WO2019007102A1 - 一种处理器固定结构件、组件及计算机设备 - Google Patents

一种处理器固定结构件、组件及计算机设备 Download PDF

Info

Publication number
WO2019007102A1
WO2019007102A1 PCT/CN2018/079161 CN2018079161W WO2019007102A1 WO 2019007102 A1 WO2019007102 A1 WO 2019007102A1 CN 2018079161 W CN2018079161 W CN 2018079161W WO 2019007102 A1 WO2019007102 A1 WO 2019007102A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
heat sink
sink substrate
processor
structural member
Prior art date
Application number
PCT/CN2018/079161
Other languages
English (en)
French (fr)
Inventor
毛永海
姚勇
房广宇
李定方
林杉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020197038776A priority Critical patent/KR102320567B1/ko
Priority to JP2019572598A priority patent/JP6921248B2/ja
Publication of WO2019007102A1 publication Critical patent/WO2019007102A1/zh
Priority to US16/719,030 priority patent/US11133239B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/183Internal mounting support structures, e.g. for printed circuit boards, internal connecting means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L2023/4018Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by the type of device to be heated or cooled
    • H01L2023/4031Packaged discrete devices, e.g. to-3 housings, diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L2023/4037Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by thermal path or place of attachment of heatsink
    • H01L2023/405Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by thermal path or place of attachment of heatsink heatsink to package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L2023/4037Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by thermal path or place of attachment of heatsink
    • H01L2023/4062Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by thermal path or place of attachment of heatsink heatsink to or through board or cabinet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L2023/4075Mechanical elements
    • H01L2023/4081Compliant clamping elements not primarily serving heat-conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L2023/4075Mechanical elements
    • H01L2023/4087Mounting accessories, interposers, clamping or screwing parts

