WO2019004407A1 - 油脂吸着用ナノファイバー集積体、ならびに、油脂吸着用ナノファイバー集積体の油脂吸着率推定方法および油脂吸着後体積推定方法 - Google Patents
油脂吸着用ナノファイバー集積体、ならびに、油脂吸着用ナノファイバー集積体の油脂吸着率推定方法および油脂吸着後体積推定方法 Download PDFInfo
- Publication number
- WO2019004407A1 WO2019004407A1 PCT/JP2018/024743 JP2018024743W WO2019004407A1 WO 2019004407 A1 WO2019004407 A1 WO 2019004407A1 JP 2018024743 W JP2018024743 W JP 2018024743W WO 2019004407 A1 WO2019004407 A1 WO 2019004407A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- adsorption
- oil
- fat
- fats
- oils
- Prior art date
Links
- 238000001179 sorption measurement Methods 0.000 title claims abstract description 186
- 239000002121 nanofiber Substances 0.000 title claims abstract description 91
- 238000000034 method Methods 0.000 title claims abstract description 14
- 239000000835 fiber Substances 0.000 claims abstract description 150
- 239000003921 oil Substances 0.000 claims description 190
- 239000003925 fat Substances 0.000 claims description 167
- 238000010521 absorption reaction Methods 0.000 claims description 9
- 239000002105 nanoparticle Substances 0.000 claims description 4
- 230000000052 comparative effect Effects 0.000 description 33
- 238000012360 testing method Methods 0.000 description 27
- 238000004519 manufacturing process Methods 0.000 description 23
- 239000004743 Polypropylene Substances 0.000 description 18
- -1 polypropylene Polymers 0.000 description 18
- 229920001155 polypropylene Polymers 0.000 description 18
- 239000010721 machine oil Substances 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 10
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 238000012795 verification Methods 0.000 description 9
- 239000002994 raw material Substances 0.000 description 8
- 230000014759 maintenance of location Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 230000005484 gravity Effects 0.000 description 6
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 5
- 239000003463 adsorbent Substances 0.000 description 4
- 229920003002 synthetic resin Polymers 0.000 description 4
- 239000000057 synthetic resin Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000004519 grease Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 241001606224 Betula ermanii Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000003305 oil spill Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/261—Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R13/00—Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
- B60R13/08—Insulating elements, e.g. for sound insulation
- B60R13/0815—Acoustic or thermal insulation of passenger compartments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/262—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28004—Sorbent size or size distribution, e.g. particle size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28004—Sorbent size or size distribution, e.g. particle size
- B01J20/28007—Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28011—Other properties, e.g. density, crush strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28023—Fibres or filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28033—Membrane, sheet, cloth, pad, lamellar or mat
- B01J20/28038—Membranes or mats made from fibers or filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3028—Granulating, agglomerating or aggregating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/283—Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/40—Devices for separating or removing fatty or oily substances or similar floating material
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/32—Materials not provided for elsewhere for absorbing liquids to remove pollution, e.g. oil, gasoline, fat
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/72—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F22/00—Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/162—Selection of materials
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/162—Selection of materials
- G10K11/168—Plural layers of different materials, e.g. sandwiches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/10—Properties of the layers or laminate having particular acoustical properties
- B32B2307/102—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
- B32B2605/08—Cars
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
- B32B2605/10—Trains
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
Definitions
- the present invention relates to a nanofiber assembly used for oil adsorption, a method for estimating the oil adsorption rate of a nanofiber assembly for oil adsorption, and a volume estimation method after oil adsorption.
- the oil-and-fat adsorbent is used, for example, for adsorption and removal of oils on the water surface such as sea surface, lake surface, pond surface, river surface, reservoir surface, etc., and oil scattered on the floor, on roads and the like.
- a fats-and-oils adsorption material is used also for the adsorption removal of the fats and oils from the contaminated water discharged
- FIG. 1 This fat and oil adsorbent is a laminate of polypropylene fibers having a fiber diameter of 100 nm to 500 nm.
- adsorption rate As an index of performance of the fat and oil adsorbent, there is a ratio (adsorption rate) of the amount of fat and oil that can be adsorbed to its own weight. Besides this, there is an adsorption rate of fats and oils as an index. Since a fat adsorption material with a slow adsorption rate has poor working efficiency and is limited in situations where it can be used in actual work, a fat adsorption material having a higher adsorption rate is required.
- the present invention secures the adsorption rate of fats and oils while enhancing the adsorption rate effectively, a nanofiber laminate for fats and oils adsorption, a method for estimating fats and oils adsorption rate of nanofiber aggregate for fats and oils adsorption, and volume after fats and oils adsorption It aims to provide an estimation method.
