the time-frequency resource associated with the SA information) belongs to the first of the M transport block resources.
  • the indication information of the number of transmission resource blocks (that is, the value of M).
  • the indication information may or may not be carried in the SA information, and the value of the M may be implicitly indicated according to other information (such as service priority information) carried in the SA information, or may be
  • the indication method of the time domain resource of the transmission resource block implicitly indicates the value of M.
  • indication information of the number of time-frequency resources ie, the value of N included in one transmission resource block for data transmission.
  • the indication information may or may not be carried in the SA information, and the value of the M may be implicitly indicated according to other information (such as service priority information) carried in the SA information.
  • SA information may also be included in the SA information:
  • the service priority may include multiple types, for example, including eight types, and in this case, the length of the information may be 3 bits;
  • Resource reservation period index value The length of the index value may be 4 bits, which is used to indicate the reservation period of the resource, that is, the resource indicated by the current SA information will continue to be used in the next reservation period.
  • the correspondence between the resource reservation period index value and the resource reservation period may be configured by higher layer signaling.
  • the frequency domain resource location indication information which may be the starting point and length of the frequency domain resource.
  • the length of the indication information may be up to 8 bits, and is used to indicate the frequency resource occupied by the initial transmission and the retransmitted data indicated by the current SA information.
  • the interval of the initial transmission/retransmission, the length of the indication information may be 4 bits, and when there is only one transmission, the indication information has a value of 0.
  • Modulation and coding scheme (MCS)
  • the length of this information may be 5 bits.
  • the length of the information may be 1 bit, and is used to indicate whether the data associated with the current SA information is an initial transmission or a retransmission.
  • the embodiment of the present application provides a data transmission method.
  • 5 is a schematic flowchart of a data transmission method according to an embodiment of the present application. As shown in the figure, the process may include:
  • S501 The terminal determines a transmission resource on the through link.
  • the terminal may determine the transmission resource on the through link based on the manner of spontaneous selection, and may also obtain the transmission resource on the through link allocated by the base station based on the manner allocated by the base station.
  • the resource selection may be performed by using the method provided by the prior art, and the method provided by the embodiment of the present application may be used for resource selection. 7).
  • the downlink control information (DCI) sent by the base station to the terminal may include one or more of the following information, so that the terminal can use the information.
  • time-frequency resource location indication information of M transmission resource blocks wherein a time-frequency resource location of one transmission resource block is represented by a location of a first time-frequency resource among N time-frequency resources in the transmission resource block;
  • S502 The terminal sends data on the M transmission resource blocks of the direct link according to the transmission resource determined in S501, where one of the transmission resource blocks includes at least N time-frequency resources for data transmission.
  • Scenario 1 The M value is at most 2, and N can be a changed value (that is, dynamically determined).
  • the time-frequency resource pattern of N time-frequency resources in one transmission resource block adopts the manner shown in FIG. 3-1, and the M transmission resource blocks transmit the same data packet. If the design of the SA information in the Rel-14 LTE V2X is used, and the SA information and its associated data are transmitted in the same TTI, the information that can be transmitted by the SA information provided by the embodiment of the present application is as follows:
  • Resource reservation period index value used to indicate the reservation period of the resource, that is, the resource indicated by the current SA information will continue to be used in the next reservation period.
  • the correspondence between the resource reservation period index value and the resource reservation period is configured by the high layer signaling.
  • Scenario 2 The M value is at most 2, and N can be a changed value (ie, dynamically determined).
  • the time-frequency resource pattern of N time-frequency resources in a transport block uses one of FIG. 3-2 to FIG. And the M transport resource blocks transmit the same data packet.
  • the content of the SA information in the Rel-14 LTE V2X is used, and the SA information and the associated data are transmitted in the same TTI.
  • the content of the SA information in the embodiment of the present application may add the following information based on the scenario 1 above:
  • the size of the indication information signaling overhead of the time-frequency resource pattern is directly related to the number of time-frequency resource patterns.
  • Scenario 3 The M value is at most 2, and N can be a changed value (that is, dynamically determined).
  • the time-frequency resource pattern of N time-frequency resources in a transmission resource block is in the manner shown in Figure 3-1, and M
  • the transmission resource blocks can be transmitted corresponding to different data packets.
  • the design of the SA in the Rel-14 LTE V2X is used, and the SA information and the associated data are transmitted in the same TTI. The following information is added to the information carried by the SA information in Embodiment 1:
  • Initial transmission/retransmission indication information 1 bit, used to indicate whether the current transmission resource block is a first transmission or a retransmission.
  • the size of the indication information signaling overhead of the time-frequency resource pattern is directly related to the number of time-frequency resource patterns.
  • the embodiment of the present application further provides a method for autonomously selecting a data transmission resource on a through link by a data sender terminal.
  • the terminal may select M transmission resource blocks for data transmission.
  • the terms used in the following embodiments are consistent with the meanings of the foregoing embodiments, for example, related definitions of transmission resource blocks, time-frequency resources included, and definitions of time-frequency resource patterns, etc., refer to the foregoing embodiments.
  • the embodiments of the present application provide two resource selection schemes:
  • the terminal may select M*N time-frequency resources, and sort the selected M*N time-frequency resources in time, and the sorted M*N time-frequency resources are represented as t 1 ,...,t M *N , for the ordered M*N time-frequency resources, each N time-frequency resources constitutes one transmission resource block, and M transmission resource blocks are obtained, and the TTI corresponding to the M transmission resource blocks is represented as ⁇ t 1 . .., t N ⁇ , ⁇ t N+1 ,...,t 2N ⁇ ,..., ⁇ t (M-1)*N+1 ,...,t M*N ⁇ .
  • the M transmission resource blocks are resources selected by the sender terminal for transmitting data.
  • the M*N time-frequency resources may meet certain constraints in the time domain. For example, different time-frequency resources are in different TTIs, and the TTI interval between any two time-frequency resources is less than one. The value is fixed.
  • the N time-frequency resources in each transmission resource block may be selected according to the time-frequency resource pattern, and the M transmission resource blocks may be independently selected, or may be selected according to the transmission resource after selecting one transmission resource block.
  • the constraints between the blocks select other transport resource blocks. For example, the constraint may be that the time windows of any two transport resource blocks do not overlap in time.
  • a candidate transmission resource block includes at least N time-frequency resources for data transmission
  • the selected transmission resources on the through link have more flexibility to meet different services than the prior art. Demand.
  • M is equal to 2 and N is greater than or equal to 2
  • the reliability of the through link transmission and/or the coverage can be expanded.
  • FIG. 6 is a schematic diagram of a resource selection process according to an embodiment of the present application. As shown in the figure, the process may include:
  • the terminal determines a candidate transmission resource block set in the resource selection window according to the time-frequency resource pattern.
  • the candidate transmission resource block set includes at least one candidate transmission resource block, where the candidate transmission resource block is used for transmission resources on the through link, and one candidate transmission resource block includes at least N time-frequency resources for data transmission.
  • the N time-frequency resources are determined according to the time-frequency resource pattern, and N is an integer greater than or equal to 1.
  • the length of the resource selection window is related to the maximum delay of the service.
  • the time domains of at least two candidate transmission resource blocks in the candidate transmission resource block set do not overlap.
  • the candidate transmission resource block set includes a first candidate transmission resource block and a second candidate transmission resource block, where the two candidate transmission resource blocks are as shown in FIG. 2, where the first candidate transmission resource block and the first The time domain lengths of the two candidate transmission resource blocks are respectively 4 TTIs, and the first candidate transmission resource block and the second candidate transmission resource block do not overlap in the time domain.
  • the resource selection window includes 20 TTIs in the time domain, and one transmission resource.
  • the block occupies 4 subchannels in the frequency domain.
  • the candidate transmission resource block set may be determined in the following manner:
  • a selection window may be first set, the size of the window being the same as the size of a transmission resource block.
  • the selection window is 4 TTIs in the time domain and 4 subchannels in the frequency domain, and the following is used.
  • the selection window starts from the subchannel numbered 0, and slides in the high frequency direction with one subchannel as the step size, thus obtaining 17 candidates.
  • the 17 candidate transmission resource blocks occupy the TTI numbered 0 to 3, and the subchannel numbers occupied in the frequency domain are: 0-3, 1-4, 2-5, ..., 16- 19.
  • the positions of the four time-frequency resources in the 17 candidate transmission resource blocks are consistent with the time-frequency resource pattern shown in FIG. 3-1.
  • 17 candidate transmission resource blocks are determined on the TTIs numbered 1 to 4 in the resource selection window.
  • 17 candidate transmission resource blocks are determined on the TTIs numbered 2 to 5 in the resource selection window, respectively, until 17 candidates are determined on the TTIs numbered 16 to 19 in the resource selection window.
  • Transfer resource blocks. All or part of the candidate transmission resource blocks determined in the above manner may constitute a candidate transmission resource block set.
  • multiple time-frequency resource patterns may be used to determine N of different candidate transmission resource blocks.
  • the two time-frequency resource patterns can be separately used, and the candidate transmission resource blocks are determined according to the above method, and the candidate transmissions determined according to the two time-frequency resource patterns can be determined.
  • the resource blocks constitute a set of candidate transmission resource blocks.
  • the configuration method of the foregoing time-frequency resource pattern may be the same as the foregoing embodiment, for example, may be configured by a network, or may be pre-configured.
  • the candidate transmission resource block set determined by the above method can obtain a larger range in the time domain and/or the frequency domain than the candidate transmission resource determined by the prior art.
  • the terminal selects M candidate transmission resource blocks from the candidate transmission resource set as the transmission resource of the terminal on the through link, where M is an integer greater than or equal to 1.
  • the terminal may randomly select M candidate transmission resource blocks from the set of candidate transmission resource blocks as the transmission resource of the terminal on the through link; and the terminal may also be based on the candidate transmission resource block in the candidate transmission resource block set.
  • Received signal strength selecting M candidate transmission resource blocks from the set of candidate transmission resource blocks as the transmission resources of the terminal on the through link to avoid or reduce interference. For example, according to the received signal strength from small to large, the M candidate transmission resource blocks arranged in the top are selected.
  • the received signal strength on one transmission resource block may be an average of the received signal strengths on the N time-frequency resources included in the transmission resource block, or may be the maximum signal reception strength on the N time-frequency resources.
  • all the time-frequency resources (ie, M*N time-frequency resources) of the selected M candidate transmission resource blocks do not overlap in the time domain, for example, two transmission resource blocks adjacent to each other in the time domain. Time domain spans do not overlap.
  • the selection may be performed according to the constraint condition, so that the selected transmission resource block conforms to the constraint. condition.
  • the constraint specifies that the time interval between different transmission resource blocks does not exceed the set duration.
  • the time interval between the first transmission resource block and the second transmission resource block does not exceed X TTIs, and X is an integer greater than or equal to 1.
  • the value of X may be configured by a system or by a system.
  • the resource conflict may occur in the set of candidate transmission resource blocks according to the SA information sent by other monitored terminals. Candidate transmission resource blocks are excluded.
  • FIG. 7 is a schematic diagram of a resource selection process provided by another embodiment of the present application. As shown in the figure, the process may include the following steps:
  • the terminal determines a candidate transmission resource block set in the resource selection window according to the time-frequency resource pattern.
  • the candidate transmission resource block set includes at least one candidate transmission resource block, where the candidate transmission resource block is used for transmission resources on the through link, and one candidate transmission resource block includes at least N time-frequency resources for data transmission.
  • the N time-frequency resources are determined according to the time-frequency resource pattern, and N is an integer greater than or equal to 1.
  • the terminal excludes, from the candidate transmission resource block set, candidate transmission resource blocks in which the terminal conflicts with other terminals.
  • the terminal may monitor the SA information sent by the other terminal in the sensing window, and determine the interference time-frequency resource according to the monitored SA information, where the interference time-frequency resource is in the time-frequency resource associated with the SA information. All or part. Determining whether the interference time-frequency resource and the reserved time-frequency resource corresponding to the interference time-frequency resource overlap partially or completely with the candidate transmission resource block in the candidate transmission resource block set, and if yes, the candidate transmission resource block is set, The candidate transmission resource blocks in which the reserved time-frequency resources corresponding to the interference time-frequency resources and the interference time-frequency resources overlap partially or completely are excluded from the candidate transmission resource block set.
  • the reserved time-frequency resource corresponding to the interference time-frequency resource may be determined according to the location of the interference time-frequency resource and the reservation period. For example, if the number of reservation periods is R, the reservation period 1, the reservation period 2, ..., the reservation period In R, the time-frequency resource corresponding to the location of the interference time-frequency resource is determined as the reserved time-frequency resource corresponding to the interference time-frequency resource.