Definitions

  • the present application relates to the field of computer technologies, and in particular, to a processor fixing structure, a component, and a computer device.
  • One way to do this is to increase the area of a single processor and integrate more or even more complex circuits into the processor to increase the processing power of a single processor, such as Intel's server CPU.
  • Intel's server CPU Central Processing Unit, CPU for short
  • the number of pins increased from 2011 to 3647, resulting in a nearly 80% increase in the area of a single processor, but because the processor occupies the PCB (Printed Circuit Board)
  • the area of the PCB is almost fixed, and the total pressure load on the CPU is increased a lot.
  • the holding force provided to the CPU and the processor socket is also transferred from the lining to the heat sink assembly.
  • the current processor fixed structure and the heat sink are difficult to provide the total pressure load demand of the increased CPU, resulting in a tightly coupled heat sink and CPU. On the one hand, it may not be able to maintain sufficient heat dissipation capability. The reliability of the contact between the CPU and the processor socket is also difficult to guarantee.
  • the embodiment of the present application provides a processor fixing structural member, a component, and a computer device, which improves the total pressure load on the CPU by redesigning the fixing component fixed on the PCB and the heat sink substrate, so that the heat sink and the CPU are The combination is tighter to ensure long-lasting thermal performance and reliability of contact between the CPU and the processor socket.
  • a first aspect of an embodiment of the present application provides a processor fixing structure including a heat sink substrate in contact with a processor, the heat sink base station being fixed at a processor socket on a printed circuit board PCB On the fixed component.
  • An elastic structural member and a limiting structural member for limiting the elastic structural member are disposed on a side of the heat sink substrate, and one end of the limiting structural member passes through the elastic structural member and is connected to the fixing component The elastic structural member is located between the other end of the limiting structural member and the heat sink substrate.
  • the limiting structural member is disposed on the elastic structural member, and one end of the limiting structural member passes through the elastic structural member and is connected to the fixing component. And the elastic structural member is located between the other end of the limiting structural member and the heat sink substrate, so that the elastic structural member can be compressed by shortening the distance between the other end of the limiting structural member and the heat sink substrate.
  • the elastic structural member When the elastic structural member is compressed by the limiting structural member, the elastic structural member simultaneously gives the elastic force of the limiting structural member and the heat sink substrate, and since the limiting structural member passes through the elastic structural member and is connected with the fixing component, the elastic structure The spring force of the piece will be converted to the pressure of the CPU on the heat sink substrate, which can increase the pressure on the CPU to meet the increased total pressure load.
  • the elastic structural member comprises a compression spring or a spring piece, whether it is a spring piece or a compression spring, and the elastic piece can be compressed or compressed by shortening the distance between the other end of the limiting structure piece and the heat sink substrate. spring.
  • the elastic structural member is a compression spring
  • the limiting structural member is a first screw
  • the compression spring is sleeved on the first screw
  • the diameter of the head end of the first screw is larger than that of the compression spring.
  • An inner diameter of the end, the two ends of the compression spring being located between the head end of the first screw and the heat sink substrate.
  • the purpose of compressing the compression spring can be achieved by shortening the distance between the head end of the first screw and the heat sink substrate by screwing the first screw.
  • the spring force generated by the compression spring acts on the heat sink substrate, which enhances the achievability of the processor mounting structure of the present application.
  • the heat sink substrate is provided with a first limiting hole
  • the tail end of the first screw is connected to the fixing component through the first limiting hole
  • the first end of the first screw is further provided with the first a limit ring
  • the heat sink substrate is located between the first limit ring and the compression spring, and an outer diameter of the first limit ring is larger than an inner diameter of the first limit hole.
  • the structure is such that the heat sink substrate is located between the first limiting ring and the compression spring, and since the outer diameter of the first limiting ring is larger than the inner diameter of the first limiting hole, the first limiting ring can be made
  • a screw is locked to the heat sink substrate without falling out of the heat sink substrate. The scalability of the fixed structure of the processor of the present application can be enhanced.
  • the first limiting ring is engaged with the tail end of the first screw, that is, the first limiting ring and the first screw are connected by being snapped. In this manner, the first The limit ring is detachably connected with the first screw. In use, the first screw is inserted into the first limiting hole, and then the first limiting ring is installed at the tail end. The achievability of the fixed structure of the processor of the present application can be enhanced.
  • the compression spring when the first limiting ring is in contact with the heat sink substrate, that is, the distance between the head end of the first screw and the heat sink substrate is maximized, at this time, the compression spring is The free height is smaller than the distance from the head end of the first screw to the heat sink substrate.
  • This arrangement not only does not pre-compress the compression spring, but also gives the compression spring a free state with the heat sink substrate or the head of the first screw. A certain gap is reserved between the ends, so that when one side of the heat sink substrate is mounted on the fixing component, the other side is lifted, and the other side of the heat sink substrate cannot be manually pressed. Inconvenient installation problem.
  • a first groove is further disposed on a surface of the heat sink substrate opposite to the first limiting ring, and when the first limiting ring is in contact with the heat sink substrate, The distance between the head end of the screw and the heat sink substrate is maximized, and the first limit ring is located in the first groove.
  • the design can give the first screw a larger movable space, so that the first space can be The screw is sleeved with a compression spring with a higher free height to meet the requirements of different pressure loads; on the other hand, since the first limiting ring is located in the first groove, the first limit can be made when the heat sink substrate is mounted. The seat ring does not reach the fixed components, making installation easier.
  • the compression spring since the compression spring is in contact with the heat sink substrate, the end of the compression spring is limited, and the contact area of the end portion with the heat sink substrate is limited, which easily causes pressure imbalance on the heat sink substrate, so A gasket is further disposed between the heat sink substrate and the compression spring on a screw.
  • the gasket can even increase the contact area between the compression spring and the heat sink substrate, and on the other hand, the end portion of the compression spring and the heat sink substrate are not directly contacted, since the heat sink substrate is generally an aluminum alloy. Or a relatively soft material such as copper.
  • the end of the compression spring is sharper, and it is easy to hang metal chips on such materials.
  • the gasket can be made of stainless steel, which can effectively solve the problem.
  • the number of the compression spring and the first screw is two or more, and two or more of the compression springs are symmetrically distributed on both sides of the heat sink substrate; since the processor is generally a regular structure And when mounting the heat sink structure, the pressure of the heat sink substrate is required to be averaged for each contact portion of the processor, so that on the one hand, the bonding between the processor and the heat sink substrate is tighter, and on the other hand, Reduce the stress on the PCB.
  • the processor fixing structure further includes the fixing component, the first screw has an internal thread in a tail end, and the fixing component is provided with a second screw corresponding to the first screw, the second The external thread of the screw is adapted to be provided with an internal thread in the tail end of the first screw.
  • the first screw adopts a manner of providing an internal thread at the tail end, and the entire side of the first screw may be a cylindrical smooth surface; Due to the design of the first screw, the second screw is a second screw having an external thread adapted to the first screw, and the second screw is fixed to the fixing assembly.
  • the limiting structure member is a third screw
  • the elastic structural member is a spring piece
  • a second limiting hole is disposed on the curved portion in the middle of the elastic piece, the inner side of the curved portion and the heat dissipation Opposite the substrate
  • the third screw is connected to the heat sink substrate through the second limiting hole
  • the outer diameter of the head of the third screw is larger than the inner diameter of the second limiting hole
  • the elastic piece Both ends are respectively connected to the heat sink substrate.
  • the elastic structural member is an intermediate curved elastic piece, and the inner side of the curved curved portion is opposite to the heat sink substrate, and the inner diameter of the second limiting hole is smaller than the outer diameter of the head end of the third screw, so
  • the third screw on the curved portion shortens the distance between the head of the third screw and the heat sink substrate, both ends of the elastic piece generate a downward pressure on the heat sink substrate, which can enhance the fixing structure of the processor of the present application. Achievability.
  • the corresponding elastic piece on the heat sink substrate is provided with a second groove and a third groove at the bottom of the second groove, and the end of the elastic piece is provided with a first curved portion and a second curved portion.
  • the first curved portion is located in the third recess, and the second curved portion is located at a bottom of the first recess.
  • the edges of the second groove and the third groove form a stepped structure, and both ends of the elastic piece are respectively provided with a first curved portion and a second curved portion, wherein The first curved portion is located in the third groove, and the second curved portion is located at the junction of the second groove and the third groove, and the structure gives a certain deformation space to the elastic piece through the third groove on the one hand,
  • the second bending portion generates pressure on the bottom of the second groove when the elastic piece is subjected to pressure deformation; the achievability of the fixing structure of the processor of the present application can be enhanced.
  • a third limiting hole is further disposed on a side of the heat sink substrate, a fourth screw is disposed in the third limiting hole, and a second limit is further connected to the tail end of the fourth screw.
  • the spacer, the distance between the second limiting ring and the tip end of the fourth screw is greater than the thickness of the heat sink substrate.
  • the third limiting hole and the fourth screw are used to assist in fixing the heat sink substrate, and the distance between the head end of the fourth screw and the second limiting ring is greater than the thickness of the heat sink substrate, so that the heat sink assembly can be installed.
  • a fourth recess is further disposed on the heat sink substrate corresponding to the third limiting hole, and when the second limiting ring is in contact with the heat sink substrate, ie, The distance from the head end of the four screws to the heat sink substrate is maximized. At this time, the second limit ring is located in the fourth groove.
  • This design can further increase the movable space of the fourth screw, thereby making it less likely to be used by the heat sink.
  • the fourth screw on the substrate is topped off.
  • the second limiting ring is engaged with the tail end of the fourth screw, that is, the second limiting ring and the fourth screw are connected by being snapped. Next, the second limiting ring is detachably connected with the fourth screw. In use, the fourth screw is inserted into the third limiting hole, and then the second limiting ring is installed at the tail end. The achievability of the fixed structure of the processor of the present application can be enhanced.
  • the third limiting hole is located at a diagonal of the heat sink substrate, where the screw matching the third limiting hole is mainly used for initial limitation of the heat sink substrate, and can be matched with another diagonal
  • the snap-fit structure fixes the entire heat sink substrate so that one side of the heat sink substrate is lifted when the heat sink assembly is mounted.
  • the opposite corner of the heat sink substrate is provided with a snap-fit structure, and the snap-fit structure cooperates with the third limit hole to complete the fixing of the heat sink substrate.
  • the securing assembly includes a backing plate disposed on an upper surface of the PCB and external to the processor socket, and disposed on a lower surface of the PCB and located on a back of the processor socket a second screw, which is matched with the limiting structure member, is disposed on the back plate, the backing plate is provided with a fourth limiting hole, the second screw passes through the PCB and the The fourth limiting hole limits the lining.
  • the lining plate is disposed along the edge of the processor socket to ensure that the processor can be smoothly placed after the installation, and the second screw can be matched with the limiting structural member, that is, the aforementioned screw can be adapted to the first screw.
  • the second screw may also be a nut or screw that is adapted to the third screw.
  • a heat sink is fixed on the heat sink substrate, and the heat sink may be a passive heat dissipation design, that is, a method in which a heat sink fin is used to perform passive heat dissipation with a heat dissipation duct disposed on the heat sink substrate;
  • the way of dissipating heat that is, on the basis of passive heat dissipation, using the air duct formed inside the computer equipment (such as a server), and supplemented by a cooling fan, so that heat can be quickly taken out of the computer equipment (such as a server);
  • the water cooling method may be adopted, that is, a water-cooling head is mounted on the heat sink substrate, and a heat dissipating component is installed in or outside the computer device (for example, a server), and the heat dissipating component, that is, the metal conduit has a wind direction corresponding to the cooling fan of the metal conduit.
  • the water-cooling head is connected to a conduit that forms a circulation from the water-cool
  • the second aspect of the embodiments of the present application further provides an assembly, which includes a processor, a heat sink, and the processor fixing structure of the first aspect or any implementation of the first aspect.
  • the third aspect of the embodiments of the present application further provides a computer device, where the computing device includes the processor fixed structure according to the first aspect or any implementation manner of the first aspect.
  • the present application provides a processor fixing structural member for fixing a processor on a printed circuit board;
  • the structural member includes a heat sink substrate and a fixing component, and the heat sink substrate is provided with a compression spring And a first screw, the first heat sink substrate is further provided with a first through hole, the tail end of the first screw passes through the compression spring and the first through hole, and is used for connecting the fixing component, the first screw has a head end diameter larger than the compression spring The inner diameter of the compression spring is located between the tip end of the first screw and the heat sink substrate.
  • the processor is placed between the heat sink substrate and the printed circuit board, and the elastic force of the compression spring can be adjusted by rotating the first screw, thereby pressing the heat sink substrate, the processor and the printed circuit board three-layer structure, so that the processor and the printed circuit The electrical contact of the board is good.
  • the fixing component is configured to be connected to a printed circuit board
  • the processor circuit board includes a processor socket
  • the processor socket is configured to be connected to the processor
  • a heat sink is disposed on the heat sink substrate.
  • the printed circuit board is provided with a socket for facilitating electrical connection between the processor and the printed circuit board, the fixing component is fixed on the printed circuit board, the first screw is mechanically connected with the fixing component, and the height of the first screw is adjusted, thereby compressing
  • the spring applies pressure to the heat sink substrate, thereby compressing the processor and making the processor in good contact with the printed circuit board.
  • the heat sink provided on the heat sink is used to dissipate heat from the processor.
  • the outer diameter of the compression spring is greater than the diameter of the first through hole.
  • the compression spring can be directly contacted with the heat sink substrate without using the gasket, and the compression spring directly supplies pressure to the heat sink substrate.
  • the third possible implementation manner is that, in the third possible implementation manner, the gasket is further disposed between the compression spring and the heat sink substrate, and the gasket is provided with The two through holes and the gasket are sleeved on the first screw, the diameter of the gasket is larger than the diameter of the first through hole, and the outer diameter of the compression spring is larger than the diameter of the second through hole.
  • the fourth end of the fourth aspect the diameter of the tail end of the first screw is larger than the diameter of the first through hole.
  • the diameter of the tail end of the first screw is larger than the diameter of the first through hole, so that the first screw can be prevented from falling off from the heat sink substrate, facilitating disassembly and assembly of the processor.
  • the fourth end of the first screw is further provided with a first limiting ring, the first limiting ring
  • the sleeve is disposed on the first screw, and the heat sink substrate is located between the compression spring and the first limit ring.
  • the inner diameter of the first limit ring is smaller than the diameter of the tail end of the first screw, and the outer diameter of the first limit ring is larger than the first A through hole diameter.
  • the first limit ring can also be used to remove the first screw from the heat sink substrate, facilitating disassembly and assembly of the processor.
  • the first surface of the heat sink substrate contacting the first limiting ring is further provided with the first groove When the bit ring is in contact with the heat sink substrate, the first limit ring is located in the first groove.
  • the size of the first groove is larger than the size of the first limit ring, so that the movable space of the first screw is larger, which is convenient for alignment and assembly.
  • the third through hole and the fourth screw are further disposed on the heat sink substrate, the fourth screw The tail end passes through the third through hole and is used for connecting the fixing assembly, and the diameter of the head end of the fourth screw is larger than the diameter of the third through hole.
  • the fourth screw can pre-fix the heat sink substrate, the processor and the printed circuit board to facilitate assembly of the device.
  • the fourth end of the fourth screw is further provided with a second limiting ring, and the second limiting ring is used for the first
  • the heat sink substrate is located between the head end of the fourth screw and the second limit ring, the inner diameter of the second limit ring is smaller than the diameter of the tail end of the fourth screw, and the outer diameter of the second limit ring is larger than the third Through hole diameter.
  • the second limit ring can prevent the fourth screw from falling off the heat sink substrate, thereby facilitating assembly of the device.
  • the side of the heat sink substrate contacting the second limiting ring is further provided with a fourth groove, when the second limit When the bit ring is in contact with the heat sink substrate, the second limit ring is located in the fourth groove.
  • the size of the fourth groove is larger than the size of the second limit ring, so that the movable space of the fourth screw is larger, which is convenient for alignment and assembly.
  • the external thread of the second screw is adapted to the internal thread of the first screw, and the first screw is coupled to the fixing assembly by the second screw.
  • the fixing component comprises a lining plate and a back plate, wherein the lining plate is disposed on the upper surface of the printed circuit board, and the back plate is disposed on the A lower surface of the printed circuit board, a second screw disposed on the back plate, and a second screw for connecting to the first screw through the printed circuit board and the backing plate.
  • the backboard further includes a fixing screw for passing through the printed circuit board and the lining board and passing The nut connects the liner to the printed circuit board.
  • the back plate and the backing plate are made into detachable components, which can be adapted to different printed circuit boards.
  • the backing plate and the backing plate are fixed to the printed circuit board using fixing screws and nuts, and then the mounting of the processor is completed as a whole.
  • the fourth end of the fourth screw is provided with an internal thread, an external thread of the fixing screw and an internal thread of the fourth screw
  • the fourth screw is connected to the fixing assembly by a fixing screw.
  • the structural component further includes a cover plate, the cover plate is configured to carry the processor, and is configured to fix the processor to the On the heat sink substrate.
  • the cover plate carrying the processor can be snapped onto the heat sink substrate through the buckle on the cover plate, which facilitates the alignment of the processor pins during the installation process, and can reduce the handling during the installation process.
  • the lateral movement of the device reduces the risk of damage to the processor pins or printed circuit boards.
  • the lining is further provided with a pin for passing through the limit on the cover plate and the heat sink substrate Hole to limit the processor.
  • the pin and the heat sink substrate are used to limit the alignment, and the lateral movement of the processor during the installation process can be reduced, and the damage to the pins of the processor can be reduced.
  • the structural member comprises at least two first screws and at least two compression springs.
  • the free height of the compression spring is smaller than the length of the first screw.
  • the free height of the compression spring is smaller than the length of the first screw, and in the disassembled state, the compression spring does not provide pressure to the heat sink substrate, which is more convenient for the installation of the device.
  • the free length of the compression spring can also be higher than the length of the first screw, and in the disassembled state, the compression spring still provides a certain pressure to the heat sink substrate.
  • the present application provides a processor assembly comprising a processor and a processor fixed structure in any one of the possible implementations of the fourth aspect or the fourth aspect.
  • the present application provides a computer device comprising the processor component of the fifth aspect.
  • the pressure on the processor can be more uniform, the electrical contact between the processor and the printed circuit board is better, and the device is installed. The process is more convenient.
  • FIG. 1 is an exploded perspective view of a conventional processing fixed structure
  • FIG. 2 is an exploded perspective view of a processor fixing structure according to an embodiment of the present application
  • FIG. 3 is a diagram showing an embodiment of a processor fixing structure of an embodiment of the present application.
  • FIG. 4 is a view showing an embodiment of a compression spring in a processor fixing structure according to an embodiment of the present application
  • FIG. 5a is a diagram of an embodiment of a processor fixing structure of an embodiment of the present application.
  • FIG. 5b is a diagram of an embodiment of a processor fixing structure according to an embodiment of the present application.
  • FIG. 5c is a diagram of an embodiment of a processor fixing structure according to an embodiment of the present application.
  • FIG. 6a is a diagram of an embodiment of a processor fixing structure according to an embodiment of the present application.
  • FIG. 6b is a diagram of an embodiment of a processor fixing structure according to an embodiment of the present application.
  • 6c is a diagram of an embodiment of a processor fixing structure of an embodiment of the present application.
  • FIG. 6d is a diagram of an embodiment of a processor fixing structure according to an embodiment of the present application.
  • 6e is a diagram of an embodiment of a processor fixing structure of an embodiment of the present application.
  • FIG. 7a is a diagram of an embodiment of a processor fixing structure according to an embodiment of the present application.
  • FIG. 7b is a diagram of an embodiment of a processor fixing structure according to an embodiment of the present application.
  • FIG. 8a is a diagram of an embodiment of a processor fixing structure of an embodiment of the present application.
  • FIG. 8b is a diagram of an embodiment of a processor fixing structure of an embodiment of the present application.
  • the embodiment of the present application provides a processor fixing structure, a component, and a computer device.
  • a fixing component fixed on a PCB and a heat sink substrate By redesigning a fixing component fixed on a PCB and a heat sink substrate, the total pressure load on the CPU is increased, so that the heat sink and the CPU are combined. Closer to ensure long-lasting thermal performance and reliable contact between the CPU and the processor socket.
  • the server CPU has much better processing performance than the consumer-grade CPU. To this end, it requires a larger package area than the consumer-grade CPU to achieve high performance.
  • Intel's Xeon XEON series CPU as an example.
  • the number of pins is from the initial 603 to 771, to 1155, 1356 and 2011, even to 3647 in the V5 version. Such a large number of pins means that the CPU area will be larger and larger, such as the CPU area of 3647 pins.
  • the CPU Since the CPU generates a large amount of heat during the power-on operation, and the excessive temperature causes the CPU to be damaged, the CPU needs to be cooled by the heat sink assembly. At present, although the area of the CPU is greatly increased, the processor slot area on the motherboard does not increase significantly, which means that the heat sink is required to dissipate the CPU. On the other hand, due to the large number of pins, to ensure the tight integration between so many pins and the processor socket, it is necessary to apply sufficient pressure to the CPU. The working pressure of each pin of the CPU during operation is 10 to 25 g. .
  • the current interfitting fixed structure and heat sink used in the processor socket of the 3647-pin CPU does not add enough pressure on the CPU. The current processor fixed structure will be described below.