- the inventor focused on the average fiber diameter and bulk density of nanofiber aggregate used for oil adsorption, and studied earnestly the relationship between these parameters and the oil adsorption rate and adsorption rate. As a result, the present inventors have found an average fiber diameter and bulk density that can realize the adsorption amount and adsorption rate of fats and oils at high levels, and have reached the present invention.
- the nanofiber assembly for oil and fat adsorption is It is a nanofiber assembly for oil adsorption,
- the average fiber diameter of the oil adsorption nanofiber aggregate is d, the when the bulk density of the oil adsorption nanofiber aggregate was [rho b, satisfies the following formulas (i) and (ii) I assume.
- (Ii) 0.01 g / cm 3 ⁇ ⁇ b ⁇ 0.2 g / cm 3
- the adsorption ratio M / m of fat and oil showing the ratio of the mass M after fat and oil adsorption to the mass m before fat and oil adsorption in the nanofiber assembly for fat and oil adsorption according to another aspect of the present invention It is a fat adsorption ratio estimation method to be estimated, using the porosity ⁇ of the nanofiber aggregate for fat or oil adsorption, the density ⁇ of fibers constituting the nanofibers for fat or oil adsorption, and the density o o of fat or oil, It is characterized by estimating adsorption ratio M / m of fats and oils by the following formula (iv).
- the oil / fat adsorption in the nanofiber assembly for oil / fat adsorption is performed according to the following formula (iv)
- the adsorption rate M / m of fats and oils showing the ratio of mass M after fats and oils adsorption to previous mass m is estimated, the adsorption rate M / m of the fats and oils, and the mass m before fats and oils adsorption in the aggregate of nanofibers for oil absorption
- a density o of fibers constituting the nanofibers for oil / fat adsorption, and a density oo of oils / fats to estimate a volume V after oil / fat adsorption by the following equation (v).
- the adsorption rate of fats and oils can be secured and the adsorption rate can be effectively increased.
- the adsorption rate of fats and oils can be predicted (estimated) using parameters (porosity, density of fibers, and density of fats and oils) that can be acquired before fats and oils adsorption.
- the volume after fat and oil adsorption is predicted (estimated) using parameters (porosity, density of fibers, density of fat and oil, mass before fat and oil adsorption) obtainable before fat and oil adsorption.
- parameters porosity, density of fibers, density of fat and oil, mass before fat and oil adsorption
- FIG. 1 It is a figure explaining the nanofiber assembly for oil-fat adsorption concerning one embodiment of the present invention. It is a perspective view which shows an example of the manufacturing apparatus used for preparation of the nanofiber assembly for oil-fat adsorption of FIG. It is a side view including the partial cross section of the manufacturing apparatus of FIG. It is a front view of the collection net
- a nanofibrous aggregate for oil and fat adsorption according to an embodiment of the present invention will be described.
- FIG. 1 is a view for explaining a fat / oil adsorption nanofiber aggregate according to one embodiment of the present invention.
- FIG. 1 (a) is a front photograph of an example of a nanofibrous aggregate for oil and fat adsorption.
- FIG. 1 (b) is a photograph of an example of an unformed nanofiber aggregate.
- FIG. 1 (c) is a photograph taken by enlarging an example of a nanofibrous aggregate for oil and fat adsorption with an electron microscope.
- the nanofiber assembly 1 for fat and oil adsorption of the present embodiment is used in a fat and oil adsorption device for adsorbing and removing fat and oil from contaminated water discharged from a kitchen such as a cafeteria or restaurant.
- a fat and oil adsorption device for adsorbing and removing fat and oil from contaminated water discharged from a kitchen such as a cafeteria or restaurant.
- Such devices are commonly referred to as grease traps.
- Contaminated water discharged from commercial kitchens such as restaurants, hotels, cafeterias and lunch centers is obligated to be cleaned after being cleaned with a grease trap.
- the oil / grease-adsorbing nanofiber assembly 1 is also useful for adsorbing oils on the water surface such as the sea surface, lake surface, pond surface, river surface, reservoir surface, etc., and oils scattered on the floor or roads.
- the fat / oil adsorption nanofiber aggregate 1 is configured by accumulating fine fibers having a fiber diameter of nanometer order, so-called nanofibers. It is particularly preferable that the nanofiber assembly 1 for absorbing fat and oil have an average fiber diameter of 1000 nm to 2000 nm and an average fiber diameter of 1500 nm.
- the fat / oil adsorption nanofiber aggregate 1 is formed into a square mat shape. In addition to a square, the fat / oil adsorption nanofiber aggregate 1 may be shaped into a shape according to a usage mode or the like, such as a circle or a hexagon.
- FIG. 1 (b) shows an unformed aggregate of nanofibers having an average fiber diameter of 1500 nm.
- FIG. 1 (c) shows the state in which the nanofiber aggregate with an average fiber diameter of 1500 nm is enlarged by an electron microscope.
