WO2019006770A1 - 无人机充电方法及装置 - Google Patents

无人机充电方法及装置 Download PDF

Info

Publication number
WO2019006770A1
WO2019006770A1 PCT/CN2017/092297 CN2017092297W WO2019006770A1 WO 2019006770 A1 WO2019006770 A1 WO 2019006770A1 CN 2017092297 W CN2017092297 W CN 2017092297W WO 2019006770 A1 WO2019006770 A1 WO 2019006770A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging device
drone
shared charging
location
shared
Prior art date
Application number
PCT/CN2017/092297
Other languages
English (en)
French (fr)
Inventor
杨顺伟
Original Assignee
杨顺伟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杨顺伟 filed Critical 杨顺伟
Publication of WO2019006770A1 publication Critical patent/WO2019006770A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and an apparatus for charging a drone.
  • the drone is referred to as the drone, and is generally operated by using the radio remote control device and the drone's own program control device.
  • UAVs are widely used in film and television shooting, street scene shooting, remote sensing mapping, express delivery, power inspection, crop monitoring, environmental monitoring, and post-disaster rescue.
  • Embodiments of the present invention provide a method and apparatus for charging a drone that can solve the problem of insufficient power of the drone.
  • an embodiment of the present invention provides a method for charging a drone, including:
  • the drone is controlled to fly in accordance with the flight path of the drone.
  • the method before the controlling the drone to fly according to the flight path of the drone, the method further includes:
  • the controlling the drone to fly according to the flight path of the drone includes:
  • the drone is controlled to fly according to the flight path of the drone.
  • the searching for the shared charging device includes:
  • a shared charging device that finds a distance from the current location of the drone that is less than a preset value.
  • the searching for a shared charging with a distance between a current location of the drone and a preset value is less than a preset value Devices, including:
  • determining the location of the target shared charging device based on the found shared charging device include:
  • determining a shared charging device that is closest to the distance between the drones as a location of the target shared charging device determining a shared charging device that is closest to the distance between the drones as a location of the target shared charging device
  • a shared charging device having the smallest charging waiting time is determined as the position of the target shared charging device.
  • an embodiment of the present invention provides a drone charging apparatus, including:
  • a searching module configured to find a shared charging device when detecting that the current power of the drone is lower than a preset value
  • a determining module configured to determine a location of the target shared charging device based on the found shared charging device
  • Generating a module configured to generate a drone flight path based on a location of the target shared charging device, where a destination of the UAV flight route is a location of the target shared charging device;
  • a control module configured to control the drone to fly according to the flight path of the drone.
  • the device further includes:
  • a calculation module configured to calculate a power consumption required by the drone to fly from a current location to a location of the target shared charging device according to the flight path of the drone;
  • the control module includes:
  • control submodule configured to control the drone to fly according to the flight path of the drone when the power consumption is less than or equal to the current power.
  • the searching module includes:
  • the lookup submodule is configured to find a shared charging device that is less than a preset value from a current location of the drone.
  • the searching module further includes:
  • a sending submodule configured to send the current location to the server, so that the server searches for a shared charging device that is less than the preset value from the drone based on the current location;
  • a receiving submodule configured to receive attribute information of each shared charging device sent by the server, where the attribute information of the shared charging device includes: location information of the shared charging device, and distance information between the charging device and the drone , charging waiting time information, any one or any combination of corresponding drone flight lines.
  • the determining module when the plurality of the shared charging devices are found, includes:
  • a first determining submodule configured to determine, in the plurality of shared charging devices, a shared charging device that is closest to the distance between the drones as a location of the target shared charging device;
  • a second determining submodule configured to determine, in the plurality of shared charging devices, a corresponding drone flying The shortest shared charging device of the line, as the location of the target shared charging device; or,
  • a third determining submodule configured to determine, in the plurality of shared charging devices, a shared charging device having the lowest power consumption required by the corresponding UAV flight line as the location of the target shared charging device;
  • a fourth determining submodule configured to determine, in the plurality of shared charging devices, a shared charging device with a minimum charging waiting time as the location of the target shared charging device.
  • the unmanned aerial vehicle charging method and device finds a shared charging device when detecting that the current power of the drone is lower than a preset value; determining the target shared charging based on the found shared charging device a location of the device; generating a drone flight path based on the location of the target shared charging device, the destination of the UAV flight route being a location of the target shared charging device; controlling the drone according to the The drone flight route is flying.
  • the drone is in flight or in the prohibited state, when the power of the drone is low, intelligently acquire the surrounding drone sharing charging device, and plan the flight route of the drone to realize the low power of the drone. It can be charged intelligently, conveniently and in time.
  • FIG. 1 is a schematic flow chart of a method for charging a drone according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of another method for charging a drone according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a charging device for a drone according to an embodiment of the present invention.
  • FIG. 4 is another schematic structural view of a drone charging device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a search module according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a determining module according to an embodiment of the present invention.
  • FIG. 7 is another schematic structural diagram of a drone charging device 700 according to an embodiment of the present invention.
  • An embodiment of the present invention provides a method for charging a drone. As shown in FIG. 1, the method includes:
  • the preset value may be a preset default value, for example, 20% of the total power; or may be a power threshold set in real time by a mobile terminal or a server that has not established a connection, for example, when the drone is about to proceed When flying over long distances, it can be set to 40% of the total power to meet the power during long-distance flight; it can also be intelligently calculated based on the power consumption of the flight path of the drone to meet the flight process.
  • the drones are always powered.