  • FIG. 1 is an exploded perspective view of a current processor fixing structure.
  • the processor fixing structure 1 includes a backing plate 11 disposed on the back of the PCB 3 and a backing plate 12 corresponding to the position of the backing plate 11 on the front surface of the PCB 3.
  • the backboard 11 and the backing plate 12 are fixed to the PCB 3 by screws through the PCB 3.
  • the processor 4 is fixed on the cover 13 and the processor 4 and the cover 13 are formed.
  • the components are fixed on the heat sink substrate 14, and finally the components formed by the processor 4, the cover plate 13, the heat sink substrate 14, and the heat sink 15 on the heat sink substrate 14 are mounted into the processor socket 31, wherein the lining
  • the two sides of the plate 12 are provided with elastic pieces 121.
  • each elastic piece 121 The two ends of each elastic piece 121 are fixed on the lining plate 12.
  • the middle part of the elastic piece 121 is mounted with a screw.
  • the tail end of the screw passes through the elastic piece 121, and the heat sink substrate 14
  • a nut is disposed at a position corresponding to the screw, and the head end of the screw is moved toward the heat sink substrate 14 by screwing the nut, thereby generating a pulling force on the elastic piece 121, and pulling the PCB 3 toward the heat sink substrate 14, so that the heat sink substrate 14 is given to the processor.
  • 4 pressure which in turn makes the processor 4
  • the processor slots 31 are tightly coupled.
  • the force limit is limited, it is difficult to meet the total pressure load requirement of the CPU of the 3467 stitch; on the other hand, because the way of pulling the shrapnel is adopted, and the shrapnel ratio is
  • the elastic force of the spring is more obvious under the action of long-term pressure. After repeated disassembly and assembly, the elasticity of the elastic piece 121 is easily reduced or even disappeared. Generally, the elastic force of the elastic piece will be significantly smaller when the radiator is disassembled more than 6 times.
  • FIG. 2 is an exploded perspective view of the processor fixing structure of the embodiment of the present application, wherein the processor fixing structure 2 includes a heat sink substrate 22, The heat sink substrate 22 is in contact with the processor 4.
  • the processor fixing structure 2 further comprises a fixing component 21.
  • the fixing assembly 21 is fixed to the processor socket 31 on the PCB 3, and the heat sink substrate 22 in contact with the processor 4 is mounted on the fixing assembly 21. Therefore, the heat sink substrate 22 is fixed to the fixing assembly 21.
  • An elastic structural member and a limiting structural member for limiting the elastic structural member are disposed on a side of the heat sink substrate 22, and one end of the limiting structural member passes through the elastic structural member and the fixing component The 21-phase is connected, and the elastic structural member is located between the other end of the limiting structural member and the heat sink substrate 22.
  • the limiting structural member is disposed on the elastic structural member, and one end of the limiting structural member passes through the elastic structural member and the fixing assembly 21 Connected, and the other end of the elastic structural member is located between the other end of the limiting structural member and the heat sink substrate 22, so that the elastic force can be compressed by shortening the distance between the other end of the limiting structural member and the heat sink substrate 22.
  • the structural member when compressing the elastic structural member through the limiting structural member, the elastic structural member simultaneously gives the limiting structural member and the heat sink substrate 22 elastic force, and since the limiting structural member passes through the elastic structural member and is connected to the fixing component Therefore, the elastic force of the elastic structural member will be converted into pressure on the CPU of the heat sink substrate, and the pressure on the CPU can be increased to satisfy the increased total pressure load.
  • the pressure of the heat sink substrate to the processor is enhanced by providing the elastic structural member and the limiting structural member on the heat sink substrate, wherein the elastic structural member has various types, for example,
  • the elastic structural member is a spring piece or a compression spring or the like, of course, as long as it can be compressed by shortening the distance between the other end of the limiting structure member and the heat sink substrate.
  • the method of realizing the elastic piece and the compression spring will be separately described below.
  • FIG. 3 is a view showing an embodiment of the fixing structure of the processor in the embodiment of the present application, wherein the elastic structural member is a compression spring 23,
  • the limiting structure member is a first screw 24, and the compression spring 23 is sleeved on the first screw 24.
  • the diameter of the head end of the first screw 24 is larger than the inner diameter of the compression spring 23, and the two ends of the compression spring 23 are located at the first screw.
  • the head end of 23 is between the heat sink substrate 22.
  • the compression can be achieved by shortening the distance between the head end of the first screw 24 and the heat sink substrate 22 by screwing the first screw 24.
  • the purpose of the spring 23 is such that the elastic force generated by the compression spring 23 acts on the heat sink substrate 22.
  • a first limiting hole 221 is defined in the heat sink substrate 22, and a tail end of the first screw 24 is connected to the fixing component 21 through the first limiting hole 221, and a tail end of the first screw 24 is further
  • the first limiting ring 241 is disposed, and the heat sink substrate 22 is located between the first limiting ring 241 and the compression spring 23 .
  • the outer diameter of the first limiting ring 241 is greater than the inner diameter of the first limiting hole 221 .
  • the structure allows the heat sink substrate 22 to be located between the first limiting ring 241 and the compression spring 23, and since the outer diameter of the first limiting ring 241 is larger than the inner diameter of the first limiting hole 221, the first limiting ring can be made
  • the 241 can lock the first screw 24 on the heat sink substrate 22 without falling out of the heat sink substrate 22.
  • the first limiting ring 241 is engaged with the tail end of the first screw 24, that is, the first limiting ring 241 and the first screw 24 are connected by being snapped.
  • the first limiting ring 24 and the first screw 24 may be detachably connected.
  • the first screw 24 is inserted into the first limiting hole 221, and then the first limiting ring is installed at the tail end. 24 can be.
  • the compression spring 23 When the first limiting ring 241 is in contact with the heat sink substrate 22, that is, when the distance between the head end of the first screw 24 and the heat sink substrate 22 reaches a maximum, at this time, the compression spring 23 The free height is smaller than the distance from the head end of the first screw 24 to the heat sink substrate 22.
  • This arrangement not only does not pre-compress the compression spring 23, but also applies the compression spring 23 to the heat sink substrate 22 or the free state.
  • a certain gap is reserved between the head ends of a screw 24, so that when the heat sink is mounted, specifically when one side of the heat sink substrate 22 is mounted on the fixing component 21, the other side of the heat sink substrate 22 is tilted. As a result, the other side of the heat sink substrate 22 cannot be manually pressed, which causes inconvenience in installation.
  • FIG. 4 is a schematic structural view of a compression spring in the fixing structure of the processor of the embodiment of the present application, wherein the effective circle of the compression spring 23 is equal to the remaining pitch. In the case of a coil that participates in compression, the number of turns of the active ring is used to calculate the stiffness of the spring.
  • the support ring of the compression spring 23 is a spring ring designed to support or fix the compression spring 23 at the end of the compression spring 23. As shown in FIG.
  • the diameter of the spring of the compression spring 23 is d
  • the outer diameter of the compression spring 23 is D
  • the value of the inner diameter D1 of the compression spring 23 is D-2d
  • the value of the diameter of the compression spring 23 is D2; if the distance t between the springs of the same position of the adjacent two effective rings is When the number of turns of the compression ring is n and the number of turns of the support ring is n1, the height H of the compression spring 23 is n*t+(n1-0.5)*d.
  • the compression spring 23 is a compression spring of the same diameter, that is, whether the effective ring or the inner diameter of the support ring is the same, the inner diameter of the end portion of the compression spring 23 is the inner diameter of the compression spring 23.
  • the compression spring 23 is a compression spring of variable diameter, that is, the inner diameters of the effective rings are not all the same, the inner diameter of the effective ring and the inner diameter of the end portion are not all the same. In this case, as long as the inner diameter of the end portion is smaller than the head of the first screw 24 The outer diameter ensures that the first screw 24 can limit the end of the compression spring 23.
  • a compression spring of the same diameter or a compression spring of a reduced diameter may be used.
  • the relationship between the load F (or T) and the deformation f (or ⁇ ) is called the characteristic line of the spring.
  • the ratio of the load increment dF (or dT) to the deformation increment df (or d ⁇ ), that is, the load required to produce unit deformation is called the stiffness of the spring.
  • the pressure of the single compression spring 23 in the embodiment of the present application on the heat sink substrate 22 is about 30 kgf, that is, the elastic force generated by the single compression spring 23 is nearly 294.3 N. Therefore, about four such compression springs 23 are required to satisfy the The total pressure load of the processor 4.
  • a first recess 222 is further disposed on a surface of the heat sink substrate 22 opposite to the first limiting ring 241.
  • the first limiting ring 241 When the first limiting ring 241 is in contact with the heat sink substrate 22, That is, when the distance between the head end of the first screw 24 and the heat sink substrate 22 reaches a maximum, the first limiting ring 241 is located in the first groove 222, and the design can give the first screw 24 a larger aspect.
  • the movable space of the first screw 24 can be placed on the first screw 24 to meet the requirements of different pressure loads; on the other hand, the first limiting ring 241 is located in the first recess 222. Therefore, when the heat sink substrate 22 is mounted, the first limiting ring 241 does not abut against the fixing component, making installation easier.
  • a spacer 242 is further disposed between the heat sink substrate 22 and the compression spring 23 on the first screw 24.
  • the spacer 242 can increase the contact area between the compression spring 23 and the heat sink substrate 22 on the one hand, and can prevent direct contact between the end of the compression spring 23 and the heat sink substrate 22 on the other hand, due to the heat sink substrate.
  • 22 is generally a relatively soft material such as aluminum alloy or copper, and the end of the compression spring 23 is relatively sharp, and it is easy to hang metal scraps on such materials, and the gasket 242 can be a steel sheet of stainless steel. Effectively solve the problem.
  • the number of the compression spring 23 and the first screw 24 is two or more, and two or more of the compression springs 23 are symmetrically distributed on both sides of the heat sink substrate 22; since the processor 4 is generally regular Structure, and when mounting the heat sink structure, the pressure of the heat sink substrate 22 to the various portions of the touch of the processor is required to be averaged, thereby enabling closer integration between the processor 4 and the heat sink substrate 22 on the one hand. On the other hand, it can reduce the stress on the PCB.
  • two or more compression springs 23 By arranging two or more compression springs 23 symmetrically, the downward pressures on both sides of the heat sink substrate 22 are the same, so that the pressure on the respective portions of the processor 4 is also the same.
  • two compression springs 23 are respectively disposed on both sides of the heat sink substrate 22 in FIG. 1, that is, the two sides can respectively give the heat sink substrate 22 a pressure of approximately 588.6N.
  • FIG. 5a is FIG. 5b is a diagram of an embodiment of a processor fixing structure according to an embodiment of the present application
  • FIG. 5c is a diagram of an embodiment of a processor fixing structure according to an embodiment of the present application.
  • an internal thread 243 is disposed in the tail end of the first screw 24, and a second screw 2121 is disposed on the fixing component 21 corresponding to the first screw 24, and the external thread of the second screw 2121 is The inner end of the first screw is provided with an internal thread 243.
  • the first screw 24 adopts a manner of providing an internal thread 243 at the trailing end, and the entire side of the first screw 24 may be cylindrical.
  • the second screw 2121 is a second screw 2121 having an external thread adapted to the first screw 24, and the second screw 2121 is fixed to the fixing component 21 on.
  • first screw 24 is internally threaded and the second screw 2121 is provided with an external thread
  • first screw 24 can also be a nut. It can be seen that the first screw 24 and the second screw 2121 can both be screws or nuts, or one is a screw and the other is a nut, as long as the first screw 24 and the second screw 211 are capable of being bolted.
  • FIG. 6a is a diagram of an embodiment of a processor fixing structure according to an embodiment of the present application
  • FIG. 6b is a diagram of an embodiment of a processor fixing structure according to an embodiment of the present application
  • FIG. 6d is a diagram of an embodiment of a processor fixing structure of an embodiment of the present application
  • FIG. 6e is a diagram of an embodiment of a processor fixing structure of an embodiment of the present application.
  • a third limiting hole 223 is further disposed on a side of the heat sink substrate 22, a fourth screw 27 is disposed in the third limiting hole 223, and a second end is further connected to the fourth end of the fourth screw 27.
  • the limiting ring 271 has a larger distance between the second limiting ring 271 and the head end of the fourth screw 27 than the thickness of the heat sink substrate 22.
  • the third limiting hole 223 and the fourth screw 27 are used to assist in fixing the heat sink substrate 22, and the distance between the head end of the fourth screw 27 and the second limiting ring 271 is greater than the thickness of the heat sink substrate 22, which enables When the heat sink assembly is mounted, the nut or screw corresponding to the fourth screw 27 on the fixing member 21 does not push the fourth screw 27 off the heat sink substrate 22.
  • a fourth recess 224 is further disposed on the heat sink substrate 22 corresponding to the third limiting hole 223.
  • the second limiting ring 271 is in contact with the heat sink substrate 22, That is, the distance from the head end of the fourth screw 27 to the heat sink substrate 22 is maximized.
  • the second limit ring 271 is located in the fourth groove 224.
  • This design can further increase the movable space of the fourth screw 27.
  • the fourth screw 27 on the heat sink substrate 22 is less likely to be pushed off.
  • the second limiting ring 271 is engaged with the tail end of the fourth screw 27, that is, the second limiting ring 271 and the fourth screw 27 are connected by a snap connection. In this manner, the second limiting ring 271 and the fourth screw 27 are detachably connected. In use, the fourth screw 27 is inserted into the third limiting hole 224, and then the second end is mounted.
  • the limit ring 271 can be.
  • the third limiting hole 224 is located at a diagonal of the heat sink substrate 22, where the fourth screw 27 and the third limiting hole 224 are mainly used for initial limitation of the heat sink substrate 22, and can be matched.
  • the entire heat sink substrate 22 is fixed at the other diagonal snap-fit structure, so that the side of the heat sink substrate 22 is lifted when the heat sink assembly is mounted.
  • a latching structure is disposed on the other opposite corner of the heat sink substrate 22, and the latching structure cooperates with the third limiting hole 224 to complete the fixing of the heat sink substrate 22.
  • the latching structure includes a first buckle 281 disposed on the cover 28 for fixing the processor 4, a second buckle 225 disposed on the heat sink substrate 22, and a pin 2111 disposed on the backing plate 211.
  • the first buckle 281, the second buckle 225, and the pin 2111 cooperate to complete the fixing between the heat sink substrate 22 and the backing plate 211.
  • the fixing assembly 21 includes a backing plate 211 and a backing plate 212.
  • the side is tilted up, and it is only necessary to press the side down when installing, and the fourth screw 27 has a sufficient margin to prevent the fourth screw 27 from being lifted on one side of the heat sink substrate 22 due to the fourth recess 224.
  • the heat sink substrate 22 is ejected by the second screw 2121.
  • the case of Fig. 6d and Fig. 6e is the case where the other side of the heat sink substrate 22 is lifted relative to the case of Figs. 6b and 6c, that is, the side corresponding to the fourth screw 27 is already mounted and provided.
  • the side of the snap-in structure is not yet installed. In this case, the distance between the fourth screw 27 and the second screw 2121 is significantly reduced due to the other side being lifted, and the bolt connection is used.
  • the fixing component 21 includes a liner 211 disposed on an upper surface of the PCB 3 and located outside the processor socket 31, and disposed on a lower surface of the PCB 3 and located in the processor socket a backing plate 212 on the back surface of the back surface of the backing plate 212 is disposed on the back plate 212.
  • the backing plate is provided with a fourth limiting hole 2112, the second screw 2121 limits the liner 211 through the PCB 3 and the fourth limiting hole 2112.
  • the lining 211 is disposed along the edge of the processor socket 31 to ensure that the processor 4 can be smoothly placed after the installation, and the second screw 2121 can be matched with the limiting structure, that is, the foregoing A second screw 2121, to which a screw 24 is fitted, or a nut or screw that is adapted to the third screw 25.
  • a heat sink 5 is fixed on the heat sink substrate 22, and the heat sink 5 can be a passive heat dissipation design. As shown in the heat sink structure in FIG. 3, the heat dissipation fins are used to fit the heat dissipation conduit disposed on the heat sink substrate 22.
  • air cooling can also be used, that is, based on passive cooling, using the air duct formed inside the computer equipment (such as the server), and supplemented by a cooling fan, so that the heat can be quickly Bringing out a computer device (such as a server); of course, it is also possible to use a water-cooling heat-dissipating method in which a water-cooling head is mounted on the heat sink substrate 22, and a heat-dissipating component is installed in or outside the computer device (for example, a server) chassis, and the heat-dissipating component is The metal conduit has been ventilated to a heat dissipating fan corresponding to the metal conduit, and the water cooling head is connected with a conduit which forms a circulation from the water cooling head to the heat dissipating member, the conduit being filled with the cooling liquid.
  • the backing plate 211 is first fixed around the processor socket 31, and the back plate is mounted on the back of the PCB 3.
  • the second screw 2121 on the back plate 212 passes through the fourth limiting hole 2112 on the lining plate 211.
  • the processor 4 is mounted on the cover plate 28, and the mounted structure is mounted on the heat sink substrate 22.
  • FIG. 7a is a view showing an embodiment of a processor fixing structure according to an embodiment of the present application
  • FIG. 7b is a diagram showing an embodiment of a processor fixing structure according to an embodiment of the present application.
  • the compression spring 23 is in a compressed state, which gives the head end of the first screw 24 and the heat sink substrate 22 an elastic force, and the magnitude of the elastic force is related to the degree of compression of the compression spring 23, and the compression spring 23 is The shorter the compression, the greater the spring force given to the head end of the first screw 24 and the heat sink substrate 22, and the greater the downward pressure corresponding to the heat sink substrate 22, so that the pressure of the heat sink substrate 22 on the processor is greater.
  • the second screw 2121 is almost completely screwed into the internal thread 243 of the first screw 24, at which point the spring force of the compression spring 23 is maximized.
  • the second screw 2121 is disposed on the back plate 212, when the first screw 24 is tightened, the back plate 212, the backing plate 211, and the heat sink substrate 22 are fixed more firmly, and the processor area can be strengthened. Strength of.
  • FIG. 8a is a diagram of an embodiment of a processor fixing structure according to an embodiment of the present application
  • FIG. 8b is a processor fixed in the embodiment of the present application.
  • the limiting structure member is a third screw 25, the elastic structural member is a spring piece 26, and a second limiting hole 261 is disposed on the curved portion of the middle portion of the elastic piece 26, the curved piece
  • the inner side of the portion is opposite to the heat sink substrate 22, and the third screw 25 is connected to the heat sink substrate 22 through the second limiting hole 261, and the outer diameter of the head of the third screw 25 is larger than the The inner diameter of the second limiting hole 261 is connected to the heat sink substrate 22 at both ends of the elastic piece 26, respectively.
  • the elastic structural member is an intermediate curved elastic piece 26, and the inner side of the curved curved portion is opposite to the heat sink substrate 22, and the inner diameter of the second limiting hole 261 is smaller than the front end of the third screw 25. Therefore, when the third screw 25 on the curved portion shortens the distance between the head of the third screw 25 and the heat sink substrate 22, both ends of the elastic piece 26 generate a downward pressure on the heat sink substrate 22.
  • the corresponding elastic piece on the heat sink substrate 22 is provided with a second groove 226 and a third groove 227 at the bottom of the second groove 226.
  • the end of the elastic piece 26 is provided with a first curved portion 262 and a first portion.
  • the second curved portion 263 is located in the third recess 227, and the second curved portion 263 is located at a joint between the second recess 226 and the third recess 227.
  • the edges of the second groove 226 and the third groove 227 form a stepped structure, and the two ends of the elastic piece 26 are respectively provided with the first curved portion 262 and a second curved portion 263, wherein the first curved portion 262 is located in the third recess 227, and the second curved portion 263 is located at the junction of the second recess 226 and the third recess 227, the structure being
  • the third groove 227 gives a certain deformation space to the elastic piece 26.
  • the second bending portion 263 generates pressure on the bottom of the second groove 226 when the elastic piece 26 is pressure-deformed.
  • the third limiting hole 223, the fourth screw 27, the second limiting ring 271 on the fourth screw 27, and the fourth groove 224 are disposed on the side of the heat sink substrate 22 and are disposed diagonally.
  • the corresponding structure of the first embodiment of the heat sink substrate 22 is similar to the corresponding structure in the first embodiment. For the specific description, refer to the related description in Embodiment 1, and details are not described herein again.
  • the lining plate 211 is first fixed around the processor socket 31, and the back plate 212 is mounted on the PCB 3. On the back side, the second screw 2121 on the back plate 212 passes through the fourth limiting hole 2112 on the backing plate 211.
  • the processor 4 is mounted on the cover plate 28, and the mounted structure is mounted on the heat sink substrate 22.
  • the heat sink substrate 22 is correspondingly mounted on the lining plate 211 together with the processor 4 and the cover plate 28; in the fixing process, the fourth screw 27 is firstly engaged by the corresponding screw or nut on the lining plate 211.
  • the structure corresponds to the snap-on structure on the lining 211 to initially limit the heat sink substrate; then, the entire heat sink substrate 22 is fixed on the lining plate 211 by pressing in and screwing the first screw 24 and the fourth screw 27, Complete the installation of the entire processor fixed structure.
  • the elastic piece 26 has two ends, and when pressure is applied to the middle of the elastic piece by the third screw 25, the pressure is dispersed to the two pieces of the elastic piece 26.
  • the end, that is, the two ends of the elastic piece 26 apply a downward pressure to the heat sink substrate 22, since the elastic piece 26 is disposed on each side of the heat sink substrate 22, a spring piece 26 is required to generate the elastic force to reach two or three in the second embodiment.
  • the elastic force of the middle compression spring 23 is to achieve an elastic force of 30 kgf to 45 kgf.
  • the compression spring 23 used in Embodiment 2 of the present application can be used in combination with the elastic piece 26 used in Embodiment 3 of the present application.
  • two compression springs 23 are disposed on one side of the heat sink substrate 22, On the other side, a spring piece 26 having two compression springs 23 is provided.
  • a compression spring 23 is employed on the opposite sides of the heat sink substrate 22, and a spring piece 26 is employed on the other two opposite sides of the heat sink substrate 22.
  • whether only the compression spring 23 or only the elastic piece 26 or the compression spring 23 and the elastic piece 26 are used may be determined according to a specific installation environment, which is not limited herein.
  • the embodiment of the present application further provides an assembly including a processor, a heat sink, and the processor fixing structure according to any one of Embodiments 1 to 3.
  • the processor may be an Advanced RISC Machine (ARM) processor.
  • ARM Advanced RISC Machine
  • the application provides a computer device including the above-described processor fixed structure and processor.
  • the processor fixed structure and the processor are both the processor fixed structure and the processor described above in the embodiment of the present application; the connection relationship and the fixed relationship between the processor fixed structure and the processor are also referred to above.
  • the computer device further includes a heat sink.
  • the heat sinks are all the heat sinks described in the embodiments of the present application; the connection relationship and the fixed relationship between the heat sink and the processor fixing structure and the processor are also referred to above.
  • the computer device can be an X86 server.
  • the processor of the computer device can be a processor that supports the X86 instruction set.
  • the computer device can be an advanced reduced instruction set machine ARM server.
  • the processor of the computer device can be an ARM processor.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in the embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Mounting Components In General For Electric Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种处理器固定结构(2),该处理器固定结构(2)包括与处理器(4)接触的散热器基板(22),该散热器基板(22)固定在印制电路板PCB(3)上处理器插槽(31)处的固定组件(21)上,散热器基板(22)的侧边上设有压缩弹簧(23)和螺钉(24),螺钉(24)的一端穿过压缩弹簧(23)并与固定组件(21)相连接,压缩弹簧(23)位于螺钉(24)的另一端与散热器基板(22)之间。通过缩短螺钉(24)的另一端与散热器基板(22)之间的距离压缩压缩弹簧(23),压缩弹簧(23)会同时给予螺钉(24)和散热器基板(22)弹力,而由于螺钉(24)是穿过压缩弹簧(23)并与固定组件(21)相连接的,因此压缩弹簧(23)的弹力会转为散热器基板(22)对CPU的压力,能够提升对CPU的压力来满足增加的总压力载荷。