- the nanofibers that constitute the fat / oil adsorption nanofiber aggregate 1 are made of a synthetic resin.
- the synthetic resin include polypropylene (PP) and polyethylene terephthalate (PET). Materials other than these may be used.
- polypropylene has water repellency and oil adsorptivity.
- the aggregate of polypropylene fibers has the ability to adsorb fats and oils several dozen times its own weight. Therefore, polypropylene is preferable as a material of the nanofiber assembly 1 for oil absorption.
- the density of polypropylene ranges from about 0.85 to 0.95 in the values disclosed by the raw material manufacturers.
- the contact angle of polypropylene with fat and oil is 29 degrees to 35 degrees. In the present specification, 0.895 g / cm 3 is used as the density of polypropylene.
- the fat / oil adsorption nanofiber aggregate 1 satisfies the following formulas (i) and (ii). (I) 1000 nm ⁇ d ⁇ 2000 nm (Ii) 0.01 g / cm 3 ⁇ ⁇ b ⁇ 0.2 g / cm 3
- the nanofiber assembly 1 for fats and oils adsorption satisfy the following formulas (i ') and (ii').
- the average fiber diameter is determined as follows. A plurality of places are arbitrarily selected in the fat / oil adsorption nanofiber assembly 1, and enlarged by an electron microscope. The diameter is measured by arbitrarily selecting a plurality of nanofibers at each of a plurality of places enlarged by an electron microscope. And let the average value of the diameter of the selected plurality of nanofibers be an average fiber diameter. In the present embodiment, the diameters of twenty arbitrarily selected nanofibers at five arbitrarily selected locations of the nanofiber assembly 1 for fats and oils adsorption were measured. And the average value of the diameter of these 100 nanofibers was made into the average fiber diameter. The coefficient of variation (the standard deviation divided by the mean value) is preferably 0.6 or less.
- FIG. 2 is a perspective view showing an example of a production apparatus used for producing the nanofiber assembly for oil / fat adsorption of FIG.
- FIG. 3 is a side view including a partial cross section of the manufacturing apparatus of FIG.
- FIG. 4 is a front view of a collection net on which nanofibers manufactured by the manufacturing apparatus of FIG. 2 are deposited.
- the manufacturing apparatus 50 includes a hopper 62, a heating cylinder 63, a heater 64, a screw 65, a motor 66 and a head 70.
- the pellet-like synthetic resin used as the raw material of nanofibers is injected into the hopper 62.
- the heating cylinder 63 is heated by the heater 64 to melt the resin supplied from the hopper 62.
- the screw 65 is housed in the heating cylinder 63.
- the screw 65 is rotated by the motor 66 to deliver the molten resin to the tip of the heating cylinder 63.
- a cylindrical head 70 is provided at the tip of the heating cylinder 63.
- a gas supply unit (not shown) is connected to the head 70 via a gas supply pipe 68.
- the gas supply pipe 68 is provided with a heater, and heats the high pressure gas supplied from the gas supply unit.
- the head 70 jets the high pressure gas toward the front and discharges the molten resin so as to get on the high pressure gas flow.
- a collection net 90 is disposed in front of the head 70.
- Pellet-like raw material (resin) charged into the hopper 62 is supplied into the heating cylinder 63.
- the resin melted in the heating cylinder 63 is sent to the tip of the heating cylinder 63 by a screw 65.
- the molten resin (molten raw material) that has reached the tip of the heating cylinder 63 is discharged from the head 70.
- a high pressure gas is ejected from the head 70 in accordance with the discharge of the molten resin.
- the molten resin discharged from the head 70 crosses the gas flow at a predetermined angle and is conveyed forward while being drawn.
- the drawn resin becomes fine fibers, and as shown in FIG. 4, it is accumulated on a collecting net 90 disposed in front of the head 70 (accumulation step).
- the accumulated fine fibers 95 are formed into a desired shape (for example, a square mat shape) (forming step). In this manner, the nanofiber adsorption body for oil absorption of the present invention is obtained.
- the said manufacturing apparatus 50 although it was the structure which discharges the "melt raw material” which heated and fuse
- the applicant of the present application discloses a nanofiber manufacturing apparatus and a nanofiber manufacturing method in Japanese Patent Application No. 2015-065171 as an example of a manufacturing apparatus that can be used for manufacturing the nanofiber assembly 1 for absorbing oil. This application has received a patent (Patent No. 6047786, filed on March 26, 2015, registered on December 2, 2016), and the applicant holds the right.
- the present inventor has attempted to specify the structure of a fiber assembly having a structure in which a large number of fibers are intricately entangled.
- the present inventors have simplified the structure of the fiber assembly and created a model by regarding the fiber assembly as containing a plurality of fibers extending in three directions orthogonal to each other in a cubic calculation unit. .
