WO2019004677A1 - 폴리이미드 전구체 조성물, 이의 제조방법 및 이로부터 제조된 폴리이미드 기재 - Google Patents

폴리이미드 전구체 조성물, 이의 제조방법 및 이로부터 제조된 폴리이미드 기재 Download PDF

Info

Publication number
WO2019004677A1
WO2019004677A1 PCT/KR2018/007175 KR2018007175W WO2019004677A1 WO 2019004677 A1 WO2019004677 A1 WO 2019004677A1 KR 2018007175 W KR2018007175 W KR 2018007175W WO 2019004677 A1 WO2019004677 A1 WO 2019004677A1
Authority
WO
WIPO (PCT)
Prior art keywords
dianhydride
acid
aromatic
precursor composition
polyimide precursor
Prior art date
Application number
PCT/KR2018/007175
Other languages
English (en)
French (fr)
Inventor
황인환
김주영
이익상
원동영
임현재
Original Assignee
에스케이씨코오롱피아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180055252A external-priority patent/KR101948819B1/ko
Application filed by 에스케이씨코오롱피아이 주식회사 filed Critical 에스케이씨코오롱피아이 주식회사
Priority to CN201880040277.3A priority Critical patent/CN110753715B/zh
Publication of WO2019004677A1 publication Critical patent/WO2019004677A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyimide precursor composition, a process for producing the polyimide precursor composition, and a polyimide substrate produced from the polyimide precursor composition.
  • the polyimide precursor composition has high viscosity and low viscosity, .
  • the polyimide substrate is excellent in heat resistance and mechanical properties and is suitable for use as a display substrate.
  • a polyimide (PI) resin refers to a high heat-resistant resin prepared by polymerizing an aromatic dianhydride and an aromatic diamine or an aromatic diisocyanate to prepare a polyamic acid derivative, followed by imidization by ring-closing dehydration at a high temperature.
  • the polyimide resin is an insoluble and non-refractory high heat resistant resin. It is excellent in heat resistance, thermal resistance, radiation resistance, low temperature characteristics, and chemical resistance, and is a high heat resistant material such as automobile materials, Coating materials, insulating films, semiconductors, and electronic materials such as electrode protective films of TFT-LCD (see Korean Patent No. 10-1472920).
  • a polyimide base material having improved optical, mechanical, and thermal properties has been developed by forming a polyimide resin, that is, a polyimide precursor composition into a film.
  • a reaction molar ratio of an aromatic dianhydride to an aromatic amine is about 1: 1 in the production of a conventional polyimide precursor composition, a higher molecular weight is formed, and when the substrate is prepared through thermochemical imidization, It is known to provide better physical properties than the case.
  • the higher the molecular weight of the polyimide precursor and the higher the solid content the higher the viscosity of the polyimide precursor composition becomes, which is difficult to handle, and it is difficult to prepare the substrate from the polyimide precursor composition.
  • the polyimide precursor composition having a high viscosity has a low storage stability at room temperature.
  • the polyimide precursor has a low molecular weight, the heat resistance and mechanical properties of the polyimide substrate produced using the polyimide precursor may deteriorate.
  • the polyimide precursor composition contains a solid content at a low concentration, there is a problem that a large amount of solvent must be removed from the produced substrate, and manufacturing cost and time may increase.
  • an object of the present invention is to provide a polyimide precursor composition having a high concentration of solid content and a low viscosity, and excellent storage stability at room temperature.
  • Another object of the present invention is to provide a polyimide substrate suitable for use as a display substrate because of its excellent heat resistance and mechanical properties.
  • Aromatic dianhydride containing biphenyl tetracarboxylic acid dianhydride (BPDA, 3,4 ', 4'-biphenyl tetracarboxylic dianhydride) and aromatic dianhydride containing para-phenylenediamine (PPD)
  • BPDA biphenyl tetracarboxylic acid dianhydride
  • PPD aromatic dianhydride containing para-phenylenediamine
  • Aromatic carboxylic acids having four or more carboxyl groups
  • a polyimide precursor composition comprising an antioxidant.
  • the polyimide precursor composition according to the present invention has a low solid content concentration and a low viscosity and is excellent in storage stability at room temperature.
  • the polyimide substrate formed from the composition is suitable for adhesion to the glass or inorganic layer in the heat treatment process during the display manufacturing process, and has excellent mechanical properties such as heat resistance and thermal dimensional stability.
  • the polyimide precursor composition of the present invention comprises an aromatic acid dianhydride containing biphenyl tetracarboxylic dianhydride (BPDA, 3,4'-biphenyl tetracarboxylic dianhydride) and para-phenylenediamine (PPD, para a polyamic acid solution prepared from a polyamic acid composition comprising an aromatic diamine including phenylene diamine; Aromatic carboxylic acids having four or more carboxyl groups; Tertiary amine curing agents; And antioxidants.
  • BPDA biphenyl tetracarboxylic dianhydride
  • PPD para-phenylenediamine
  • the polyamic acid solution is prepared by reacting an aromatic acid dianhydride containing biphenyl tetracarboxylic dianhydride (BPDA, 3,4'-biphenyl tetracarboxylic dianhydride) with para-phenylene diamine (PPD) ) ≪ / RTI > based on the total weight of the polyamic acid composition.
  • BPDA aromatic acid dianhydride containing biphenyl tetracarboxylic dianhydride
  • PPD para-phenylene diamine
  • the aromatic acid dianhydride includes biphenyl tetracarboxylic dianhydride (BPDA).
  • the aromatic acid dianhydride may be at least one selected from the group consisting of pyromellitic dianhydride (PMDA), 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride (3,3', 4,4'-benzophenonetetracarboxylic dianhydride, BTDA), 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride, 1H, 3H-naphtho [2,3-c : 6,7-c '] Difuran-1,3,6,8-tetron 2,3,6,7-naphthalenetetracarboxylic acid dianhydride (1H, 3H-naphtho [2,3-c: 6 , 7-c '] difuran-1,3,6,8-tetrone 2,3,6,7-naphthalenetetracarboxylic dianhydride), 1,4,5,8-naphthalenetetracarboxylic dianhydride ,
  • the aromatic acid dianhydride may include biphenyltetracarboxylic dianhydride (BPDA), or may include biphenyltetracarboxylic dianhydride (BPDA) and pyromellitic dianhydride (PMDA).
  • the aromatic acid dianhydride may also include biphenyltetracarboxylic dianhydride (BPDA) and 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride (BTDA), or biphenyltetracarboxylic dianhydride (BPDA), pyromellitic dianhydride (PMDA), and 3,3 ', 4,4'-benzophenone tetracarboxylic acid dianhydride (BTDA).
  • BPDA biphenyltetracarboxylic dianhydride
  • BPDA biphenyltetracarboxylic dianhydride
  • PMDA pyromellitic dianhydride
  • the polyamic acid composition may comprise from 0.1 to 70 moles of additional aromatic acid dianhydride per 100 moles of aromatic diamine.
  • the polyamic acid composition may comprise from 2 to 65 moles of additional aromatic acid dianhydride per 100 moles of aromatic diamine.
  • the polyamic acid composition comprises 42 to 99 moles of BPDA and 0.1 to 57 moles of PMDA per 100 moles of diamine; Or 92 to 99 moles of BPDA.
  • the polyamic acid composition may contain 0.1 to 5 moles, or 0.1 to 3 moles of BTDA per 100 moles of diamine.
  • the ratio of para-phenylenediamine to 1 mole of all aromatic diamine is 0.8 to 1.0 mole.
  • Para-phenylenediamine is a monomer having linearity as compared with other aromatic diamines such as diaminophenyl ether and has an advantage of lowering the coefficient of thermal expansion of the produced film.
  • the aromatic diamine may contain, in addition to para-phenylenediamine, diaminophenyl ether, o-phenylenediamine, m-phenylenediamine, 2,6-diamino-pyridine, Diaminodiphenylsulphone, 2- (4-aminophenyl) -1H-benzoxazole-5-amine, 2- (4-aminophenyl) Amino-2- (p-aminophenyl) -5-aminobenzimidazole, 6- amino-2- (p-aminophenyl) benzoxazole) and 4,4 "-diamino-p-terphenyl (hereinafter referred to as" have.
  • the polyamic acid composition may contain a reaction solvent in addition to the aromatic acid dianhydride and the aromatic diamine.
  • the reaction solvent may be an amide-based aprotic solvent.
  • the reaction solvent is selected from the group consisting of N, N'-dimethylformamide (DMF), N, N'-dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), acetonitrile, tetrahydrofuran (THF) , 3-methylphenol (m-Cresol), 1,1,3,3-tetramethylurea (TMU), dimethylsulfoxide (DMSO) and gamma-butyrolactone.
  • the polyamic acid solution is prepared from the polyamic acid composition.
  • the polyamic acid solution may be prepared by reacting the polyamic acid composition. The reaction may be carried out at 30 to 90 < 0 > C.
  • the polyamic acid solution may have a viscosity of 1,000 to 20,000 cP at 23 ⁇ . Specifically, the polyamic acid solution may have a viscosity of 2,000 to 10,000 cP at 23 ° C.
  • the weight average molecular weight of the polyamic acid solution may be 10,000 to 200,000, or 15,000 to 150,000.
  • the aromatic carboxylic acid has four or more carboxyl groups and serves to improve heat resistance, thermal dimensional stability and mechanical properties while lowering the viscosity of the prepared polyamic acid solution.
  • the aromatic carboxylic acid may be an aromatic carboxylic acid having four carboxyl groups.
  • the aromatic carboxylic acid is selected from the group consisting of pyromellitic acid (PMA), 3,3 ', 4,4'-biphenyltetracarboxylic acid (BPTA ), 1,2,3,4-benzenetetracarboxylic acid, benzophenone-3,3 ', 4,4'-tetracarboxylic acid (benzophenone-3,3' 4,4'-tetracarboxylic acid, pyrazinetetracarboxylic acid, 2,3,6,7-naphthalenetetracarboxylic acid and naphthalene-1,4, Naphthalene-1,4,5,8-tetracarboxylic acid, and the like.
  • PMA pyromellitic acid
  • BPTA 4,4'-biphenyltetracarboxylic acid
  • 1,2,3,4-benzenetetracarboxylic acid 1,2,3,4-benzenetetracarboxylic acid
  • the aromatic carboxylic acid may include at least one member selected from the group consisting of pyromellitic acid and 3,3 ', 4,4'-biphenyltetracarboxylic acid. More specifically, the aromatic carboxylic acid may comprise pyromellitic acid or 3,3 ', 4,4'-biphenyltetracarboxylic acid.
  • the polyamic acid composition may contain 1 to 8 moles of aromatic carboxylic acid per 100 moles of aromatic diamine.
  • the polyimide precursor composition may contain 1 to 7 moles, or 1 to 6 moles of aromatic carboxylic acid per 100 moles of polyamic acid.
  • the tertiary amine curing agent may include at least one selected from the group consisting of beta-picoline, isoquinoline, triethylenediamine, and pyridine.
  • the tertiary amine curing agent may include at least one selected from the group consisting of beta-picoline, isoquinoline and pyridine, and triethylenediamine.
  • the triethylenediamine enables low-temperature curing of the polyimide precursor composition and improves the heat resistance of the produced substrate.
  • the polyimide precursor composition may comprise from 0.1 to 50 moles of tertiary amine curing agent per 100 moles of polyamic acid. Specifically, the polyimide precursor composition may include 0.1 to 2 moles of triethylenediamine per 100 moles of polyamic acid. More specifically, the polyimide precursor composition comprises 5 to 50 moles of at least one selected from the group consisting of beta-picoline, isoquinoline and pyridine, and 0.1 to 2 moles of triethylenediamine per 100 moles of polyamic acid .
  • the antioxidant serves to lower the reactivity of the amide group in the polyimide precursor composition and to prevent oxidation due to the reactivity of the amide group during the heat treatment during the substrate preparation process.
  • the antioxidant may have a decomposition temperature of 5 wt% or more and 400 ° C or more, or 400 to 480 ° C.
  • the antioxidant may be a compound represented by the following formula (1), triethyl phosphate and trimethyl phosphate phosphate, and the like.
  • n is an integer of 0 to 4.
  • the antioxidant may be a mixture of compounds in which n is 0 (TPP, triphenyl phosphate) or compounds in which n is an integer of 1 to 4 (Cas 1003300-73-9).