Description

一种处理器固定结构件、组件及计算机设备 技术领域
本申请涉及计算机技术领域,具体涉及一种处理器固定结构件、组件及计算机设备。
背景技术
在互联网、大数据和云计算的时代洪流下,对海量数据的传输和处理速度、存储能力与高性能计算能力均提出了更高的要求。由于密集计算带来的影响,对服务器的处理能力提出了更高的要求。
目前的一种方式是将单颗处理器的面积增大,在面积增大后的处理器内集成更多乃至更复杂的电路来提高单颗处理器的处理能力,例如英特尔的服务器中央处理器(Central Processing Unit,简称CPU)产品,将pin数由2011提高到3647,由此带来单颗处理器的面积增大了将近80%,然而由于处理器占用印制电路板PCB(Printed Circuit Board,简称PCB)的面积是几乎固定的,对CPU的总压力载荷升高了很多,提供给CPU与处理器插槽的保持力也从衬板转移到散热器组件上。
然而,采用当前处理器固定结构配合散热器难以提供面积增大的CPU所增加的总压力载荷需求,导致散热器与CPU之间结合不够紧密,一方面可能不能够保持足够的散热能力,另一方面CPU与处理器插槽的接触可靠性也难以保证。
发明内容
本申请实施例提供了一种处理器固定结构件、组件及计算机设备,通过对固定在PCB上固定组件以及散热器基板的重新设计,提高对CPU的总压力载荷,使得散热器与CPU之间结合更为紧密来保证持久的散热性能以及CPU与处理器插槽的接触可靠性。
本申请实施例的第一方面提供一种处理器固定结构,该处理器固定结构包括与处理器接触的散热器基板,所述散热器基站固定在印制电路板PCB上处理器插槽处的固定组件上。散热器基板的侧边上设有弹性结构件和用于限位所述弹性结构件的限位结构件,该限位结构件的一端穿过所述弹性结构件并与所述固定组件相连接,所述弹性结构件位于所述限位结构件的另一端与所述散热器基板之间。
可以看出,由于将弹性结构件设置在散热器基板上,限位结构件设于该弹性结构件上,并且限位结构件的一端穿过所述弹性结构件并与所述固定组件相连接,且弹性结构件的位于所述限位结构件的另一端与所述散热器基板之间,从而可以通过缩短限位结构件的另一端与散热器基板之间的距离压缩弹性结构件,在通过限位结构件压缩弹性结构件时,弹性结构件会同时给予限位结构件和散热器基板弹力,而由于限位结构件是穿过弹性结构件并与固定组件相连接的,因此弹性结构件的弹力会转为散热器基板对CPU的压力,能够提升对CPU的压力来满足增加的总压力载荷。
在一些实施例中,弹性结构件包括压缩弹簧或者弹片,不论是弹片还是压缩弹簧均 满足,能够通过缩短所述限位结构件的另一端与散热器基板之间的距离压缩所述弹片或者压缩弹簧。能够增强本申请处理器固定结构的可实现性。
在一些实施例中,弹性结构件为压缩弹簧,限位结构件为第一螺钉,所述压缩弹簧套在所述第一螺钉上,所述第一螺钉的头端的直径大于所述压缩弹簧的端部内径,所述压缩弹簧两端位于所述第一螺钉的头端与所述散热器基板之间。此情形下,由于第一螺钉的头端大于压缩弹簧的内径,因此可以通过拧第一螺钉来缩短第一螺钉的头端与散热器基板之间的距离来达到压缩该压缩弹簧的目的,使得压缩弹簧产生的弹力对散热器基板产生作用,此方式能够增强本申请处理器固定结构的可实现性。
在一些实施例中,散热器基板上设有第一限位孔,第一螺钉的尾端穿过该第一限位孔与固定组件相连接,并且第一螺钉的尾端还设有第一限位圈,且散热器基板位于第一限位圈与压缩弹簧之间,且第一限位圈的外径大于所述第一限位孔的内径。此结构使得散热器基板位于第一限位圈与压缩弹簧之间,且由于第一限位圈的外径大于所述第一限位孔的内径,能够使得该第一限位圈能够将第一螺钉锁在散热器基板上,而不会从散热器基板中掉出。能够增强本申请处理器固定结构的扩展性。
在一些实施例中,第一限位圈与第一螺钉的尾端卡接,即该第一限位圈与该第一螺钉之间是通过卡接的方式连接的,此方式下,第一限位圈与第一螺钉之间是可拆卸连接的,在使用时,将该第一螺钉插入到第一限位孔内,然后在尾端安装第一限位圈即可。能够增强本申请处理器固定结构的可实现性。
在一些实施例中,当所述第一限位圈与所述散热器基板相接触时,即第一螺钉的头端与散热器基板之间的距离达到最大,此时,所述压缩弹簧的自由高度小于所述第一螺钉的头端至所述散热器基板的距离,此设置不仅未对压缩弹簧进行预压,而且还给压缩弹簧在自由状态下与散热器基板或者第一螺钉的头端之间预留一定的间隙,从而能够在进行安装时,散热器基板的一侧安装在固定组件上时,另一侧翘起,手动无法压下散热器基板的另一侧,带来的安装不便的问题。
在一些实施例中,散热器基板与所述第一限位圈相对的一面上还设有第一凹槽,当所述第一限位圈与所述散热器基板相接触时,即第一螺钉的头端与散热器基板之间的距离达到最大,该第一限位圈位于所述第一凹槽内,此设计一方面能够给予第一螺钉更大的活动空间,从而可以在第一螺钉上套上自由高度更高的压缩弹簧来满足不同压力载荷的需求;另一方面,由于该第一限位圈位于该第一凹槽内,能够使得在安装散热器基板时,第一限位圈不会抵到固定组件,使得安装更加容易。
在一些实施例中,由于压缩弹簧与散热器基板相接触的是压缩弹簧的端部,而该端部与散热器基板的接触面积有限,容易造成对散热器基板的压力不均衡,因此在第一螺钉上位于所述散热器基板与所述压缩弹簧之间还设有垫片。该垫片一方面能偶增大压缩弹簧与散热器基板之间的接触面积,另一方面能够使得压缩弹簧的端部与散热器基板之间不会直接接触,由于散热器基板一般为铝合金或者是铜等相对软性的材质,压缩弹簧的端部又比较尖锐,容易在这类材质上挂出金属屑,而该垫片可以是不锈钢材质的钢片,能够有效解决该问题。
在一些实施例中,压缩弹簧和所述第一螺钉的数量均为两个以上,两个以上的所述压缩弹簧对称分布在所述散热器基板的两侧;由于处理器一般为规则的结构,并且在安 装散热器结构时,要求散热器基板对于处理器的各接触部分的压力是平均的,从而一方面能够使得处理器与散热器基板之间的结合更为紧密,另一方面还能减少PCB板的应力。
在一些实施例中,处理器固定结构还包括该固定组件,第一螺钉的尾端内设有内螺纹,所述固定组件上对应所述第一螺钉处设有第二螺钉,所述第二螺钉的外螺纹与所述第一螺钉的尾端内设有内螺纹相适配。为了便于第一限位孔的限位以及便于安装第一限位圈,该第一螺钉采用的是在尾端设置内螺纹的方式,而第一螺钉整个侧面可以是圆柱形的光滑表面;而由于该第一螺钉的设计方式,第二螺钉则为与该第一螺钉相适配的具有外螺纹的第二螺钉,该第二螺钉固定在固定组件上。从而能够增强本申请处理器固定结构的可实现性。
在一些实施例中,限位结构件为第三螺钉,所述弹性结构件为弹片,位于所述弹片中部的曲部上设有第二限位孔,所述曲部的内侧与所述散热器基板相对,所述第三螺钉穿过所述第二限位孔与所述散热器基板相连接,第三螺钉的头部外径大于所述第二限位孔的内径,所述弹片的两端分别与所述散热器基板相连接。此情形下,弹性结构件为中间弯曲的弹片,且该弯曲的曲部的内侧是与散热器基板相对的,且第二限位孔的内径是小于第三螺钉的头端外径的,因此在该曲部上的第三螺钉在缩短第三螺钉的头部与散热器基板之间的距离时,该弹片的两端会对散热器基板产生下压力,能够增强本申请处理器固定结构的可实现性。
在一些实施例中,散热器基板上对应弹片设有第二凹槽和位于所述第二凹槽底部的第三凹槽,所述弹片的末端设有第一弯曲部和第二弯曲部,所述第一弯曲部位于所述第三凹槽内,所述第二弯曲部位于所述第一凹槽的底部。由于第三凹槽设置在第二凹槽的底部,该第二凹槽和第三凹槽的边缘会形成阶梯结构,弹片的两端均分别设有第一弯曲部和第二弯曲部,其中,第一弯曲部是位于第三凹槽内,第二弯曲部是位于第二凹槽和所述第三凹槽的连接处,该结构一方面通过第三凹槽给予弹片一定的形变空间,另一方面第二弯曲部在弹片发生压力形变时,对第二凹槽的底部产生压力;能够增强本申请处理器固定结构的可实现性。
在一些实施例中,散热器基板的侧边上还设有第三限位孔,所述第三限位孔内设有第四螺钉,所述第四螺钉的尾端还连接有第二限位圈,所述第二限位圈与所述第四螺钉的头端之间的距离大于所述散热器基板的厚度。该第三限位孔和第四螺钉用于辅助固定散热器基板,该第四螺钉的头端与第二限位圈之间的距离大于散热器基板的厚度,能够使得在进行散热器组件安装时,在固定组件上对应该第四螺钉的螺母或者螺钉不会将该第四螺钉从散热器基板上顶掉。
在一些实施例中,所述散热器基板上对应所述第三限位孔处还设有第四凹槽,当所述第二限位圈与所述散热器基板相接触时,即,第四螺钉的头端到散热器基板的距离达到最大,此时,第二限位圈位于所述第四凹槽内,此设计能够进一步增加第四螺钉的活动空间,从而更不容易被散热器基板上的第四螺钉顶掉。
在一些实施例中,第二限位圈与所述第四螺钉的尾端之间卡接,即该第二限位圈与该第四螺钉之间是通过卡接的方式连接的,此方式下,第二限位圈与第四螺钉之间是可拆卸连接的,在使用时,将该第四螺钉插入到第三限位孔内,然后在尾端安装第二限位圈即可。能够增强本申请处理器固定结构的可实现性。
在一些实施例中,第三限位孔位于所述散热器基板的对角处,此处螺钉配合第三限位孔主要用于对散热器基板的初步限位,可以配合在另一对角的卡接结构对整个散热器基板进行固定,从而不会出现安装散热器组件时,散热器基板的一侧翘起的情况。
在一些实施例中,散热器基板的另一对角上设有卡接结构,该卡接结构与该第三限位孔相配合完成对散热器基板的固定。
在一些实施例中,固定组件包括设置在所述PCB的上表面上且位于所述处理器插槽外部的衬板,以及设置在所述PCB的下表面上且位于所述处理器插槽背面的背板,与限位结构件相适配的第二螺钉设在所述背板上,所述衬板上设有第四限位孔,所述第二螺钉穿过所述PCB和所述第四限位孔限位所述衬板。该衬板沿处理器插槽的边缘设置,保证在安装后,处理器能顺利放入,该第二螺钉能够与限位结构件相适配,即可以是前述的与第一螺钉相适配的第二螺钉,或者还可以是与第三螺钉相适配的螺母或者螺钉。
在一些实施例中,散热器基板上固定有散热器,该散热器可以是被动散热设计,即采用散热鳍片配合设置在散热器基板上的散热导管进行被动散热的方式;还可以采用风冷散热的方式,即在具有被动散热的基础之上,利用计算机设备(例如服务器)内部形成的风道,并辅以散热风扇,使得热量能够迅速被带出计算机设备(例如服务器);当然,还可以是采用水冷散热的方式,即在散热器基板上安装水冷头,在计算机设备(例如服务器)机箱内或者外部安装散热部件,该散热部件即金属导管已经风向与该金属导管对应的散热风扇,该水冷头连接有导管,该导管从水冷头到散热部件之间形成循环,该导管内填充有冷却液。
本申请实施例第二方面还提供一种组件,该组件包括处理器、散热器以及第一方面或者第一方面任一实现方式所述的处理器固定结构。
本申请实施例第三方面还提供一种计算机设备,该计算设备包括第一方面或者第一方面任一实现方式所述的处理器固定结构。
第四方面,本申请提供了一种处理器固定结构件,该结构件用于将处理器固定在印刷电路板上;该结构件包括散热器基板和固定组件,散热器基板上设置有压缩弹簧和第一螺钉,该散热器基板上还设有第一通孔,第一螺钉的尾端穿过压缩弹簧和第一通孔,并用于连接固定组件,第一螺钉的头端直径大于压缩弹簧的内径,压缩弹簧位于第一螺钉的头端和散热器基板之间。
处理器置于散热器基板和印刷电路板之间,可以通过旋转第一螺钉调节压缩弹簧的弹力,从而压紧散热器基板,处理器和印刷电路板三层结构,以使处理器与印刷电路板的电学接触良好。
根据第四方面,在第四方面第一种可能的实现方式中,该固定组件用于与印刷电路板相连接,印刷电路板上包括处理器插槽,处理器插槽用于与处理器连接;散热器基板上设置有散热片。
印刷电路板设设置的插槽用于方便处理器与印刷电路板的电学连接,固定组件固定在印刷电路板上,第一螺钉与固定组件机械连接,通过调节第一螺钉的高度,从而使压缩弹簧给散热器基板施加压力,从而压紧处理器,使处理器与印刷电路板接触良好。散热器上设置的散热片用于给处理器散热。
根据第四方面或者第四方面第一种可能的实现方式,在第四方面第二种可能的实现 方式中,压缩弹簧的外径大于第一通孔直径。
压缩弹簧的外径大于第一通孔的直径,则可以不使用垫片,使压缩弹簧与散热器基板直接接触,压缩弹簧直接给散热器基板提供压力。
根据第四方面或第四方面以上任一种可能的实现方式,在第四方面第三种可能的实现方式中,压缩弹簧和散热器基板之间还设置有垫片,垫片上设有第二通孔,垫片用于套在第一螺钉上,垫片的直径大于第一通孔直径,压缩弹簧的外径大于第二通孔直径。
使用垫片可以使压缩弹簧给散热器基板提供的压力更均匀。
根据第四方面或第四方面以上任一种可能的实现方式,在第四方面第四种可能的实现方式中,第一螺钉的尾端的直径大于第一通孔直径。
第一螺钉的尾端直径大于第一通孔直径,则可以防止第一螺钉从散热器基板上脱落,方便处理器的拆卸和组装。
根据第四方面或第四方面以上任一种可能的实现方式,在第四方面第五种可能的实现方式中,第一螺钉的尾端还设置有第一限位圈,第一限位圈用于套在第一螺钉上,散热器基板位于压缩弹簧和第一限位圈之间,第一限位圈的内径小于第一螺钉的尾端直径,第一限位圈的外径大于第一通孔直径。
使用第一限位圈,也可以做到第一螺钉从散热器基板上脱落,方便处理器的拆卸和组装。
根据第四方面第五种可能的实现方式,在第四方面第六种可能的实现方式中,散热器基板与第一限位圈相接触的一面还设有第一凹槽,当第一限位圈与散热器基板相接触时,第一限位圈位于第一凹槽内。
其中,第一凹槽的大小大于第一限位圈的大小,这样可以使第一螺钉横的活动空间更大,方便对准和组装。
根据第四方面或第四方面以上任一种可能的实现方式,在第四方面第七种可能的实现方式中,散热器基板上还设置有第三通孔和第四螺钉,第四螺钉的尾端穿过第三通孔,并用于连接固定组件,第四螺钉的头端的直径大于第三通孔的直径。
第四螺钉可以对散热器基板,处理器和印刷电路板起到预固定的作用,方便设备的组装。
根据第四方面第七种可能的实现方式,在第四方面第八种可能的实现方式中,第四螺钉的尾端还设置有第二限位圈,第二限位圈用于套在第四螺钉上,散热器基板位于第四螺钉的头端和第二限位圈之间,第二限位圈的内径小于第四螺钉的尾端直径,第二限位圈的外径大于第三通孔直径。
第二限位圈可以防止第四螺钉从散热器基板上脱落,从而方便设备的组装。