  • the shared charging device may be a shared charging device dedicated to the drone, a shared charging device dedicated to the current drone model, and a shared charging device common to all types of mobile devices.
  • the embodiment of the invention is not limited.
  • the shared charging device around the current location of the drone can be searched.
  • the shared charging device is used as the target shared charging device; if multiple shared charging devices are found, according to
  • the preset condition determines the shared charging device.
  • the preset condition may be: a shared charging device that is closest to the current position of the drone, or a shared charging device that has the shortest flight line, and may also be a shared charging device that consumes the least amount of electricity during the flight, and the present invention
  • the embodiment is not limited.
  • the target shared charging device may be determined by the drone in the plurality of shared charging devices found, or the plurality of shared charging devices that the drone finds may be sent to the drone. After the mobile terminal or the server is connected, the mobile terminal or the server determines the target shared charging device in the plurality of shared charging devices, which is not limited in the embodiment of the present invention.
  • the destination of the UAV flight route is the location of the target shared charging device.
  • the UAV may generate a UAV flight route based on the location of the target shared charging device; or the UAV may transmit the target shared charging device to the mobile terminal that has established a connection with the UAV or After the server, the mobile terminal or the server generates a flight route of the drone, which is not limited in the embodiment of the present invention.
  • the unmanned aerial vehicle charging method and device finds a shared charging device when detecting that the current power of the drone is lower than a preset value; determining the target shared charging based on the found shared charging device a location of the device; generating a drone flight path based on the location of the target shared charging device, the destination of the UAV flight route being a location of the target shared charging device; controlling the drone according to the The drone flight route is flying.
  • the drone is in flight or in the prohibited state, when the power of the drone is low, intelligently acquire the surrounding drone sharing charging device, and plan the flight route of the drone to realize the low power of the drone. It can be charged intelligently, conveniently and in time.
  • Another embodiment of the present invention provides a method for charging a drone. As shown in FIG. 2, the method includes:
  • the preset value may be a preset default value, for example, 20% of the total power; or may be a power threshold set in real time by a mobile terminal or a server that has not established a connection, for example, when the drone is about to proceed When flying over long distances, it can be set to 40% of the total power to meet the power during long-distance flight; it can also be intelligently calculated based on the power consumption of the flight path of the drone to meet the flight process.
  • the drones are always powered.
  • the shared charging device may be a shared charging device dedicated to the drone, a shared charging device dedicated to the current drone model, and a shared charging device common to all types of mobile devices.
  • the embodiment of the invention is not limited.
  • step 201 may be replaced by: the drone transmitting the current location to the server, so that the server searches for the distance between the drone and the drone based on the current location is less than the preset value. Sharing the charging device; and receiving attribute information of each shared charging device sent by the server, where The attribute information of the shared charging device includes: location information of the shared charging device, distance information with the drone, charging waiting time information, and any one or any combination of corresponding drone flight lines.
  • the shared charging device around the current location of the drone can be searched.
  • the shared charging device is used as the target shared charging device; if multiple shared charging devices are found, according to
  • the preset condition determines the shared charging device.
  • the preset condition may be: a shared charging device that is closest to the current position of the drone, or a shared charging device that has the shortest flight line, and may also be a shared charging device that consumes the least amount of electricity during the flight, and the present invention
  • the embodiment is not limited.
  • step 202 may be: determining, in the plurality of shared charging devices, a shared charging device that is closest to the distance between the drones as a location of the target shared charging device.
  • step 202 may be: determining, in the plurality of shared charging devices, a shared charging device that has the shortest flight path of the unmanned aircraft as the location of the target shared charging device.
  • the step 202 may be: determining, in the plurality of shared charging devices, a shared charging device with the lowest power consumption required by the corresponding UAV flight line as the location of the target shared charging device.
  • step 202 may be: determining, in the plurality of shared charging devices, a shared charging device having a minimum charging waiting time as the location of the target shared charging device.
  • the destination of the UAV flight route is the location of the target shared charging device.
  • the UAV may generate a UAV flight route based on the location of the target shared charging device; or the UAV may transmit the target shared charging device to the mobile terminal that has established a connection with the UAV or After the server, the mobile terminal or the server generates a flight route of the drone, which is not limited in the embodiment of the present invention.
  • the distance between the unmanned aerial vehicle and the target shared charging device, the flight distance Calculate the required power consumption by any one or any combination of environmental factors (such as wind disturbance, air pressure interference, etc.).
  • the unmanned aerial vehicle charging method and device finds a shared charging device when detecting that the current power of the drone is lower than a preset value; determining the target shared charging based on the found shared charging device a location of the device; generating a drone flight path based on the location of the target shared charging device, the destination of the UAV flight route being a location of the target shared charging device; controlling the drone according to the The drone flight route is flying.
  • the drone is in flight or in the prohibited state, when the power of the drone is low, intelligently acquire the surrounding drone sharing charging device, and plan the flight route of the drone to realize the low power of the drone. It can be charged intelligently, conveniently and in time.
  • the device includes:
  • the searching module 31 is configured to search for a shared charging device when detecting that the current power of the drone is lower than a preset value
  • a determining module 32 configured to determine a location of the target shared charging device based on the found shared charging device
  • a generating module 33 configured to generate a UAV flight route based on a location of the target shared charging device, where the destination of the UAV flight route is a location of the target shared charging device;
  • the control module 34 is configured to control the drone to fly according to the flight path of the drone.
  • the device further includes:
  • the calculation module 41 is configured to calculate a power consumption required by the drone to fly from the current location to the location of the target shared charging device according to the flight path of the drone;
  • the control module 34 includes:
  • the control sub-module 341 is configured to control the drone to fly according to the flight path of the drone when the power consumption is less than or equal to the current power.
  • the searching module 31 includes:
  • the finding sub-module 311 is configured to search for a distance from the current location of the drone that is less than a preset value. Shared charging device.
  • the search module further includes:
  • the sending sub-module 312 is configured to send the current location to the server, so that the server searches for a shared charging device that is less than the preset value from the drone based on the current location;
  • the receiving sub-module 313 is configured to receive attribute information of each shared charging device sent by the server, where the attribute information of the shared charging device includes: location information of the shared charging device, and a distance from the drone Information, charging waiting time information, any one or any combination of corresponding drone flight lines.
  • the determining module 32 when the plurality of the shared charging devices are found, includes:
  • a first determining sub-module 321 configured to determine, in the plurality of shared charging devices, a shared charging device that is closest to the distance between the drones as a location of the target shared charging device;
  • a second determining sub-module 322, configured to determine, in the plurality of shared charging devices, a shared charging device with a shortest flight path of the unmanned aircraft as a location of the target shared charging device;
  • a third determining sub-module 323, configured to determine, in the plurality of shared charging devices, a shared charging device having the lowest power consumption required by the corresponding UAV flight line as the location of the target shared charging device; or ,
  • the fourth determining sub-module 324 is configured to determine, in the plurality of shared charging devices, a shared charging device with a minimum charging waiting time as the location of the target shared charging device.
  • the unmanned aerial vehicle charging method and device finds a shared charging device when detecting that the current power of the drone is lower than a preset value; determining the target shared charging based on the found shared charging device a location of the device; generating a drone flight path based on the location of the target shared charging device, the destination of the UAV flight route being a location of the target shared charging device; controlling the drone according to the The drone flight route is flying.
  • the drone is in flight or in the prohibited state, when the power of the drone is low, intelligently acquire the surrounding drone sharing charging device, and plan the flight route of the drone to realize the low power of the drone. It can be charged intelligently, conveniently and in time.
  • the UAV charging device provided by the embodiment of the present invention can implement the method embodiment provided above, For the implementation of the physical function, refer to the description in the method embodiment, and details are not described herein.
  • the unmanned aerial vehicle charging method and apparatus provided by the embodiments of the present invention may be adapted to control the drone to fly, but is not limited thereto.
  • the drone charging device 700 can be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a personal digital assistant, and the like.
  • the drone charging device 700 can include one or more of the following components: a processing component 702, a memory 704, a power component 706, a multimedia component 708, an audio component 710, an input/output (I/O) interface 712, Sensor component 714, and communication component 717.
  • a processing component 702 a memory 704
  • a power component 706 a multimedia component 708, an audio component 710, an input/output (I/O) interface 712, Sensor component 714, and communication component 717.
  • I/O input/output
  • Processing component 702 typically controls the overall operation of drone charging device 700, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 702 can include one or more processors 720 to execute instructions.
  • processing component 702 can include one or more modules to facilitate interaction between component 702 and other components.
  • processing component 702 can include a multimedia module to facilitate interaction between multimedia component 708 and processing component 702.
  • the memory 704 is configured to store various types of data to support operation of the drone charging device 700. Examples of such data include instructions for any application or method operating on the drone charging device 700, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 704 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Power component 706 provides power to various components of drone charging device 700.
  • Power component 706 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for drone charging device 700.
  • the multimedia component 708 includes a screen that provides an output interface between the drone charging device 700 and the user.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor can sense not only the boundary of the touch or the sliding action but also the touch The duration and pressure associated with the touch or slide operation.
  • the multimedia component 708 includes a front camera and/or a rear camera. When the drone charging device 700 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 710 is configured to output and/or input audio signals.
  • the audio component 710 includes a microphone (MIC) that is configured to receive an external audio signal when the drone charging device 700 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 704 or transmitted via communication component 717.
  • audio component 710 also includes a speaker for outputting an audio signal.
  • the I/O interface 712 provides an interface between the processing component 702 and the peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 714 includes one or more sensors for providing various aspects of state assessment for drone charging device 700.
  • sensor assembly 714 can detect an open/closed state of drone charging device 700, relative positioning of components, such as the display and keypad of drone charging device 700, and sensor component 714 can also detect unmanned The position of one component of the machine charging device 700 or the drone charging device 700 changes, the presence or absence of contact of the user with the drone charging device 700, the azimuth charging device 700 orientation or acceleration/deceleration, and the drone charging device 700 The temperature changes.
  • Sensor assembly 714 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor component 714 can also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 714 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 717 is configured to facilitate wired or wireless communication between drone charging device 700 and other devices.
  • the drone charging device 700 can access a wireless network based on a communication standard such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 717 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • the communication component 717 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the drone charging device 700 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs). Field Programmable Gate Array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic component implementation.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Navigation (AREA)