  • the subscription period may be network configured or pre-configured.
  • the time-frequency resource associated with the SA information and the data channel reference signal received power greater than the received power threshold may be determined as the interference time-frequency resource, and the candidate is In the process of excluding the transmission resource block, if the ratio of the candidate transmission resource block set divided by the number of candidate transmission resource blocks after the exclusion is less than the set threshold, the received power threshold may be used. The value is increased and the elimination process is re-executed until the ratio reaches or exceeds the set threshold.
  • the process can be as shown in Figure 8:
  • S801 Determine, according to the SA information sent by other terminals monitored in the sensing window, the interference time-frequency resource, where the interference time-frequency resource is associated with the SA information, and the data channel reference signal receiving power is greater than the receiving power threshold.
  • S802 In a candidate transmission resource block set, a reserved time-frequency resource corresponding to the interference time-frequency resource and the interference time-frequency resource, and a candidate transmission resource block that partially or completely overlaps, from the candidate transmission resource block. Excluded from the collection;
  • S803 determining whether a ratio of the candidate transmission resource block set after the exclusion and the number of candidate transmission resource blocks before the exclusion is lower than a set threshold, and if yes, proceeding to S804, otherwise ending;
  • S804 Increase the receiving power threshold, and execute S801 and S802, and then transfer to S803.
  • the terminal since the terminal uses half-duplex communication, the terminal cannot send the terminal.
  • the data transmitted by other terminals is monitored on the resources of the data. Therefore, in order to avoid resource conflicts, it is assumed that other terminals on the transmission resource reserve the next transmission resource in all possible cycles configured by the system, and therefore the candidate transmission resource block set is used.
  • the reserved time-frequency resource corresponding to the data transmission time-frequency resource occupied by the terminal itself has some or all overlapping candidate transmission resource blocks, and is excluded from the candidate transmission resource block set.
  • the terminal selects M candidate transmission resource blocks from the excluded candidate transmission resource block set as the transmission resource of the terminal on the through link, where M is an integer greater than or equal to 1.
  • the time-frequency resource pattern of four time-frequency resources in one transmission resource block is in the manner shown in Figure 3-1, and the frequency domain of the transmission resource block is L ( L is an integer of 1 or more consecutive subchannels.
  • the resource selection process of the terminal is as follows:
  • the candidate transmission resource block may be defined as follows: one candidate transmission resource block is represented as R x,y , where x represents the frequency domain start position of the first time-frequency resource in the candidate transmission resource block, and y represents the candidate transmission resource block. The starting position of the TTI of a time-frequency resource.
  • the definition of R x,y is defined according to the time-frequency resource pattern shown in Figure 3-1.
  • the candidate transmission resource blocks that have resource conflicts with other terminals in the candidate transmission resource block set are excluded, as follows: the terminal performing resource selection measures the SA information sent by other terminals monitored in the sensing window.
  • the PSSCH-RSRP reference signal receiving power
  • the time-frequency resource in which the PSSCH-RSRP is higher than the PSSCH-RSRP threshold is determined as the interference time-frequency resource.
  • the terminal performing the resource selection acquires the resource reservation period from the SA information, and determines the time-frequency resource of the next transmission scheduled by the candidate transmission resource block R x, y and the reserved time-frequency resource corresponding to the interference time-frequency resource.
  • the overlap or partial overlap occurs (the case where only partial overlap is shown in FIG. 9), or the rth transmission resource R x, y+r*P_tx of the candidate transmission resource block candidate resource block R x,y reserved If the time-frequency resources reserved by other terminals overlap or partially overlap, the corresponding candidate transmission resource blocks are excluded from the candidate transmission resource block set.
  • r 1, 2, 3, ..., R (R represents the maximum number of interrogation transmission periods)
  • P_tx is the service transmission period of the terminal for resource selection.
  • the terminal that performs resource selection also performs data transmission in the sensing window, the service packet sent by other terminals cannot be monitored in the sending subframe due to the influence of half duplex.
  • a subframe is called a skip subframe.
  • other terminals on the subframe reserve the next resource in all possible cycles of the system configuration, wherein the set of all possible cycles is configured or pre-configured by the network.
  • the terminal determines that the candidate transmission resource block R x,y overlaps or partially overlaps with the time-frequency resource of the next transmission of the skip subframe reservation, or the resource R of the r-th transmission reserved by the candidate transmission resource block R x,y
  • the corresponding candidate transmission resource block is excluded from the candidate transmission resource block set.
  • the service transmission period of the terminal in which r 1, 2, 3, ..., R, P_tx performs resource selection.
  • the PSSCH- The RSRP threshold is raised and the exclusion process is re-executed until the remaining resource ratio reaches or exceeds the threshold.
  • the terminal performing resource selection selects a resource corresponding to the candidate transmission resource block from the candidate transmission resource block set.
  • the terminal may perform S-RSSI on the candidate resource (where S is an abbreviation of sidelink, Chinese is a straight-through link, RSSI is an abbreviation of receive signal strength indicator, and Chinese is a received signal strength indicator) measurement and sorting. Selecting a candidate transmission resource block with the lowest S-RSSI measurement value or a subset of candidate transmission resource blocks satisfying the condition, if a subset is selected, the candidate transmission resource block may be selected from the subset in a random manner. .
  • the embodiment of the present application further provides a resource selection device.
  • the device can be either a terminal or a device in the terminal.
  • the apparatus may include: a determining module 1002, and a selecting module 1002, where:
  • the determining module 1001 is configured to determine, in the resource selection window, a candidate transmission resource block set according to the time-frequency resource pattern, where the candidate transmission resource block set includes at least one candidate transmission resource block, where the candidate transmission resource block is used for a transmission resource on the link, the candidate transmission resource block includes at least N time-frequency resources for data transmission, and the N time-frequency resources are determined according to the time-frequency resource pattern, where N is an integer greater than or equal to 1;
  • the selecting module 1002 is configured to select, from the candidate transmission resource set, M candidate transmission resource blocks as the transmission resource of the terminal on the through link, where M is an integer greater than or equal to 1.
  • the time domains of at least two candidate transmission resource blocks in the candidate transmission resource block set do not overlap.
  • the selecting module 1002 is specifically configured to: exclude candidate transmission resource blocks in which the terminal conflicts with other terminals from the candidate transmission resource block set; and select M candidates from the excluded candidate transmission resource block set. Transfer resource blocks.
  • the selecting module 1002 is specifically configured to: determine an interference time-frequency resource according to the SA information sent by another terminal that is monitored in the sensing window, where the interference time-frequency resource is in a time-frequency resource associated with the SA information. All or part of the candidate transmission resource block set, the reserved time-frequency resource corresponding to the interference time-frequency resource and the interference time-frequency resource, and the candidate transmission resource block partially or completely overlapping Excluding from the set of candidate transmission resource blocks; wherein the reserved time-frequency resource is determined according to a location of the interference time-frequency resource and a reservation period.
  • the interference time-frequency resource is a time-frequency resource in which the data channel reference signal received power is greater than the received power threshold
  • the selection module 1002 is further configured to: determine the candidate transmission. Whether the ratio of the resource block set after the exclusion and the number of time-frequency resources before the exclusion is lower than a set threshold, if yes, increasing the received power threshold, and performing the step of determining the interference time-frequency resource and the step of eliminating the same .
  • the selecting module 1002 is further configured to: if the time-frequency resource is occupied by the data occupied by the terminal, the candidate transmission resource block set corresponds to the data transmission time-frequency resource. All possible reserved time-frequency resources, with some or all overlapping candidate transmission resource blocks, are excluded from the candidate transmission resource block set.
  • the selecting module 1002 is specifically configured to: select, according to the received signal strength on the candidate transmission resource block in the excluded candidate transmission resource block set, the M candidate transmission resource blocks according to the received signal strength from small to large.
  • the selecting module 1002 is specifically configured to: randomly select, from the candidate transmission resource block set, M candidate transmission resource blocks; or, according to the received signal strength on the candidate transmission resource block in the candidate transmission resource block set. And selecting M candidate transmission resource blocks from the candidate transmission resource block set.
  • FIG. 11 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • the communication device can be a terminal.
  • the communication device can include a processor 1101, a memory 1102, a transceiver 1103, and a bus interface.
  • the processor 1101 is responsible for managing the bus architecture and general processing, and the memory 1102 can store data used by the processor 1101 when performing operations.
  • the transceiver 1103 is configured to receive and transmit data under the control of the processor 1101.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1101 and various circuits of memory represented by memory 1102.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the processor 1101 is responsible for managing the bus architecture and general processing, and the memory 1102 can store data used by the processor 1101 when performing operations.
  • the flow disclosed in the embodiment of the present invention may be applied to the processor 1101 or implemented by the processor 1101.
  • each step of the signal processing flow may be completed by an integrated logic circuit of hardware in the processor 1101 or an instruction in the form of software.
  • the processor 1101 can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can implement or perform the embodiments of the present invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1102, and the processor 1101 reads the information in the memory 1102 and completes the steps of the signal processing flow in conjunction with its hardware.
  • the processor 1101 is configured to read a program in the memory 1102, and perform the following process: determining, according to the time-frequency resource pattern, a candidate transmission resource block set in the resource selection window, where the candidate transmission resource block set includes at least one a candidate transmission resource block, the candidate transmission resource block is a transmission resource used on the through link, and one candidate transmission resource block includes at least N time-frequency resources for data transmission, and the N time-frequency resources are based on Determining, by the time-frequency resource pattern, N is an integer greater than or equal to 1; selecting M candidate transmission resource blocks from the candidate transmission resource set as the transmission resource of the terminal on the through link, where M is greater than or equal to Integer.
  • N is an integer greater than or equal to 1
  • M candidate transmission resource blocks from the candidate transmission resource set as the transmission resource of the terminal on the through link where M is greater than or equal to Integer.
  • the time domains of at least two candidate transmission resource blocks in the candidate transmission resource block set do not overlap.
  • the processor 1101 is specifically configured to: exclude, from the candidate transmission resource block set, candidate transmission resource blocks in which the terminal conflicts with other terminals; and select M candidates from the excluded candidate transmission resource block set. Transfer resource blocks.
  • the processor 1101 is configured to: determine an interference time-frequency resource according to the SA information sent by another terminal that is monitored in the sensing window, where the interference time-frequency resource is in a time-frequency resource associated with the SA information. All or part of the candidate transmission resource block set, the reserved time-frequency resource corresponding to the interference time-frequency resource and the interference time-frequency resource, and the candidate transmission resource block partially or completely overlapping Excluding from the set of candidate transmission resource blocks; wherein the reserved time-frequency resource is determined according to a location of the interference time-frequency resource and a reservation period.
  • the interference time-frequency resource is a time-frequency resource in which the data channel reference signal received power is greater than the received power threshold in the time-frequency resource associated with the SA information; the processor 1101 is further configured to: determine the candidate transmission Whether the ratio of the resource block set after the exclusion and the number of time-frequency resources before the exclusion is lower than a set threshold, if yes, increasing the received power threshold, and performing the step of determining the interference time-frequency resource and the step of eliminating the same .
  • the processor 1101 is further configured to: if the time-frequency resource is occupied by the data occupied by the terminal, the candidate transmission resource block set corresponds to the data transmission time-frequency resource. All possible reserved time-frequency resources, with some or all overlapping candidate transmission resource blocks, are excluded from the candidate transmission resource block set.
  • the processor 1101 is configured to select, according to the received signal strength on the candidate transmission resource block in the excluded candidate transmission resource block set, the M candidate transmission resource blocks according to the received signal strength from small to large.
  • the processor 1101 is specifically configured to: randomly select M candidate transmission resource blocks from the candidate transmission resource block set; or, according to the received signal strength on the candidate transmission resource block in the candidate transmission resource block set. And selecting M candidate transmission resource blocks from the candidate transmission resource block set.
  • the embodiment of the present application further provides a computer storage medium.
  • the computer readable storage medium stores computer executable instructions for causing the computer to perform the resource selection process described in the previous embodiments.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种资源选择方法及装置。本申请中,终端根据时频资源图样,在资源选择窗口内确定候选传输资源块集合,所述候选传输资源块集合中包括至少一个候选传输资源块,所述候选传输资源块为用于在直通链路上的传输资源,一个候选传输资源块中至少包括N个用于数据发送的时频资源,所述N个时频资源根据所述时频资源图样确定,N为大于等于1的整数;所述终端从所述候选传输资源集合中选择M个候选传输资源块作为所述终端在直通链路上的传输资源,M为大于等于1的整数。