  • the polyimide precursor composition may comprise from 0.1 to 2 weight percent of an antioxidant based on the total weight of the polyimide precursor composition. Specifically, the polyimide precursor composition may comprise 0.2 to 1.5 wt%, or 0.2 to 1 wt% of an antioxidant based on the total weight of the polyimide precursor composition.
  • the polyimide substrate according to the present invention is prepared by applying the polyimide precursor composition as described above and drying and curing the same.
  • the polyimide substrate may be prepared by applying a polyimide precursor composition as described above on a support substrate, drying and curing, and peeling.
  • the support substrate may be a glass substrate, a metal plate, a wafer, or the like.
  • the dry curing may be performed at a temperature of 20 to 120 ° C for 5 to 60 minutes, and the drying curing may be performed at 450 to 450 To 500 ° C at a rate of 1 to 8 ° C / minute, heat-treated at 450 to 500 ° C for 30 to 60 minutes, and cooled to 20 to 120 ° C at a rate of 1 to 8 ° C / minute .
  • the polyimide substrate may have a glass transition temperature of 400 to 500 ⁇ ⁇ , a modulus of 6 to 12 ⁇ and a thermal expansion coefficient of 50 to 400 ⁇ ⁇ of 1 to 8 ppm / ⁇ ⁇ .
  • the polyimide substrate may have a glass transition temperature of 420 to 480 ⁇ , a modulus of 6 to 11 GPa, and a thermal expansion coefficient of 50 to 400 ⁇ at 2 to 8 ppm / ⁇ .
  • the polyimide substrate may have a pyrolysis temperature of 1 to 5% by weight and a transmittance of 40 to 80% with respect to light having a wavelength of 550 nm of a substrate having a thickness of 10 ⁇ m.
  • the polyimide substrate may have a thermal decomposition temperature of 1 to 5% by weight of a pyrolysis temperature of 550 to 600 ° C, and a transmittance of 50 to 75% to a 550 nm wavelength light of a film having a thickness of 10 ⁇ m.
  • the polyimide substrate may have a tensile strength of 200 to 500 MPa, a peel strength of 0.01 to 10 N / cm, and a decomposition time of 1 wt% at 480 DEG C for 1 to 12 hours.
  • the polyimide substrate may have a tensile strength of 250 to 460 MPa, a peel strength of 0.5 to 5 N / cm, and a decomposition time of 1 wt% at 480 DEG C for 2 to 10 hours.
  • the average thickness of the polyimide substrate may be 3 to 30 ⁇ .
  • the process for producing the polyimide precursor composition according to the present invention comprises
  • an aromatic acid dianhydride containing biphenyl tetracarboxylic dianhydride (BPDA, 3,4 ', 4'-biphenyl tetracarboxylic dianhydride) and para-phenylene diamine (PPD) Containing aromatic diamine are mixed and reacted to prepare a polyamic acid solution.
  • BPDA biphenyl tetracarboxylic dianhydride
  • PPD para-phenylene diamine
  • the above step (1) may be carried out at 30 to 90 ° C.
  • Step (1) may be carried out by reacting a reaction solvent, biphenyltetracarboxylic dianhydride, additional aromatic acid dianhydride and aromatic diamine, or by mixing biphenyltetracarboxylic dianhydride, additional aromatic dianhydride and aromatic diamine, and To prepare a polyamic acid solution.
  • step (1) comprises mixing and reacting (1-1) a reaction solvent, biphenyltetracarboxylic acid dianhydride, additional aromatic acid dianhydride and aromatic diamine to prepare a reaction mixture having a viscosity at 23 ° C of 100 to 10,000 cP 1 reactant; And (1-2) adding a further aromatic acid dianhydride solution (solid concentration: 5% by weight) to the first reactant so that the viscosity at 23 ° C is 1,000 to 20,000 cP and reacting to prepare a second reactant; . ≪ / RTI >
  • the further aromatic acid dianhydride is selected from the group consisting of pyromellitic dianhydride (PMDA), 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride (3,3', 4,4'-benzophenonetetracarboxylic dianhydride , BTDA), 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride, 1H, 3H-naphtho [2,3-c] 6,7-c '] Difuran-1,3,6,8-tetron 2,3,6,7-naphthalenetetracarboxylic acid dianhydride (1H, 3H-naphtho [2,3- 7-c '] difuran-1,3,6,8-tetrone 2,3,6,7-naphthalenetetracarboxylic dianhydride), 1,4,5,8-naphthalenetetracarboxylic dianhydride (1,4,5, 8-naphthale
  • the reaction solvent may be an amide-based aprotic solvent.
  • the reaction solvent may be at least one selected from the group consisting of N, N'-dimethylformamide, N, N'-dimethylacetamide and N-methylpyrrolidone.
  • the first reactant comprises 100 moles of aromatic diamine, 42 to 99 moles of BPDA and 0.1 to 57 moles of additional aromatic acid dianhydride; Or 100 moles of aromatic diamine and 92 to 99 moles of BPDA and reacting at 30 to 90 ⁇ ⁇ .
  • the second reactant may be prepared by adding 0.1 to 57 moles of a further aromatic acid dianhydride solution per 100 moles of the aromatic diamine to the first reactant at 30 to 90 ° C. Further, the second reactant may be prepared by mixing 42 to 99 mol of BPDA per 100 moles of aromatic diamine in the first reactant, reacting the mixture at 30 to 90 DEG C, adding a small amount of additional aromatic acid dianhydride solution, The viscosity can be adjusted to be from 1,000 to 20,000 cP.
  • the solids concentration of the further aromatic acid dianhydride solution may be from 1 to 10 wt%, or from 2 to 8 wt%.
  • the solvent of the additional aromatic acid dianhydride solution may be the same as the reaction solvent.
  • the additional aromatic acid dianhydride solution may be introduced at intervals of 10 to 30 minutes. Further, the second reactant may be stirred while a pyromellitic dianhydride solution is added.
  • the polyamic acid solution may have a viscosity of 1,000 to 20,000 cP at 23 ⁇ ⁇ . Specifically, the polyamic acid solution may have a viscosity of 2,000 to 10,000 cP at 23 ° C.
  • the mixture is prepared by mixing the polyamic acid solution, the tertiary amine curing agent and the antioxidant.
  • the types of the tertiary amine curing agent and the antioxidant are as defined in the polyimide precursor composition.
  • the step (2) may be carried out at 30 to 90 < 0 > C. Specifically, the step (2) may be carried out at 40 to 80 ° C.
  • the tertiary amine curing agent may be used in an amount of 0.1 to 50 moles per 100 moles of the polyamic acid.
  • the tertiary amine curing agent may comprise 5 to 50 moles of pyridine, beta picoline or isoquinoline, and 0.1 to 2 moles of triethylenediamine per 100 moles of polyamic acid.
  • the antioxidant may be used in an amount of 0.1 to 2% by weight based on the total weight of the polyimide precursor composition. Specifically, the antioxidant may be used in an amount of 0.2 to 1% by weight based on the total weight of the polyimide precursor composition.
  • the mixture is mixed with an aromatic carboxylic acid having four or more carboxyl groups.
  • the step (3) may be carried out at 30 to 90 < 0 > C. Specifically, the step (3) may be carried out at 40 to 80 ° C.
  • the aromatic carboxylic acid may be used in an amount of 1 to 8 moles relative to 100 moles of the aromatic diamine. Specifically, the aromatic carboxylic acid may be used in an amount of 1 to 6 moles relative to 100 moles of the aromatic diamine.
  • ADK STAB FP-900L (hereinafter referred to as " FP-900L ”) of ADEKA Co., Ltd. was used as the antioxidant used in the following examples and comparative examples.
  • the weight average molecular weight was measured using a HPLC 1260 Infinity II model from Agilent Technologies. Specifically, the polyimide precursor composition was dissolved in a mobile phase NMP solution at a concentration of 1 wt%, filtered through a 0.45 mu m filter, and then measured. The weight average molecular weight of the polyimide precursor composition was measured at a measurement temperature of 50 ⁇ at a flow rate of 0.9 ml / min using PLgel 5 mm Mixed-D as a column. Before the measurement, the weight average molecular weight was calculated using a calibration curve which was the same as the above-mentioned measurement conditions using polystyrene as a standard sample of molecular weight.
  • the viscosity of the polyimide precursor composition was measured at room temperature (23 DEG C) using a Rheostress 600 model of Thermo Electron viscometer. The viscosity change was measured by allowing it to stand at room temperature (23 ° C) for 30 days. When the viscosity change after standing was evaluated as 10% or more, storage stability was evaluated as low. Respectively.
  • Example 2 (Viscosity at 23 ⁇ : 3,300 cP, solids concentration: 20 ⁇ ) was obtained in the same manner as in Example 1, except that PMDA was not used as the aromatic acid dianhydride and BPDA was used in an amount of 95 mol based on 100 moles of PPD. 20 mass%, weight average molecular weight: 22,000 g / mole).
  • the polyimide precursor composition (viscosity at 23 ⁇ : 4,000 cP, solid concentration: 20% by weight, weight at 23 ⁇ , and the like) was prepared in the same manner as in Comparative Example 1, except that PMDA was reacted with aromatic acid dianhydride Average molecular weight: 24,000 g / mol).
  • the storage stability of the composition was found to be low over time, and after a certain period of time, the viscosity was remarkably decreased and it was difficult to obtain a uniform polyimide substrate of the thin film, and thus the properties of the substrate could not be measured.
  • a polyimide precursor composition was prepared in the same manner as in Example 1 except that an aromatic acid dianhydride component, an aromatic carboxylic acid component, a tertiary amine curing agent and an antioxidant as shown in Table 1 below were used.
  • the polyimide precursor compositions of Examples 1 and 2 and Comparative Examples 1 to 6 were bubbled through a high-speed rotation of 1,500 rpm or more. Thereafter, the defoamed polyimide precursor composition was applied to the glass substrate using a spin coater. Thereafter, the resultant was dried in a nitrogen atmosphere at 120 ° C. for 30 minutes, heated to 450 ° C. at a rate of 2 ° C./min, heat-treated at 450 ° C. for 60 minutes, cooled to 30 ° C. at a rate of 2 ° C./min A polyimide substrate was obtained. Thereafter, the polyimide substrate was peeled off from the glass substrate by dipping in distilled water. The thickness of the prepared polyimide substrate was 10 ⁇ .
  • the thickness of the prepared polyimide substrate was measured using an electric film thickness tester manufactured by Anritsu.
  • Thermogravimetric analysis of TA A Q50 model was used.
  • the polyimide substrate was heated to 150 DEG C at a rate of 10 min / DEG C under a nitrogen atmosphere, and was then kept isothermal for 30 minutes to remove moisture. Thereafter, the temperature was raised to 600 ° C at a rate of 10 min / ° C to measure the temperature at which the 1% weight reduction occurred.
  • the polyimide substrate was cut to a width of 2 mm and a length of 10 mm. Thereafter, a tensile strength of 0.05 N was applied under a nitrogen atmosphere, Lt; 0 > C and then cooled at a rate of 10 [deg.] C / min. The slope of the section between 50 [deg.] C and 400 [
  • the polyimide substrate was cut to a width of 10 mm and a length of 40 mm, and the modulus and tensile strength were measured by an Instron5564 UTM instrument of Instron by ASTM D-882 method. The crosshead speed was measured at a rate of 5 mm / min.
  • the Lambda 465 model was used as a UV-Vis spectrophotometer from Perkin Elmer, and the transmittance was measured at 550 nm in transmittance mode.
  • Example 2 Substrate thickness ( ⁇ ) x x 10 10 10 10 10 10 10 10 10 Glass transition temperature ( ⁇ ) x x 434 430 435 442 450 416 1% by weight Thermal decomposition temperature ( ⁇ ⁇ ) x x 533 542 547 544 557 562 Thermal Expansion Coefficient (ppm / ° C) x x 9 6 5 5 3 7 Modulus (GPa) x x 8.2 8.6 8.9 9.0 10.0 7.8 Tensile Strength (MPa) x x 330 377 354 380 453 446 Light transmittance (%, @ 550 nm) x x 42 62 63 67 63 70
  • the polyimide precursor composition of Examples 1 and 2 has low viscosity and high storage stability even when the solid content is contained at a high concentration of 20% by weight.
  • the polyimide base materials prepared from the polyimide precursor compositions of Examples 1 and 2 were excellent in heat resistance, modulus, tensile strength and light transmittance, and had a low coefficient of thermal expansion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