- FIG. 5A is a perspective view showing a three-direction model of a fiber assembly and a unit calculation unit.
- FIG. 5 (b) is a perspective view of the minimum calculation unit.
- 6 (a), (b) and (c) are diagrams of the minimum calculation unit viewed from the Y-axis direction, the X-axis direction, and the Z-axis direction.
- adjacent minimum calculation units are indicated by dotted lines.
- the minimum calculation unit 10 has a cubic shape in which each side has a length of 2L.
- the minimum calculation unit 10 includes a fiber portion 20x, a fiber portion 20y and a fiber portion 20z.
- the central axis of the fiber portion 20x is located on two planes parallel to the X axis and the Z axis, and extends in the X axis direction.
- the cross-sectional shape of the fiber portion 20x is a semicircular shape obtained by bisecting a circle.
- the central axis of the fiber portion 20y overlaps with four sides parallel to the Y axis, and extends in the Y axis direction.
- the cross-sectional shape of the fiber portion 20y is a fan shape obtained by quartering a circle.
- the central axis of the fiber portion 20z extends in the Z axis direction through the center of two planes parallel to the X axis and the Y axis.
- the cross-sectional shape of the fiber portion 20z is circular.
- the fiber portion 20x, the fiber portion 20y and the fiber portion 20z are spaced apart from one another.
- the total volume of the fiber portion 20x, the total volume of the fiber portion 20y and the volume of the fiber portion 20z are identical.
- the length coefficient ⁇ can be expressed by the following equation (1).
- the mass of the minimum calculation unit 10 is m
- the volume is V
- the fiber density is ⁇
- density rho of the single fiber which comprises the nanofiber assembly 1 for oil-fat adsorption of this embodiment is equivalent to the density of the polypropylene of a solid state. Therefore, in the calculation using the equation of the present specification, the density of polypropylene is used as the density ⁇ ⁇ of the fiber.
- the bulk density b b of the fiber assembly can be expressed by the following equation (3).
- the porosity ⁇ (Free volume ⁇ ) of the fiber assembly can be expressed by the following equation (4).
- the inter-fiber distance e 1 (Gap e 1 ) can be expressed by the following equation (5).
- the graph created using the calculation result of Formula (5) in FIG. 7 is shown.
- This graph shows the relationship between the porosity ⁇ and the inter-fiber distance e 1 of each of a plurality of fiber aggregates made of fibers (1000 nm, 1500 nm, 2000 nm) having different average fiber diameters d.
- the interfiber distance e 1 is 2.3 ⁇ m.
- the interfiber distance e 1 is obtained according to equation (5). Is 27.0 ⁇ m.
- the suction height h in the Z direction can be obtained by the following equation (7).
- the estimated value of the adsorption rate M / m can be calculated using the porosity ⁇ , the density ⁇ of the fiber, and the density ⁇ ⁇ o of the fat and oil, which are parameters that can be acquired before the adsorption of fat and oil, according to the equation (8).
- the volume V after fat adsorption in the minimum calculation unit 10 the total value of the volume of the volume of fats adsorbent fiber aggregate (v fiber) and adsorbed oil (v oil). Then, assuming that the volume before oil absorption in the minimum calculation unit 10 is V n , the volumetric expansion coefficient V / V n can be expressed by the following equation (9) and equation (10).
- the adsorption rate M / m is estimated according to the above equation (8), and further, according to equation (9), mass m before adsorption of oil and fat, density ⁇ ⁇ of fibers, and density of oil and fat which are parameters obtainable before adsorption of oil and fat.
- the density of the ⁇ ⁇ o fiber can be used to calculate an estimated value of the volume V after oil adsorption.
- ⁇ is a length coefficient before oil absorption in the minimum calculation unit 10
- ⁇ ′ is a length coefficient after oil adsorption.
- each calculation formula is for fats and oils adsorption It is applicable also to a nanofiber assembly.
- Examples 1-1 to 1-8 of the present invention described Examples 1-1 to 1-8 of the present invention and Comparative Examples 1-1, 1-2, 2-1, 2-2, 3-1, 3-2 shown below.
- Four or five nanofibrous aggregates for oil adsorption were prepared, and they were used to verify the performance of oil adsorption.
- fine fibers 95 having an average fiber diameter of 1500 nm and made of polypropylene were manufactured.
- the standard deviation of fiber diameter is 900, and the coefficient of variation obtained by dividing the standard deviation by the average fiber diameter is 0.60.
- the deposited fine fibers 95 have a bulk density of 0.01 [g / cm 3 ], 0.03 [g / cm 3 ], 0.04 [g / cm 3 ], 0.05 [g / cm 3 ], 0 .09 [g / cm 3 ], 0.1 [g / cm 3 ], 0.13 [g / cm 3 ] and 0.2 [g / cm 3 ], and molding is performed.