Description

一种资源选择方法及装置
本申请要求在2017年7月6日提交中国专利局、申请号为201710548218.4、申请名称为“一种资源选择方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,尤其涉及一种资源选择方法及装置。
背景技术
在V2X技术中,V表示的是车辆(vehicle),X表示的多种实体,例如:V2V表示车辆到车辆(vehicle to Vehicle)、V2P表示车辆到行人(vehicle to pedestrian)、V2I表示车辆到基础设施(vehicle to infrastructure)、V2N表示车辆到网络(vehicle to network)。
长期演进(long term evolution,LTE)系统中,V2X技术中主要包括两种通信方式:V2X直接(direct)通信和V2X非直接(indirect)通信。其中,V2X direct通信是指V2X终端之间直接进行通信,V2X indirect通信是指V2X终端之间通过基础设施(例如基站或其它的网络实体)间接进行通信。
V2X终端之间通过直通链路(也称为PC5接口,协议上描述为Sidelink)进行通信。V2X终端在直通链路上进行数据传输时涉及两种信道,一种是物理直通链路控制信道(physical sidelink control channel,PSCCH),用于传输调度分配(scheduling assignment,SA)信息;另一种是直通链路共享信道(physical sidelink shared channel,PSSCH),也称为数据(data)信道,用于传输数据。其中SA信息中指示进行数据接收的所有必要的指示信息,例如,数据传输占用的时频资源信息、数据传输的调制编码方式、数据传输的用于解调的参考信号的指示信息等。相应地,接收端通过检测PSCCH信道中传输的SA信息,并根据该SA信息进行数据的接收。
数据发送方V2X终端可自发选择直通链路上的时频资源进行数据发送。随着V2X技术的发展,目前需要新的资源选择方法,以使数据发送方V2X终端能够选择直通链路上的时频资源进行数据发送。
发明内容
本申请实施例提供了一种资源选择方法及装置。
第一方面,提供一种资源选择方法,包括:
终端根据时频资源图样,在资源选择窗口内确定候选传输资源块集合,所述候选传输资源块集合中包括至少一个候选传输资源块,所述候选传输资源块为用于在直通链路上的传输资源,一个候选传输资源块中至少包括N个用于数据发送的时频资源,所述N个时频资源根据所述时频资源图样确定,N为大于等于1的整数;
所述终端从所述候选传输资源集合中选择M个候选传输资源块作为所述终端在直通链路上的传输资源,M为大于等于1的整数。
可选地,所述候选传输资源块集合中至少2个候选传输资源块的时域不重叠。
可选地,所述终端从所述候选传输资源块集合中选择M个候选传输资源块,包括:所述终端从所述候选传输资源块集合中排除所述终端与其他终端发生资源冲突的候选传输资源块;所述终端从排除后的候选传输资源块集合中选择M个候选传输资源块。
可选地,从所述候选传输资源块集合中排除所述终端与其他终端发生资源冲突的候选传输资源块,包括:根据在感知窗口内监听到的其他终端发送的SA信息,确定干扰时频资源,所述干扰时频资源为所述SA信息所关联的时频资源中的全部或部分;
将所述候选传输资源块集合中,与所述干扰时频资源以及所述干扰时频资源对应的预约时频资源,存在部分或全部交叠的候选传输资源块,从所述候选传输资源块集合中排除;其中,所述预约时频资源根据所述干扰时频资 源的位置以及预约周期确定。
可选地,所述干扰时频资源为所述SA信息所关联的时频资源中,数据信道参考信号接收功率大于接收功率门限的时频资源;所述排除之后,还包括:判断所述候选传输资源块集合在排除后和排除前的时频资源数量的比值是否低于设定阈值,若是,则提高所述接收功率门限,并再次执行所述确定干扰时频资源的步骤以及所述排除步骤。
可选地,还包括:若所述感知窗口内存在所述终端占用的数据发送时频资源,则将所述候选传输资源块集合中,与所述数据发送时频资源对应的所有可能的预约时频资源,存在部分或全部交叠的候选传输资源块,从所述候选传输资源块集合中排除。
可选地,从排除后的候选传输资源块集合中选择M个候选传输资源块,包括:根据排除后的候选传输资源块集合中的候选传输资源块上的接收信号强度,按照接收信号强度从小到大的顺序,选择M个候选传输资源块。
可选地,所述终端从所述候选传输资源块集合中选择M个候选传输资源块,包括:所述终端从所述候选传输资源块集合中随机选择M个候选传输资源块;或者,所述终端根据所述候选传输资源块集合中的候选传输资源块上的接收信号强度,从所述候选传输资源块集合中选择M个候选传输资源块。
第二方面,提供一种资源选择装置,包括:
确定模块,用于根据时频资源图样,在资源选择窗口内确定候选传输资源块集合,所述候选传输资源块集合中包括至少一个候选传输资源块,所述候选传输资源块为用于在直通链路上的传输资源,一个候选传输资源块中至少包括N个用于数据发送的时频资源,所述N个时频资源根据所述时频资源图样确定,N为大于等于1的整数;
选择模块,用于从所述候选传输资源集合中选择M个候选传输资源块作为所述终端在直通链路上的传输资源,M为大于等于1的整数。
可选地,所述候选传输资源块集合中至少2个候选传输资源块的时域不重叠。
可选地,所述选择模块具体用于:从所述候选传输资源块集合中排除所述终端与其他终端发生资源冲突的候选传输资源块;从排除后的候选传输资源块集合中选择M个候选传输资源块。
可选地,所述选择模块具体用于:根据在感知窗口内监听到的其他终端发送的SA信息,确定干扰时频资源,所述干扰时频资源为所述SA信息所关联的时频资源中的全部或部分;将所述候选传输资源块集合中,与所述干扰时频资源以及所述干扰时频资源对应的预约时频资源,存在部分或全部交叠的候选传输资源块,从所述候选传输资源块集合中排除;其中,所述预约时频资源根据所述干扰时频资源的位置以及预约周期确定。
可选地,所述干扰时频资源为所述SA信息所关联的时频资源中,数据信道参考信号接收功率大于接收功率门限的时频资源;所述选择模块还用于:判断所述候选传输资源块集合在排除后和排除前的时频资源数量的比值是否低于设定阈值,若是,则提高所述接收功率门限,并再次执行所述确定干扰时频资源的步骤以及所述排除步骤。
可选地,所述选择模块还用于:若所述感知窗口内存在所述终端占用的数据发送时频资源,则将所述候选传输资源块集合中,与所述数据发送时频资源对应的所有可能的预约时频资源,存在部分或全部交叠的候选传输资源块,从所述候选传输资源块集合中排除。
可选地,所述选择模块具体用于:根据排除后的候选传输资源块集合中的候选传输资源块上的接收信号强度,按照接收信号强度从小到大的顺序,选择M个候选传输资源块。
可选地,所述选择模块具体用于:从所述候选传输资源块集合中随机选择M个候选传输资源块;或者,根据所述候选传输资源块集合中的候选传输资源块上的接收信号强度,从所述候选传输资源块集合中选择M个候选传输资源块。
第三方面,提供一种通信装置,包括:处理器、存储器、收发机以及总线接口;所述处理器,用于读取存储器中的程序,执行下列过程:
根据时频资源图样,在资源选择窗口内确定候选传输资源块集合,所述候选传输资源块集合中包括至少一个候选传输资源块,所述候选传输资源块为用于在直通链路上的传输资源,一个候选传输资源块中至少包括N个用于数据发送的时频资源,所述N个时频资源根据所述时频资源图样确定,N为大于等于1的整数;从所述候选传输资源集合中选择M个候选传输资源块作为所述终端在直通链路上的传输资源,M为大于等于1的整数。
可选地,所述候选传输资源块集合中至少2个候选传输资源块的时域不重叠。
可选地,所述处理器具体用于:
从所述候选传输资源块集合中排除所述终端与其他终端发生资源冲突的候选传输资源块;
从排除后的候选传输资源块集合中选择M个候选传输资源块。
可选地,所述处理器具体用于:
根据在感知窗口内监听到的其他终端发送的SA信息,确定干扰时频资源,所述干扰时频资源为所述SA信息所关联的时频资源中的全部或部分;
将所述候选传输资源块集合中,与所述干扰时频资源以及所述干扰时频资源对应的预约时频资源,存在部分或全部交叠的候选传输资源块,从所述候选传输资源块集合中排除;其中,所述预约时频资源根据所述干扰时频资源的位置以及预约周期确定。
可选地,所述干扰时频资源为所述SA信息所关联的时频资源中,数据信道参考信号接收功率大于接收功率门限的时频资源;
所述处理器还用于:判断所述候选传输资源块集合在排除后和排除前的时频资源数量的比值是否低于设定阈值,若是,则提高所述接收功率门限,并再次执行所述确定干扰时频资源的步骤以及所述排除步骤。
可选地,所述处理器还用于:
若所述感知窗口内存在所述终端占用的数据发送时频资源,则将所述候选传输资源块集合中,与所述数据发送时频资源对应的所有可能的预约时频 资源,存在部分或全部交叠的候选传输资源块,从所述候选传输资源块集合中排除。
可选地,所述处理器具体用于:
根据排除后的候选传输资源块集合中的候选传输资源块上的接收信号强度,按照接收信号强度从小到大的顺序,选择M个候选传输资源块。
可选地,所述处理器具体用于:
从所述候选传输资源块集合中随机选择M个候选传输资源块;或者,
根据所述候选传输资源块集合中的候选传输资源块上的接收信号强度,从所述候选传输资源块集合中选择M个候选传输资源块。
第四方面,提供一种计算机存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述第一方面中任一可能的方案所述的方法。
上述实施例中,终端根据时频资源图样,在资源选择窗口内确定候选传输资源块集合,并从所述候选传输资源集合中选择M个候选传输资源块作为所述终端在直通链路上的传输资源。其中,由于一个候选传输资源块中至少包括N个用于数据发送的时频资源,因此相比于现有技术,使得选择出的在直通链路上的传输资源具有更多灵活性,以满足不同业务的需求。尤其当M等于2、N大于等于2的情况下,与现有技术相比,在根据选择出的传输资源进行数据发送时,可以提高直通链路传输可靠性和/或扩大覆盖范围。
附图说明
图1-1、图1-2分别为本申请实施例适用的网络架构示意图;
图2为本申请实施例中的直通链路数据传输的资源示意图;
图3-1至图3-6分别为本申请实施例提供的直通链路中的数据传输资源示意图;
图4为本申请实施例中采用该方案1发送SA信息的示意图;
图5为本申请实施例提供的数据传输方法的流程示意图;
图6为本申请实施例提供的资源选择流程示意图;
图7为本申请另外的实施例提供的资源选择流程示意图;
图8为本申请实施例提供的资源排除流程示意图;
图9为本申请实施例中的资源选择示意图;
图10为本申请实施例提供的资源选择装置的结构示意图;
图11为本申请实施例提供的通信装置的结构示意图。
具体实施方式
参见图1-1和图1-2,分别为本申请实施例适用的网络架构。
如图1-1所示,终端基于自发选择的资源使用直通链路与其他终端进行通信。其中,终端可在配置或者预配置的资源池中通过感知的方法,获取空闲资源的位置,在空闲的资源中选择自己传输数据所使用的资源。终端也可以在配置或者预配置的资源池中随机选择自己传输数据所使用的资源。
如图1-2所示,终端可基于基站分配的资源使用直通链路与其他终端进行通信。终端在网络覆盖内的情况下(即终端在基站覆盖范围内时),基站可以通过蜂窝通信系统的下行控制信道,比如物理下行控制信道(physical downlink control channel,PDCCH)或扩展物理下行控制信道(enhanced physical downlink control channel,EPDCCH),对终端间的直通链路通信进行调度。在这种情况下,基站通过给终端发送调度信息(scheduling grant),指示终端传输的资源位置等。
上述网络架构可以是车联网架构,其中的终端可以是V2X终端。
上述基站具体包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(Base Band Unit,BBU)、新空口基站(g NodeB,gNB)、传输点(Transmitting and receiving point,TRP)、发射点(Transmitting point,TP)、移动 交换中心等。当然上述基站也可由其他接入点设备替代。
现有LTE V2X技术中,V2X终端可通过直通链路传输50字节至1200字节大小的数据包。随着车联网技术的进一步发展,新的应用场景的不断出现(例如,车辆编队、高级驾驶、传感器信息共享、远程控制等应用),这对终端与终端之间基于直通链路的数据传输提出了更高的要求,要求承载的数据包更大,传输的可靠性更高,传输的距离更远。但是对于传输较大数据包的需求,以及提供覆盖更大和传输更可靠的要求,现有技术所提供的支撑能力有限,不能满足新的业务要求。举例来说,现有的LTE V2X技术最大能够提供两次传输(称为初传和重传),若为了满足更可靠和更大范围的覆盖,则需要降低调制与编码策略(modulation and coding scheme,MCS)等级。当数据包比较大的时候,降低MCS等级则无法满足提供更大范围的覆盖以及提供高可靠性传输的要求。
本申请实施例提出了一种增强的数据传输方法以及可实现该方法的装置,可以灵活地满足不同业务对于传输可靠性和/或覆盖范围的要求,进一步地,相比于Rel-14 V2X没有明显信令开销的增加。
下面结合附图对本申请实施例进行详细描述。
本申请实施例中,终端在直通链路上发送数据时,可通过直通链路上的M个(M为大于等于1的整数)传输资源块发送数据,其中一个传输资源块中包括N个(N为大于等于1的整数)用于数据发送的时频资源。可选地,在一些例子中,M=2,N>1;在另外一些例子中,M>2,N≥1。
其中,所述传输资源块中包括一个或多个时频资源,一个时频资源对应于一次数据传输。一个时频资源在时域上可以以传输时间间隔(transmission time interval,,TTI)或子帧为单位,当然也可以以其他长度的时间单元为单位,本申请实施例对此不做限制。本申请实施例中,可选地,一个时频资源在时域上为一个TTI或一个子帧。一个时频资源在频域上可以以物理资源块(physical resource block,PRB)为资源单位,也可以以PRB组(或称为子信 道)为资源单位,一个PRB组中可包括多个PRB。当然也可以以其他大小的频率单元为频率单位,本申请实施例对此不做限制。本申请实施例中,可选地,一个时频资源在频域上占用一个或多个PRB或一个或多个子信道。
在频域上,终端在直通链路上发送的数据所占用的频率资源,可以是直通链路的下行信道可使用的频率资源中的部分或全部。具体地,在车联网中,一个传输资源块在频域上占用的资源可包括:PSCCH可使用的频域资源池(也即用于传输SA信息的频域资源池)中的部分资源,以及PSSCH使用的频域资源池(也即用于传输数据的频域资源池)中的部分资源。