본 발명은 폴리이미드 전구체 조성물, 이의 제조방법 및 이로부터 제조된 폴리이미드 기재에 관한 것으로서, 상기 폴리이미드 전구체 조성물은 고농도의 고형분을 포함하면서도 저점도를 가져 기재 제조에 유리하고 상온 저장 안정성이 우수하다. 또한, 상기 폴리이미드 기재는 내열성 및 기계적 물성이 우수하여 디스플레이 기판으로 적용하기 적합하다.

Description

폴리이미드 전구체 조성물, 이의 제조방법 및 이로부터 제조된 폴리이미드 기재
본 발명은 폴리이미드 전구체 조성물, 이의 제조방법 및 이로부터 제조된 폴리이미드 기재에 관한 것으로서, 상기 폴리이미드 전구체 조성물은 고농도의 고형분을 포함하면서도 저점도를 가져 기재 제조에 유리하고 상온 저장 안정성이 우수하다. 또한, 상기 폴리이미드 기재는 내열성 및 기계적 물성이 우수하여 디스플레이 기판으로 적용하기 적합하다.
일반적으로 폴리이미드(PI) 수지는 방향족 이무수물과 방향족 디아민 또는 방향족 디이소시아네이트를 중합하여 폴리아믹산 유도체를 제조한 후, 고온에서 폐환 탈수시킴으로써 이미드화하여 제조되는 고내열수지를 일컫는다. 또한, 폴리이미드 수지는 불용, 불융의 고내열성 수지로서 내열산화성, 내열특성, 내방사선성, 저온특성, 내약품성 등이 우수하여, 자동차 재료, 항공소재, 우주선 소재 등의 내열 첨단소재, 및 절연코팅제, 절연막, 반도체, TFT-LCD의 전극 보호막 등 전자재료 등의 광범위한 분야에 사용되고 있다(대한민국 등록특허 제 10-1472920 호 참조).
최근에는 폴리이미드 수지, 즉 폴리이미드 전구체 조성물을 필름화함으로써, 보다 용이하면서도 광학적, 기계적 및 열적 특성이 우수한 폴리이미드 기재가 개발되고 있다. 그러나, 종래 폴리이미드 전구체 조성물 제조시 방향족 이무수물과 방향족 아민과의 반응 몰비가 1:1에 가까울수록 높은 분자량을 형성하고, 이를 열적 화학적 이미드화를 통해 기재를 제조할 경우, 상기 반응 몰비를 벗어나는 경우보다 더 우수한 물성을 구현하는 것으로 알려져 있다. 그러나 폴리이미드 전구체의 분자량이 높아지고 고형분 함량이 높아질수록 상기 폴리이미드 전구체 조성물의 점도가 높아져 취급이 어려우며, 이로부터 기재를 제조하는데도 어려움이 있다. 또한, 점도가 높은 폴리이미드 전구체 조성물은 상온 저장안정성이 낮다. 상기 폴리이미드 전구체가 저분자량일 경우, 이를 이용해 제조한 폴리이미드 기재의 내열성 및 기계적 물성이 저하되는 문제가 발생할 수 있다. 또한, 폴리이미드 전구체 조성물이 낮은 농도로 고형분을 포함할 경우, 제조된 기재로부터 다량의 용매를 제거해야하는 문제 및 제조 비용과 시간이 증가하는 문제가 발생할 수 있다.
따라서, 본 발명의 목적은 고형분의 농도가 높으면서도 저점도를 가지며, 상온 저장안정성이 우수한 폴리이미드 전구체 조성물을 제공하는 것이다.
또한, 본 발명의 다른 목적은 우수한 내열성 및 기계적 물성이 우수하여 디스플레이 기판으로 적용하기 적합한 폴리이미드 기재를 제공하는 것이다.
상기 목적을 달성하기 위해 본 발명은,
비페닐테트라카르복실산 이무수물(BPDA, 3,4,3',4'-biphenyl tetracarboxylic dianhydride)을 포함하는 방향족 산 이무수물과 파라-페닐렌 디아민(PPD, para-phenylene diamine)을 포함하는 방향족 디아민을 포함하는 폴리아믹산 조성물로부터 제조된 폴리아믹산 용액;
4개 이상의 카르복실기를 갖는 방향족 카르복실산;
3차 아민 경화제; 및
산화방지제를 포함하는, 폴리이미드 전구체 조성물을 제공한다.
상기 다른 목적을 달성하기 위해 본 발명은,
상기 폴리이미드 전구체 조성물을 도포하고 건조 경화하여 제조된, 폴리이미드 기재를 제공한다.
상기 또 다른 목적을 달성하기 위해 본 발명은,
(1) 비페닐테트라카르복실산 이무수물(BPDA, 3,4,3',4'-biphenyl tetracarboxylic dianhydride)을 포함하는 방향족 산 이무수물과 파라-페닐렌 디아민(PPD, para-phenylene diamine)을 포함하는 방향족 디아민을 혼합 및 반응시켜 폴리아믹산 용액을 제조하는 단계;
(2) 상기 폴리아믹산 용액, 3차 아민 경화제 및 산화방지제를 혼합하여 혼합물을 제조하는 단계; 및
(3) 상기 혼합물과 4개 이상의 카르복실기를 갖는 방향족 카르복실산을 혼합하는 단계를 포함하는, 폴리이미드 전구체 조성물의 제조방법을 제공한다.
본 발명에 따른 폴리이미드 전구체 조성물은 고형분의 농도가 높으면서도 저점도를 가지며, 상온 저장안정성이 우수하다. 또한, 상기 조성물로부터 형성된 폴리이미드 기재는 디스플레이 제조 공정 중 열처리 공정에서도 유리 또는 무기층과의 접착력이 적절하고, 내열성 및 열적 치수 안정성과 같은 기계적 물성이 우수하다.
본 발명의 폴리이미드 전구체 조성물은 비페닐테트라카르복실산 이무수물(BPDA, 3,4,3',4'-biphenyl tetracarboxylic dianhydride)을 포함하는 방향족 산 이무수물과 파라-페닐렌 디아민(PPD, para-phenylene diamine)을 포함하는 방향족 디아민을 포함하는 폴리아믹산 조성물로부터 제조된 폴리아믹산 용액; 4개 이상의 카르복실기를 갖는 방향족 카르복실산; 3차 아민 경화제; 및 산화방지제를 포함한다.
폴리아믹산 용액
상기 폴리아믹산 용액은 비페닐테트라카르복실산 이무수물(BPDA, 3,4,3',4'-biphenyl tetracarboxylic dianhydride)을 포함하는 방향족 산 이무수물과 파라-페닐렌 디아민(PPD, para-phenylene diamine)을 포함하는 방향족 디아민을 포함하는 폴리아믹산 조성물로부터 제조된다.
상기 방향족 산 이무수물은 비페닐테트라카르복실산 이무수물(BPDA)을 포함한다.
또한, 상기 방향족 산 이무수물은 피로멜리트산 이무수물(PMDA, pyromellitic dianhydride), 3,3',4,4'-벤조페논테트라카르복실산 이무수물(3,3',4,4'-benzophenonetetracarboxylic dianhydride, BTDA), 2,3,3',4'-비페닐테트라카르복실산 이무수물(2,3,3',4'-biphenyltetracarboxylic dianhydride), 1H,3H-나프토[2,3-c:6,7-c']디퓨란-1,3,6,8-테트론 2,3,6,7-나프탈렌테트라카르복실산 이무수물(1H,3H-naphtho[2,3-c:6,7-c']difuran-1,3,6,8-tetrone 2,3,6,7-naphthalenetetracarboxylic dianhydride), 1,4,5,8-나프탈렌테트라카르복실산 이무수물(1,4,5,8-naphthalenetetracarboxylic dianhydride), 4,4'-옥시디프탈산 무수물(4,4'-oxydiphthalic anhydride), 4,4'-옥시비스(2-벤조퓨란-1,3-디온)(4,4'-oxybis(2-benzofurane-1,3-dione)), 4-[(1,3-디옥소-1,3-디하이드로-2-벤조퓨란-5-일)옥시]-2-벤조퓨란-1,3-디온(4-[(1,3-dioxo-1,3-dihydro-2-benzofuran-5-yl)oxy]-2-benzofuran-1,3-dione) 및 5,5'-설포닐비스-1,3-이소벤조퓨란디온(5,5'-sulfonylbis-1,3-isobenzofurandione)으로 이루어진 군으로부터 선택된 1종 이상의 방향족 산 이무수물을 추가로 포함할 수 있다.
구체적으로, 상기 방향족 산 이무수물은 비페닐테트라카르복실산 이무수물(BPDA)을 포함하거나, 비페닐테트라카르복실산 이무수물(BPDA) 및 피로멜리트산 이무수물(PMDA)을 포함할 수 있다. 또한, 상기 방향족 산 이무수물은 비페닐테트라카르복실산 이무수물(BPDA) 및 3,3',4,4'-벤조페논테트라카르복실산 이무수물(BTDA)을 포함하거나, 비페닐테트라카르복실산 이무수물(BPDA), 피로멜리트산 이무수물(PMDA) 및 3,3',4,4'-벤조페논테트라카르복실산 이무수물(BTDA)을 포함할 수 있다.
상기 폴리아믹산 조성물은 방향족 디아민 100 몰에 대하여 0.1 내지 70 몰의 추가 방향족 산 이무수물을 포함할 수 있다. 구체적으로, 상기 폴리아믹산 조성물은 방향족 디아민 100 몰에 대하여 2 내지 65 몰의 추가 방향족 산 이무수물을 포함할 수 있다. 보다 구체적으로, 상기 폴리아믹산 조성물은 디아민 100 몰에 대하여 42 내지 99 몰의 BPDA 및 0.1 내지 57 몰의 PMDA; 또는 92 내지 99 몰의 BPDA를 포함할 수 있다.
또한, 상기 폴리아믹산 조성물은 디아민 100 몰에 대하여 0.1 내지 5 몰, 또는 0.1 내지 3 몰의 BTDA를 포함할 수 있다.