根据第四方面第八种可能的实现方式,在第四方面第九种可能的实现方式中,散热器基板与第二限位圈相接触的一面还设有第四凹槽,当第二限位圈与散热器基板相接触时,第二限位圈位于第四凹槽内。
其中,第四凹槽的大小大于第二限位圈的大小,这样可以使第四螺钉横的活动空间更大,方便对准和组装。
根据第四方面或第四方面以上任一种可能的实现方式,在第四方面第十种可能的实 现方式中,第一螺钉的尾端设有内螺纹,固定组件上设置有第二螺钉,第二螺钉的外螺纹与第一螺钉的内螺纹相适配,第一螺钉通过第二螺钉与固定组件连接。
根据第四方面第十种可能的实现方式,在第四方面第十一种可能的实现方式中,固定组件包括衬板和背板,衬板设置于印刷电路板的上表面,背板设置于印刷电路板的下表面,第二螺钉设置于背板上,第二螺钉用于穿过印刷电路板和衬板与第一螺钉连接。
根据第四方面第十一种可能的实现方式,在第四方面第十二种可能的实现方式中,背板上还包括固定螺钉,固定螺钉用于穿过印刷电路板和衬板,并通过螺母使衬板和印刷电路板连接。
将背板和衬板做成可拆卸的组件,可以做到对不同印刷电路板的适配。使用固定螺钉和螺母将背板和衬板固定在印刷电路板上,然后在作为一个整体完成对处理器的安装。
根据第四方面第十二种可能的实现方式,在第四方面第十三种可能的实现方式中,第四螺钉的尾端设有内螺纹,固定螺钉的外螺纹与第四螺钉的内螺纹相适配,第四螺钉通过固定螺钉与固定组件连接。
根据第四方面第十三种可能的实现方式,在第四方面第十四种可能的实现方式中,结构件还包括盖板,盖板用于承载处理器,并用于将所属处理器固定在散热器基板上。
盖板上有卡扣,通过盖板上的卡扣可以将承载有处理器的盖板卡接在散热器基板上,方便安装过程中的处理器针脚的对准,且可以减少安装过程中处理器的横向移动,减少对处理器针脚或者印刷电路板的损伤风险。
根据第四方面第十四种可能的实现方式,在第四方面第十五种可能的实现方式中,衬板上还设置有销钉,销钉用于穿过盖板和散热器基板上的限位孔,以对处理器进行限位。
使用销钉对盖板和散热器基板进行限位,方便对准,且可以减少安装过程中处理器的横向移动,降低对处理器的针脚的损伤。
根据第四方面或第四方面以上任一种可能的实现方式,在第四方面第十六种可能的实现方式中,结构件包括至少两个第一螺钉和至少两个压缩弹簧。
使用多个压缩弹簧,可以使压力更加均匀,处理器与印刷电路板之间的电学接触会更好。
根据第四方面或第四方面以上任一种可能的实现方式,在第四方面第十七种可能的实现方式中,压缩弹簧的自由高度小于第一螺钉的长度。
压缩弹簧的自由高度小于第一螺钉的长度,则在拆卸状态下,压缩弹簧不会给散热器基板提供压力,更方便设备的安装。当然,压缩弹簧的自由长度也可以高于第一螺钉的长度,则在拆卸状态下,压缩弹簧仍旧会给散热器基板提供一定的压力。
第五方面,本申请提供了一种处理器组件,该组件包括处理器和第四方面或第四方面任一种可能的实现方式中的处理器固定结构件。
第六方面,本申请提供了一种计算机设备,该计算机设备包括第五方面的处理器组件。
根据本申请公开的技术方案,通过一系列的设计优化,使用压缩弹簧取代传统的弹片结构,可以使处理器所受压力更加均匀,处理器与印刷电路板的电学接触更加良好,且设备的安装过程更加方便。
附图说明
图1为现有处理固定结构的分解示意图;
图2是本申请实施例的处理器固定结构的分解示意图;
图3是本申请实施例的处理器固定结构的一个实施例图;
图4是本申请实施例的处理器固定结构中压缩弹簧的一个实施例图;
图5a是本申请实施例的处理器固定结构的一个实施例图;
图5b是本申请实施例的处理器固定结构的一个实施例图;
图5c是本申请实施例的处理器固定结构的一个实施例图;
图6a是本申请实施例的处理器固定结构的一个实施例图;
图6b是本申请实施例的处理器固定结构的一个实施例图;
图6c是本申请实施例的处理器固定结构的一个实施例图;
图6d是本申请实施例的处理器固定结构的一个实施例图;
图6e是本申请实施例的处理器固定结构的一个实施例图;
图7a是本申请实施例的处理器固定结构的一个实施例图;
图7b是本申请实施例的处理器固定结构的一个实施例图;
图8a是本申请实施例的处理器固定结构的一个实施例图;
图8b是本申请实施例的处理器固定结构的一个实施例图。
具体实施方式
本申请实施例提供了一种处理器固定结构、组件及计算机设备,通过对固定在PCB上固定组件以及散热器基板的重新设计,提高对CPU的总压力载荷,使得散热器与CPU之间结合更为紧密来保证持久的散热性能以及CPU与处理器插槽的接触可靠性。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例进行描述。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”或“具有”及其任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
服务器CPU相较于消费级别CPU来说,处理性能要强很多,为此,需要比消费级别CPU更大的封装面积来实现高性能,以英特尔公司的至强XEON系列CPU为例,该系列CPU的针脚数从最初的603到771,再到1155,1356以及2011,甚至是在V5版本中达到3647,如此庞大的针脚数量意味着CPU的面积也会越来越大,如3647针脚的CPU的面积要比2011针脚的CPU面积要大上将近80%,这意味着对3647针脚的CPU总压力载荷也增大到了200-300磅力(lbf),其中,1lbf=4.45牛顿(N),即压力要达到890N至1335N; 而1千克力(kgf)=9.81N,要达到90.7kgf至136kgf。
由于CPU通电工作过程中会产生大量热量,而过高的温度会导致CPU损坏,因此需要通过散热器组件对CPU进行散热。目前虽然CPU的面积大大增加,但是主板上的处理器插槽面积并未有明显的增加,这意味着需要用散热能力更强的散热器对CPU进行散热。另一方面,还由于针脚数量庞大,要保证如此多的针脚与处理器插槽之间的紧密结合,需要对CPU施加足够的压力,CPU在工作时的每pin的工作压力为10到25g力。而目前的用在该3647针脚的CPU的处理器插槽上的相互配合的固定结构以及散热器并不能增加足够多的对CPU的压力。下面对目前的处理器固定结构进行说明。
请参阅图1,图1是目前的处理器固定结构的分解示意图,其中,该处理器固定结构1包括设置在PCB3背面的背板11以及PCB3正面上对应该背板11位置的衬板12,该背板11与衬板12通过螺钉穿过PCB3将该背板11以及衬板12固定在PCB3上,接着,将处理器4固定在盖板13上,再将处理器4以及盖板13形成的组件固定在散热器基板14上,最后将处理器4、盖板13、散热器基板14以及散热器基板14上的散热器15形成的组件安装到处理器插槽31内,其中,该衬板12的两侧设有弹片121,每个弹片121的两端均固定在衬板12上,该弹片121的中部安装有螺钉,该螺钉的尾端穿过该弹片121,散热器基板14上对应该螺钉位置处设有螺母,通过拧该螺母使得螺钉的头端向散热器基板14方向移动,从而对弹片121产生拉力,将PCB3拉向散热器基板14,从而散热器基板14给予处理器4压力,进而使得处理器4与处理器插槽31之间紧密结合。
然而,可以看出,由于采用弹片121方式对PCB板产生拉力,一方面作用力极限有限,难以满足3467针脚的CPU的总压力载荷要求;另一方面,由于采用拉动弹片的方式,并且弹片比弹簧在长期压力作用下弹力衰减更为明显,多次拆装后容易造成弹片121弹性减小甚至消失的情况,通常,对散热器拆装达到6次以上该弹片的弹力便会明显较小。
实施例1
为解决上述问题,本申请提供一种处理器固定结构,请参阅图2,图2是本申请实施例的处理器固定结构的分解示意图,其中,该处理器固定结构2包括散热器基板22,该散热器基板22与处理器4接触。
可选地,该处理器固定结构2还包括固定组件21。固定组件21固定在PCB3上处理器插槽31处,在该固定组件21上安装与处理器4接触的散热器基板22。因此,散热器基板22是固定在在该固定组件21上的。
该散热器基板22的侧边上设有弹性结构件和用于限位所述弹性结构件的限位结构件,该限位结构件的一端穿过所述弹性结构件并与所述固定组件21相连接,所述弹性结构件位于所述限位结构件的另一端与所述散热器基板22之间。
可以看出,由于将弹性结构件设置在散热器基板22上,限位结构件设于该弹性结构件上,并且限位结构件的一端穿过所述弹性结构件并与所述固定组件21相连接,且弹性结构件的位于所述限位结构件的另一端与所述散热器基板22之间,从而可以通过缩短限位结构件的另一端与散热器基板22之间的距离压缩弹性结构件,在通过限位结构件压缩弹性结构件时,弹性结构件会同时给予限位结构件和散热器基板22弹力,而由于限位结构件是穿过弹性结构件并与固定组件相连接的,因此弹性结构件的弹力会转为散热器基 板对CPU的压力,能够提升对CPU的压力来满足增加的总压力载荷。
需要说明的是,本申请实施例中是通过在散热器基板上设置弹性结构件和限位结构件来增强散热器基板对处理器的压力,其中,该弹性结构件的种类有多种,例如弹性结构件为弹片或者压缩弹簧等,当然,只要能够通过缩短所述限位结构件的另一端与散热器基板之间的距离压缩的弹性结构件均可。下面对弹片和压缩弹簧的实现方法分别进行说明。
实施例2
本实施例中,在实施例1的基础上,如图2和图3所示,图3是本申请实施例的处理器固定结构的一个实施例图,其中,弹性结构件为压缩弹簧23,限位结构件为第一螺钉24,该压缩弹簧23套在所述第一螺钉24上,该第一螺钉24的头端的直径大于压缩弹簧23的内径,该压缩弹簧23两端位于第一螺钉23的头端与散热器基板22之间。此情形下,由于第一螺钉24的头端大于压缩弹簧23的内径,因此可以通过拧第一螺钉24来缩短第一螺钉24的头端与散热器基板22之间的距离来达到压缩该压缩弹簧23的目的,使得压缩弹簧23产生的弹力对散热器基板22产生作用。
可选的,散热器基板22上设有第一限位孔221,第一螺钉24的尾端穿过该第一限位孔221与固定组件21相连接,并且第一螺钉24的尾端还设有第一限位圈241,且散热器基板22位于第一限位圈241与压缩弹簧23之间,第一限位圈241的外径大于该第一限位孔221的内径。此结构使得散热器基板22位于第一限位圈241与压缩弹簧23之间,且由于第一限位圈241的外径大于第一限位孔221的内径,能够使得该第一限位圈241能够将第一螺钉24锁在散热器基板22上,而不会从散热器基板22中掉出。
可选的,第一限位圈241与第一螺钉24的尾端卡接,即该第一限位圈241与该第一螺钉24之间是通过卡接的方式连接的,此方式下,第一限位圈24与第一螺钉24之间可以是可拆卸连接的,在使用时,将该第一螺钉24插入到第一限位孔221内,然后在尾端安装第一限位圈24即可。
可选的,当第一限位圈241与所述散热器基板22相接触时,即第一螺钉24的头端与散热器基板22之间的距离达到最大时,此时,该压缩弹簧23的自由高度小于第一螺钉24的头端至所述散热器基板22的距离,此设置不仅未对压缩弹簧23进行预压,而且还给压缩弹簧23在自由状态下与散热器基板22或者第一螺钉24的头端之间预留一定的间隙,从而能够在进行散热器安装时,具体在散热器基板22的一侧安装在固定组件21上时,由于散热器基板22的另一侧翘起,手动无法压下散热器基板22的另一侧,带来的安装不便的问题。
需要说明的是,压缩弹簧的各种参数如图4所示,图4是本申请实施例的处理器固定结构中的压缩弹簧的结构示意图,其中,压缩弹簧23的有效圈为保持节距相等的情况下参与压缩的弹簧圈,该有效圈的圈数用于计算弹簧的刚度。压缩弹簧23的支撑圈为设计在压缩弹簧23的端部的用于支撑或者固定压缩弹簧23的弹簧圈。如图3所示,该压缩弹簧23的簧丝直径为d,该压缩弹簧23的外径为D,即若将该弹簧近似为圆柱体,该圆柱体的直径即该压缩弹簧23的外径,该压缩弹簧23的内径D1的值为D-2d,该压缩弹簧23的中径为D2的值为D-d;若相邻的两个有效圈的相同位置的簧丝之间的距离t为该 压缩弹簧23的节距,若有效圈的圈数为n,支撑圈的圈数为n1,则该压缩弹簧23的高度H为n*t+(n1-0.5)*d。其中,若该压缩弹簧23为同径的压缩弹簧,即不论是有效圈还是支撑圈的内径是相同的,该压缩弹簧23的端部内径为该压缩弹簧23的内径。而若该压缩弹簧23为变径的压缩弹簧,即有效圈的内径不全相同,有效圈的内径与端部内径也不全相同,此情形下,只要保证端部内径小于第一螺钉24的头部的外径即可保证第一螺钉24能够限位该压缩弹簧23的端部。其中,本申请实施例中可以采用同径的压缩弹簧也可以采用变径的压缩弹簧。其中,弹簧的弹力F=ka,其中,k为弹簧刚度,单位为牛顿每毫米(N/mm),a为挠度,a即弹簧压缩量,单位为mm;而弹簧的总长度y=kx+b,其中,y为弹簧总长;b为弹簧自由状态下的长度;k为弹簧刚度;x则为对于弹簧的作用力;其中,k=EI/L;E为弹簧材料的弹性模量(即抵抗单位力变形能力);I为弹簧尺寸构成的几何参数;L则为弹簧总长度。
需要说明的是,载荷F(或T)与变形f(或ч)之间的关系曲线称为弹簧的特性线。弹簧的特性线大致有以下三种类型:(1)直线型;(2)渐增型;(3)渐减型。另外,载荷增量dF(或dT)与变形增量df(或dч)之比,即产生单位变形所需的载荷,称为弹簧的刚度.对于压缩和拉伸弹簧的刚度为:F=dF/df,对扭转弹簧的刚度为:T=dT/dч。
本申请实施例中的单根压缩弹簧23对散热器基板22的压力大约为30kgf,即单根压缩弹簧23产生的弹力将近为294.3N,因此,大约需要4根此压缩弹簧23即可满足对处理器4的总压力载荷。
可选的,散热器基板22与所述第一限位圈241相对的一面上还设有第一凹槽222,当所述第一限位圈241与所述散热器基板22相接触时,即第一螺钉24的头端与散热器基板22之间的距离达到最大时,该第一限位圈241位于所述第一凹槽222内,此设计一方面能够给予第一螺钉24更大的活动空间,从而可以在第一螺钉24上套上自由高度更高的压缩弹簧23来满足不同压力载荷的需求;另一方面,由于该第一限位圈241位于该第一凹槽222内,能够使得在安装散热器基板22时,第一限位圈241不会抵到固定组件,使得安装更加容易。