可选地,在一些实施例中,在N大于等于2的情况下,一个传输资源块中的N个时频资源对应于同一个数据包,比如在一个传输资源块中通过N个时频资源将同一数据包重复发送N次,一个时频资源对应一次传输,每次发送该数据包的不同自动混合重传请求(hybrid automatic repeat request,HARQ)版本,这样,接收端可以基于N个时频资源传输的数据进行HARQ合并处理,从而获得传输增益。
可选地,在一些实施例中,在M大于等于2的情况下,M个传输资源块可以对应于同一个数据包,也可以对应不同的数据包。比如当M=2时,第一个传输资源块用于传输数据包1,第二个传输资源块用于传输数据包2;或者,这两个传输资源块均用于传输数据包1,其中这两个传输资源块传输该数据包的不同HARQ版本。如果M个传输资源块对应于同一个数据包,则接收端可以基于该M个传输资源块发送的数据进行HARQ合并的处理,从而获得传输增益。
基于本申请的上述实施例,针对同一数据包,终端在直通链路上的数据传输可具有以下特点中的一个或多个:
(1)终端在直通链路上发送的数据包所使用的传输资源块数量(即M的取值)大于2,这样,即使一个传输资源块中仅包含一个时频资源,且该时频资源的大小与现有LTE V2X技术中一次数据传输所使用的时频资源大小相同,则相比于现有技术,本申请实施例的传输次数更多(一个时频资源对应 于一次数据传输),因此可获得更高的传输可靠性;
(2)一个传输资源块中用于数据发送的时频资源数量大于1(即N的取值大于或等于2),这样,即使传输资源块的数量(即数据传输次数)与现有LTE V2X技术中的数据传输次数相同,则相比于现有技术,本申请实施例中发送的数据包占用的时间长度大于现有技术中发送数据包占用的时间长度,从而可以提高传输的可靠性。
可见,上述实施例中,终端在直通链路上发送数据时,发送M个传输资源块,其中一个传输资源块中至少包括N个用于数据发送的时频资源,实现了终端之间的直接通信,并提供了灵活的传输资源配置方式以满足不同业务的需求。尤其当M等于2、N大于等于2的情况下,与现有技术相比,在信令增加不多的情况下,可以提高直通链路传输可靠性和/或扩大覆盖范围。
基于上述实施例,图2示例性地示出了本申请实施例中的一种直通链路数据传输的资源示意图。如图所示,一个V2X终端在直通链路发送数据的时候,使用两个传输资源块(如图中的第一传输资源块和第二传输资源块),每个传输资源块中包含4个用于数据发送的时频资源。其中,一个时频资源在时域上为一个TTI长度,在频域上可占用一个或多个PRB或子信道。在一个时频资源中,包括用于传输SA信息的PSCCH和用于传输数据的PSSCH。其中,PSCCH的频率资源可从SA资源池中选择,PSSCH的频率资源可从数据(data)资源池中选择。一个传输资源块中每个时频资源上的SA信息用于指示所关联的数据所使用的传输资源(比如PSSCH的频域位置)。
图2仅为一个示例,本申请实施例对PSCCH和PSSCH的频域位置不做限制,对每个时频资源中PSCCH中传输SA的内容是否相同也不做限制。
可选地,本申请实施例中,不同传输资源块中的时频资源的频域大小可以相同也可以不同。比如,以图2为例,第一传输资源块中的PSSCH占用的PRB数量,与第二传输资源中的PSSCH占用的PRB数量,可以相等也可以不相等。
可选地,本申请实施例中,不同传输资源块之间的时间间隔不超过设定 时长。比如,仍以图2为例,第一传输资源块与第二传输资源块之间的时间间隔不超过X个TTI,X为大于等于1的整数,X的取值可由系统约定或系统配置。
可选地,本申请实施例中,不同传输资源块的时频资源可分别独立选择,使得不同传输资源块的时域位置和/或频域位置之间不存在关联关系。例如,在传输两个数据包的情况下,这两个数据包所使用的传输资源块的频域大小可以不同,考虑到信令指示开销,可选地,可以限制两个传输资源块之间的时间间隔不超过固定的时长。在另外的例子中,不同传输资源块的时域位置和/或频域位置之间可存在关联关系,该关联关系可以是松耦合的关联关系。比如,每个传输资源块之间的时间间隔不超过设定时长,和/或每个传输资源块的频域资源按下相同。
可选地,本申请实施例中,在N大于等于2的情况下,一个传输资源块中的N个时频资源的时域位置和/或频域位置之间,存在关联关系,即这种关联关系可以仅为频域上的,也可以仅为时域上的,还可以是时域和频域二维联合的。不同的关联方式或者不同的关联关系,可对应于相应的时频资源图样(pattern)。时频资源图样定义了时频资源的位置和大小,不同的时频资源图样对应于不同的关联关系。下面结合图3-1至图3-6,针对一个传输资源块中N个时频资源的时域位置和/或频域位置之间存在的几种关联关系的可能形式:
(1)N个时频资源在时域上连续、在频域上相同。图3-1示例性地示出了相应的一种时频资源图样,如图所示,一个传输资源块中包括4个时频资源,这4个时频资源占用连续的4个TTI,每个时频资源在时域上占用1个TTI,这4个时频资源的PSCCH和PSSCH的频域位置和大小均相同。
(2)N个时频资源在时域上连续、至少有2个时频资源的频域资源不同(比如频域位置和/或频域大小不同),比如,在频域上该N个时频资源可按照设定的时频资源图样进行跳频。可采用的时频资源图样可以有多种。所有可能的时频资源图样中的全部或部分可组成时频资源图样集合,数据发送方 终端可使用该集合中的时频资源图样确定数据传输的时频资源。集合中时频资源图样数量与N的取值可存在对应关系,该对应关系可以是协议约定的,也可以是配置的。即,可针对每种N的取值,设置对应的时频资源图样集合。
下面举例说明N的取值与时频资源图样的个数之间的关系:以在一个时间窗口内进行时域跳频为例,该时间窗口中包括8个TTI,则当N=1时,时频资源图样个数为8;当N=2时,则时频资源图样个数为28,相当于从8个TTI中任意选择2个TTI所得到的TTI组合的数量,可表示为
Figure PCTCN2018090010-appb-000001
以此类推,可得到当N=3,4时,对应的时频资源图样个数。
在SA信息中,可以将N的取值以及时频资源图样的索引值联合指示。例如,将N=1、N=2、N=3和N=4时的时频资源图样依照一定顺序组成一个集合,对该集合中的时频资源图样索引,这样一个时频资源图样在该集合中的索引值既可以指示N的取值也可以指示时频资源图样。比如,将N=1、N=2、N=3和N=4时的时频资源图样依照N=1、N=2、N=3、N=4的顺序组成一个集合,该集合中的前8个时频资源图样表示N=1时的时频资源图样,从第9个时频资源图样开始到第36个时频资源图样为N=2时的时频资源图样,依次类推。
进一步地,本关联方式中,N个时频资源在频域上采用了跳频,可使用的时频资源图样与数据包占用的频域资源的大小有关。例如,若每个时频资源的频域连续时,不同的时频资源的大小将影响时频资源图样的选择。
图3-2示例性地示出了其中的一种时频资源图样,如图所示,一个传输资源块中包括4个时频资源,这4个时频资源占用连续的4个TTI,每个时频资源在时域上占用1个TTI,这4个时频资源的PSCCH的频域位置各不相同,且这4个时频资源的PSSCH的频域位置各不相同。图3-2仅为一种示例,在另外的例子中,这4个时频资源的PSCCH的频域位置和大小可以相同,而PSSCH的频域位置各不相同。
(3)N个时频资源中至少有2个时频资源在时域上不连续、该N个时频 资源在频域上相同,比如,在时域上该N个时频资源可按照设定的时频资源图样进行跳频。可采用的时频资源图样有多种。所有可能的时频资源图样中的全部或部分可组成时频资源图样集合,数据发送方终端可使用该集合中的时频资源图样确定数据传输的时频资源。集合中时频资源图样数量与N的取值可存在对应关系,该对应关系可以是协议约定的,也可以是配置的。即,可针对每种N的取值,设置对应的时频资源图样集合。
图3-3示例性地示出了其中的一种时频资源图样,如图所示,一个传输资源块中包括4个时频资源,每个时频资源在时域上占用1个TTI,相邻的两个时频资源之间间隔1个TTI,这4个时频资源的PSCCH和PSSCH的频域位置和大小均相同。图3-4示例性地示出了另一种时频资源图样,如图所示,一个传输资源块中包括4个时频资源,每个时频资源在时域上占用1个TTI,第一个和第二个时频资源在时域上连续,第三个和第四个时频资源在时域上连续,第二个和第三个时频资源之间间隔2个TTI,这4个时频资源的PSCCH和PSSCH的频域位置和大小均相同。
(4)N个时频资源中至少有2个时频资源在时域上不连续,并且该N个时频资源中至少有2个时频资源的频域资源不同(比如频域位置和/或频域大小不同),比如,该N个时频资源在时域上和频域上按照设定的时频资源图样进行联合跳频。符合该种关联关系的时频资源图样可以有多种。所有可能的时频资源图样中的全部或部分可组成时频资源图样集合,数据发送方终端可使用该集合中的时频资源图样确定数据传输的时频资源。集合中时频资源图样数量与N的取值可存在对应关系,该对应关系可以是协议约定的,也可以是配置的。即,可针对每种N的取值,设置对应的时频资源图样集合。
进一步地,本关联方式中,N个时频资源在频域上采用了跳频,可使用的时频资源图样与数据包占用的频域资源的大小有关。例如,若每个时频资源的频域连续时,不同的时频资源的大小将影响时频资源图样的选择。
图3-5示例性地示出了其中的一种时频资源图样,如图所示,一个传输资源块中包括4个时频资源,每个时频资源在时域上占用1个TTI,相邻的两个 时频资源之间间隔1个TTI,这4个时频资源的PSCCH的频域位置各不相同,且这4个时频资源的PSSCH的频域位置各不相同。图3-6示例性地示出了另一种时频资源图样,如图所示,一个传输资源块中包括4个时频资源,每个时频资源在时域上占用1个TTI,第一个和第二个时频资源在时域上连续,第三个和第四个时频资源在时域上连续,第二个和第三个时频资源之间间隔2个TTI,这4个时频资源的PSCCH的频域位置各不相同,且这4个时频资源的PSSCH的频域位置各不相同。
本申请实施例中,传输资源块的数量(即M的取值)可以是由系统配置的,也可以是预配置的,还可以是动态确定出的(比如由基站确定或由数据发送方终端确定);一个传输资源块中包含的时频资源的数量(即N的取值)可以是由系统配置的,也可以是预配置的,还可以是动态确定出的(比如由基站确定或由数据发送方终端确定)。其中,在M和/或N的取值由系统配置的一个例子中,网络设备(比如基站)可基于终端进行配置,比如,网络设备通过半静态方式配置M和/或N的取值,并通过无线资源控制(radio resource control,RRC)信令将配置的M和/或N的取值发送给终端;在M和/或N的取值由系统配置的另一个例子中,网络设备为所有终端配置相同的M和/或N的取值,并通过广播方式通知给终端。在M和/或N的取值为预配置的一个例子中,可在协议中预先约定M和/或N的取值。在M和/或N的取值通过动态方式确定的一个例子中,网络设备(如基站)可通过下行控制信息(downlink control information,DCI)将M和/或N的取值发送给终端,其中基站可根据业务类型或业务优先级确定M和/或N的取值;在M和/或N的取值通过动态方式确定的另一个例子中,数据发送方终端可根据需要传输的数据所属的业务类型或业务优先级确定M和/或N的取值。在另外的例子中,可预先根据不同的传输次数设置对应的资源池,数据发送方终端或基站可根据数据传输次数从相应的资源池中选择时频资源,为数据发送方终端确定直通链路上的数据发送资源。
如果M的取值是由系统配置的或是预配置的,则可以不用将M的取值携 带于SA信息中,同理,如果N的取值是由系统配置的或是预配置的,则可以不用将N的取值携带与SA信息中。如果M的取值是动态确定出的,则可通过SA信息将该M的取值以显式或隐式的方式进行指示,同理,如果N的取值是动态确定出的,则可通过SA信息将该N的取值以显式或隐式的方式进行指示。通过动态方式确定M和/或N的取值,并通过SA信息进行指示,可以实现M和/或N的动态变化,提高了系统灵活性。
下面示例性地示出了几种M和N的配置方法和指示方法:
方法1:M和N的取值均通过系统配置,SA信息中可携带也可不携带M和N的取值的指示信息,也可以通过其他信令将M和N的取值通知给终端;进一步地,通知M和N的取值时,M和N的取值可以通过联合指示的方式以降低信令开销;
方法2:M和N的取值均由通过预配置,SA信息中可携带也可不携带M和N的取值的指示信息,也可以通过其他信令将M和N的取值通知给终端;进一步地,通知M和N的取值时,M和N的取值可以通过联合指示的方式以降低信令开销;
方法3:M的取值通过系统配置或者预配置,N的取值通过动态配置,SA信息中可不携带M的取值的指示信息,N的取值携带在SA信息中;
方法4:M的取值通过动态确定,N的取值通过系统配置或者预配置,M的取值携带在SA信息中,SA信息中可不携带N的取值的指示信息;
方法5:M和N的取值均通过动态确定,因此均携带于SA信息中;进一步地,在SA信息中,M和N的取值可以通过联合指示的方式以降低信令开销。
可选地,M的取值和/或N的取值可以与业务类型或者业务优先级相关。对于需要高可靠性的终端来说,可以通过提高M或N中的一个值来增加数据重传的次数,从而达到提高可靠性的目的,比如可以在M取值固定的情况下,通过增加N的取值的方式来提高传输的可靠性,这种方式与增加M的取值方式相比,可以减少信令开销。作为一个例子,在M取值为2的情况下,由于 不同的业务类型或者不同的业务优先级有着不同的传输可靠性的要求,因此终端可根据业务类型或者业务优先级确定N的取值。
可选地,可预先定义业务类型或业务优先级与传输资源块数量(即M的取值)之间的对应关系,和/或,业务类型或业务优先级与一个传输资源块中包含的时频资源数量(即N的取值)之间的对应关系。由于M和/或N的取值可以与业务类型或业务优先级对应,因此在SA信息中携带有业务优先级信息或业务类型信息的情况下,可以不在SA信息中携带M和/或N的取值,而是由业务优先级信息或业务类型信息隐式地指示出M和/或N的取值,即可根据业务优先级信息或业务类型信息确定M和/或N的取值。
相应地,如果发送方终端的SA信息中包含了业务优先级信息或者业务类型信息,且业务优先级或者业务类型与M或者N值有着一一对应的关系,则接收方终端可以根据SA信息中的业务优先级信息或者业务类型信息确定M或者N的取值。在具体实施时,可设置业务优先级或者业务类型与N的取值之间的对应关系。
本申请实施例中,数据发送方终端发送的数据中包括SA信息以及该SA信息所关联的数据。其中,SA信息的发送位置以及所包含的内容可采用以下方案实现:
方案1:每个传输资源块中,仅在该传输资源块包含的N个时频资源中的一个时频资源上发送SA信息,即,每个传输资源块只有一个关联的SA信息伴随发送。图4示例性地示出了采用该方案1发送SA信息的示意图。如图所示,数据发送方终端通过2个传输资源块在直通链路上发送数据,每个传输资源块中包括4个时频资源,每个时频资源在时域上的长度为一个TTI。对于每个传输资源块,SA信息仅在该传输资源块中的第一个TTI中发送。
在采用方案1的一个例子中,SA信息中至少包括:该传输资源块的时频资源指示信息,该指示信息可通过该传输资源块包括的N个时频资源中第一个时频资源的位置表征。该传输资源块包括的N个时频资源的位置可根据该第一个时频资源的位置以及该N个时频资源的时频资源图样确定。其中,该 N个时频资源的时频资源图样的索引值可携带在该SA信息中。在该N个时频资源的时频资源图样的索引值为预先配置或预先约定的情况下,SA信息中可不携带该N个时频资源的时频资源图样的索引值。