내열성, 열적치수안정성 및 모듈러스를 향상시키기 위해, 전체 방향족 디아민 1 몰에 대하여 파라-페닐렌 디아민의 비율이 0.8 내지 1.0 몰이 되도록 사용할 수 있다. 파라-페닐렌 디아민은 디아미노페닐에테르 등의 다른 방향족 디아민과 비교하여 직선성을 갖는 단량체로, 제조된 필름의 열팽창계수(coefficient of thermal expansion) 값을 떨어뜨리는 장점이 있다.
상기 방향족 디아민은 파라-페닐렌 디아민 이외에 디아미노페닐에테르, o-페닐렌디아민, m-페닐렌디아민, 2,6-디아미노-피리딘(2,6-diamino-pyridine), 4,4-디아미노디페닐설폰(4,4'-diaminodiphenylsulphone), 2-(4-아미노페닐)-1H-벤조옥사졸-5-아민(2-(4-aminophenyl)-1H-benzoxazole-5-amine), 2-(4-아미노페닐)-5-아미노벤즈이미다졸(2-(4-aminophenyl)-5-aminobenzimidazole), 6-아미노-2-(p-아미노페닐)벤즈옥사졸(6-amino-2-(p-aminophenyl)benzoxazole) 및 4,4''-디아미노-p-터페닐(4,4''-diamino-p-terphenyl)로 이루어진 군으로부터 선택된 1종 이상의 방향족 디아민을 추가로 포함할 수 있다.
상기 폴리아믹산 조성물은 방향족 산 이무수물 및 방향족 디아민 이외에 반응 용매를 포함할 수 있다. 상기 반응 용매는 아미드계 비양성자성 극성 용매(aprotic solvent)일 수 있다. 구체적으로, 상기 반응 용매는 N,N'-디메틸포름아미드(DMF), N,N'-디메틸아세트아미드(DMAc), N-메틸 피롤리돈(NMP), 아세토니트릴, 테트라하이드로퓨란(THF), 3-메틸페놀(m-Cresol), 1,1,3,3-테트라메틸우레아(TMU), 디메틸 설폭사이드(DMSO) 및 감마-부티로락톤으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 폴리아믹산 용액은 상기 폴리아믹산 조성물로부터 제조된 것으로서, 구체적으로, 상기 폴리아믹산 용액은 상기 폴리아믹산 조성물을 반응시켜 제조된 것일 수 있다. 상기 반응은 30 내지 90 ℃에서 수행될 수 있다.
상기 폴리아믹산 용액은 23 ℃에서의 점도가 1,000 내지 20,000 cP일 수 있다. 구체적으로, 상기 폴리아믹산 용액은 23 ℃에서의 점도가 2,000 내지 10,000 cP일 수 있다.
상기 폴리아믹산 용액의 중량평균분자량은 10,000 내지 200,000, 또는 15,000 내지 150,000일 수 있다.
방향족 카르복실산
상기 방향족 카르복실산은 4개 이상의 카르복실기를 가지며, 제조된 폴리아믹산 용액의 점도를 낮추면서도 내열성, 열적치수 안정성 및 기계적 특성을 향상시키는 역할을 한다. 구체적으로, 상기 방향족 카르복실산은 4개의 카르복실기를 갖는 방향족 카르복실산일 수 있다.
보다 구체적으로, 상기 방향족 카르복실산은 피로멜리트산(pyromellitic acid, PMA), 3,3',4,4'-비페닐테트라카르복실산(3,3',4,4'-biphenyltetracarboxylic acid, BPTA), 1,2,3,4-벤젠테트라카르복실산(1,2,3,4-benzenetetracarboxylic acid), 벤조페논-3,3',4,4'-테트라카복실산(benzophenone-3,3',4,4'-tetracarboxylic acid), 피라진테트라카복실산(pyrazinetetracarboxylic acid), 2,3,6,7-나프탈렌테트라카르복실산(2,3,6,7-naphthalenetetracarboxylic acid) 및 나프탈렌-1,4,5,8-테트라카르복실산(naphthalene-1,4,5,8-tetracarboxylic acid)으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 더욱 구체적으로, 상기 방향족 카르복실산은 피로멜리트산 및 3,3',4,4'-비페닐테트라카르복실산으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 보다 더욱 구체적으로, 상기 방향족 카르복실산은 피로멜리트산 또는 3,3',4,4'-비페닐테트라카르복실산을 포함할 수 있다.
상기 폴리아믹산 조성물이 방향족 디아민 100 몰에 대하여 1 내지 8 몰의 방향족 카르복실산을 포함할 수 있다. 구체적으로, 상기 폴리이미드 전구체 조성물이 폴리아믹산 100 몰에 대하여 1 내지 7 몰, 또는 1 내지 6 몰의 방향족 카르복실산을 포함할 수 있다.
3차 아민 경화제
상기 3차 아민 경화제는 베타피콜린, 이소퀴놀린, 트리에틸렌디아민 및 피리딘으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 구체적으로, 상기 3차 아민 경화제는 베타피콜린, 이소퀴놀린 및 피리딘으로 이루어진 군으로부터 선택된 1종 이상, 및 트리에틸렌디아민을 포함할 수 있다. 상기 트리에틸렌디아민은 폴리이미드 전구체 조성물의 저온 경화를 가능하게 하고 제조된 기재의 내열성을 향상시키는 역할을 한다.
상기 폴리이미드 전구체 조성물은 폴리아믹산 100 몰에 대하여 0.1 내지 50 몰의 3차 아민 경화제를 포함할 수 있다. 구체적으로, 상기 폴리이미드 전구체 조성물은 폴리아믹산 100 몰에 대하여 0.1 내지 2 몰의 트리에틸렌디아민을 포함할 수 있다. 보다 구체적으로, 상기 폴리이미드 전구체 조성물은 폴리아믹산 100 몰에 대하여 5 내지 50 몰의 베타피콜린, 이소퀴놀린 및 피리딘으로 이루어진 군으로부터 선택된 1종 이상, 및 0.1 내지 2 몰의 트리에틸렌디아민을 포함할 수 있다.
산화방지제
상기 산화방지제는 폴리이미드 전구체 조성물 내의 아미드기의 반응성을 낮춰 기재 제조공정 중 열처리시 아미드기의 반응성으로 인한 산화를 방지하는 역할을 한다.
상기 산화방지제는 5 중량% 분해온도가 400 ℃ 이상, 또는 400 내지 480 ℃일 수 있으며, 구체적으로, 상기 산화방지제는 하기 화학식 1로 표시되는 화합물, 트리에틸 포스페이트(triethyl phosphate) 및 트리메틸 포스페이트(trimethyl phosphate)로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
Figure PCTKR2018007175-appb-C000001
상기 화학식 1에서, n은 0 내지 4의 정수이다.
더 구체적으로, 상기 산화방지제는 상기 n이 0인 트리페닐 포스페이트(TPP, triphenyl phosphate) 또는 상기 n이 1 내지 4의 정수인 화합물들의 혼합물(Cas 1003300-73-9)일 수 있다.
상기 폴리이미드 전구체 조성물은 폴리이미드 전구체 조성물 총 중량을 기준으로 0.1 내지 2 중량%의 산화방지제를 포함할 수 있다. 구체적으로, 상기 폴리이미드 전구체 조성물은 폴리이미드 전구체 조성물 총 중량을 기준으로 0.2 내지 1.5 중량%, 또는 0.2 내지 1 중량%의 산화방지제를 포함할 수 있다.
폴리이미드 기재
본 발명에 따른 폴리이미드 기재는 상술한 바와 같은 폴리이미드 전구체 조성물을 도포하고 건조 경화하여 제조된다. 구체적으로, 상기 폴리이미드 기재는 상술한 바와 같은 폴리이미드 전구체 조성물을 지지 기판 상에 도포하고 건조 경화한 후 박리하여 제조될 수 있다.
상기 지지 기판은 유리 기판, 금속판, 웨이퍼 등일 수 있다.
상기 건조 경화는 도포된 폴리이미드 전구체 조성물의 두께에 따라 건조 시 온도 및 건조 시간이 조절될 수 있으며, 예를 들어, 상기 건조 경화는 20 내지 120 ℃의 온도에서 5 내지 60 분 동안 건조하고, 450 내지 500 ℃까지 1 내지 8 ℃/분의 속도로 승온하고, 450 내지 500 ℃에서 30 내지 60 분 동안 열처리하고, 20 내지 120 ℃까지 1 내지 8 ℃/분의 속도로 냉각하는 공정을 통해 수행될 수 있다.
상기 폴리이미드 기재는 유리전이온도가 400 내지 500 ℃이고, 모듈러스가 6 내지 12 ㎬이며, 50 내지 400 ℃에서의 열팽창계수가 1 내지 8 ppm/℃일 수 있다. 구체적으로, 상기 폴리이미드 기재는 유리전이온도가 420 내지 480 ℃이고, 모듈러스가 6 내지 11 ㎬이며, 50 내지 400 ℃에서의 열팽창계수가 2 내지 8 ppm/℃일 수 있다.
상기 폴리이미드 기재는 분해율 1 중량%의 열분해 온도가 550 내지 620 ℃이고, 두께 10 ㎛의 기재의 550 nm 파장의 광에 대한 투과율이 40 내지 80 %일 수 있다. 구체적으로, 상기 폴리이미드 기재는 분해율 1 중량%의 열분해 온도가 550 내지 600 ℃이고, 두께 10 ㎛의 필름의 550 nm 파장의 광에 대한 투과율이 50 내지 75 %일 수 있다.