- the coefficient of variation of the fiber diameter was in the range of 0.55 to 0.60 and was almost the same.
- Table 1 shows the configuration list of each example and comparative example.
- the test piece was pulled up from the fats and fats and placed on the wire net so that the adsorbed fats and oils naturally fall. Then, using a high-precision electronic balance, the mass M A immediately after being pulled (0 seconds) from the fat and oil, and the mass M B 30 seconds after the pulling were measured. A value obtained by dividing the mass M A and the mass M B by the mass m is taken as an adsorption rate (Suction Rate) M / m (M A / m, M B / m).
- FIG. 9A shows the relationship between the average fiber diameter and the adsorption rate and the retention rate in Example 1-1 and Comparative Examples 1-1, 2-1, and 3-1.
- FIG. 9 (b) shows the relationship between the average fiber diameter and the adsorption rate and the retention rate in Example 1-6 and Comparative Examples 1-2, 2-2, and 3-2.
- Example 1-1 is compared with Comparative Examples 1-1, 1-2, 2-1, 2-2, 3-1, and 3-2. And 1-2 have better adsorption rates.
- the adsorption rate M A / m and the adsorption rate M B / m have an average fiber diameter of 1000 nm to 2000 nm, the adsorption rate becomes relatively high, and there is a peak of the adsorption rate near an average fiber diameter of 1500 nm.
- Example 1-1 Comparative Examples 1-1, 2-1 and 3-1
- cylindrical test pieces having a diameter of 18 mm and a height (thickness t) of 1 mm, 2 mm, 4 mm, 20 mm and 40 mm were produced.
- the mass m before adsorption of fats and oils was measured using a high-precision electronic balance.
- FIG. 10 shows the relationship between the thickness of the test piece and the adsorption rate and the retention rate in Example 1-1 and Comparative Examples 1-1, 2-1, and 3-1.
- Example 1-1 has the highest adsorption rate at any height of the test piece.
- the thinner the thickness of the test piece the higher the adsorption rate at any average fiber diameter. This is because although the lower fibers of the test piece support the upper part, the fats and oils in the lower part are pushed out from the test piece by the fats and oils in the upper part, and it is thought that the larger the thickness of the test piece, the larger the amount of extruded fats and oils Be
- the thickness t of the fat / oil adsorption nanofiber aggregate satisfies the following formula (iii). (Iii) 2 mm ⁇ t ⁇ 5 mm
- FIG. 11 shows the relationship between the average fiber diameter, the coefficient expansion ratio, and the volumetric expansion coefficient in Example 1-6 and Comparative Examples 1-2, 2-2, and 3-2.
- Example 1-2 has superior coefficient expansion ratio and volume expansion coefficient as compared with Comparative Examples 1-2, 2-2, and 3-2.
- the coefficient expansion rate and the volume expansion rate become relatively high, and the peak of the coefficient expansion rate and the volume expansion rate exists in the vicinity of 1500 nm of the average fiber diameter.
- FIG. 12 shows the relationship between the bulk density and the adsorption rate and the retention rate in Examples 1-1, 1-3, 1-5, and 1-7 and Comparative Example 5.
- the adsorption rate M A / m and the adsorption rate M B / m both increase as the bulk density decreases.
- the degree of increase of each adsorption rate becomes larger as the bulk density decreases.
- a cylindrical test piece having a diameter of 18 mm and a height of 20 mm was produced using Examples 1-1, 1-2, and 1-4 and Comparative Example 4 described above.
- the lower part was put in soaking in fats and oils, and the suction height was measured with time.
- FIG. 13 shows the relationship between the suction time and the suction height in Examples 1-1, 1-2, and 1-4 and Comparative Example 4.
- the bulk density is smaller, it is possible to absorb fats and oils to the upper end height (20 mm) in a short time, and the adsorption rate is high.
- the suction height reaches 15 mm in less than 10 minutes, and a good adsorption rate is obtained.
- the test piece was pulled up from the fats and fats and placed on the wire net so that the adsorbed fats and oils naturally fall. Then, using a high-precision electronic balance, the mass M A immediately after pulling (0 seconds) from the fat and oil, the mass M B 30 seconds after the pulling , and the mass M C 5 minutes after the pulling were measured.
- the mass M A , mass M B and mass M C divided by mass m is taken as the adsorption ratio M / m (M A / m, M B / m, M C / m).
- FIG. 14 shows the relationship between the volume expansion coefficient and the adsorption rate in Example 1-6 and Comparative Examples 1-2, 2-2, and 3-2.
- the coefficient of expansion and the coefficient of volumetric expansion both have the largest volumetric expansion and a high adsorption rate, and it is possible to efficiently adsorb fats and oils.