Abstract

一种无人机充电方法及装置,涉及通信技术领域。方法包括:当检测到无人机的当前电量低于预设值时,查找共享充电装置(101);基于查找到的所述共享充电装置,确定目标共享充电装置的位置(102);基于所述目标共享充电装置的位置,生成无人机飞行路线,所述无人机飞行路线的目的地为所述目标共享充电装置的位置(103);控制所述无人机按照所述无人机飞行路线进行飞行(104)。能够解决无人机电量不足的问题。

Description

无人机充电方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种无人机充电方法及装置。
背景技术
无人驾驶飞机简称无人机,一般是利用无线电遥控设备和无人机自身的程序控制装置进行操纵。无人机广泛应用于影视拍摄、街景拍摄、遥感测绘、快递投递、电力巡检、农作物监测、环境监测、灾后救援等领域。
随着科技的发展,人们对无人机的飞行拍摄功能提出了更高的要求。然而,但是由于电池行业发展的瓶颈,无人机在较大范围内连续动态地执行飞行任务时的续航能力十分有限。比如在电网长时间巡检电力线,大规模范围内的安保监控,交警在路网运动中执行任务,高速公路路况勘测等领域中的应用受到了一定的限制。如何能够随时随地的给无人机充电成为一个亟待解决的问题。
发明内容
本发明的实施例提供一种无人机充电方法和装置,能够解决无人机电量不足的问题。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,本发明的实施例提供一种无人机充电方法,包括:
当检测到无人机的当前电量低于预设值时,查找共享充电装置;
基于查找到的所述共享充电装置,确定目标共享充电装置的位置;
基于所述目标共享充电装置的位置,生成无人机飞行路线,所述无人机飞行路线的目的地为所述目标共享充电装置的位置;
控制所述无人机按照所述无人机飞行路线进行飞行。
结合第一方面,在第一方面的第一种可能的实现方式中,所述控制所述无人机按照所述无人机飞行路线进行飞行之前,还包括:
计算所述无人机按照所述无人机飞行路线,由当前位置飞行至所述目标共享充电装置的位置所需的耗电量;
所述控制所述无人机按照所述无人机飞行路线进行飞行,包括:
当所述耗电量小于或等于所述当前电量时,控制所述无人机按照所述无人机飞行路线进行飞行。
结合第一方面,在第一方面的第二种可能的实现方式中,所述查找共享充电装置,包括:
查找与所述无人机的当前位置之间的距离小于预设值的共享充电装置。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述查找与所述无人机的当前位置之间的距离小于预设值的共享充电装置,包括:
将所述当前位置发送给服务器,以使所述服务器基于所述当前位置查找与所述无人机之间的距离小于所述预设值的共享充电装置;
接收所述服务器发送的各共享充电装置的属性信息,其中,所述共享充电装置的属性信息包括:共享充电装置的位置信息、与所述无人机之间的距离信息、充电等候时长信息、对应的无人机飞行线路中的任意一项或任意组合。
结合第一方面,在第一方面的第四种可能的实现方式中,当查找到多个所述共享充电装置时,所述基于查找到的所述共享充电装置,确定目标共享充电装置的位置,包括:
在所述多个共享充电装置中,确定与所述无人机之间的距离最近的共享充电装置,作为所述目标共享充电装置的位置;或,
在所述多个共享充电装置中,确定对应的无人机飞行线路最短的共享充电装置,作为所述目标共享充电装置的位置;或,
在所述多个共享充电装置中,确定对应的无人机飞行线路最需的耗电量最低的共享充电装置,作为所述目标共享充电装置的位置;或,
在所述多个共享充电装置中,确定对应的充电等候时长最少的共享充电装置,作为所述目标共享充电装置的位置。
第二方面,本发明的实施例提供一种无人机充电装置,包括:
查找模块,用于当检测到无人机的当前电量低于预设值时,查找共享充电装置;
确定模块,用于基于查找到的所述共享充电装置,确定目标共享充电装置的位置;
生成模块,用于基于所述目标共享充电装置的位置,生成无人机飞行路线,所述无人机飞行路线的目的地为所述目标共享充电装置的位置;
控制模块,用于控制所述无人机按照所述无人机飞行路线进行飞行。
结合第二方面,在第二方面的第一种可能的实现方式中,所述装置还包括:
计算模块,用于计算所述无人机按照所述无人机飞行路线,由当前位置飞行至所述目标共享充电装置的位置所需的耗电量;
所述控制模块,包括:
控制子模块,用于当所述耗电量小于或等于所述当前电量时,控制所述无人机按照所述无人机飞行路线进行飞行。
结合第二方面,在第二方面的第二种可能的实现方式中,所述查找模块包括:
查找子模块,用于查找与所述无人机的当前位置之间的距离小于预设值的共享充电装置。
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述查找模块还包括:
发送子模块,用于将所述当前位置发送给服务器,以使所述服务器基于所述当前位置查找与所述无人机之间的距离小于所述预设值的共享充电装置;
接收子模块,用于接收所述服务器发送的各共享充电装置的属性信息,其中,所述共享充电装置的属性信息包括:共享充电装置的位置信息、与所述无人机之间的距离信息、充电等候时长信息、对应的无人机飞行线路中的任意一项或任意组合。
结合第二方面,在第二方面的第四种可能的实现方式中,当查找到多个所述共享充电装置时,所述确定模块,包括:
第一确定子模块,用于在所述多个共享充电装置中,确定与所述无人机之间的距离最近的共享充电装置,作为所述目标共享充电装置的位置;或,
第二确定子模块,用于在所述多个共享充电装置中,确定对应的无人机飞 行线路最短的共享充电装置,作为所述目标共享充电装置的位置;或,
第三确定子模块,用于在所述多个共享充电装置中,确定对应的无人机飞行线路最需的耗电量最低的共享充电装置,作为所述目标共享充电装置的位置;或,
第四确定子模块,用于在所述多个共享充电装置中,确定对应的充电等候时长最少的共享充电装置,作为所述目标共享充电装置的位置。
本发明实施例提供的无人机充电方法及装置,通过当检测到无人机的当前电量低于预设值时,查找共享充电装置;基于查找到的所述共享充电装置,确定目标共享充电装置的位置;基于所述目标共享充电装置的位置,生成无人机飞行路线,所述无人机飞行路线的目的地为所述目标共享充电装置的位置;控制所述无人机按照所述无人机飞行路线进行飞行。能够在无人机飞行过程中或禁止状态下,当无人机的力量较低时,智能获取周边的无人机共享充电装置,并规划无人机的飞行路线,实现无人机在低电量状态下能够智能、便捷、及时地充电。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明实施例的无人机充电方法的流程示意图;
图2是本发明实施例的无人机充电方法的另一流程示意图;
图3是本发明实施例的无人机充电装置结构示意图;