상기 폴리이미드 기재는 인장강도가 200 내지 500 ㎫이고, 박리강도가 0.01 내지 10 N/cm이며, 480 ℃에서 1 중량% 분해 시간이 1 내지 12 시간일 수 있다. 구체적으로, 상기 폴리이미드 기재는 인장강도가 250 내지 460 ㎫이고, 박리강도가 0.5 내지 5 N/cm이며, 480 ℃에서 1 중량% 분해 시간이 2 내지 10 시간일 수 있다.
상기 폴리이미드 기재의 평균 두께는 3 내지 30 ㎛일 수 있다.
폴리이미드 전구체 조성물의 제조방법
본 발명에 따른 폴리이미드 전구체 조성물의 제조방법은
(1) 비페닐테트라카르복실산 이무수물(BPDA, 3,4,3',4'-biphenyl tetracarboxylic dianhydride)을 포함하는 방향족 산 이무수물과 파라-페닐렌 디아민(PPD, para-phenylene diamine)을 포함하는 방향족 디아민을 혼합 및 반응시켜 폴리아믹산 용액을 제조하는 단계;
(2) 상기 폴리아믹산 용액, 3차 아민 경화제 및 산화방지제를 혼합하여 혼합물을 제조하는 단계; 및
(3) 상기 혼합물과 4개 이상의 카르복실기를 갖는 방향족 카르복실산을 혼합하는 단계를 포함한다.
단계 (1)
본 단계에서는 비페닐테트라카르복실산 이무수물(BPDA, 3,4,3',4'-biphenyl tetracarboxylic dianhydride)을 포함하는 방향족 산 이무수물과 파라-페닐렌 디아민(PPD, para-phenylene diamine)을 포함하는 방향족 디아민을 혼합 및 반응시켜 폴리아믹산 용액을 제조한다.
상기 단계 (1)은 30 내지 90 ℃에서 수행될 수 있다.
단계 (1)은 반응 용매, 비페닐테트라카르복실산 이무수물, 추가 방향족 산 이무수물 및 방향족 디아민을 반응시키거나, 비페닐테트라카르복실산 이무수물, 추가 방향족 산 이무수물 및 방향족 디아민을 혼합 및 반응시켜 폴리아믹산 용액을 제조할 수 있다. 구체적으로, 단계 (1)은 (1-1) 반응 용매, 비페닐테트라카르복실산 이무수물, 추가 방향족 산 이무수물 및 방향족 디아민을 혼합 및 반응시켜 23 ℃에서의 점도가 100 내지 10,000 cP인 제1 반응물을 제조하는 단계; 및 (1-2) 상기 제1 반응물에 23 ℃에서의 점도가 1,000 내지 20,000 cP가 되도록 추가 방향족 산 이무수물 용액(고형분 농도 5 중량%)을 분할 투입하고 반응시켜 제2 반응물을 제조하는 단계;를 포함할 수 있다.
상기 추가 방향족 산 이무수물은 피로멜리트산 이무수물(PMDA, pyromellitic dianhydride), 3,3',4,4'-벤조페논테트라카르복실산 이무수물(3,3',4,4'-benzophenonetetracarboxylic dianhydride, BTDA), 2,3,3',4'-비페닐테트라카르복실산 이무수물(2,3,3',4'-biphenyltetracarboxylic dianhydride), 1H,3H-나프토[2,3-c:6,7-c']디퓨란-1,3,6,8-테트론 2,3,6,7-나프탈렌테트라카르복실산 이무수물(1H,3H-naphtho[2,3-c:6,7-c']difuran-1,3,6,8-tetrone 2,3,6,7-naphthalenetetracarboxylic dianhydride), 1,4,5,8-나프탈렌테트라카르복실산 이무수물(1,4,5,8-naphthalenetetracarboxylic dianhydride), 4,4'-옥시디프탈산 무수물(4,4'-oxydiphthalic anhydride), 4,4'-옥시비스(2-벤조퓨란-1,3-디온)(4,4'-oxybis(2-benzofurane-1,3-dione)), 4-[(1,3-디옥소-1,3-디하이드로-2-벤조퓨란-5-일)옥시]-2-벤조퓨란-1,3-디온(4-[(1,3-dioxo-1,3-dihydro-2-benzofuran-5-yl)oxy]-2-benzofuran-1,3-dione) 및 5,5'-설포닐비스-1,3-이소벤조퓨란디온(5,5'-sulfonylbis-1,3-isobenzofurandione)으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 반응 용매는 아미드계 비양성자성 극성 용매(aprotic solvent)일 수 있다. 구체적으로, 상기 반응 용매는 N,N'-디메틸포름아미드, N,N'-디메틸아세트아미드 및 N-메틸 피롤리돈으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 제1 반응물은 100 몰의 방향족 디아민, 42 내지 99 몰의 BPDA 및 0.1 내지 57 몰의 추가 방향족 산 이무수물; 또는 100 몰의 방향족 디아민 및 92 내지 99 몰의 BPDA을 혼합하고 30 내지 90 ℃에서 반응시켜 제조될 수 있다.
상기 제2 반응물은 제1 반응물에 방향족 디아민 100 몰에 대하여 0.1 내지 57 몰의 추가 방향족 산 이무수물 용액을 분할 투입하고 30 내지 90 ℃에서 반응시켜 제조될 수 있다. 또한, 상기 제2 반응물은 제1 반응물에 방향족 디아민 100 몰에 대하여 42 내지 99 몰의 BPDA를 혼합하고 30 내지 90 ℃에서 반응시킨 후 추가 방향족 산 이무수물 용액을 소량씩 분할 투입하여 23 ℃에서의 점도가 1,000 내지 20,000 cP가 되도록 조절할 수 있다.
상기 추가 방향족 산 이무수물 용액의 고형분 농도는 1 내지 10 중량%, 또는 2 내지 8 중량%일 수 있다. 상기 추가 방향족 산 이무수물 용액의 용매는 상기 반응 용매와 동일할 수 있다.
또한, 상기 추가 방향족 산 이무수물 용액은 10 내지 30 분 간격으로 투입할 수 있다. 나아가, 상기 제2 반응물은 피로멜리트산 이무수물 용액을 투입하면서 교반할 수 있다.
상기 폴리아믹산 용액은 23 ℃에서의 점도가 1,000 내지 20,0000 cP일 수 있다. 구체적으로, 상기 폴리아믹산 용액은 23 ℃에서의 점도가 2,000 내지 10,000 cP일 수 있다.
단계 (2)
본 단계에서는 상기 폴리아믹산 용액, 3차 아민 경화제 및 산화방지제를 혼합하여 혼합물을 제조한다.
상기 3차 아민 경화제 및 산화방지제의 종류는 상기 폴리이미드 전구체 조성물에서 정의한 바와 같다.
상기 단계 (2)는 30 내지 90 ℃에서 수행될 수 있다. 구체적으로, 상기 단계 (2)는 40 내지 80 ℃에서 수행될 수 있다.
상기 3차 아민 경화제는 폴리아믹산 100 몰에 대하여 0.1 내지 50 몰의 양으로 사용될 수 있다. 구체적으로, 상기 3차 아민 경화제는 폴리아믹산 100 몰에 대하여 5 내지 50 몰의 피리딘, 베타피콜린 또는 이소퀴놀린, 및 0.1 내지 2 몰의 트리에틸렌디아민을 포함할 수 있다.
상기 산화방지제는 폴리이미드 전구체 조성물 총 중량을 기준으로 0.1 내지 2 중량%의 양으로 사용될 수 있다. 구체적으로, 상기 산화방지제는 폴리이미드 전구체 조성물 총 중량을 기준으로 0.2 내지 1 중량%의 양으로 사용될 수 있다.
단계 (3)
본 단계에서는 상기 혼합물과 4개 이상의 카르복실기를 갖는 방향족 카르복실산을 혼합한다.
상기 단계 (3)은 30 내지 90 ℃에서 수행될 수 있다. 구체적으로, 상기 단계 (3)은 40 내지 80 ℃에서 수행될 수 있다.
상기 방향족 카르복실산은 방향족 디아민 100 몰에 대하여 1 내지 8 몰의 양으로 사용될 수 있다. 구체적으로, 상기 방향족 카르복실산은 방향족 디아민 100 몰에 대하여 1 내지 6 몰의 양으로 사용될 수 있다.
이하, 하기 실시예에 의하여 본 발명을 보다 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
[실시예]
이하 실시예 및 비교예에서 사용한 약어의 화합물명은 다음과 같다.
- 비페닐테트라카르복실산 이무수물: BPDA
- 피로멜리트산 이무수물: PMDA
- 파라-페닐렌 디아민: PPD
- 3,3',4,4'-벤조페논테트라카르복실산 이무수물: BTDA
- N-메틸 피롤리돈: NMP
- 피로멜리트산: PMA
- 3,3',4,4'-비페닐테트라카르복실산: BPTA
- 이소퀴놀린: IQ
- 트리에틸렌디아민: DABCO
또한, 이하 실시예 및 비교예에서 사용한 산화방지제는 ADEKA사의 ADK STAB FP-900L(이하, "FP-900L"으로 기재)을 사용하였다.
실시예 1. 폴리이미드 전구체 조성물의 제조
교반기 및 질소 주입·배출관을 구비한 500 ㎖ 반응기에 질소를 주입시키면서 300g의 NMP을 투입하고 반응기의 온도를 30 ℃로 설정한 후 27.19 g의 PPD, 35.74 g의 BPDA, 0.87g의 BTDA 및 28.00g의 PMDA을 투입하여 완전히 용해되고 반응할 때까지 교반했다. 반응이 완료된 후 1.44g의 PMDA를 NMP에 5 중량%로 용해시킨 후 10분 간격으로 23 ℃에서의 점도가 6,000 cP가 될 때까지 투입하였다. 이후 폴리아믹산 100 몰에 대하여 1 몰의 DABCO 및 10 몰의 IQ을 순차적으로 투입하고 폴리아믹산 총 중량의 1 중량%의 FP-900L를 투입하고 교반하고, PPD 100 몰에 대하여 4 몰의 PMA를 투입하였다. 반응이 완료될 때까지 충분히 교반한 후 총 고형분의 농도가 20 중량%가 되도록 NMP를 투입하여 폴리이미드 전구체 조성물(23 ℃에서의 점도: 3,500 cP, 고형분 농도: 20 중량%, 중량평균분자량: 23,000 g/몰)을 제조하였다.