- mass M B of 30 seconds after pulling from fats, and mass M C after 5 minutes from the pulling was measured.
- the mass M B and mass M C divided by mass m is taken as the adsorption ratio M / m (M B / m, M C / m).
- the theoretical value of the adsorption rate with respect to the porosity was computed using the said Formula (8). The relationship between the measured value and the theoretical value of the porosity and the adsorption rate in FIG. 15 in the nanofiber assembly for oil-fat adsorption with an average fiber diameter of 1500 nm is shown.
- the actual measurement value and the theoretical value substantially match.
- the adsorption rate M / m can be approximately estimated from the average fiber diameter and the bulk density (porosity) of the nanofiber assembly for fats and oils adsorption, and the usefulness of the above-described model can be confirmed.
- SYMBOLS 1 nanofiber assembly for fats and oils adsorption, 7 ... fats and oils, 10 ... minimum calculation unit, 20 ... fiber, 20x, 20y, 20z ... fiber part, 50 ... manufacturing apparatus, 62 ... hopper, 63 ... heating cylinder, 64 ... heater , 65: screw, 66: motor, 68: gas supply pipe, 70: head, 90: collection net, 95: fine fiber, d: average fiber diameter, b b : bulk density, e 1 : inter-fiber distance, ⁇ ... Void ratio
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Multimedia (AREA)
- Materials Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- General Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Textile Engineering (AREA)
- Immunology (AREA)
- Mechanical Engineering (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Fluid Mechanics (AREA)
- Public Health (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Nonwoven Fabrics (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
- Cleaning Or Clearing Of The Surface Of Open Water (AREA)
- Laminated Bodies (AREA)
- Building Environments (AREA)
Abstract
Description
油脂吸着用ナノファイバー集積体であって、
前記油脂吸着用ナノファイバー集積体の平均繊維径をdとし、前記油脂吸着用ナノファイバー集積体のかさ密度をρbとしたとき、以下の式(i)および(ii)を満足することを特徴とする。
(i) 1000nm≦d≦2000nm
(ii) 0.01g/cm3≦ρb≦0.2g/cm3
(i’) 1300nm≦d≦1700nm
(ii’) 0.01g/cm3≦ρb≦0.05g/cm3
(iii)2mm≦t≦5mm
まず、本実施形態の油脂吸着用ナノファイバー集積体の構成について説明する。
(i) 1000nm≦d≦2000nm
(ii) 0.01g/cm3≦ρb≦0.2g/cm3
(i’) 1300nm≦d≦1700nm
(ii’) 0.01g/cm3≦ρb≦0.05g/cm3
本実施形態の油脂吸着用ナノファイバー集積体1は、図2~図4に示す製造装置を用いて製造される。図2は、図1の油脂吸着用ナノファイバー集積体の作製に用いる製造装置の一例を示す斜視図である。図3は、図2の製造装置の一部断面を含む側面図である。図4は、図2の製造装置により製造されたナノファイバーが堆積される捕集網の正面図である。
本発明者は、多数の繊維が複雑に絡み合う構造を有する繊維集積体について、その構造の特定を試みた。本発明者は、繊維集積体の構造を簡略化してとらえ、繊維集積体が立方体形状の最小計算ユニット内に互いに直交する3方向に延在する複数の繊維を含むものとみなしてモデルを作成した。
(a)Yuehua YUAN and T. Randall LEE, Contact Angle and Wetting Properties, Surface Science Techniques, ISBN: 978-3-642-34242-4, (2013), pp. 3-34.
(b)Tiina Rasilainen, Controlling water on polypropylene surfaces with micro-and micro/nanostructures, Department of CHEMISTRY University of Eastern Finland, (2010), pp. 1-42.
(c)Thawatchai Phaechamud and Chirayu Savedkairop, Contact Angle and Surface Tension of Some Solvents Used in Pharmaceuticals, Research Journal of Pharmaceutical, Biological and Chemical Sciences, ISSN:0975-8585, Vol.3, Issue.4, (2012), pp.513-529.
(d)Keizo OGINO and Ken-ichi SHIGEMURA, Studies of the Removal of Oily Soil by Rolling-up in Detergency. II. On Binary Soil Systems Consisting of Oleic Acid and Liquid Paraffin, BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, Vol.49 (11), (1976), pp.3236-3238.
(e)Victoria Broje and Arturo A. Keller, Interfacial interactions between hydrocarbon liquids and solid surfaces used in mechanical oil spill recovery, Journal of Colloid and Interface Science, Vol. 305, (2007), pp.286-292.