图4是本发明实施例的无人机充电装置的另一结构示意图;
图5是本发明实施例的查找模块的结构示意图;
图6是本发明实施例的确定模块的结构示意图;
图7是本发明实施例的无人机充电装置700的另一结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明一实施例提供一种无人机充电方法,如图1所示,所述方法包括:
101、当检测到无人机的当前电量低于预设值时,查找共享充电装置。
其中,预设值可以为预先设置好的默认值,例如总电量的20%;也可以为通过无人接已建立连接的移动终端或服务器实时设置的电量阈值,例如,当无人机即将进行远距离飞行时,可以设置为总电量的40%,以满足在远距离飞行过程中保持有电;还可以基于无人机飞行路线的耗电量,智能计算该电量阈值,以满足在飞行过程中无人机始终保持有电。
对于本发明实施例,共享充电装置可以为无人机专用的共享充电装置,也可以为当前无人机型号专用的共享充电装置,还可以为各类移动设备均可通用的共享充电装置,本发明实施例不作限制。
102、基于查找到的所述共享充电装置,确定目标共享充电装置的位置。
对于本发明实施例,可以查找无人机当前位置周边的共享充电装置,当今查找到一个共享充电装置时,将该共享充电装置作为目标共享充电装置;如果查找到多个共享充电装置时,按照预设条件确定共享充电装置。其中,预设条件可以为:距离无人机的当前位置距离最近的共享充电装置,也可以为飞行线路最短的共享充电装置,还可以为飞行过程中耗电量最少的共享充电装置,本发明实施例不作限制。
在本发明实施例中,可以由无人机在查找到的多个共享充电装置中确定目标共享充电装置,也可以在无人机将查找到的多个共享充电装置发送给与无人机已建立连接的移动终端或服务器后,由该移动终端或服务器在多个共享充电装置中确定目标共享充电装置,本发明实施例不作限制。
103、基于所述目标共享充电装置的位置,生成无人机飞行路线。
其中,所述无人机飞行路线的目的地为所述目标共享充电装置的位置。
对于本发明实施例,可以由无人机基于目标共享充电装置的位置,生成无人机飞行路线;也可以在无人机将目标共享充电装置发送给与无人机已建立连接的移动终端或服务器后,由该移动终端或服务器生成无人机飞行路线,本发明实施例不作限制。
104、控制所述无人机按照所述无人机飞行路线进行飞行。
本发明实施例提供的无人机充电方法及装置,通过当检测到无人机的当前电量低于预设值时,查找共享充电装置;基于查找到的所述共享充电装置,确定目标共享充电装置的位置;基于所述目标共享充电装置的位置,生成无人机飞行路线,所述无人机飞行路线的目的地为所述目标共享充电装置的位置;控制所述无人机按照所述无人机飞行路线进行飞行。能够在无人机飞行过程中或禁止状态下,当无人机的力量较低时,智能获取周边的无人机共享充电装置,并规划无人机的飞行路线,实现无人机在低电量状态下能够智能、便捷、及时地充电。
本发明又一实施例提供一种无人机充电方法,如图2所示,所述方法包括:
201、当检测到无人机的当前电量低于预设值时,查找与所述无人机的当前位置之间的距离小于预设值的共享充电装置。
其中,预设值可以为预先设置好的默认值,例如总电量的20%;也可以为通过无人接已建立连接的移动终端或服务器实时设置的电量阈值,例如,当无人机即将进行远距离飞行时,可以设置为总电量的40%,以满足在远距离飞行过程中保持有电;还可以基于无人机飞行路线的耗电量,智能计算该电量阈值,以满足在飞行过程中无人机始终保持有电。
对于本发明实施例,共享充电装置可以为无人机专用的共享充电装置,也可以为当前无人机型号专用的共享充电装置,还可以为各类移动设备均可通用的共享充电装置,本发明实施例不作限制。
可选地,步骤201可以替换为:无人机将所述当前位置发送给服务器,以使所述服务器基于所述当前位置查找与所述无人机之间的距离小于所述预设值的共享充电装置;并接收所述服务器发送的各共享充电装置的属性信息,其中, 所述共享充电装置的属性信息包括:共享充电装置的位置信息、与所述无人机之间的距离信息、充电等候时长信息、对应的无人机飞行线路中的任意一项或任意组合。
202、基于查找到的所述共享充电装置,确定目标共享充电装置的位置。
对于本发明实施例,可以查找无人机当前位置周边的共享充电装置,当今查找到一个共享充电装置时,将该共享充电装置作为目标共享充电装置;如果查找到多个共享充电装置时,按照预设条件确定共享充电装置。其中,预设条件可以为:距离无人机的当前位置距离最近的共享充电装置,也可以为飞行线路最短的共享充电装置,还可以为飞行过程中耗电量最少的共享充电装置,本发明实施例不作限制。
可选地,步骤202可以为:在所述多个共享充电装置中,确定与所述无人机之间的距离最近的共享充电装置,作为所述目标共享充电装置的位置。
可选地,步骤202可以为:在所述多个共享充电装置中,确定对应的无人机飞行线路最短的共享充电装置,作为所述目标共享充电装置的位置。
可选地,步骤202可以为:在所述多个共享充电装置中,确定对应的无人机飞行线路最需的耗电量最低的共享充电装置,作为所述目标共享充电装置的位置。
可选地,步骤202可以为:在所述多个共享充电装置中,确定对应的充电等候时长最少的共享充电装置,作为所述目标共享充电装置的位置。
203、基于所述目标共享充电装置的位置,生成无人机飞行路线。
其中,所述无人机飞行路线的目的地为所述目标共享充电装置的位置。
对于本发明实施例,可以由无人机基于目标共享充电装置的位置,生成无人机飞行路线;也可以在无人机将目标共享充电装置发送给与无人机已建立连接的移动终端或服务器后,由该移动终端或服务器生成无人机飞行路线,本发明实施例不作限制。
204、计算所述无人机按照所述无人机飞行路线,由当前位置飞行至所述目标共享充电装置的位置所需的耗电量。
在本发明实施例中,通过无人机与目标共享充电装置之间的距离、飞行距 离、环境因素(如风力干扰、气压干扰等)中的任意一项或任意组合,计算所需的耗电量。
205、当所述耗电量小于或等于所述当前电量时,控制所述无人机按照所述无人机飞行路线进行飞行。
本发明实施例提供的无人机充电方法及装置,通过当检测到无人机的当前电量低于预设值时,查找共享充电装置;基于查找到的所述共享充电装置,确定目标共享充电装置的位置;基于所述目标共享充电装置的位置,生成无人机飞行路线,所述无人机飞行路线的目的地为所述目标共享充电装置的位置;控制所述无人机按照所述无人机飞行路线进行飞行。能够在无人机飞行过程中或禁止状态下,当无人机的力量较低时,智能获取周边的无人机共享充电装置,并规划无人机的飞行路线,实现无人机在低电量状态下能够智能、便捷、及时地充电。
本发明又一实施例提供一种无人机充电装置,如图3所示,所述装置包括:
查找模块31,用于当检测到无人机的当前电量低于预设值时,查找共享充电装置;
确定模块32,用于基于查找到的所述共享充电装置,确定目标共享充电装置的位置;