- 중량평균분자량
중량평균분자량은 Agilent Technologies사 HPLC 1260 Infinity Ⅱ모델을 사용하여 측정하였다. 구체적으로, 상기 폴리이미드 전구체 조성물을 이동상 NMP 용액에 1 중량%의 농도로 용해시킨 후 0.45 ㎛ 필터에 여과시킨 후 측정하였다. 컬럼으로 PLgel 5 mm Mixed-D를 사용하고, 0.9 ml/min의 유속으로, 50 ℃의 측정 온도 조건에서 폴리이미드 전구체 조성물의 중량평균분자량을 측정하였다. 측정 전, 분자량 표준시료로서 폴리스티렌을 활용해 상기의 측정 조건과 동일하게 실시한 검량선으로 중량평균분자량을 산출하였다.
- 점도 및 저장안정성
Thermo Electron사의 점도계 Rheostress 600모델을 사용하여 상온(23℃)에서 폴리이미드 전구체 조성물의 점도를 측정하였다. 또한, 이를 상온(23℃)에서 30 일 동안 방치하여 점도의 변화를 측정하였으며, 방치 후 점도 변화가 10% 이상인 경우 저장안정성 낮음으로 평가하고, 방치 후 점도 변화가 10 % 미만인 경우 저장안정성 높음으로 평가하였다.
실시예 2.
방향족 산 이무수물로 PMDA를 사용하지 않고, BPDA를 PPD 100 몰에 대하여 95 몰로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 폴리이미드 전구체 조성물(23 ℃에서의 점도: 3,300 cP, 고형분 농도: 20 질량%, 중량평균분자량: 22,000 g/몰)을 제조하였다.
비교예 1.
방향족 산 이무수물로 PMDA를 PPD 100 몰에 대하여 54 몰로 반응시키고, 초기 반응기 온도를 20 ℃로 하고, 3차 아민 경화제, 방향족 카르복실산 성분 및 산화방지제를 첨가하지 않은 것을 제외하고는, 실시예 1과 동일한 방법으로 폴리이미드 전구체 조성물(23 ℃에서의 점도: 270,000 cP, 고형분 농도: 20 중량%, 중량평균분자량: 220,000 g/몰)을 제조하였다. 이때, 고점도로 인해 박막의 균일한 폴리이미드 기재를 얻는데 어려움이 있어서 기재 물성 측정이 불가능하였고, 폴리이미드 전구체 조성물 자체의 저장안정성도 낮음이 확인되었다.
비교예 2.
방향족 산 이무수물로 PMDA를 PPD 100 몰에 대하여 50 몰로 반응시킨 것을 제외하고는, 비교예 1과 동일한 방법으로 폴리이미드 전구체 조성물(23 ℃에서의 점도: 4,000 cP, 고형분 농도: 20 중량%, 중량평균분자량: 24,000 g/몰)을 제조하였다. 이때, 상기 조성물은 시간이 지남에 따라 저장안정도 낮음이 확인되었고 일정시간 이후 점도가 현저히 감소하여 박막의 균일한 폴리이미드 기재를 얻는데 어려움이 있어서 기재 물성 측정이 불가능하였다.
비교예 3 내지 6.
하기 표 1과 같은 방향족 산 이무수물 성분, 방향족 카르복실산 성분, 3차 아민 경화제 및 산화방지제를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 폴리이미드 전구체 조성물을 제조하였다.
비교예 1 비교예 2 비교예 3 비교예 4 비교예 5 비교예 6 실시예 1 실시예 2
방향족 디아민 성분 PPD(몰%) 100 100 100 100 100 100 100 100
방향족 산 이무수물 성분 BPDA(몰%) 45 45 45 45 45 45 45 95
PMDA(몰%) 54 50 50 50 50 50 50 -
BTDA(몰%) 1 1 1 1 1 1 1 1
방향족 카르복실산 PMA (몰%) - - - - 4 4 4 4
3차 아민 경화제 DABCO(몰%) - - - 1 - 1 1 1
IQ (몰%) - - - 10 - 10 10 10
산화방지제 FP-900L(중량%) - - - 1 1 - 1 1
폴리이미드 전구체 조성물의 물성
고형분 농도 (중량%) 20 20 20 20 20 20 20 20
점도 (cP, @23℃) 270,000 4,000 4,000 3,500 3,500 3,500 3,500 3,300
중량평균분자량 (g/mol) 220,000 24,000 25,000 23,000 24,000 23,000 23,000 22,000
저장안정성 낮음 낮음 높음 높음 높음 높음 높음 높음
제조예. 폴리이미드 기재의 제조
실시예 1 및 2, 및 비교예 1 내지 6의 폴리이미드 전구체 조성물을 1,500 rpm 이상의 고속 회전을 통해 기포를 제거하였다. 이후 스핀 코터를 이용하여 유리 기판에 탈포된 폴리이미드 전구체 조성물을 도포하였다. 이후 질소 분위기하 및 120 ℃의 온도에서 30 분 동안 건조하고, 450 ℃까지 2 ℃/분의 속도로 승온하고, 450 ℃에서 60 분 동안 열처리하고, 30 ℃까지 2 ℃/분의 속도로 냉각하여 폴리이미드 기재를 수득하였다. 이후 증류수에 디핑(dipping)하여 유리 기판에서 폴리이미드 기재를 박리시켰다. 제조된 폴리이미드 기재의 두께는 10 ㎛였다.
제조된 폴리이미드 기재의 두께는 Anritsu사의 필름 두께 측정기(Electric Film thickness tester)를 사용하여 측정하였다.
시험예. 물성 평가
상기 제조예에서 제조한 폴리이미드 기재를 대상으로 하기와 같은 방법으로 물성을 평가하였으며, 측정결과를 표 2에 나타냈다.
(1) 유리전이온도
TA사 동적 역학적 거동 분석(Dynamic Mechanical Analysis) Q800 모델을 사용하여, 폴리이미드 기재를 폭 4 mm, 길이 20 mm로 자른 후 질소 분위기하에서 5 ℃/min의 승온 속도로, 상온에서 550 ℃의 온도구간 조건에서 유리전이온도를 측정하였다. 상기 유리전이온도는 저장 탄성률(storage modulus)과 손실 탄성률(loss modulus)의 비에 따라 계산되는 tanδ의 최대 피크로 판정하였다.
(2) 1 중량%의 열분해 온도
TA사 열무게 분석(thermogravimetric analysis) Q50 모델을 사용하였으며, 폴리이미드 기재를 질소 분위기하에서 10 min/℃의 속도로 150℃까지 승온시킨 후 30 분간 등온을 유지하여 수분을 제거했다. 이후 10 min/℃의 속도로 600℃까지 승온하여 1% 중량 감소가 발생하는 온도를 측정하였다.
(3) 열팽창 계수(CTE)
TA사 열기계 분석기(thermomechanical analyzer) Q400 모델을 사용하였으며, 폴리이미드 기재를 폭 2 mm, 길이 10 mm로 자른 후 질소 분위기하에서 0.05 N의 장력을 가하면서, 10 ℃/min의 속도로 상온에서 480 ℃까지 승온 후 다시 10 ℃/min의 속도로 냉각하면서 50 ℃에서 400 ℃ 구간의 기울기를 측정하였다.
(4) 모듈러스 및 인장강도
폴리이미드 기재를 폭 10 mm, 길이 40 mm로 자른 후 인스트론(Instron)사의 Instron5564 UTM 장비를 사용하여 ASTM D-882 방법으로 모듈러스 및 인장강도를 측정하였다. 이때의 Cross Head Speed는 5 mm/min의 조건으로 측정하였다.
(5) 550 nm 파장의 광에서의 광투과율
퍼킨앨머(Perkin Elmer)사의 자외선/가시광선 분광광도계(UV-Vis Spectrophotometer)로 Lambda 465 모델을 사용하였으며, 투과율 모드로 550 nm의 투과율을 측정하였다.
사용한 폴리이미드 전구체 조성물 비교예 1 비교예 2 비교예 3 비교예 4 비교예 5 비교예 6 실시예 1 실시예 2
기재 두께 (㎛) x x 10 10 10 10 10 10
유리전이온도 (℃) x x 434 430 435 442 450 416
1 중량% 열분해온도(℃) x x 533 542 547 544 557 562
열팽창계수 (ppm/℃) x x 9 6 5 5 3 7
모듈러스 (GPa) x x 8.2 8.6 8.9 9.0 10.0 7.8
인장강도 (MPa) x x 330 377 354 380 453 446
광투과율 (%, @550nm) x x 42 62 63 67 63 70
표 1 및 2에서 보는 바와 같이, 실시예 1 및 2의 폴리이미드 전구체 조성물은 고형분을 20 중량%의 고농도로 포함하여도 낮은 점도 및 높은 저장안정성을 가진다. 또한, 실시예 1 및 2의 폴리이미드 전구체 조성물로부터 제조된 폴리이미드 기재는 내열성, 모듈러스, 인장강도 및 광투과율가 우수하고, 열팽창계수가 낮았다.