方案2:一个传输资源块中,在该传输资源块包含的N个时频资源中的每个时频资源上均发送SA信息,即,在每个传输资源块中的每个时频资源发送数据时均有一个伴随的SA信息。该方案的一个示例可如图2所示,数据发送方终端通过2个传输资源块在直通链路上发送数据,每个传输资源块中包括4个时频资源,每个时频资源在时域上的长度为一个TTI。对于每个传输资源块,SA信息在该传输资源块中的每个TTI中发送。不同的TTI中,SA信息所占用的频域位置可以相同也可以不同。
在采用方案2的一个例子中,以时频资源A表示一个传输资源块中的任一时频资源,则该传输资源块中时频资源A上发送的SA信息中至少包括:该传输资源块的时频资源指示信息以及时频资源A是该传输资源块中的第几个时频资源的指示信息。其中,该传输资源块的时频资源指示信息可通过该传输资源块包括的N个时频资源中第一个时频资源的位置表征。时频资源A的位置可根据第一个时频资源的位置、时频资源A是该传输资源块中的第几个时频资源的指示信息,以及该传输资源块包括的N个时频资源的时频资源图样确定。其中,该N个时频资源的时频资源图样的索引值可携带在该SA信息中。在该N个时频资源的时频资源图样的索引值为预先配置或预先约定的情况下,SA信息中可不携带该N个时频资源的时频资源图样的索引值。
在采用方案2的另一个例子中,以时频资源A表示一个传输资源块中的任一时频资源,则该传输资源块中时频资源A上发送的SA信息中至少包括:时频资源A的位置、时频资源A是该传输资源块中的第几个时频资源的指示信息。时频资源A的位置可根据时频资源A是该传输资源块中的第几个时频资源的指示信息以及该传输资源块包括的N个时频资源的时频资源图样确定。采用这种方法,在新终端(本申请实施例中的终端)与传统(legacy)终端共存的情况下,传统终端可以根据新终端SA信息确定传输资源,从而可以 在进行直通链路的传输资源选择时避免发生资源冲突。
根据上述实施例,一个传输资源块的位置可通过该传输资源块中的第一个时频资源的位置来指示。具体地,一个传输资源块中的第一个时频资源的位置可以分别通过时域和频域资源位置进行指示,具体如下:
一个传输资源块中第一个时频资源的频域资源位置可以是以PRB为单位,也可以是一个PRB组(或者称之为子信道)为单位。如果占用连续的频域资源,则可以简化为频域的起点和占用的频域资源的长度(比如多少个PRB或多少个子信道)。多个传输资源块的位置可采用联合指示的方式,也可采用独立指示的方式。
一个传输资源块中第一个时频资源的时域资源位置,可采用以下方式进行指示:
方法1:通过与第一个传输资源块的TTI偏移个数进行指示,系统需要指示M-1个偏移值。当M=1时,相当于只有一次数据传输,则此时偏移值的取值为0。
方法2:通过与前一个传输资源块的TTI偏移个数进行指示,系统需要指示M-1个偏移值。当M=1时,相当于只有一次数据传输,则此时偏移值的取值为0。
方法3:通过一个从参考TTI开始的固定长度的时间窗口内的时频资源图样的索引值确定,例如,窗口长度为8,有M个传输资源块,M小于等于8,那么窗口的最大时频资源图样个数相当于任意从8个TTI中选择M个,每个时频资源图样的索引对应一种时频资源图样。其中有至少一个时频资源图样的索引用于表示M等于1的情况。
通过上述对传输资源块的时域资源的指示方法,可以隐式地指示M的取值。
根据上述实施例,SA信息的配置方法和/或指示方法不同,一个传输资源块中的时频资源位置的确定方法也可能不同,比如上述方案1和方案2。进一步地,一个传输资源块中的时频资源位置的确定方法还可与一个传输资源块 中N个时频资源所采用的时频资源图样个数有关。例如,以图3-1所示的时频资源图样为例,由于只有一种时频资源图样,因此不需要通过信令指示,数据接收方终端可根据该种时频资源图样(该时频资源图样可预先约定)以及SA信息中携带的内容(比如第一个时频资源的位置以及一个时频资源是所在传输资源块中的第几个时频资源的指示信息)确定相应时频资源的位置。对于有多种时频资源图样可选择使用的情况,则可进一步结合时频资源的时频资源图样索引值来确定该时频资源的位置。
根据上述实施例,SA信息可包括当前数据传输是第几次数据传输的指示信息,比如,该指示信息具体可以是用于指示当前进行数据传输的TTI是所在传输资源块中的第几个TTI的指示信息。该指示信息也可以是HARQ冗余版本的指示信息,比如,如果HARQ冗余版本与传输次数之间存在约定关系,则两者是等效的。例如,若配置了固定的HARQ冗余版本的顺序,则根据该指示信息可确定对应的HARQ冗余版本。
进一步地,基于上述方案1或方案2中所发送的SA信息,该SA信息中还可包括以下信息中的一个或任意多个:
(1)一个时频资源属于M个传输资源块中的第几个传输资源块的指示信息。比如,该指示信息可以指示当前时频资源(如SA信息所关联的时频资源)属于M个传输块资源中的第几个传输资源块。
(2)传输资源块数量(即M的取值)的指示信息。如前述实施例所述,SA信息中可携带也可不携带该指示信息,M的取值也可根据SA信息中携带的其他信息(比如业务优先级信息)进行隐式地指示,也可以通过每个传输资源块的时域资源的指示方法隐式地指示M的取值。
(3)一个传输资源块中包含的用于数据传输的时频资源的数量(即N的取值)的指示信息。如前述实施例所述,SA信息中可携带也可不携带该指示信息,M的取值也可根据SA信息中携带的其他信息(比如业务优先级信息)进行隐式地指示。
进一步地,SA信息中还可包括以下信息中的一个或任何组合:
(4)业务优先级信息或业务类型信息。业务优先级可包括多种,比如包括8种,此种情况下该信息的长度可为3比特;
(5)资源预约周期索引值。该索引值的长度可以是4比特,用以表示资源的预约周期,也即当前SA信息指示的资源会在下一个预约周期时继续使用。其中资源预约周期索引值与资源预约周期的对应关系可由高层信令配置。
(6)重传占用的频域资源位置指示信息,具体可以是频域资源的起点和长度。该指示信息的长度最多可为8比特,用于指示当前SA信息指示的初传和重传的数据占用的频率资源。
(7)初传/重传的时间间隔,该指示信息的长度可以是4比特,当只有一次传输的时候,该指示信息的取值为0。
(8)调制与编码方案(MCS),该信息的长度可以是5比特。
(9)重传指示,该信息的长度可以是1比特,用于指示与当前SA信息关联的数据是初传还是重传。
基于上述实施例所描述的用于数据传输的直通链路资源,本申请实施例提供了数据传输方法。参见图5,为本申请实施例提供的数据传输方法的流程示意图,如图所示,该流程可包括:
S501:终端确定直通链路上的传输资源。
该步骤中,终端可基于自发选择的方式确定直通链路上的传输资源,也可基于基站分配的方式,获得基站所分配的直通链路上的传输资源。
其中,若终端基于自发选择的方式确定直通链路上的传输资源,则可采用现有技术提供的方法进行资源选择,也可以采用本申请实施例提供的方法进行资源选择(该方法可参见图7)。
若终端基于基站分配的方式获得直通链路上的传输资源,则基站向终端发送的下行控制信息(downlink control information,DCI)中可包括以下信息中的一个或任意多个,以便终端将这些信息携带在SA信息中:
(1)M个传输资源块的时频资源位置指示信息,其中一个传输资源块的时频资源位置是通过该传输资源块中N个时频资源中第一个时频资源的位置 表征的;
(2)每个传输资源块中N个时频资源的时频资源位置指示信息。
上述两种指示信息的具体实现方式,可参见前述实施例,在此不再重复。
S502:终端根据S501中确定出的传输资源,在直通链路的M个传输资源块上发送数据,其中一个传输资源块中至少包括N个用于数据发送的时频资源。
其中,数据发送方终端在直通链路上发送的数据所使用的时频资源,可参见前述实施例的描述,在此不再重复。
对于接收端来说,接收直通链路上传输的调度分配信息SA,根据该SA信息,在直通链路的M个传输资源块上接收数据,其中一个传输资源块中至少包括N个用于数据发送的时频资源。其中,与前述实施例相同或相应之处不再重复。
为了更清楚地理解本申请实施例提供的方案,下面以几个具体应用场景为例进行描述。
场景1:M值最大为2,N可以是变化的值(即可动态确定)。一个传输资源块中的N个时频资源的时频资源图样采用图3-1所示的方式,并且M个传输资源块传输的是相同的数据包。若沿用Rel-14 LTE V2X中SA信息的设计,且SA信息和其关联的数据在同一个TTI中传输,则通过本申请实施例提供的SA信息能够传输的信息如下所示:
-业务优先级信息;
-资源预约周期索引值:用以表示资源的预约周期,也即当前SA信息指示的资源会在下一个预约周期时继续使用。其中资源预约周期索引值与资源预约周期的对应关系是高层信令配置的。
-第二个传输资源块的频域资源指示信息,因为M=2,所以可以认为是重用Rel-14 SA中重传占用的频域资源位置的定义。
-第一次传输资源块和第二次传输资源块之间的TTI间隔,因为M=2,所以可以认为是重用Rel-14 SA中初传/重传的时间间隔的定义,如果 为0,表示当前只有第一次传输。
-调制与编码方式指示;
-第一次/第二次传输资源块的标识信息:1比特,表示当前传输资源块是第一次传输资源块还是第二次传输资源块。因为M=2,所以可以认为是重用Rel-14 SA中可以重用初传/重传的标识信息的定义。
-传输资源块中包含的时频资源的个数N,这里认为两个传输资源块中包含的时频资源的个数相同。
-当前传输资源次数的指示信息,表征当前传输资源是当前传输块资源的第几个时频资源。
场景2:M值最大为2,N可以是变化的值(即可动态确定),一个传输块中的N个时频资源的时频资源图样采用图3-2至图3-6中的一种,并且M个传输资源块传输的是相同的数据包。沿用Rel-14 LTE V2X中SA的设计,且SA信息和关联的数据在同一个TTI中传输,则本申请实施例中的SA信息承载的内容可在上述场景1的基础上会增加以下信息:
-第一个传输资源块中N个时频资源的时频资源图样的指示信息。
-第二个传输资源块中N个时频资源的时频资源图样的指示信息。
其中,时频资源图样的指示信息信令开销的大小与时频资源图样的个数直接相关。
场景3:M值最大为2,N可以是变化的值(即可动态确定),一个传输资源块中的N个时频资源的时频资源图样采用图3-1所示的方式,并且M个传输资源块传输的可以对应不同的数据包。沿用Rel-14 LTE V2X中SA的设计,且SA信息和关联的数据在同一个TTI中传输,则在SA信息在实施例1中所承载的信息的基础上增加以下信息:
-初传/重传指示信息:1比特,用于指示当前传输资源块是初传还是重传。
其中,时频资源图样的指示信息信令开销的大小与时频资源图样的个数直接相关。
本申请实施例还提供了由数据发送方终端自发选择直通链路上的数据发送资源的方法。本申请实施例中,终端可选择出M个传输资源块用于数据发送。其中,以下实施例中涉及到的名词术语与前述实施例的含义一致,比如,传输资源块的相关定义以及所包括的时频资源,以及时频资源图样的定义等,可参见前述实施例。
总体来说,本申请实施例提供了两种资源选择方案:
资源选择方案一
终端可选择出M*N个时频资源,将选择出来的M*N个时频资源在时间上进行排序,排序后的M*N个时频资源表示为t 1,...,t M*N,对于排序后的M*N个时频资源,每N个时频资源构成一个传输资源块,得到M个传输资源块,该M个传输资源块对应的TTI表示为{t 1,...,t N},{t N+1,...,t 2N},...,{t (M-1)*N+1,...,t M*N}。该M个传输资源块即为该发送方终端选择出的用于发送数据的资源。
可选地,上述M*N个时频资源可在时域上满足一定的约束条件,例如,不同时频资源在不同的TTI中,且任意两个时频资源之间的TTI间隔小于一个给定的值。
采用上述方案一进行资源选择,可以实现灵活的资源选择方式。
资源选择方案二
该方案中,可按照时频资源图样选择每个传输资源块中的N个时频资源,M个传输资源块之间可以是独立选择的,也可以在选择出一个传输资源块后按照传输资源块之间的约束条件选择其他传输资源块,例如,该约束条件可以是:任意两个传输资源块的时间窗口在时间上不交叠。
由于一个候选传输资源块中至少包括N个用于数据发送的时频资源,因此相比于现有技术,使得选择出的在直通链路上的传输资源具有更多灵活性,以满足不同业务的需求。尤其当M等于2、N大于等于2的情况下,与现有技术相比,在根据选择出的传输资源进行数据发送时,可以提高直通链路传输可靠性和/或扩大覆盖范围。
参见图6,为本申请实施例提供的资源选择流程示意图,如图所示,该流程可包括:
S601:终端根据时频资源图样,在资源选择窗口内确定候选传输资源块集合。其中,候选传输资源块集合中包括至少一个候选传输资源块,候选传输资源块为用于在直通链路上的传输资源,一个候选传输资源块中至少包括N个用于数据发送的时频资源,所述N个时频资源根据所述时频资源图样确定,N为大于等于1的整数。
其中,所述资源选择窗口的长度与业务的最大时延相关。
可选地,候选传输资源块集合中至少2个候选传输资源块的时域不重叠。举例来说,候选传输资源块集合中包含有第一候选传输资源块和第二候选传输资源块,这两个候选传输资源块可如图2所示,其中,第一候选传输资源块和第二候选传输资源块的时域长度分别为4个TTI,且第一候选传输资源块和第二候选传输资源块在时域上没有交叠。
以图3-1所示的时频资源图样为例,并且在频域范围为编号从0至19的子信道范围内进行资源选择,资源选择窗口的时域上包括20个TTI,一个传输资源块在频域上占用4个子信道,针对这种情况,在具体实施时,可以采用如下方式确定候选传输资源块集合:
可首先设置一个选择窗,该窗的大小与一个传输资源块的大小相同,本例子中,该选择窗在时域上为4个TTI、在频域上为4个子信道,并且采用图3-1所示的时频资源图样。
进行资源选择时,在资源选择窗口内的编号为0至3的TTI上,将选择窗从编号为0的子信道开始,以1个子信道为步长向高频率方向滑动,这样得到17个候选传输资源块,这17个候选传输资源块均占用编号为0至3的TTI,而频域上占有的子信道编号分别为:0-3,1-4,2-5,……,16-19。并且这17个候选传输资源块中的4个时频资源的位置均与图3-1所示的时频资源图样相一致。
按照同样的方式,在资源选择窗口内的编号为1至4的TTI上,确定出 17个候选传输资源块。以此类推,分别在资源选择窗口内的编号为2至5的TTI上,确定出17个候选传输资源块,直到在资源选择窗口内的编号为16至19的TTI上,确定出17个候选传输资源块。按照上述方式确定出的所有或部分候选传输资源块可构成候选传输资源块集合。
上述例子是依据同一时频资源图样确定一个候选传输资源块包括的N个时频资源为例描述的,在具体实施时,可以使用多个时频资源图样确定不同的候选传输资源块包括的N个时频资源,比如以使用两个时频资源图样为例,可分别使用这两个时频资源图样,按照上述方法确定候选传输资源块,将依据这两个时频资源图样确定的候选传输资源块构成候选传输资源块集合。基于通过该方法确定出的候选传输资源块进行资源选择时,可充分利用资源选择窗口中的空闲资源。
上述时频资源图样的配置方法可同前述实施例,比如可以是网络配置的,也可以是预配置的。