生成模块33,用于基于所述目标共享充电装置的位置,生成无人机飞行路线,所述无人机飞行路线的目的地为所述目标共享充电装置的位置;
控制模块34,用于控制所述无人机按照所述无人机飞行路线进行飞行。
进一步的,如图4所示,所述装置还包括:
计算模块41,用于计算所述无人机按照所述无人机飞行路线,由当前位置飞行至所述目标共享充电装置的位置所需的耗电量;
所述控制模块34,包括:
控制子模块341,用于当所述耗电量小于或等于所述当前电量时,控制所述无人机按照所述无人机飞行路线进行飞行。
进一步的,如图5所示,所述查找模块31包括:
查找子模块311,用于查找与所述无人机的当前位置之间的距离小于预设值 的共享充电装置。
所述查找模块还包括:
发送子模块312,用于将所述当前位置发送给服务器,以使所述服务器基于所述当前位置查找与所述无人机之间的距离小于所述预设值的共享充电装置;
接收子模块313,用于接收所述服务器发送的各共享充电装置的属性信息,其中,所述共享充电装置的属性信息包括:共享充电装置的位置信息、与所述无人机之间的距离信息、充电等候时长信息、对应的无人机飞行线路中的任意一项或任意组合。
进一步的,如图6所示,当查找到多个所述共享充电装置时,所述确定模块32,包括:
第一确定子模块321,用于在所述多个共享充电装置中,确定与所述无人机之间的距离最近的共享充电装置,作为所述目标共享充电装置的位置;或,
第二确定子模块322,用于在所述多个共享充电装置中,确定对应的无人机飞行线路最短的共享充电装置,作为所述目标共享充电装置的位置;或,
第三确定子模块323,用于在所述多个共享充电装置中,确定对应的无人机飞行线路最需的耗电量最低的共享充电装置,作为所述目标共享充电装置的位置;或,
第四确定子模块324,用于在所述多个共享充电装置中,确定对应的充电等候时长最少的共享充电装置,作为所述目标共享充电装置的位置。
本发明实施例提供的无人机充电方法及装置,通过当检测到无人机的当前电量低于预设值时,查找共享充电装置;基于查找到的所述共享充电装置,确定目标共享充电装置的位置;基于所述目标共享充电装置的位置,生成无人机飞行路线,所述无人机飞行路线的目的地为所述目标共享充电装置的位置;控制所述无人机按照所述无人机飞行路线进行飞行。能够在无人机飞行过程中或禁止状态下,当无人机的力量较低时,智能获取周边的无人机共享充电装置,并规划无人机的飞行路线,实现无人机在低电量状态下能够智能、便捷、及时地充电。
本发明实施例提供的无人机充电装置可以实现上述提供的方法实施例,具 体功能实现请参见方法实施例中的说明,在此不再赘述。本发明实施例提供的无人机充电方法及装置可以适用于控制无人机进行飞行,但不仅限于此。
如图7所示,无人机充电装置700可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,个人数字助理等。
参照图7,无人机充电装置700可以包括以下一个或多个组件:处理组件702,存储器704,电源组件706,多媒体组件708,音频组件710,输入/输出(I/O)的接口712,传感器组件714,以及通信组件717。
处理组件702通常控制无人机充电装置700的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件702可以包括一个或多个处理器720来执行指令。
此外,处理组件702可以包括一个或多个模块,便于处理组件702和其他组件之间的交互。例如,处理组件702可以包括多媒体模块,以方便多媒体组件708和处理组件702之间的交互。
存储器704被配置为存储各种类型的数据以支持在无人机充电装置700的操作。这些数据的示例包括用于在无人机充电装置700上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件706为无人机充电装置700的各种组件提供电力。电源组件706可以包括电源管理系统,一个或多个电源,及其他与为无人机充电装置700生成、管理和分配电力相关联的组件。
多媒体组件708包括在所述无人机充电装置700和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测 与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件708包括一个前置摄像头和/或后置摄像头。当无人机充电装置700处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件710被配置为输出和/或输入音频信号。例如,音频组件710包括一个麦克风(MIC),当无人机充电装置700处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器704或经由通信组件717发送。在一些实施例中,音频组件710还包括一个扬声器,用于输出音频信号。
I/O接口712为处理组件702和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件714包括一个或多个传感器,用于为无人机充电装置700提供各个方面的状态评估。例如,传感器组件714可以检测到无人机充电装置700的打开/关闭状态,组件的相对定位,例如所述组件为无人机充电装置700的显示器和小键盘,传感器组件714还可以检测无人机充电装置700或无人机充电装置700一个组件的位置改变,用户与无人机充电装置700接触的存在或不存在,无人机充电装置700方位或加速/减速和无人机充电装置700的温度变化。传感器组件714可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件714还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件714还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件717被配置为便于无人机充电装置700和其他设备之间有线或无线方式的通信。无人机充电装置700可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件717经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件717还包括近场通信(NFC)模块,以促进短程通信。例如, 在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,无人机充电装置700可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于设备实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (10)