Claims (20)

  1. 비페닐테트라카르복실산 이무수물(BPDA, 3,4,3',4'-biphenyl tetracarboxylic dianhydride)을 포함하는 방향족 산 이무수물과 파라-페닐렌 디아민(PPD, para-phenylene diamine)을 포함하는 방향족 디아민을 포함하는 폴리아믹산 조성물로부터 제조된 폴리아믹산 용액;
    4개 이상의 카르복실기를 갖는 방향족 카르복실산;
    3차 아민 경화제; 및
    산화방지제를 포함하는, 폴리이미드 전구체 조성물.
  2. 제1항에 있어서,
    상기 방향족 산 이무수물이 피로멜리트산 이무수물(PMDA, pyromellitic dianhydride), 3,3',4,4'-벤조페논테트라카르복실산 이무수물(3,3',4,4'-benzophenonetetracarboxylic dianhydride, BTDA), 2,3,3',4'-비페닐테트라카르복실산 이무수물(2,3,3',4'-biphenyltetracarboxylic dianhydride), 1H,3H-나프토[2,3-c:6,7-c']디퓨란-1,3,6,8-테트론 2,3,6,7-나프탈렌테트라카르복실산 이무수물(1H,3H-naphtho[2,3-c:6,7-c']difuran-1,3,6,8-tetrone 2,3,6,7-naphthalenetetracarboxylic dianhydride), 1,4,5,8-나프탈렌테트라카르복실산 이무수물(1,4,5,8-naphthalenetetracarboxylic dianhydride), 4,4'-옥시디프탈산 무수물(4,4'-oxydiphthalic anhydride), 4,4'-옥시비스(2-벤조퓨란-1,3-디온)(4,4'-oxybis(2-benzofurane-1,3-dione)), 4-[(1,3-디옥소-1,3-디하이드로-2-벤조퓨란-5-일)옥시]-2-벤조퓨란-1,3-디온(4-[(1,3-dioxo-1,3-dihydro-2-benzofuran-5-yl)oxy]-2-benzofuran-1,3-dione) 및 5,5'-설포닐비스-1,3-이소벤조퓨란디온(5,5'-sulfonylbis-1,3-isobenzofurandione)으로 이루어진 군으로부터 선택된 1종 이상의 방향족 산 이무수물을 추가로 포함하는, 폴리이미드 전구체 조성물.
  3. 제2항에 있어서,
    상기 폴리이미드 전구체 조성물이 방향족 디아민 100 몰에 대하여 0.1 내지 70 몰의 추가 방향족 산 이무수물을 포함하는, 폴리이미드 전구체 조성물.
  4. 제1항에 있어서,
    상기 방향족 카르복실산이 피로멜리트산(pyromellitic acid, PMA), 3,3',4,4'-비페닐테트라카르복실산(3,3',4,4'-biphenyltetracarboxylic acid, BPTA), 1,2,3,4-벤젠테트라카르복실산(1,2,3,4-benzenetetracarboxylic acid), 벤조페논-3,3',4,4'-테트라카복실산(benzophenone-3,3',4,4'-tetracarboxylic acid), 피라진테트라카복실산(pyrazinetetracarboxylic acid), 2,3,6,7-나프탈렌테트라카르복실산(2,3,6,7-naphthalenetetracarboxylic acid) 및 나프탈렌-1,4,5,8-테트라카르복실산(naphthalene-1,4,5,8-tetracarboxylic acid)으로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 폴리이미드 전구체 조성물.
  5. 제1항에 있어서,
    상기 폴리아믹산 조성물이 방향족 디아민 100 몰에 대하여 1 내지 8 몰의 방향족 카르복실산을 포함하는, 폴리이미드 전구체 조성물.
  6. 제1항에 있어서,
    상기 3차 아민 경화제가 베타피콜린, 이소퀴놀린, 트리에틸렌디아민 및 피리딘으로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 폴리이미드 전구체 조성물.
  7. 제6항에 있어서,
    상기 3차 아민 경화제가 베타피콜린, 이소퀴놀린 및 피리딘으로 이루어진 군으로부터 선택된 1종 이상, 및 트리에틸렌디아민을 포함하는, 폴리이미드 전구체 조성물.
  8. 제7항에 있어서,
    상기 폴리이미드 전구체 조성물이 폴리아믹산 100 몰에 대하여 0.1 내지 2 몰의 트리에틸렌디아민을 포함하는, 폴리이미드 전구체 조성물.
  9. 제1항에 있어서,
    상기 폴리이미드 전구체 조성물이 폴리아믹산 100 몰에 대하여 1 내지 8 몰의 방향족 카르복실산 및 0.1 내지 50 몰의 3차 아민 경화제를 포함하는, 폴리이미드 전구체 조성물.
  10. 제1항에 있어서,
    상기 산화방지제는 5 중량% 분해온도가 400 ℃ 이상인, 폴리이미드 전구체 조성물.
  11. 제10항에 있어서,
    상기 산화방지제가 하기 화학식 1로 표시되는 화합물, 트리에틸 포스페이트(triethyl phosphate) 및 트리메틸 포스페이트(trimethyl phosphate)로 이루어진 군으로부터 선택된 1종 이상인, 폴리이미드 전구체 조성물:
    [화학식 1]
    Figure PCTKR2018007175-appb-I000001
    상기 화학식 1에서, n은 0 내지 4의 정수이다.
  12. 제1항에 있어서,
    상기 폴리이미드 전구체 조성물이 폴리이미드 전구체 조성물 총 중량을 기준으로 0.1 내지 2 중량%의 산화방지제를 포함하는, 폴리이미드 전구체 조성물.
  13. 제1항 내지 제12항 중 어느 한 항의 폴리이미드 전구체 조성물을 도포하고 건조 경화하여 제조된, 폴리이미드 기재.
  14. 제13항에 있어서,
    상기 건조 경화가 20 내지 120 ℃의 온도에서 5 내지 60 분 동안 건조하고, 450 내지 500 ℃까지 1 내지 8 ℃/분의 속도로 승온하고, 450 내지 500 ℃에서 30 내지 60 분 동안 열처리하고, 20 내지 120 ℃까지 1 내지 8 ℃/분의 속도로 냉각하는 공정을 통해 수행되는, 폴리이미드 기재.
  15. 제13항에 있어서,
    상기 폴리이미드 기재는 유리전이온도가 400 내지 500 ℃이고, 모듈러스가 6 내지 12 ㎬이며, 50 내지 400 ℃에서의 열팽창계수가 1 내지 8 ppm/℃인, 폴리이미드 기재.
  16. 제13항에 있어서,
    상기 폴리이미드 기재는 1 중량%의 열분해 온도가 550 내지 620 ℃이고, 두께 10 ㎛의 기재의 550 nm 파장의 광에 대한 투과율이 40 내지 80 %인, 폴리이미드 기재.
  17. (1) 비페닐테트라카르복실산 이무수물(BPDA, 3,4,3',4'-biphenyl tetracarboxylic dianhydride)을 포함하는 방향족 산 이무수물과 파라-페닐렌 디아민(PPD, para-phenylene diamine)을 포함하는 방향족 디아민을 혼합 및 반응시켜 폴리아믹산 용액을 제조하는 단계;
    (2) 상기 폴리아믹산 용액, 3차 아민 경화제 및 산화방지제를 혼합하여 혼합물을 제조하는 단계; 및
    (3) 상기 혼합물과 4개 이상의 카르복실기를 갖는 방향족 카르복실산을 혼합하는 단계를 포함하는, 폴리이미드 전구체 조성물의 제조방법.
  18. 제17항에 있어서,
    상기 단계 (1)이
    (1-1) 반응 용매, 비페닐테트라카르복실산 이무수물, 추가 방향족 산 이무수물 및 방향족 디아민을 혼합 및 반응시켜 23 ℃에서의 점도가 100 내지 10,000 cP인 제1 반응물을 제조하는 단계; 및
    (1-2) 상기 제1 반응물에 23 ℃에서의 점도가 1,000 내지 20,000 cP가 되도록 추가 방향족 산 이무수물 용액(고형분 농도 5 중량%)을 분할 투입하고 반응시켜 제2 반응물을 제조하는 단계;를 포함하는, 폴리이미드 전구체 조성물의 제조방법.
  19. 제17항에 있어서,
    상기 단계 (1)이 30 내지 90 ℃에서 수행되고,
    상기 단계 (1)의 폴리아믹산 용액은 23 ℃에서의 점도가 1,000 내지 20,0000 cP인, 폴리이미드 전구체 조성물의 제조방법.
  20. 제17항에 있어서,
    상기 단계 (2)가 30 내지 90 ℃에서 수행되고,
    상기 단계 (3)이 30 내지 90 ℃에서 수행되는, 폴리이미드 전구체 조성물의 제조방법.
PCT/KR2018/007175 2017-06-30 2018-06-25 폴리이미드 전구체 조성물, 이의 제조방법 및 이로부터 제조된 폴리이미드 기재 WO2019004677A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880040277.3A CN110753715B (zh) 2017-06-30 2018-06-25 一种聚酰亚胺前体组合物、其制备方法及由其制造的聚酰亚胺基板