采用上述方法确定出的候选传输资源块集合,与采用现有技术确定出的候选传输资源相比,可以在时域上和/或频域上获得更大的范围。
S602:终端从候选传输资源集合中选择M个候选传输资源块作为该终端在直通链路上的传输资源,M为大于等于1的整数。
具体实施时,终端可从候选传输资源块集合中随机选择M个候选传输资源块,作为该终端在直通链路上的传输资源;终端也可以根据候选传输资源块集合中的候选传输资源块上的接收信号强度,从候选传输资源块集合中选择M个候选传输资源块,作为该终端在直通链路上的传输资源,以避免或减少干扰。比如按照接收信号强度从小到大排列,选择排列在前的M个候选传输资源块。其中,一个传输资源块上的接收信号强度,可以是该传输资源块包括的N个时频资源上的接收信号强度的平均值,也可以取N个时频资源上的最大信号接收强度。
可选地,选择出的M个候选传输资源块中的所有时频资源(即M*N个时频资源)在时域上不重叠,例如,时域上相邻的两个传输资源块的时域跨 度不会出现重叠。
进一步地,在S602中,如果配置或预先约定了传输资源块之间的约束条件,则在选择候选传输资源块时,可根据该约束条件进行选择,以使选择出的传输资源块符合该约束条件。比如,该约束条件规定不同传输资源块之间的时间间隔不超过设定时长。比如,第一传输资源块与第二传输资源块之间的时间间隔不超过X个TTI,X为大于等于1的整数,X的取值可由系统约定或系统配置。
进一步地,为了降低或避免与其他终端的资源冲突,在上述图6所示流程的基础上,还可以根据监听到的其他终端发送的SA信息,对候选传输资源块集合中可能发生资源冲突的候选传输资源块进行排除。
参见图7,为本申请另外的实施例提供的资源选择流程示意图,如图所示,该流程可包括如下步骤:
S701:终端根据时频资源图样,在资源选择窗口内确定候选传输资源块集合。其中,候选传输资源块集合中包括至少一个候选传输资源块,候选传输资源块为用于在直通链路上的传输资源,一个候选传输资源块中至少包括N个用于数据发送的时频资源,所述N个时频资源根据所述时频资源图样确定,N为大于等于1的整数。
该步骤的具体实现可参见图6中的S601,在此不再重复。
S702:终端从候选传输资源块集合中排除该终端与其他终端发生资源冲突的候选传输资源块。
该步骤中,终端可在感知窗口内监听到其他终端发送的SA信息,根据监听到的SA信息确定干扰时频资源,所述干扰时频资源为所述SA信息所关联的时频资源中的全部或部分。终端确定该干扰时频资源以及该干扰时频资源对应的预约时频资源是否与候选传输资源块集合中的候选传输资源块存在部分或全部交叠,若是,则将候选传输资源块集合中,与干扰时频资源以及干扰时频资源对应的预约时频资源存在部分或全部交叠的候选传输资源块,从候选传输资源块集合中排除。其中,干扰时频资源对应的预约时频资源,可 根据该干扰时频资源的位置以及预约周期确定,比如预约周期的数量为R,则将预约周期1、预约周期2,……,预约周期R中,与该干扰时频资源位置相应的时频资源确定为该干扰时频资源对应的预约时频资源。其中,预约周期可以是网络配置的,或者是预配置的。
进一步地,在根据监听到的SA信息确定干扰时频资源时,可将该SA信息所关联的且数据信道参考信号接收功率大于接收功率门限的时频资源确定为干扰时频资源,在进行候选传输资源块的排除过程中,若候选传输资源块集合在排除后的候选传输资源块数量除以排除前的候选传输资源块数量所得到的比值低于设定阈值,则可将接收功率门限值提升,重新执行排除过程,直至该比值达到或高于设定阈值为止。该过程可如图8所示:
S801:根据在感知窗口内监听到的其他终端发送的SA信息,确定干扰时频资源,该干扰时频资源为所述SA信息所关联的、数据信道参考信号接收功率大于接收功率门限的时频资源;
S802:将候选传输资源块集合中,与所述干扰时频资源以及所述干扰时频资源对应的预约时频资源,存在部分或全部交叠的候选传输资源块,从所述候选传输资源块集合中排除;
S803:判断候选传输资源块集合在排除后和排除前的候选传输资源块数量的比值是否低于设定阈值,若是,则转入S804,否则结束;
S804:提高接收功率门限,并执行S801和S802,然后转入S803。
进一步地,若感知窗口内存在该数据发送方终端占用的数据发送时频资源(即在感知窗口内该终端发送了数据),则由于该终端采用半双工方式通信,因此该终端无法在发送数据的资源上监听到其他终端发送的数据,因此为了避免资源冲突,需要假定该发送资源上其他终端以系统配置的所有可能的周期均预约了下一次传输资源,因此则将候选传输资源块集合中,与该终端自己占用的数据发送时频资源对应的预约时频资源,存在部分或全部交叠的候选传输资源块,从候选传输资源块集合中排除。
S703:终端从排除后的候选传输资源块集合中选择M个候选传输资源块 作为该终端在直通链路上的传输资源,M为大于等于1的整数。
该步骤的实现过程可参见图6中的S602,所不同的是,本例子中,终端从排除后的候选传输资源块集合中进行传输资源的选取。
为了更清楚地理解上述图7所示的实施例的实现过程,下面结合图9以及具体场景对上述流程进行详细描述。
该场景中,M=1,N=4,一个传输资源块中的4个时频资源的时频资源图样采用图3-1所示的方式,传输资源块的频域的大小为L个(L为大于等于1的整数)连续的子信道。终端的资源选择过程如下所述:
在S701中,将资源选择窗内的所有候选传输资源块标记为可用。候选传输资源块可采用如下定义:一个候选传输资源块表示为R x,y,其中x表示候选传输资源块中第一个时频资源的频域起始位置,y表示候选传输资源块中第一个时频资源的TTI起始位置。R x,y表征的候选传输资源块在频域上为x+j个子信道,其中j=0,...,L-1,在时域上为y+i个TTI,其中i=0,...,N-1。这里R x,y的定义是根据图3-1所示的时频资源图样定义的。
在S702中,对候选传输资源块集合中的与其它终端发生资源冲突的候选传输资源块进行排除,具体如下:进行资源选择的终端根据感知窗口中监听到的其他终端发送的SA信息,测量该SA信息关联的PSSCH-RSRP(reference signal receiving power,参考信号接收功率),并将其中PSSCH-RSRP高于PSSCH-RSRP门限值的时频资源确定为干扰时频资源。
进行资源选择的终端从SA信息中获取资源预约周期,如果确定候选传输资源块R x,y与其它终端预约的下一次传输的时频资源(即上述干扰时频资源所对应的预约时频资源)发生交叠或者部分交叠(图9仅示出了部分交叠的情况),或者候选传输资源块候选资源块R x,y预约的第r次的发送资源R x,y+r*P_tx与其它终端预约的时频资源发生交叠或者部分交叠,则将相应的候选传输资源块从候选传输资源块集合中排除。其中r=1,2,3,……,R(R表示疑问发送周期的数量最大值),P_tx进行资源选择的终端的业务发送周期。
可选地,在S702中,如果进行资源选择的终端在感知窗口中,自身也进行了数据发送,则由于半双工的影响,该中无法在发送子帧上监听到其他终端发送的业务包,这类子帧称为跳(skip)子帧。此种情况下,需要假定该子帧上其他终端以系统配置的所有可能的周期均预约了下一次资源,其中该所有可能的周期的集合是由网络配置或者预配置的。如果终端确定候选传输资源块R x,y与skip子帧预约的下一次传输的时频资源发生交叠或者部分交叠,或者候选传输资源块R x,y预约的第r次发送的资源R x,y+r*P_tx与skip子帧预约的下一次传输的时频资源发生交叠或者部分交叠,则相应的候选传输资源块从候选传输资源块集合中排除。其中r=1,2,3,……,R,P_tx进行资源选择的终端的业务发送周期。
可选地,在S702中,如果执行完候选传输资源块排除过程后,候选传输资源块集合中剩余的候选传输资源块的数量与排除前的数量的比例低于设定阈值,则将PSSCH-RSRP门限值提升,重新执行排除过程,直至剩余资源比例达到或高于该阈值止。
在S703中,进行资源选择的终端从候选传输资源块集合中选择候选传输资源块对应的资源。
可选地,S703中,终端可以对候选资源进行S-RSSI(其中,S为sidelink的缩写,中文为直通链路,RSSI为receive signal strength indicator的缩写,中文为接收信号强度指示)测量和排序,选择出S-RSSI测量值最低的候选传输资源块或满足该条件的候选传输资源块的子集,如果选择出的是子集,则可以通过随机的方式从该子集中选择候选传输资源块。
基于相同的技术构思,本申请实施例还提供了一种资源选择装置。该装置可以是终端也可以是终端中的装置。
参见图10,为本申请实施例提供的资源选择装置的结构示意图,该装置可包括:确定模块1002、选择模块1002,其中:
确定模块1001用于根据时频资源图样,在资源选择窗口内确定候选传输 资源块集合,所述候选传输资源块集合中包括至少一个候选传输资源块,所述候选传输资源块为用于在直通链路上的传输资源,一个候选传输资源块中至少包括N个用于数据发送的时频资源,所述N个时频资源根据所述时频资源图样确定,N为大于等于1的整数;选择模块1002用于从所述候选传输资源集合中选择M个候选传输资源块作为所述终端在直通链路上的传输资源,M为大于等于1的整数。
可选地,所述候选传输资源块集合中至少2个候选传输资源块的时域不重叠。
可选地,选择模块1002具体用于:从所述候选传输资源块集合中排除所述终端与其他终端发生资源冲突的候选传输资源块;从排除后的候选传输资源块集合中选择M个候选传输资源块。
可选地,选择模块1002具体用于:根据在感知窗口内监听到的其他终端发送的SA信息,确定干扰时频资源,所述干扰时频资源为所述SA信息所关联的时频资源中的全部或部分;将所述候选传输资源块集合中,与所述干扰时频资源以及所述干扰时频资源对应的预约时频资源,存在部分或全部交叠的候选传输资源块,从所述候选传输资源块集合中排除;其中,所述预约时频资源根据所述干扰时频资源的位置以及预约周期确定。
可选地,所述干扰时频资源为所述SA信息所关联的时频资源中,数据信道参考信号接收功率大于接收功率门限的时频资源;选择模块1002还用于:判断所述候选传输资源块集合在排除后和排除前的时频资源数量的比值是否低于设定阈值,若是,则提高所述接收功率门限,并再次执行所述确定干扰时频资源的步骤以及所述排除步骤。
可选地,选择模块1002还用于:若所述感知窗口内存在所述终端占用的数据发送时频资源,则将所述候选传输资源块集合中,与所述数据发送时频资源对应的所有可能的预约时频资源,存在部分或全部交叠的候选传输资源块,从所述候选传输资源块集合中排除。
可选地,选择模块1002具体用于:根据排除后的候选传输资源块集合中 的候选传输资源块上的接收信号强度,按照接收信号强度从小到大的顺序,选择M个候选传输资源块。
可选地,选择模块1002具体用于:从所述候选传输资源块集合中随机选择M个候选传输资源块;或者,根据所述候选传输资源块集合中的候选传输资源块上的接收信号强度,从所述候选传输资源块集合中选择M个候选传输资源块。
基于相同的技术构思,本申请实施例还提供了一种通信装置。参见图11,为本申请实施例提供的通信装置的结构示意图。该通信装置可以是终端。如图所示,该通信装置可包括:处理器1101、存储器1102、收发机1103以及总线接口。
处理器1101负责管理总线架构和通常的处理,存储器1102可以存储处理器1101在执行操作时所使用的数据。收发机1103用于在处理器1101的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器1101代表的一个或多个处理器和存储器1102代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器1101负责管理总线架构和通常的处理,存储器1102可以存储处理器1101在执行操作时所使用的数据。
本发明实施例揭示的流程,可以应用于处理器1101中,或者由处理器1101实现。在实现过程中,信号处理流程的各步骤可以通过处理器1101中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1101可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。 软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1102,处理器1101读取存储器1102中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器1101,用于读取存储器1102中的程序,执行下列过程:根据时频资源图样,在资源选择窗口内确定候选传输资源块集合,所述候选传输资源块集合中包括至少一个候选传输资源块,所述候选传输资源块为用于在直通链路上的传输资源,一个候选传输资源块中至少包括N个用于数据发送的时频资源,所述N个时频资源根据所述时频资源图样确定,N为大于等于1的整数;从所述候选传输资源集合中选择M个候选传输资源块作为所述终端在直通链路上的传输资源,M为大于等于1的整数。上述流程的具体实现过程可参见前述实施例的描述,在此不再重复。
可选地,所述候选传输资源块集合中至少2个候选传输资源块的时域不重叠。
可选地,处理器1101具体用于:从所述候选传输资源块集合中排除所述终端与其他终端发生资源冲突的候选传输资源块;从排除后的候选传输资源块集合中选择M个候选传输资源块。
可选地,处理器1101具体用于:根据在感知窗口内监听到的其他终端发送的SA信息,确定干扰时频资源,所述干扰时频资源为所述SA信息所关联的时频资源中的全部或部分;将所述候选传输资源块集合中,与所述干扰时频资源以及所述干扰时频资源对应的预约时频资源,存在部分或全部交叠的候选传输资源块,从所述候选传输资源块集合中排除;其中,所述预约时频资源根据所述干扰时频资源的位置以及预约周期确定。
可选地,所述干扰时频资源为所述SA信息所关联的时频资源中,数据信道参考信号接收功率大于接收功率门限的时频资源;处理器1101还用于:判断所述候选传输资源块集合在排除后和排除前的时频资源数量的比值是否低于设定阈值,若是,则提高所述接收功率门限,并再次执行所述确定干扰时 频资源的步骤以及所述排除步骤。
可选地,处理器1101还用于:若所述感知窗口内存在所述终端占用的数据发送时频资源,则将所述候选传输资源块集合中,与所述数据发送时频资源对应的所有可能的预约时频资源,存在部分或全部交叠的候选传输资源块,从所述候选传输资源块集合中排除。
可选地,处理器1101具体用于:根据排除后的候选传输资源块集合中的候选传输资源块上的接收信号强度,按照接收信号强度从小到大的顺序,选择M个候选传输资源块。
可选地,处理器1101具体用于:从所述候选传输资源块集合中随机选择M个候选传输资源块;或者,根据所述候选传输资源块集合中的候选传输资源块上的接收信号强度,从所述候选传输资源块集合中选择M个候选传输资源块。
基于相同的技术构思,本申请实施例还提供了一种计算机存储介质。所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行前述实施例所描述的资源选择流程。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (25)