  1. 一种无人机充电方法,其特征在于,包括:
    当检测到无人机的当前电量低于预设值时,查找共享充电装置;
    基于查找到的所述共享充电装置,确定目标共享充电装置的位置;
    基于所述目标共享充电装置的位置,生成无人机飞行路线,所述无人机飞行路线的目的地为所述目标共享充电装置的位置;
    控制所述无人机按照所述无人机飞行路线进行飞行。
  2. 根据权利要求1所述的无人机充电方法,其特征在于,所述控制所述无人机按照所述无人机飞行路线进行飞行之前,还包括:
    计算所述无人机按照所述无人机飞行路线,由当前位置飞行至所述目标共享充电装置的位置所需的耗电量;
    所述控制所述无人机按照所述无人机飞行路线进行飞行,包括:
    当所述耗电量小于或等于所述当前电量时,控制所述无人机按照所述无人机飞行路线进行飞行。
  3. 根据权利要求1所述的无人机充电方法,其特征在于,所述查找共享充电装置,包括:
    查找与所述无人机的当前位置之间的距离小于预设值的共享充电装置。
  4. 根据权利要求3所述的无人机充电方法,其特征在于,所述查找与所述无人机的当前位置之间的距离小于预设值的共享充电装置,包括:
    将所述当前位置发送给服务器,以使所述服务器基于所述当前位置查找与所述无人机之间的距离小于所述预设值的共享充电装置;
    接收所述服务器发送的各共享充电装置的属性信息,其中,所述共享充电装置的属性信息包括:共享充电装置的位置信息、与所述无人机之间的距离信息、充电等候时长信息、对应的无人机飞行线路中的任意一项或任意组合。
  5. 根据权利要求1所述的无人机充电方法,其特征在于,当查找到多个所述共享充电装置时,所述基于查找到的所述共享充电装置,确定目标共享充电装置的位置,包括:
    在所述多个共享充电装置中,确定与所述无人机之间的距离最近的共享充电装置,作为所述目标共享充电装置的位置;或,
    在所述多个共享充电装置中,确定对应的无人机飞行线路最短的共享充电装置,作为所述目标共享充电装置的位置;或,
    在所述多个共享充电装置中,确定对应的无人机飞行线路最需的耗电量最低的共享充电装置,作为所述目标共享充电装置的位置;或,
    在所述多个共享充电装置中,确定对应的充电等候时长最少的共享充电装置,作为所述目标共享充电装置的位置。
  6. 一种无人机充电装置,其特征在于,包括:
    查找模块,用于当检测到无人机的当前电量低于预设值时,查找共享充电装置;
    确定模块,用于基于查找到的所述共享充电装置,确定目标共享充电装置的位置;
    生成模块,用于基于所述目标共享充电装置的位置,生成无人机飞行路线,所述无人机飞行路线的目的地为所述目标共享充电装置的位置;
    控制模块,用于控制所述无人机按照所述无人机飞行路线进行飞行。
  7. 根据权利要求6所述的无人机充电装置,其特征在于,所述装置还包括:
    计算模块,用于计算所述无人机按照所述无人机飞行路线,由当前位置飞行至所述目标共享充电装置的位置所需的耗电量;
    所述控制模块,包括:
    控制子模块,用于当所述耗电量小于或等于所述当前电量时,控制所述无人机按照所述无人机飞行路线进行飞行。
  8. 根据权利要求6所述的无人机充电装置,其特征在于,所述查找模块包括:
    查找子模块,用于查找与所述无人机的当前位置之间的距离小于预设值的共享充电装置。
  9. 根据权利要求8所述的无人机充电装置,其特征在于,所述查找模块还包括:
    发送子模块,用于将所述当前位置发送给服务器,以使所述服务器基于所述当前位置查找与所述无人机之间的距离小于所述预设值的共享充电装置;
    接收子模块,用于接收所述服务器发送的各共享充电装置的属性信息,其中,所述共享充电装置的属性信息包括:共享充电装置的位置信息、与所述无人机之间的距离信息、充电等候时长信息、对应的无人机飞行线路中的任意一项或任意组合。
  10. 根据权利要求6所述的无人机充电装置,其特征在于,当查找到多个所述共享充电装置时,所述确定模块,包括:
    第一确定子模块,用于在所述多个共享充电装置中,确定与所述无人机之间的距离最近的共享充电装置,作为所述目标共享充电装置的位置;或,
    第二确定子模块,用于在所述多个共享充电装置中,确定对应的无人机飞行线路最短的共享充电装置,作为所述目标共享充电装置的位置;或,
    第三确定子模块,用于在所述多个共享充电装置中,确定对应的无人机飞行线路最需的耗电量最低的共享充电装置,作为所述目标共享充电装置的位置;或,
    第四确定子模块,用于在所述多个共享充电装置中,确定对应的充电等候时长最少的共享充电装置,作为所述目标共享充电装置的位置。
PCT/CN2017/092297 2017-07-06 2017-07-07 无人机充电方法及装置 WO2019006770A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710544745.8 2017-07-06
CN201710544745.8A CN107323292A (zh) 2017-07-06 2017-07-06 无人机充电方法及装置