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170083042 2017-06-30
KR10-2017-0083042 2017-06-30
KR10-2018-0055252 2018-05-15
KR1020180055252A KR101948819B1 (ko) 2017-06-30 2018-05-15 폴리이미드 전구체 조성물, 이의 제조방법 및 이로부터 제조된 폴리이미드 기재

Publications (1)

Publication Number Publication Date
WO2019004677A1 true WO2019004677A1 (ko) 2019-01-03

Family

ID=64742408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007175 WO2019004677A1 (ko) 2017-06-30 2018-06-25 폴리이미드 전구체 조성물, 이의 제조방법 및 이로부터 제조된 폴리이미드 기재

Country Status (3)

Country Link
CN (1) CN110753715B (ko)
TW (1) TWI758507B (ko)
WO (1) WO2019004677A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114616269A (zh) * 2019-11-07 2022-06-10 聚酰亚胺先端材料有限公司 低介电质的聚酰亚胺薄膜及其制备方法
CN114854011A (zh) * 2022-05-27 2022-08-05 中化学科学技术研究有限公司 聚酰胺酸溶液、聚酰亚胺膜及其制备方法
CN114920931A (zh) * 2022-05-27 2022-08-19 中化学科学技术研究有限公司 聚酰亚胺前体组合物、聚酰亚胺膜及其制备方法
EP4201983A4 (en) * 2021-11-08 2024-04-03 Lg Chemical Ltd POLYIMIDE-BASED POLYMERIC FILM, AND SUBSTRATE FOR DISPLAY DEVICE, AND OPTICAL DEVICE, EACH USING SAID FILM

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217785A (ja) * 2003-01-15 2004-08-05 Teijin Ltd ポリイミドフィルム
JP2006328411A (ja) * 2000-04-20 2006-12-07 Teijin Ltd ポリイミドフィルムの製造法
KR20110079810A (ko) * 2008-10-31 2011-07-08 우베 고산 가부시키가이샤 폴리이미드 전구체 용액 조성물
KR20110101763A (ko) * 2010-03-09 2011-09-16 주식회사 엘지화학 열안정성이 우수한 난연성 수지 조성물, 및 상기 조성물에 의해 형성된 성형품
KR20160030889A (ko) * 2013-07-05 2016-03-21 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063226A (ja) * 1983-09-16 1985-04-11 Ube Ind Ltd ポリイミド成形物の製造方法
JP4629926B2 (ja) * 2001-07-25 2011-02-09 三井化学株式会社 ワニスおよび架橋ポリイミド
JP3938058B2 (ja) * 2003-01-29 2007-06-27 宇部興産株式会社 熱融着性を有するポリイミドフィルム、それを用いた積層板およびそれらの製造法
CN110105572A (zh) * 2010-07-22 2019-08-09 宇部兴产株式会社 聚酰亚胺前体、聚酰亚胺及其制备中所用的材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328411A (ja) * 2000-04-20 2006-12-07 Teijin Ltd ポリイミドフィルムの製造法
JP2004217785A (ja) * 2003-01-15 2004-08-05 Teijin Ltd ポリイミドフィルム
KR20110079810A (ko) * 2008-10-31 2011-07-08 우베 고산 가부시키가이샤 폴리이미드 전구체 용액 조성물
KR20110101763A (ko) * 2010-03-09 2011-09-16 주식회사 엘지화학 열안정성이 우수한 난연성 수지 조성물, 및 상기 조성물에 의해 형성된 성형품
KR20160030889A (ko) * 2013-07-05 2016-03-21 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114616269A (zh) * 2019-11-07 2022-06-10 聚酰亚胺先端材料有限公司 低介电质的聚酰亚胺薄膜及其制备方法
CN114616269B (zh) * 2019-11-07 2024-02-13 聚酰亚胺先端材料有限公司 低介电质的聚酰亚胺薄膜及其制备方法
EP4201983A4 (en) * 2021-11-08 2024-04-03 Lg Chemical Ltd POLYIMIDE-BASED POLYMERIC FILM, AND SUBSTRATE FOR DISPLAY DEVICE, AND OPTICAL DEVICE, EACH USING SAID FILM
CN114854011A (zh) * 2022-05-27 2022-08-05 中化学科学技术研究有限公司 聚酰胺酸溶液、聚酰亚胺膜及其制备方法
CN114920931A (zh) * 2022-05-27 2022-08-19 中化学科学技术研究有限公司 聚酰亚胺前体组合物、聚酰亚胺膜及其制备方法
CN114854011B (zh) * 2022-05-27 2023-08-18 中化学科学技术研究有限公司 聚酰胺酸溶液、聚酰亚胺膜及其制备方法

Also Published As

Publication number Publication date
TW201905040A (zh) 2019-02-01
CN110753715A (zh) 2020-02-04
CN110753715B (zh) 2022-05-17
TWI758507B (zh) 2022-03-21

Similar Documents

Publication Publication Date Title
KR101948819B1 (ko) 폴리이미드 전구체 조성물, 이의 제조방법 및 이로부터 제조된 폴리이미드 기재
WO2014003451A1 (en) Polyimide and polyimide film comprising the same
WO2013133508A1 (ko) 두 개의 치환기를 비대칭 구조로 포함하는 디아민 화합물, 이를 사용하여 제조된 중합체
WO2019004677A1 (ko) 폴리이미드 전구체 조성물, 이의 제조방법 및 이로부터 제조된 폴리이미드 기재
WO2010036049A2 (en) Polyimide film
WO2021060613A1 (ko) 폴리아믹산 조성물, 이의 제조방법 및 이를 포함하는 폴리이미드 필름
WO2011004938A1 (ko) 높은 패킹구조를 갖는 폴리아믹산 수지 조성물로부터 제조된 저온경화형 폴리이미드 절연체 및 이를 이용한 낮은 히스테리스 특성 보유 전유기박막트랜지스터 소자
WO2017003173A1 (ko) 폴리이미드-폴리벤조옥사졸 전구체 용액, 폴리이미드-폴리벤조옥사졸 필름, 및 이의 제조방법
WO2012081763A1 (ko) 폴리이미드 필름
WO2020226243A1 (ko) 폴리이미드 필름 제조방법 및 이에 의해 제조된 폴리이미드 필름
WO2020091146A1 (ko) 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름
WO2021040127A1 (ko) 폴리이미드 필름 및 그 제조방법
WO2018216853A1 (ko) 레이저 박리 용이성 및 고내열성을 갖는 폴리아믹산 수지의 제조방법 및 이를 이용하여 제조한 폴리이미드 필름
WO2021095976A1 (ko) 고탄성 및 고내열 폴리이미드 필름 및 그 제조방법
WO2011013904A2 (ko) 폴리이미드 필름
WO2021054515A1 (ko) 폴리이미드 필름, 이의 제조방법, 및 이를 포함한 연성금속박적층판
WO2016047821A1 (ko) 나노 다공성 마이크로 구형의 폴리이미드 에어로젤 및 이의 제조방법
WO2016003146A1 (ko) 고내열 폴리아믹산 용액 및 폴리이미드 필름
WO2021091012A1 (ko) 저유전 폴리이미드 필름 및 그 제조방법
WO2023200191A1 (en) Manufacturing method of polyimide powder and polyimide powder manufactured by the same
WO2021060612A1 (ko) 폴리아믹산 조성물, 이의 제조방법 및 이를 포함하는 폴리이미드 필름
WO2022098042A1 (ko) 높은 치수 안정성을 가지는 폴리이미드 필름 및 그 제조방법
WO2022107969A1 (ko) 폴리아믹산 조성물 및 이를 포함하는 폴리이미드
WO2021060616A1 (ko) 폴리아믹산 조성물, 폴리아믹산 조성물의 제조방법 및 이를 포함하는 폴리이미드
WO2019132515A1 (ko) 폴리아믹산의 제조방법, 이로부터 제조된 폴리아믹산, 폴리이미드 수지 및 폴리이미드 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823137

Country of ref document: EP

Kind code of ref document: A1