  1. 一种资源选择方法,其特征在于,包括:
    终端根据时频资源图样,在资源选择窗口内确定候选传输资源块集合,所述候选传输资源块集合中包括至少一个候选传输资源块,所述候选传输资源块为用于在直通链路上的传输资源,一个候选传输资源块中至少包括N个用于数据发送的时频资源,所述N个时频资源根据所述时频资源图样确定,N为大于等于1的整数;
    所述终端从所述候选传输资源集合中选择M个候选传输资源块作为所述终端在直通链路上的传输资源,M为大于等于1的整数。
  2. 如权利要求1所述的方法,其特征在于,所述候选传输资源块集合中至少2个候选传输资源块的时域不重叠。
  3. 如权利要求1或2所述的方法,其特征在于,所述终端从所述候选传输资源块集合中选择M个候选传输资源块,包括:
    所述终端从所述候选传输资源块集合中排除所述终端与其他终端发生资源冲突的候选传输资源块;
    所述终端从排除后的候选传输资源块集合中选择M个候选传输资源块。
  4. 如权利要求3所述的方法,其特征在于,从所述候选传输资源块集合中排除所述终端与其他终端发生资源冲突的候选传输资源块,包括:
    根据在感知窗口内监听到的其他终端发送的SA信息,确定干扰时频资源,所述干扰时频资源为所述SA信息所关联的时频资源中的全部或部分;
    将所述候选传输资源块集合中,与所述干扰时频资源以及所述干扰时频资源对应的预约时频资源,存在部分或全部交叠的候选传输资源块,从所述候选传输资源块集合中排除;其中,所述预约时频资源根据所述干扰时频资源的位置以及预约周期确定。
  5. 如权利要求4所述的方法,其特征在于,所述干扰时频资源为所述SA信息所关联的时频资源中,数据信道参考信号接收功率大于接收功率门限的 时频资源;
    所述排除之后,还包括:
    判断所述候选传输资源块集合在排除后和排除前的时频资源数量的比值是否低于设定阈值,若是,则提高所述接收功率门限,并再次执行所述确定干扰时频资源的步骤以及所述排除步骤。
  6. 如权利要求4所述的方法,其特征在于,还包括:
    若所述感知窗口内存在所述终端占用的数据发送时频资源,则将所述候选传输资源块集合中,与所述数据发送时频资源对应的所有可能的预约时频资源,存在部分或全部交叠的候选传输资源块,从所述候选传输资源块集合中排除。
  7. 如权利要求3所述的方法,其特征在于,从排除后的候选传输资源块集合中选择M个候选传输资源块,包括:
    根据排除后的候选传输资源块集合中的候选传输资源块上的接收信号强度,按照接收信号强度从小到大的顺序,选择M个候选传输资源块。
  8. 如权利要求1所述的方法,其特征在于,所述终端从所述候选传输资源块集合中选择M个候选传输资源块,包括:
    所述终端从所述候选传输资源块集合中随机选择M个候选传输资源块;或者,
    所述终端根据所述候选传输资源块集合中的候选传输资源块上的接收信号强度,从所述候选传输资源块集合中选择M个候选传输资源块。
  9. 一种资源选择装置,其特征在于,包括:
    确定模块,用于根据时频资源图样,在资源选择窗口内确定候选传输资源块集合,所述候选传输资源块集合中包括至少一个候选传输资源块,所述候选传输资源块为用于在直通链路上的传输资源,一个候选传输资源块中至少包括N个用于数据发送的时频资源,所述N个时频资源根据所述时频资源图样确定,N为大于等于1的整数;
    选择模块,用于从所述候选传输资源集合中选择M个候选传输资源块作 为所述终端在直通链路上的传输资源,M为大于等于1的整数。
  10. 如权利要求9所述的装置,其特征在于,所述候选传输资源块集合中至少2个候选传输资源块的时域不重叠。
  11. 如权利要求9或10所述的装置,其特征在于,所述选择模块具体用于:
    从所述候选传输资源块集合中排除所述终端与其他终端发生资源冲突的候选传输资源块;
    从排除后的候选传输资源块集合中选择M个候选传输资源块。
  12. 如权利要求11所述的装置,其特征在于,所述选择模块具体用于:
    根据在感知窗口内监听到的其他终端发送的SA信息,确定干扰时频资源,所述干扰时频资源为所述SA信息所关联的时频资源中的全部或部分;
    将所述候选传输资源块集合中,与所述干扰时频资源以及所述干扰时频资源对应的预约时频资源,存在部分或全部交叠的候选传输资源块,从所述候选传输资源块集合中排除;其中,所述预约时频资源根据所述干扰时频资源的位置以及预约周期确定。
  13. 如权利要求12所述的装置,其特征在于,所述干扰时频资源为所述SA信息所关联的时频资源中,数据信道参考信号接收功率大于接收功率门限的时频资源;
    所述选择模块还用于:判断所述候选传输资源块集合在排除后和排除前的时频资源数量的比值是否低于设定阈值,若是,则提高所述接收功率门限,并再次执行所述确定干扰时频资源的步骤以及所述排除步骤。
  14. 如权利要求12所述的装置,其特征在于,所述选择模块还用于:
    若所述感知窗口内存在所述终端占用的数据发送时频资源,则将所述候选传输资源块集合中,与所述数据发送时频资源对应的所有可能的预约时频资源,存在部分或全部交叠的候选传输资源块,从所述候选传输资源块集合中排除。
  15. 如权利要求11所述的装置,其特征在于,所述选择模块具体用于:
    根据排除后的候选传输资源块集合中的候选传输资源块上的接收信号强度,按照接收信号强度从小到大的顺序,选择M个候选传输资源块。
  16. 如权利要求9所述的装置,其特征在于,所述选择模块具体用于:
    从所述候选传输资源块集合中随机选择M个候选传输资源块;或者,
    根据所述候选传输资源块集合中的候选传输资源块上的接收信号强度,从所述候选传输资源块集合中选择M个候选传输资源块。
  17. 一种通信装置,其特征在于,包括:处理器、存储器、收发机以及总线接口;所述处理器,用于读取存储器中的程序,执行下列过程:
    根据时频资源图样,在资源选择窗口内确定候选传输资源块集合,所述候选传输资源块集合中包括至少一个候选传输资源块,所述候选传输资源块为用于在直通链路上的传输资源,一个候选传输资源块中至少包括N个用于数据发送的时频资源,所述N个时频资源根据所述时频资源图样确定,N为大于等于1的整数;从所述候选传输资源集合中选择M个候选传输资源块作为所述终端在直通链路上的传输资源,M为大于等于1的整数。
  18. 如权利要求17所述的装置,其特征在于,所述候选传输资源块集合中至少2个候选传输资源块的时域不重叠。
  19. 如权利要求17或18所述的装置,其特征在于,所述处理器具体用于:
    从所述候选传输资源块集合中排除所述终端与其他终端发生资源冲突的候选传输资源块;
    从排除后的候选传输资源块集合中选择M个候选传输资源块。
  20. 如权利要求19所述的装置,其特征在于,所述处理器具体用于:
    根据在感知窗口内监听到的其他终端发送的SA信息,确定干扰时频资源,所述干扰时频资源为所述SA信息所关联的时频资源中的全部或部分;
    将所述候选传输资源块集合中,与所述干扰时频资源以及所述干扰时频资源对应的预约时频资源,存在部分或全部交叠的候选传输资源块,从所述候选传输资源块集合中排除;其中,所述预约时频资源根据所述干扰时频资 源的位置以及预约周期确定。
  21. 如权利要求20所述的装置,其特征在于,所述干扰时频资源为所述SA信息所关联的时频资源中,数据信道参考信号接收功率大于接收功率门限的时频资源;
    所述处理器还用于:判断所述候选传输资源块集合在排除后和排除前的时频资源数量的比值是否低于设定阈值,若是,则提高所述接收功率门限,并再次执行所述确定干扰时频资源的步骤以及所述排除步骤。
  22. 如权利要求20所述的装置,其特征在于,所述处理器还用于:
    若所述感知窗口内存在所述终端占用的数据发送时频资源,则将所述候选传输资源块集合中,与所述数据发送时频资源对应的所有可能的预约时频资源,存在部分或全部交叠的候选传输资源块,从所述候选传输资源块集合中排除。
  23. 如权利要求19所述的装置,其特征在于,所述处理器具体用于:
    根据排除后的候选传输资源块集合中的候选传输资源块上的接收信号强度,按照接收信号强度从小到大的顺序,选择M个候选传输资源块。
  24. 如权利要求17所述的装置,其特征在于,所述处理器具体用于:
    从所述候选传输资源块集合中随机选择M个候选传输资源块;或者,
    根据所述候选传输资源块集合中的候选传输资源块上的接收信号强度,从所述候选传输资源块集合中选择M个候选传输资源块。
  25. 一种计算机存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行如权利要求1至8中任一项所述的方法。
PCT/CN2018/090010 2017-07-06 2018-06-05 一种资源选择方法及装置 WO2019007183A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710548218.4 2017-07-06
CN201710548218.4A CN109219015B (zh) 2017-07-06 2017-07-06 一种资源选择方法及装置