可选的,由于压缩弹簧23与散热器基板22相接触的是压缩弹簧23的端部,而该端部与散热器基板22的接触面积有限,容易造成对散热器基板22的压力不均衡,因此在第一螺钉24上位于所述散热器基板22与所述压缩弹簧23之间还设有垫片242。该垫片242一方面能够增大压缩弹簧23与散热器基板22之间的接触面积,另一方面能够使得压缩弹簧23的端部与散热器基板22之间不会直接接触,由于散热器基板22一般为铝合金或者是铜等相对软性的材质,压缩弹簧23的端部又比较尖锐,容易在这类材质上挂出金属屑,而该垫片242可以是不锈钢材质的钢片,能够有效解决该问题。
可选的,压缩弹簧23和第一螺钉24的数量均为两个以上,两个以上的所述压缩弹簧23对称分布在所述散热器基板22的两侧;由于处理器4一般为规则的结构,并且在安装散热器结构时,要求散热器基板22对与处理器的触的各个部分的压力是平均的,从而一方面能够使得处理器4与散热器基板22之间的结合更为紧密,另一方面还能减少PCB板的应力。通过对称布局两个以上的压缩弹簧23,使得散热器基板22两侧的下压力相同,从而对处理器4的各部分的压力也相同。如图1所示,图1中在散热器基板22的两侧分别设有两个压缩弹簧23,即两侧分别能够给予散热器基板22将近588.6N的压力。
需要说明的是,除了在两侧分别使用两个压缩弹簧23之外,还可以分别在两侧使用3个压缩弹簧23,如图3、图5a、图5b和图5c所示,图5a是本申请实施例的处理器固定结构的实施例图,图5b是本申请实施例的处理器固定结构的实施例图,图5c是本申请实施例的处理器固定结构的实施例图。可以理解的是,散热器基板22的两侧分别设置三个压缩弹簧23能够给予散热器基板更大的压力,能够满足更大压力需求的处理器4。
可选的,第一螺钉24的尾端内设有内螺纹243,所述固定组件21上对应所述第一螺钉24处设有第二螺钉2121,所述第二螺钉2121的外螺纹与所述第一螺钉的尾端内设有内螺纹243相适配。为了便于第一限位孔221的限位以及便于安装第一限位圈241,该第一螺钉24采用的是在尾端设置内螺纹243的方式,而第一螺钉24整个侧面可以是圆柱形的光滑表面;而由于该第一螺钉24的设计方式,第二螺钉2121则为与该第一螺钉24相适配的具有外螺纹的第二螺钉2121,该第二螺钉2121固定在固定组件21上。由于第一螺钉24的尾端内设有内螺纹而第二螺钉2121上设有外螺纹,因此第一螺钉24也可以是螺母。可以看出,第一螺钉24和第二螺钉2121可以均为螺钉或者螺母,或者一个是螺钉另一个是螺母,只要满足第一螺钉24与第二螺钉2121是能够进行螺栓连接的部件即可。
可选的,请参阅图6a至图6e,图6a是本申请实施例的处理器固定结构的实施例图,图6b是本申请实施例的处理器固定结构的实施例图,图6c是本申请实施例的处理器固定结构的实施例图,图6d是本申请实施例的处理器固定结构的实施例图,图6e是本申请实施例的处理器固定结构的实施例图。其中,散热器基板22的侧边上还设有第三限位孔223,所述第三限位孔223内设有第四螺钉27,所述第四螺钉27的尾端还连接有第二限位圈271,所述第二限位圈271与所述第四螺钉27的头端之间的距离大于所述散热器基板22的厚度。该第三限位孔223和第四螺钉27用于辅助固定散热器基板22,该第四螺钉27的头端与第二限位圈271之间的距离大于散热器基板22的厚度,能够使得在进行散热器组件安装时,在固定组件21上对应该第四螺钉27的螺母或者螺钉不会将该第四螺钉27从散热器基板22上顶掉。
可选的,所述散热器基板22上对应所述第三限位孔223处还设有第四凹槽224,当所述第二限位圈271与所述散热器基板22相接触时,即,第四螺钉27的头端到散热器基板22的距离达到最大,此时,第二限位圈271位于所述第四凹槽224内,此设计能够进一步增加第四螺钉27的活动空间,从而被散热器基板22上的第四螺钉27更不容易被顶掉。
可选的,第二限位圈271与所述第四螺钉27的尾端之间卡接,即该第二限位圈271与该第四螺钉27之间是通过卡接的方式连接的,此方式下,第二限位圈271与第四螺钉27之间是可拆卸连接的,在使用时,将该第四螺钉27插入到第三限位孔224内,然后在尾端安装第二限位圈271即可。
可选的,第三限位孔224位于所述散热器基板22的对角处,此处第四螺钉27配合第三限位孔224主要用于对散热器基板22的初步限位,可以配合在另一对角的卡接结构对整个散热器基板22进行固定,从而不会出现安装散热器组件时,散热器基板22的一侧翘起的情况。
可选的,散热器基板22的另一对角上设有卡接结构,该卡接结构与该第三限位孔224 相配合完成对散热器基板22的固定。其中,该卡接结构包括设置于用于固定处理器4的盖板28上的第一卡扣281、设于散热器基板22上的第二卡扣225以及设置于衬板211上的销钉2111,该第一卡扣281、第二卡扣225以及销钉2111配合完成对散热器基板22与衬板211之间的固定。其中,固定组件21包括衬板211和背板212。
具体的,图6a中在散热器基板22的两侧均已安装在处理器4上的状态,第四螺钉27的状态,可以看出,由于第四螺钉27的内螺纹与固定组件上的第二螺钉2121外螺纹相互配合,将散热器基板22的边角处进行固定。图6b至图6d给出了在使用非正确安装方式的安装下出现散热器基板一侧翘起的情况。其中,图6b和图6c为散热器基板22中的设有卡接结构的一侧已安装在处理4上的状态,可以看出,由于图6b和图6c为设有第四螺钉27的一侧翘起,在安装时,仅需要将该侧下压即可,由于具有第四凹槽224,使得第四螺钉27在散热器基板22的一侧翘起的情况下具有足够的余量防止被第二螺钉2121顶出散热器基板22。图6d和图6e的情况则为散热器基板22中相对于图6b和图6c中的情形的另一侧翘起的情况,即相当于设有第四螺钉27的一侧已经安装而设有卡接结构的一侧还未安装的情形,此情形下,由于另一侧翘起,第四螺钉27与第二螺钉2121之间的距离会明显减小,而由于采用螺栓连接的方式,第四螺钉27与第二螺钉2121之间形成有夹角,无法将第四螺钉27拧到第二螺钉2121上,因此,此处的第四凹槽224配合第二限位圈271即可第四螺钉27足够的空间,使得即便在另一侧翘起的情况下,第二螺钉2121也不会顶到第四螺钉27。从而使得即便未采用正确的安装方式也能将散热器基板22安装至衬板211上。
可选的,固定组件21包括设置在所述PCB3的上表面上且位于所述处理器插槽31外部的衬板211,以及设置在所述PCB3的下表面上且位于所述处理器插槽31背面的背板212,所述与限位结构件相适配的第二螺钉2121设于所述背板212上,所述衬板上设有第四限位孔2112,所述第二螺钉2121穿过所述PCB3和所述第四限位孔2112限位所述衬板211。该衬板211沿处理器插槽31的边缘设置,保证在安装后,处理器4能顺利放入,该第二螺钉2121能够与限位结构件相适配,即,可以是前述的与第一螺钉24相适配的第二螺钉2121,或者还可以是与第三螺钉25相适配的螺母或者螺钉。
可选的,散热器基板22上固定有散热器5,该散热器5可以是被动散热设计,如图3中散热器结构所示,采用散热鳍片配合设置在散热器基板22上的散热导管228进行被动散热的方式;还可以采用风冷散热的方式,即在具有被动散热的基础之上,利用计算机设备(例如服务器)内部形成的风道,并辅以散热风扇,使得热量能够迅速被带出计算机设备(例如服务器);当然,还可以是采用水冷散热的方式,即在散热器基板22上安装水冷头,在计算机设备(例如服务器)机箱内或者外部安装散热部件,该散热部件即金属导管已经风向与该金属导管对应的散热风扇,该水冷头连接有导管,该导管从水冷头到散热部件之间形成循环,该导管内填充有冷却液。
下面对处理器固定的安装过程进行介绍,本申请实施例的处理器固定结构在安装的过程中,首先将衬板211固定在处理器插槽31的四周,将背板安装在PCB3的背面,背板212上的第二螺钉2121穿过衬板211上的第四限位孔2112,接着,将处理器4安装在盖板28上,并将安装后的结构安装在散热器基板22上,接着将散热器基板22连同处理器4以及盖板28对应安装到衬板211上;在固定时,首先通过第四螺钉27对应衬板211 上的对应处的螺钉或者螺母,以及卡接结构对应衬板211上的卡接结构对散热器基板进行初步限位;接着,通过压入以及拧动第一螺钉24、第四螺钉27将散热器基板22的整个固定在衬板211上,完成整个处理器固定结构的安装。安装完成后如图7a至图7b所示,图7a是本申请实施例的处理器固定结构的实施例图,图7b是本申请实施例的处理器固定结构的实施例图。可以看出,图7a中,压缩弹簧23处于压缩状态,会给予第一螺钉24的头端以及散热器基板22弹力,而给予弹力的大小则与压缩弹簧23的压缩程度有关,压缩弹簧23被压缩的越短,则给予第一螺钉24的头端以及散热器基板22弹力越大,相当于给予散热器基板22的下压力越大,使得散热器基板22对处理器的压力越大。从图7b可以看出,第二螺钉2121几乎完全拧入第一螺钉24的内螺纹243内,此时压缩弹簧23的弹力达到最大。此外,由于在第二螺钉2121设置在背板212上,在拧紧第一螺钉24时,会使得背板212、衬板211以及散热器基板22之间固定的更为牢固,能够加强处理器区域的强度。
实施例3
本实施例中,在实施例1的基础上,请参阅图8a和图8b,图8a是本申请实施例的处理器固定结构的一个实施例图,图8b是本申请实施例的处理器固定结构的一个实施例图,其中,限位结构件为第三螺钉25,所述弹性结构件为弹片26,位于所述弹片26中部的曲部上设有第二限位孔261,所述曲部的内侧与所述散热器基板22相对,所述第三螺钉25穿过所述第二限位孔261与所述散热器基板22相连接,第三螺钉25的头部外径大于所述第二限位孔261的内径,所述弹片26的两端分别与所述散热器基板22相连接。此情形下,弹性结构件为中间弯曲的弹片26,且该弯曲的曲部的内侧是与散热器基板22相对的,且第二限位孔261的内径是小于第三螺钉25的头端外径的,因此在该曲部上的第三螺钉25在缩短第三螺钉25的头部与散热器基板22之间的距离时,该弹片26的两端会对散热器基板22产生下压力。
可选的,散热器基板22上对应弹片设有第二凹槽226和位于所述第二凹槽226底部的第三凹槽227,所述弹片26的末端设有第一弯曲部262和第二弯曲部263,所述第一弯曲部262位于所述第三凹槽227内,所述第二弯曲部263位于所述第二凹槽226与第三凹槽227之间的连接处。由于第三凹槽227设置在第二凹槽226的底部,该第二凹槽226和第三凹槽227的边缘会形成阶梯结构,弹片26的两端均分别设有第一弯曲部262和第二弯曲部263,其中,第一弯曲部262是位于第三凹槽227内,第二弯曲部263是位于第二凹槽226和所述第三凹槽227的连接处,该结构一方面通过第三凹槽227给予弹片26一定的形变空间,另一方面第二弯曲部263在弹片26发生压力形变时,对第二凹槽226的底部产生压力。
需要说明的是,位于散热器基板22的侧边且位于对角上设置的第三限位孔223、第四螺钉27、第四螺钉27上的第二限位圈271、第四凹槽224以及位于散热器基板22的另一对角上的卡接结构均与实施例1中对应的结构类似,具体的说明可参见实施例1中的相关说明,此处不再赘述。
下面对处理器固定的安装过程进行介绍,本申请实施例的处理器固定结构在安装的过程中,首先将衬板211固定在处理器插槽31的四周,将背板212安装在PCB3的背面, 背板212上的第二螺钉2121穿过衬板211上的第四限位孔2112,接着,将处理器4安装在盖板28上,并将安装后的结构安装在散热器基板22上,接着将散热器基板22连同处理器4以及盖板28对应安装到衬板211上;在固定过程中,首先通过第四螺钉27对应衬板211上的对应处的螺钉或者螺母,卡接结构对应衬板211上的卡接结构对散热器基板进行初步限位;接着,通过压入以及拧动第一螺钉24、第四螺钉27将散热器基板22的整个固定在衬板211上,完成整个处理器固定结构的安装。
需要说明的是,由于本申请实施例的弹性结构件采用的弹片26,该弹片26有两端,在通过第三螺钉25对弹片的中部施加压力时,该压力会被分散到弹片26的两端,即相当于弹片26的两端对散热器基板22施加下压力,由于弹片26在散热器基板22的两侧各设置一个,因此需要一个弹片26产生弹力达到实施例2中两个或者三个中压缩弹簧23的弹力,即要达到30kgf至45kgf的弹力。
需要说明的是,本申请实施例2中所采用压缩弹簧23可以与本申请实施例3中所采用的弹片26组合使用,例如在散热器基板22的一侧设置两个压缩弹簧23,在相对应的另一侧设置一个具有两个压缩弹簧23弹力的弹片26。又例如,在散热器基板22中的相对的两个侧边采用压缩弹簧23,而在散热器基板22的另两个相对的侧边则采用弹片26。具体的是仅采用压缩弹簧23还是仅采用弹片26还是同时采用压缩弹簧23和弹片26可以视具体的安装环境而定,此处不作限定。
本申请实施例还提供一种组件该组件包括处理器、散热器以及上述实施例1至实施例3任一项所述的处理器固定结构。
可选的,该处理器可以是高级精简指令集机器(Advanced RISC Machine,简称ARM)处理器。
本申请提供一种计算机设备,该计算机设备包括上述的处理器固定结构、处理器。该处理器固定结构和该处理器均为本申请实施例中上述的处理器固定结构和处理器;该处理器固定结构和该处理器的连接关系和固定关系也参见上述。
可选地,该该计算机设备还包括散热器。该散热器均为本申请实施例中上述的散热器;该散热器分别与处理器固定结构和该处理器的连接关系和固定关系也参见上述。
可选地,该计算机设备可以为X86服务器。该计算机设备的处理器可以为支持X86指令集的处理器。
可选地,该计算机设备可以为高级精简指令集机器ARM服务器。该计算机设备的处理器可以为ARM处理器。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示 的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的和范围。