上述した製造装置50を用いて、ポリプロピレンを材料とした平均繊維径1500nmの微細繊維95を製造した。繊維径の標準偏差は900であり、標準偏差を平均繊維径で割った変動係数は0.60である。堆積した微細繊維95を、かさ密度0.01[g/cm3]、0.03[g/cm3]、0.04[g/cm3]、0.05[g/cm3]、0.09[g/cm3]、0.1[g/cm3]、0.13[g/cm3]および0.2[g/cm3]となるように成形して、実施例1-1~1-8の油脂吸着用ナノファイバー集積体を得た。なお、実施例1-1~1-8を上記モデルにあてはめると、式(5)から算出される繊維間距離e1は20.3μm、11.1μm、9.4μm、8.2μm、5.8μm、5.4μm、4.5μmおよび3.4μmとなる。
上述した製造装置50を用いて、ポリプロピレンを材料とした平均繊維径800nmの微細繊維95を製造した。繊維径の標準偏差は440であり、標準偏差を平均繊維径で割った変動係数は0.55である。堆積した微細繊維95を、かさ密度0.01[g/cm3]および0.1[g/cm3]となるように成形して、比較例1-1、1-2の油脂吸着用ナノファイバー集積体を得た。なお、比較例1-1、1-2を上記モデルにあてはめると、式(5)から算出される繊維間距離e1は10.8μmおよび2.9μmとなる。
上述した製造装置50を用いて、ポリプロピレンを材料とした平均繊維径4450nmの微細繊維95を製造した。繊維径の標準偏差は2280であり、標準偏差を平均繊維径で割った変動係数は0.51である。堆積した微細繊維95を、かさ密度0.01[g/cm3]および0.1[g/cm3]となるように成形して、比較例2-1、2-2の油脂吸着用ナノファイバー集積体を得た。なお、比較例2-1、2-2を上記モデルにあてはめると、式(5)から算出される繊維間距離e1は60.2μmおよび16.0μmとなる。
上述した製造装置50を用いて、ポリプロピレンを材料とした平均繊維径7700nmの微細繊維95を製造した。繊維径の標準偏差は4360であり、標準偏差を平均繊維径で割った変動係数は0.57である。堆積した微細繊維95を、かさ密度0.01[g/cm3]および0.1[g/cm3]となるように成形して、比較例3-1、3-2の油脂吸着用ナノファイバー集積体を得た。なお、比較例3-1、3-2を上記モデルにあてはめると、式(5)から算出される繊維間距離e1は104.1μmおよび27.7μmとなる。
上述した製造装置50を用いて、ポリプロピレンを材料とした平均繊維径1500nmの微細繊維95を製造した。繊維径の標準偏差は900であり、標準偏差を平均繊維径で割った変動係数は0.60である。堆積した微細繊維95を、かさ密度0.3[g/cm3]となるように成形して、比較例4の油脂吸着用ナノファイバー集積体を得た。なお、比較例4を上記モデルにあてはめると、式(5)から算出される繊維間距離e1は2.5μmとなる。
上述した製造装置50を用いて、ポリプロピレンを材料とした平均繊維径1500nmの微細繊維95を製造した。繊維径の標準偏差は900であり、標準偏差を平均繊維径で割った変動係数は0.60である。堆積した微細繊維95を、かさ密度0.49[g/cm3]となるように成形して、比較例5の油脂吸着用ナノファイバー集積体を得た。なお、比較例5を上記モデルにあてはめると、式(5)から算出される繊維間距離e1は1.6μmとなる。
上記実施例1-1、1-6および比較例1-1、1-2、2-1、2-2、3-1、3-2を用いて直径18mm、高さ2mmの円柱状の試験片を作製し、高精度電子天秤を用いて油脂吸着前の質量mを測定した。次に、上記試験片を、吸着対象の油脂(TRUSCO社製マシンオイル(ISOVG:46)、比重ρo=850kg/m3、接触角29度~
35度)に浸漬した。油脂の吸着量が飽和するのに十分な時間が経過したのち上記試験片を油脂から引き上げて、吸着した油脂が自然に落下するように金網上に置いた。そして、高精度電子天秤を用いて、油脂から引き上げ直後(0秒)の質量MA、および引き上げから30秒後の質量MBを測定した。質量MAおよび質量MBを質量mで割った値を吸着率(Suction Rate)M/m(MA/m、MB/m)とする。また、質量MBを質量MAで割った値に100をかけたものを保持率(Maintenance Rate)MB/MA×100[%]とする。図9(a)に、実施例1-1および比較例1-1、2-1、3-1における平均繊維径と吸着率および保持率との関係を示す。図9(b)に、実施例1-6および比較例1-2、2-2、3-2における平均繊維径と吸着率および保持率との関係を示す。