Publications (1)

Publication Number Publication Date
WO2019007183A1 true WO2019007183A1 (zh) 2019-01-10

Family

ID=64950549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090010 WO2019007183A1 (zh) 2017-07-06 2018-06-05 一种资源选择方法及装置

Country Status (3)

Country Link
CN (1) CN109219015B (zh)
TW (1) TWI687107B (zh)
WO (1) WO2019007183A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110741581A (zh) * 2019-09-05 2020-01-31 香港应用科技研究院有限公司 一种在设备到设备通信链路中处理接收信道信号的方法
WO2020227829A1 (en) * 2019-05-13 2020-11-19 Huawei Technologies Co., Ltd. Sensing and resource selection for sidelink grant-free transmissions
CN112153602A (zh) * 2020-09-24 2020-12-29 大唐高鸿数据网络技术股份有限公司 一种资源选择方法及终端
CN112291836A (zh) * 2020-10-22 2021-01-29 大唐高鸿数据网络技术股份有限公司 一种资源选择方法、装置及终端
CN113037449A (zh) * 2019-04-02 2021-06-25 维沃移动通信有限公司 信道资源确定方法、信道检测方法及终端
US12004126B2 (en) 2019-02-01 2024-06-04 Samsung Electronics Co., Ltd. Methods and devices of assigning resource for sidelink communication system

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020143065A1 (zh) 2019-01-11 2020-07-16 Oppo广东移动通信有限公司 侧行通信的方法、终端设备和网络设备
CN113517972B (zh) * 2019-02-14 2023-02-17 Oppo广东移动通信有限公司 一种资源配置方法、终端设备及网络设备
CN111836371B (zh) * 2019-04-18 2023-11-03 中信科智联科技有限公司 资源选择方法、装置及终端
CN111865505B (zh) * 2019-04-30 2023-01-13 中国移动通信有限公司研究院 一种资源选择方法及设备
CN112020144B (zh) 2019-05-30 2022-09-02 华为技术有限公司 确定异步物理上行共享信道的资源的方法及设备
WO2021016805A1 (zh) * 2019-07-29 2021-02-04 富士通株式会社 资源选择方法以及装置
CN112399373A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 一种通信方法及装置
US20220312422A1 (en) * 2019-08-29 2022-09-29 Lg Electronics Inc. Method and device for selecting resource related to sidelink in nr v2x
CN112583552B (zh) * 2019-09-29 2022-05-10 大唐移动通信设备有限公司 一种sidelink信道复用方法及终端
WO2021062605A1 (zh) * 2019-09-30 2021-04-08 Oppo广东移动通信有限公司 一种确定资源选择窗的方法、终端设备及存储介质
CN113056022B (zh) * 2019-12-27 2022-07-05 大唐高鸿智联科技(重庆)有限公司 一种资源选择方法及网络节点
WO2021134448A1 (zh) * 2019-12-31 2021-07-08 华为技术有限公司 一种侧行数据传输的方法、装置和系统
CN111182639B (zh) * 2020-01-03 2023-04-28 展讯半导体(南京)有限公司 一种传输资源确定方法及相关设备
CN113114437B (zh) * 2020-01-13 2022-03-29 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN111246426B (zh) * 2020-01-16 2023-07-04 北京紫光展锐通信技术有限公司 辅链路通信的资源选择方法及通信装置
CN113518321B (zh) * 2020-04-09 2022-10-25 北京紫光展锐通信技术有限公司 用于辅链路的资源选择方法及装置、存储介质、终端
CN113518323B (zh) * 2020-04-10 2024-01-05 中信科智联科技有限公司 一种资源选择方法及终端
CN113518325B (zh) * 2020-04-10 2024-01-05 中信科智联科技有限公司 一种资源选择方法及终端
CN114071405A (zh) * 2020-08-06 2022-02-18 华为技术有限公司 资源感知方法及通信装置
CN115696272A (zh) * 2021-07-29 2023-02-03 华为技术有限公司 一种信息发送方法、接收方法及通信装置
CN115701157A (zh) * 2021-07-30 2023-02-07 展讯通信(上海)有限公司 资源选择方法及通信装置
CN113691957B (zh) * 2021-08-18 2023-09-08 西安电子科技大学 基于优化资源抢占的车联网资源选择方法
CN115734346A (zh) * 2021-08-27 2023-03-03 展讯通信(上海)有限公司 数据传输方法及装置、可读存储介质、终端
CN116095648A (zh) * 2021-11-05 2023-05-09 华为技术有限公司 确定候选资源集合的方法及装置
WO2023130939A1 (zh) * 2022-01-04 2023-07-13 华为技术有限公司 资源选择方法及装置
CN116489717A (zh) * 2022-01-13 2023-07-25 展讯通信(上海)有限公司 资源选择方法、装置及设备
CN114501396B (zh) * 2022-03-28 2022-10-14 深圳市科思科技股份有限公司 数据传输方法、装置及设备
CN117042144A (zh) * 2022-04-28 2023-11-10 中信科智联科技有限公司 一种资源选择方法、信息发送方法、装置和终端
CN115004851A (zh) * 2022-04-29 2022-09-02 北京小米移动软件有限公司 一种确定资源的方法、装置及存储介质
WO2024031539A1 (en) * 2022-08-11 2024-02-15 Zte Corporation Method and system for selecting side link resources in wireless network
CN117692945A (zh) * 2022-08-29 2024-03-12 维沃移动通信有限公司 感知信号处理方法、装置及通信设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103841649A (zh) * 2014-03-19 2014-06-04 宇龙计算机通信科技(深圳)有限公司 终端直连通信方法和终端直连通信系统
CN104202740A (zh) * 2014-05-08 2014-12-10 中兴通讯股份有限公司 通信数据发送方法、装置及用户设备
US20150009910A1 (en) * 2013-07-02 2015-01-08 Samsung Electronics Co., Ltd. Apparatus and method for allocating resources in device-to-device communication in wireless network
CN105101431A (zh) * 2014-05-07 2015-11-25 中兴通讯股份有限公司 一种设备到设备通信方法、装置及系统
CN105580464A (zh) * 2013-10-31 2016-05-11 英特尔Ip公司 设备到设备通信中的资源选择

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105634755B (zh) * 2014-11-07 2019-03-05 普天信息技术有限公司 一种直通终端时频资源使用方法与装置
US10869297B2 (en) * 2015-07-03 2020-12-15 Lg Electronics Inc. Method for transmitting signal between terminals, and apparatus for same
CN106488411B (zh) * 2015-08-28 2019-08-16 普天信息技术有限公司 脱网直通终端资源冲突的监控方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150009910A1 (en) * 2013-07-02 2015-01-08 Samsung Electronics Co., Ltd. Apparatus and method for allocating resources in device-to-device communication in wireless network
CN105580464A (zh) * 2013-10-31 2016-05-11 英特尔Ip公司 设备到设备通信中的资源选择
CN103841649A (zh) * 2014-03-19 2014-06-04 宇龙计算机通信科技(深圳)有限公司 终端直连通信方法和终端直连通信系统
CN105101431A (zh) * 2014-05-07 2015-11-25 中兴通讯股份有限公司 一种设备到设备通信方法、装置及系统
CN104202740A (zh) * 2014-05-08 2014-12-10 中兴通讯股份有限公司 通信数据发送方法、装置及用户设备

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12004126B2 (en) 2019-02-01 2024-06-04 Samsung Electronics Co., Ltd. Methods and devices of assigning resource for sidelink communication system
CN113037449A (zh) * 2019-04-02 2021-06-25 维沃移动通信有限公司 信道资源确定方法、信道检测方法及终端
CN113037449B (zh) * 2019-04-02 2024-01-09 维沃移动通信有限公司 信道资源确定方法、信道检测方法及终端
WO2020227829A1 (en) * 2019-05-13 2020-11-19 Huawei Technologies Co., Ltd. Sensing and resource selection for sidelink grant-free transmissions
CN110741581A (zh) * 2019-09-05 2020-01-31 香港应用科技研究院有限公司 一种在设备到设备通信链路中处理接收信道信号的方法
CN110741581B (zh) * 2019-09-05 2022-04-08 香港应用科技研究院有限公司 一种在设备到设备通信链路中处理接收信道信号的方法
CN112153602A (zh) * 2020-09-24 2020-12-29 大唐高鸿数据网络技术股份有限公司 一种资源选择方法及终端
CN112153602B (zh) * 2020-09-24 2024-05-14 中信科智联科技有限公司 一种资源选择方法及终端
CN112291836A (zh) * 2020-10-22 2021-01-29 大唐高鸿数据网络技术股份有限公司 一种资源选择方法、装置及终端
CN112291836B (zh) * 2020-10-22 2023-03-24 中信科智联科技有限公司 一种资源选择方法、装置及终端

Also Published As

Publication number Publication date
TW201907739A (zh) 2019-02-16
CN109219015A (zh) 2019-01-15
CN109219015B (zh) 2021-01-22
TWI687107B (zh) 2020-03-01

Similar Documents

Publication Publication Date Title
TWI687107B (zh) 一種資源選擇方法及裝置
US11889483B2 (en) Method and apparatus for determining resource pool
US11445501B2 (en) Method and apparatus for determining resource pool
US20230189330A1 (en) Method for indicating the allocated resources for a harq message in a random access procedure for a low-complexity, narrowband terminal
TWI676398B (zh) 一種資料傳輸方法及裝置
ES2875004T3 (es) Procedimiento y dispositivo de comunicación en un sistema de comunicación móvil
KR20200143271A (ko) 사이드 링크 통신 방법 및 장치
JP2023515093A (ja) V2xシステムで端末の間の協力を通じるリソース割り当て方法及び装置
US20210351895A1 (en) Resource allocation signaling
US20220400527A1 (en) Method and device for determining resources to be sensed for device-to-device communication in wireless communication system
WO2018171352A1 (zh) 一种数据传输方法及终端
US20230156670A1 (en) Partial sensing method and device for device-to-device communication in wireless communication system
US20230292347A1 (en) Sidelink resource selection based on user equipment coordination
KR20220054109A (ko) 무선 통신 시스템에서 자원을 선택하는 방법 및 장치
CN111294940B (zh) 发射功率的分配方法及装置、存储介质、终端
CN118199831A (zh) 资源指示方法、装置和终端
CN113115274A (zh) 蜂窝网络的接入节点设备和通信设备及由它们执行的方法
CN117480830A (zh) 通信系统中通过侧链路ue间协作的资源分配的方法和装置
KR20200114929A (ko) 사이드링크 통신에서 자원을 할당하는 방법 및 장치
WO2023130282A1 (zh) 资源排除方法、装置、设备、存储介质及程序产品
JP7288223B2 (ja) 送信装置、受信装置、無線通信システム、及び通信方法
KR102672117B1 (ko) 송신 장치, 수신 장치, 무선 통신 시스템 및 통신 방법
WO2022222109A1 (zh) 资源选取方法、装置、设备及存储介质
CN117280813A (zh) 无线通信系统中通过侧链路ue间协调进行资源分配的方法和设备
JPWO2020031277A1 (ja) 送信装置、受信装置、無線通信システム、及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828314

Country of ref document: EP

Kind code of ref document: A1