Claims (20)

  1. 一种处理器固定结构件,其特征在于,所述结构件用于将处理器固定在印刷电路板上;
    所述结构件包括散热器基板和固定组件,所述散热器基板上设置有压缩弹簧和第一螺钉,所述散热器基板上设有第一通孔,所述第一螺钉的尾端穿过所述压缩弹簧和所述第一通孔,并用于连接所述固定组件,所述第一螺钉的头端直径大于所述压缩弹簧的内径,所述压缩弹簧位于所述第一螺钉的头端和所述散热器基板之间。
  2. 根据权利要求1所述的结构件,其特征在于,所述固定组件用于与印刷电路板相连接,所述印刷电路板上包括处理器插槽,所述处理器插槽用于与所述处理器连接;所述散热器基板上设置有散热片。
  3. 根据权利要求1或2所述的结构件,其特征在于,所述压缩弹簧的外径大于所述第一通孔直径。
  4. 根据权利要求1-3任一项所述的结构件,其特征在于,所述压缩弹簧和所述散热器基板之间还设置有垫片,所述垫片上设有第二通孔,所述垫片用于套在所述第一螺钉上,所述垫片的直径大于所述第一通孔直径,所述压缩弹簧的外径大于所述第二通孔直径。
  5. 根据权利要求1-4任一项所述的结构件,其特征在于,所述第一螺钉的尾端的直径大于所述第一通孔直径。
  6. 根据权利要求1-5任一项所述的结构件,其特征在于,所述第一螺钉的尾端还设置有第一限位圈,所述第一限位圈用于套在所述第一螺钉上,所述散热器基板位于所述压缩弹簧和所述第一限位圈之间,所述第一限位圈的内径小于所述第一螺钉的尾端直径,所述第一限位圈的外径大于所述第一通孔直径。
  7. 根据权利要求6所述的结构件,其特征在于,所述散热器基板与所述第一限位圈相接触的一面还设有第一凹槽,当所述第一限位圈与所述散热器基板相接触时,所述第一限位圈位于所述第一凹槽内。
  8. 根据权利要求1-7任一项所述的结构件,其特征在于,所述散热器基板上还设置有第三通孔和第四螺钉,所述第四螺钉的尾端穿过所述第三通孔,并用于连接所述固定组件,所述第四螺钉的头端的直径大于所述第三通孔的直径。
  9. 根据权利要求8所述的结构件,其特征在于,所述第四螺钉的尾端还设置有第二限位圈,所述第二限位圈用于套在所述第四螺钉上,所述散热器基板位于所述第四螺钉的头端和所述第二限位圈之间,所述第二限位圈的内径小于所述第四螺钉的尾端直径,所述第二限位圈的外径大于所述第三通孔直径。
  10. 根据权利要求9所述的结构件,其特征在于,所述散热器基板与所述第二限位圈相接触的一面还设有第四凹槽,当所述第二限位圈与所述散热器基板相接触时,所述第二限位圈位于所述第四凹槽内。
  11. 根据权利要求1-10任一项所述的结构件,其特征在于,所述第一螺钉的尾端设有内螺纹,所述固定组件上设置有第二螺钉,所述第二螺钉的外螺纹与所述第一螺钉的内螺纹相适配,所述第一螺钉通过所述第二螺钉与所述固定组件连接。
  12. 根据权利要求11所述的结构件,其特征在于,所述固定组件包括衬板和背板,所述衬板设置于所述印刷电路板的上表面,所述背板设置于所述印刷电路板的下表面,所述第二螺钉设置于所述背板上,所述第二螺钉用于穿过所述印刷电路板和所述衬板与所述第一螺钉连接。
  13. 根据权利要求12所述的结构件,其特征在于,所述背板上还包括固定螺钉,所述固定螺钉用于穿过所述印刷电路板和所述衬板,并通过螺母使所述衬板和所述印刷电路板连接。
  14. 根据权利要求13所述的结构件,其特征在于,所述第四螺钉的尾端设有内螺纹,所述固定螺钉的外螺纹与所述第四螺钉的内螺纹相适配,所述第四螺钉通过所述固定螺钉与所述固定组件连接。
  15. 根据权利要求14所述的结构件,其特征在于,所述结构件还包括盖板,所述盖板用于承载处理器,并用于将所属处理器固定在所述散热器基板上。
  16. 根据权利要求15所述的结构件,其特征在于,所述衬板上还设置有销钉,所述销钉用于穿过所述盖板和所述散热器基板上的限位孔,以对所述处理器进行限位。
  17. 根据权利要求1-16任一项所述的结构件,其特征在于,所述结构件包括至少两个所述第一螺钉和至少两个所述压缩弹簧。
  18. 根据权利要求1-17任一项所述的结构件,其特征在于,所述压缩弹簧的自由高度小于所述第一螺钉的长度。
  19. 一种处理器组件,其特征在于,所述组件包括处理器和权利要求1至18中任一项所述的处理器固定结构件。
  20. 一种计算机设备,其特征在于,所述计算机设备包括权利要求19所述的处理器组件。
PCT/CN2018/079161 2017-07-05 2018-03-15 一种处理器固定结构件、组件及计算机设备 WO2019007102A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197038776A KR102320567B1 (ko) 2017-07-05 2018-03-15 프로세서 고정 구조 부재 및 컴포넌트 및 컴퓨터 디바이스
JP2019572598A JP6921248B2 (ja) 2017-07-05 2018-03-15 プロセッサ、アセンブリ、及びコンピュータデバイスを固定するための機械部品
US16/719,030 US11133239B2 (en) 2017-07-05 2019-12-18 Mechanical part for fastening processor, assembly, and computer device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710543641.5 2017-07-05
CN201710543641.5A CN107577285B (zh) 2017-07-05 2017-07-05 一种处理器固定结构、组件及计算机设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/719,030 Continuation US11133239B2 (en) 2017-07-05 2019-12-18 Mechanical part for fastening processor, assembly, and computer device

Publications (1)

Publication Number Publication Date
WO2019007102A1 true WO2019007102A1 (zh) 2019-01-10

Family

ID=61049516

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/076899 WO2019007081A1 (zh) 2017-07-05 2018-02-14 一种处理器固定结构、组件及计算机设备
PCT/CN2018/079161 WO2019007102A1 (zh) 2017-07-05 2018-03-15 一种处理器固定结构件、组件及计算机设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076899 WO2019007081A1 (zh) 2017-07-05 2018-02-14 一种处理器固定结构、组件及计算机设备

Country Status (5)