Publications (1)

Publication Number Publication Date
WO2019006770A1 true WO2019006770A1 (zh) 2019-01-10

Family

ID=60195782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092297 WO2019006770A1 (zh) 2017-07-06 2017-07-07 无人机充电方法及装置

Country Status (2)

Country Link
CN (1) CN107323292A (zh)
WO (1) WO2019006770A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109946998A (zh) * 2017-12-20 2019-06-28 翔升(上海)电子技术有限公司 无人机牧场续航方法及系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109017379A (zh) * 2018-07-28 2018-12-18 深圳市旭发智能科技有限公司 一种无人机进入充电基站进行充电的方法
CN109018345A (zh) * 2018-07-28 2018-12-18 深圳市旭发智能科技有限公司 一种基于充电基站进行充电的无人机
CN109129472B (zh) * 2018-08-07 2021-12-21 北京云迹科技有限公司 基于多充电桩的机器人位置校正方法和装置
WO2020029104A1 (zh) * 2018-08-08 2020-02-13 北京小米移动软件有限公司 传输飞行信息的方法及装置
CN110058609A (zh) * 2019-04-29 2019-07-26 北京金山云网络技术有限公司 一种雨伞共享系统和方法
CN111699452A (zh) * 2019-06-05 2020-09-22 深圳市大疆创新科技有限公司 可移动平台的控制方法、可移动平台、控制终端、控制装置、控制系统及计算机可读存储介质
CN110696673B (zh) * 2019-10-09 2021-07-06 深圳市元征科技股份有限公司 一种无人机及其集群的充电调度方法、系统和电子设备
CN112078414A (zh) * 2020-09-04 2020-12-15 北京中科利丰科技有限公司 一种用于无人机自主充电的充电装置和充电系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110266995A1 (en) * 2010-04-28 2011-11-03 Lockheed Martin Corporation Radio frequency power transmission system
CN105162219A (zh) * 2015-07-22 2015-12-16 刘芳 无人机的充电方法以及充电管理方法
CN105529788A (zh) * 2016-03-02 2016-04-27 深圳市道通科技股份有限公司 无人机电池充电方法、系统及无人机
CN105932737A (zh) * 2016-05-31 2016-09-07 夏烬楚 一种无人机的分布式充电管理系统及方法
CN106026308A (zh) * 2016-07-29 2016-10-12 乐视控股(北京)有限公司 一种无人机充电的方法及装置
CN106130104A (zh) * 2016-07-12 2016-11-16 上海与德通讯技术有限公司 一种无人机充电方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205829209U (zh) * 2016-05-31 2016-12-21 夏烬楚 一种充电起落架、无人机、充电平台及无人机续航充电系统
CN106092083B (zh) * 2016-05-31 2019-04-12 深圳市威必达有害生物防治有限公司 一种无人机路径规划管理系统及方法
CN105896673B (zh) * 2016-05-31 2018-11-27 浙江国正安全技术有限公司 一种充电起落架、无人机、充电平台及无人机续航充电系统
CN106385668A (zh) * 2016-08-31 2017-02-08 深圳市恒义聚贸易有限公司 采用基于位置服务和网络共享的充电业务生成系统
CN106742012A (zh) * 2016-11-16 2017-05-31 深圳市元征科技股份有限公司 无人机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110266995A1 (en) * 2010-04-28 2011-11-03 Lockheed Martin Corporation Radio frequency power transmission system
CN105162219A (zh) * 2015-07-22 2015-12-16 刘芳 无人机的充电方法以及充电管理方法
CN105529788A (zh) * 2016-03-02 2016-04-27 深圳市道通科技股份有限公司 无人机电池充电方法、系统及无人机
CN105932737A (zh) * 2016-05-31 2016-09-07 夏烬楚 一种无人机的分布式充电管理系统及方法
CN106130104A (zh) * 2016-07-12 2016-11-16 上海与德通讯技术有限公司 一种无人机充电方法及装置
CN106026308A (zh) * 2016-07-29 2016-10-12 乐视控股(北京)有限公司 一种无人机充电的方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109946998A (zh) * 2017-12-20 2019-06-28 翔升(上海)电子技术有限公司 无人机牧场续航方法及系统
CN109946998B (zh) * 2017-12-20 2020-08-28 翔升(上海)电子技术有限公司 无人机牧场续航方法及系统

Also Published As

Publication number Publication date
CN107323292A (zh) 2017-11-07

Similar Documents

Publication Publication Date Title
WO2019006770A1 (zh) 无人机充电方法及装置
US11108953B2 (en) Panoramic photo shooting method and apparatus
WO2019006773A1 (zh) 无人机低电量返航方法及装置
CN111343058B (zh) 设备控制方法、装置、控制设备及存储介质
KR102036977B1 (ko) 디바이스를 제어하는 방법 및 장치, 및 단말 디바이스
KR101935181B1 (ko) 비행 제어 방법과 장치 및 전자 기기
RU2670786C9 (ru) Система, способ и аппарат для управления группировкой устройств
EP3156767B1 (en) Method and device for navigating and method and device for generating a navigation video
US10292004B2 (en) Method, device and medium for acquiring location information
WO2017032126A1 (zh) 无人机的拍摄控制方法及装置、电子设备
WO2017201916A1 (zh) 无人机的控制方法及装置
US20100159981A1 (en) Method and Apparatus for Controlling a Mobile Device Using a Camera
CN112001321A (zh) 网络训练、行人重识别方法及装置、电子设备和存储介质
EP3742250A1 (en) Method, apparatus and system for controlling unmanned aerial vehicle
WO2019006772A1 (zh) 无人机返航方法及装置
WO2019006769A1 (zh) 无人机跟拍方法及装置
KR20160084306A (ko) 화면을 촬영하기 위한 방법 및 디바이스
CN103902002B (zh) 电源管理方法及装置
US20150312458A1 (en) Method and device for configuring photographing parameters
US20170090684A1 (en) Method and apparatus for processing information
WO2018000710A1 (zh) WiFi信号图标的展示方法、装置和移动终端
US20170171706A1 (en) Device displaying method, apparatus, and storage medium
WO2019006767A1 (zh) 一种无人机的景点导航方法及装置
WO2019019164A1 (zh) 无人机管理方法及装置、通信连接建立方法及装置
EP3225510B1 (en) Methods and devices for controlling self-balanced vehicle to park

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916788

Country of ref document: EP

Kind code of ref document: A1