Country Link
US (1) US11133239B2 (zh)
JP (1) JP6921248B2 (zh)
KR (1) KR102320567B1 (zh)
CN (2) CN108710409B (zh)
WO (2) WO2019007081A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220078919A1 (en) * 2019-04-15 2022-03-10 Hewlett-Packard Development Company, L.P. Printed circuit boards with electrical contacts and solder joints of higher melting temperatures

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108710409B (zh) 2017-07-05 2022-02-11 超聚变数字技术有限公司 一种处理器固定结构件、组件及计算机设备
USD917402S1 (en) * 2017-08-22 2021-04-27 Foxconn Interconnect Technology Limited Protective cap
US11291115B2 (en) * 2018-03-30 2022-03-29 Intel Corporation Server microprocessor carrier with guiding alignment anti-tilt and automatic thermal interface material separation features for use in land grid array sockets
US11387163B2 (en) 2018-03-30 2022-07-12 Intel Corporation Scalable debris-free socket loading mechanism
US11449111B2 (en) 2018-03-30 2022-09-20 Intel Corporation Scalable, high load, low stiffness, and small footprint loading mechanism
US11296009B2 (en) 2018-03-30 2022-04-05 Intel Corporation Method and apparatus for detaching a microprocessor from a heat sink
JP7328213B2 (ja) * 2018-03-30 2023-08-16 古河電気工業株式会社 ヒートシンク
US11557529B2 (en) 2018-03-30 2023-01-17 Intel Corporation Mechanism combining fastener captivation and assembly tilt control for microprocessor thermal solutions
CN109037177B (zh) * 2018-07-31 2024-08-20 北京比特大陆科技有限公司 一种水冷散热器及计算设备
CN110838632B (zh) * 2018-08-17 2021-05-25 富士康(昆山)电脑接插件有限公司 电连接器组件及其限位件
CN109508078B (zh) * 2018-12-25 2022-02-22 番禺得意精密电子工业有限公司 调整组件
CN110045803B (zh) 2019-03-29 2021-05-18 华为技术有限公司 一种散热装置及服务器
CN112086800B (zh) * 2019-06-12 2024-08-16 富顶精密组件(深圳)有限公司 电连接器组合及其扣持装置与扣持件
CN112787118A (zh) * 2019-11-08 2021-05-11 泰科电子(上海)有限公司 背板组件和电子装置
CN111124069A (zh) * 2019-12-06 2020-05-08 苏州浪潮智能科技有限公司 一种服务器、主板及cpu安装固定加强模组
CN111148349B (zh) * 2019-12-26 2022-06-24 海光信息技术股份有限公司 处理器安装装置及方法
CN113675154A (zh) * 2020-05-13 2021-11-19 华为技术有限公司 芯片模块及电子设备
CN111653298A (zh) * 2020-06-12 2020-09-11 湖南鹏瑞信息技术有限公司 一种计算机固态硬盘
CN112000200A (zh) * 2020-09-18 2020-11-27 成都海光集成电路设计有限公司 处理器固定装置
CN112612344B (zh) * 2020-12-01 2023-03-14 苏州浪潮智能科技有限公司 一种应用于amd平台的cpu散热器安装结构
US11330738B1 (en) * 2020-12-23 2022-05-10 Xilinx, Inc. Force balanced package mounting
US20210193558A1 (en) * 2021-02-26 2021-06-24 Intel Corporation Technologies for processor loading mechanisms
US11758690B2 (en) * 2021-06-18 2023-09-12 Nanning Fulian Fugui Precision Industrial Co., Ltd. Heat-dissipation device allowing easy detachment from heat-generating component
CN115621780A (zh) * 2021-07-13 2023-01-17 富士康(昆山)电脑接插件有限公司 电连接器组件及其扣持组件
CN114158185B (zh) * 2022-02-10 2022-05-06 宁波均联智行科技股份有限公司 一种车机
TWI814410B (zh) * 2022-05-31 2023-09-01 奇鋐科技股份有限公司 散熱扣具結構

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101472440A (zh) * 2007-12-27 2009-07-01 富准精密工业(深圳)有限公司 散热装置
CN202738355U (zh) * 2012-07-23 2013-02-13 苏州泽海电子塑胶有限公司 一种散热器
CN205596496U (zh) * 2016-03-15 2016-09-21 深圳Tcl数字技术有限公司 散热装置及电视机
CN106684059A (zh) * 2017-01-20 2017-05-17 联想(北京)有限公司 一种芯片的散热器的锁紧装置及散热器
CN107577285A (zh) * 2017-07-05 2018-01-12 华为技术有限公司 一种处理器固定结构、组件及计算机设备

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2729045B1 (fr) * 1994-12-29 1997-01-24 Bull Sa Procede et dispositif de fixation de deux elements tels qu'un radiateur de circuit integre a une carte de circuits imprimes
US5757621A (en) * 1996-06-06 1998-05-26 Lucent Technologies Inc. Heat sink assembly employing spring-loaded standoffs
TW346209U (en) * 1996-08-29 1998-11-21 Chuan Hsiang Co Ltd Elastic fastener for radiator of computer CPU
US20030175091A1 (en) * 2000-03-10 2003-09-18 Aukzemas Thomas V. Floating captive screw
US6549410B1 (en) * 2001-11-20 2003-04-15 Hewlett-Packard Company Heatsink mounting system
TW578981U (en) * 2001-11-30 2004-03-01 Foxconn Prec Components Co Ltd Heat dissipating assembly
US6545879B1 (en) 2002-01-10 2003-04-08 Tyco Electronics Corporation Method and apparatus for mounting a lidless semiconductor device
US6480387B1 (en) * 2002-03-14 2002-11-12 Hon Hai Precision Ind. Co., Ltd. Heat sink assembly
US20050117305A1 (en) * 2003-12-01 2005-06-02 Ulen Neal E. Integrated heat sink assembly
CN100347637C (zh) * 2004-10-09 2007-11-07 华硕电脑股份有限公司 电路板辅助支撑结构
CN2736926Y (zh) * 2004-10-09 2005-10-26 鸿富锦精密工业(深圳)有限公司 散热器固定装置
US7450400B2 (en) 2004-12-08 2008-11-11 Hewlett-Packard Development Company, L.P. Electronic system and method
US7193853B2 (en) * 2005-02-04 2007-03-20 Quanta Computer Inc. Heat sink protecting retention module
KR20060107046A (ko) * 2005-04-07 2006-10-13 프로텍(주) 컴퓨터 중앙처리장치의 방열장치
US20060245165A1 (en) * 2005-04-29 2006-11-02 Fang-Cheng Lin Elastic secure device of a heat radiation module
CN2810112Y (zh) * 2005-05-20 2006-08-23 富准精密工业(深圳)有限公司 散热装置
US7342796B2 (en) * 2005-06-03 2008-03-11 Southco, Inc. Captive shoulder nut assembly
TW200706098A (en) * 2005-07-26 2007-02-01 Asustek Comp Inc An electronic device with sliding type heatsink
WO2007055625A1 (en) 2005-11-11 2007-05-18 Telefonaktiebolaget Lm Ericsson (Publ) Cooling assembly
CN100499978C (zh) * 2006-03-29 2009-06-10 富准精密工业(深圳)有限公司 散热器固定装置
TW200823632A (en) * 2006-11-17 2008-06-01 Compal Electronics Inc Electronic assembly and thermal module thereof
US7609522B2 (en) * 2006-12-01 2009-10-27 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat sink assembly
US7474530B2 (en) * 2007-01-10 2009-01-06 Sun Microsystems, Inc. High-load even pressure heatsink loading for low-profile blade computer applications
US20080310118A1 (en) * 2007-06-18 2008-12-18 Dell Products L.P. CPU Heat Sink Mounting Method And Apparatus
US7667970B2 (en) * 2007-12-27 2010-02-23 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat sink assembly for multiple electronic components
US7606031B2 (en) * 2007-12-27 2009-10-20 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat dissipating device
CN101636064B (zh) * 2008-07-23 2012-06-13 富准精密工业(深圳)有限公司 散热器扣具及散热装置
CN201263286Y (zh) * 2008-08-08 2009-06-24 鸿富锦精密工业(深圳)有限公司 散热器固定组合
JP5163543B2 (ja) 2009-03-03 2013-03-13 富士通株式会社 プリント基板ユニット
CN101848623B (zh) * 2009-03-25 2013-06-05 富准精密工业(深圳)有限公司 散热装置
CN201569963U (zh) * 2009-11-06 2010-09-01 研祥智能科技股份有限公司 一种计算机散热器固定装置
CN201654600U (zh) * 2009-12-24 2010-11-24 上海网环信息科技有限公司 一种通过弹簧实现cpu和外壳充分接触的工业电脑
CN201654655U (zh) * 2009-12-30 2010-11-24 北京市九州风神科贸有限责任公司 一种散热器扣合装置
US8526185B2 (en) * 2010-10-18 2013-09-03 Cisco Technology, Inc. Collar for electrically grounding a heat sink for a computer component
CN102449759B (zh) * 2011-09-30 2013-08-28 华为技术有限公司 一种散热器
CN102438432A (zh) * 2011-11-15 2012-05-02 华为终端有限公司 芯片散热装置及电子设备
TW201334678A (zh) * 2012-02-15 2013-08-16 Hon Hai Prec Ind Co Ltd 散熱器組件
JP5983032B2 (ja) * 2012-05-28 2016-08-31 富士通株式会社 半導体パッケージ及び配線基板ユニット
CN103488258A (zh) * 2012-06-14 2014-01-01 鸿富锦精密工业(深圳)有限公司 散热器固定装置
CN204155922U (zh) * 2014-09-10 2015-02-11 番禺得意精密电子工业有限公司 散热器固定装置组合
EP3198635B1 (en) 2014-09-27 2020-04-15 INTEL Corporation Multi-chip self adjusting cooling solution
CN105826620A (zh) * 2015-01-06 2016-08-03 中兴通讯股份有限公司 电源控制装置及方法
US9521757B2 (en) * 2015-01-13 2016-12-13 Dell Products L.P. Systems and methods for loading of a component
CN204425856U (zh) * 2015-03-04 2015-06-24 联想(北京)有限公司 一种固定装置及电子设备
TW201704711A (zh) 2015-07-31 2017-02-01 Tai-Sol Electronics Co Ltd 散熱模組扣持裝置及具有扣持裝置的散熱模組
CN106292916A (zh) * 2016-08-10 2017-01-04 天津润科金属制品销售有限公司 一种电脑散热装置的弹簧螺丝固定结构
US10103086B2 (en) * 2016-12-16 2018-10-16 Ablecom Technology Inc. Fixing frame for heat sink
CN207459230U (zh) * 2017-10-16 2018-06-05 富顶精密组件(深圳)有限公司 电连接器组件
CN110838632B (zh) * 2018-08-17 2021-05-25 富士康(昆山)电脑接插件有限公司 电连接器组件及其限位件
US10882147B2 (en) * 2018-10-01 2021-01-05 Hewlett Packard Enterprise Development Lp Heatsink with retention mechanisms
TWM606322U (zh) * 2019-04-12 2021-01-11 英屬開曼群島商鴻騰精密科技股份有限公司 晶片連接器組合及其預載支撐結構
US20200335432A1 (en) * 2019-04-18 2020-10-22 Intel Corporation Chip mounting techniques to reduce circuit board deflection
CN112000531A (zh) * 2020-07-29 2020-11-27 苏州浪潮智能科技有限公司 一种实现cpu装配异常告警及协同开机的装置与方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101472440A (zh) * 2007-12-27 2009-07-01 富准精密工业(深圳)有限公司 散热装置
CN202738355U (zh) * 2012-07-23 2013-02-13 苏州泽海电子塑胶有限公司 一种散热器
CN205596496U (zh) * 2016-03-15 2016-09-21 深圳Tcl数字技术有限公司 散热装置及电视机
CN106684059A (zh) * 2017-01-20 2017-05-17 联想(北京)有限公司 一种芯片的散热器的锁紧装置及散热器
CN107577285A (zh) * 2017-07-05 2018-01-12 华为技术有限公司 一种处理器固定结构、组件及计算机设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220078919A1 (en) * 2019-04-15 2022-03-10 Hewlett-Packard Development Company, L.P. Printed circuit boards with electrical contacts and solder joints of higher melting temperatures

Also Published As

Publication number Publication date
KR20200014843A (ko) 2020-02-11
JP6921248B2 (ja) 2021-08-18
KR102320567B1 (ko) 2021-11-01
CN108710409A (zh) 2018-10-26
US11133239B2 (en) 2021-09-28
JP2020527783A (ja) 2020-09-10
WO2019007081A1 (zh) 2019-01-10
CN108710409B (zh) 2022-02-11
US20200126889A1 (en) 2020-04-23
CN107577285A (zh) 2018-01-12
CN107577285B (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
WO2019007102A1 (zh) 一种处理器固定结构件、组件及计算机设备
US10170391B2 (en) Backside initiated uniform heat sink loading
US9382938B2 (en) Sprung washer and fixing device
US7436673B2 (en) Heat sink fixing assembly
US9836098B2 (en) Method and system for attachment of a heat sink to a circuit board
CN101998796A (zh) 扣具、应用该扣具的散热装置和电子装置
US11229114B2 (en) Heat dissipation structure and heat dissipation method
US20090229790A1 (en) Radiating fin assembly for thermal module
US7372702B2 (en) Heat spreader
US9257362B2 (en) Heat dissipation module with heat pipe
JP3140542U (ja) ヒートシンク
US7841388B2 (en) Radiating fin assembly for thermal module
US20200236805A1 (en) Securing unit and base seat securing structure
JP3174455U (ja) 放熱モジュールの固定構造
JP3153773U (ja) 放熱モジュール用固定部材
JP3195578U (ja) 電子機器の放熱装置
US9119328B2 (en) Electronic assembly with flexible fixtures for spreading load
US12089376B2 (en) Heat dissipation device and server including a fixing bracket and heat sinks
CN115097916B (zh) 一种服务器及其免背板安装散热器
CN216905789U (zh) 一种用于电子设备上的散热装置以及电子设备
CN214846516U (zh) 一种散热支架及其散热器
JP3102270U (ja) 放熱部材固着装置
WO2014147681A1 (ja) 実装基板、押圧部材、電子機器
CN109037176A (zh) 一种cpu散热器安装座
US20110017893A1 (en) Adapter bracket for a cooler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828176

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019572598

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197038776

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828176

Country of ref document: EP

Kind code of ref document: A1