上記実施例1-1および比較例1-1、2-1、3-1を用いて直径18mm、高さ(厚さt)1mm、2mm、4mm、20mmおよび40mmの円柱状の試験片を作製し、高精度電子天秤を用いて油脂吸着前の質量mを測定した。次に、上記試験片を、吸着対象の油脂(TRUSCO社製マシンオイル(ISOVG:46)、比重ρo=850kg/m3、接触角29度~35度)に浸漬した。油脂の吸着量が飽和するのに十分な時間が経過したのち上記試験片を油脂から引き上げて、吸着した油脂が自然に落下するように金網上に置いた。そして、高精度電子天秤を用いて、油脂から引き上げ直後(0秒)の質量MA、および引き上げから30秒後の質量MBを測定した。質量MAおよび質量MBを質量mで割った値を吸着率M/m(MA/m、MB/m)とする。また、質量MBを質量MAで割った値に100をかけたものを保持率MB/MA×100[%]とする。図10に、実施例1-1および比較例1-1、2-1、3-1における試験片の厚さと吸着率および保持率との関係を示す。
(iii)2mm≦t≦5mm
上記実施例1-6および比較例1-2、2-2、3-2を用いて直径18mm、高さ2mmの円柱状の試験片を作製し、高精度電子天秤を用いて油脂吸着前の質量mを測定した。次に、上記試験片を、吸着対象の油脂(TRUSCO社製マシンオイル(ISOVG:46)、比重ρo=850kg/m3、接触角29度~35度)に浸漬した。油脂の吸着量が飽和するのに十分な時間が経過したのち上記試験片を油脂から引き上げて、吸着した油脂が自然に落下するように金網上に置いた。そして、高精度電子天秤を用いて、油脂からの引き上げから5分後の質量Mを測定した。これら質量mおよび質量Mを上記式(8)~(10)に適用して、係数拡大率ε’/εを得た。そして、係数拡大率ε’/εから体積膨張率V/Vnを得た。図11に、実施例1-6および比較例1-2、2-2、3-2における平均繊維径と係数拡大率および体積膨張率との関係を示す。
上記実施例1-1、1-3、1-5、1-7および比較例5を用いて直径18mm、高さ2mmの円柱状の試験片を作製し、高精度電子天秤を用いて油脂吸着前の質量mを測定した。次に、上記試験片を、吸着対象の油脂[1](TRUSCO社製マシンオイル(ISOVG:46))、および、油脂[2](TRUSCO社製マシンオイル(ISOVG:10))に浸漬した。油脂の吸着量が飽和するのに十分な時間が経過したのち上記試験片を油脂から引き上げて、吸着した油脂が自然に落下するように金網上に置いた。そして、高精度電子天秤を用いて、油脂から引き上げ直後(0秒)の質量MA、および引き上げから30秒後の質量MBを測定した。質量MAおよび質量MBを質量mで割った値を吸着率M/m(MA/m、MB/m)とする。また、質量MBを質量MAで割った値に100をかけたものを保持率MB/MA×100[%]とする。図12に、実施例1-1、1-3、1-5、1-7および比較例5におけるかさ密度と吸着率および保持率との関係を示す。
上記実施例1-6および比較例1-2、2-2、3-2を用いて直径18mm、高さ2mmの円柱状の試験片を作製し、高精度電子天秤を用いて油脂吸着前の質量mを測定した。次に、上記試験片を、吸着対象の油脂(TRUSCO社製マシンオイル(ISOVG:46)、比重ρo=850kg/m3、接触角29度~35度)に浸漬した。油脂の吸着量が飽和するのに十分な時間が経過したのち上記試験片を油脂から引き上げて、吸着した油脂が自然に落下するように金網上に置いた。そして、高精度電子天秤を用いて、油脂から引き上げ直後(0秒)の質量MA、引き上げから30秒後の質量MB、および引き上げから5分後の質量MCを測定した。質量MA、質量MBおよび質量MCを質量mで割った値を吸着率M/m(MA/m、MB/m,MC/m)とする。また、これら質量mおよび質量Mを上記式(8)~(10)に適用して、係数拡大率ε’/εを得た。係数拡大率ε’/εから体積膨張率V/Vnを得た。図14に、実施例1-6および比較例1-2、2-2、3-2における体積膨張率と吸着率との関係を示す。
平均繊維径が1500nmで空隙率(すなわち、かさ密度)が異なる複数の油脂吸着用ナノファイバー集積体を作製し、高精度電子天秤を用いて油脂吸着前の質量mを測定した。次に、上記試験片を、吸着対象の油脂(TRUSCO社製マシンオイル(ISOVG:46)、比重ρo=850kg/m3、接触角29度~35度)に浸漬した。油脂の吸着量が飽和するのに十分な時間が経過したのち上記試験片を油脂から引き上げて、吸着した油脂が自然に落下するように金網上に置いた。そして、高精度電子天秤を用いて、油脂からの引き上げから30秒後の質量MB、および引き上げから5分後の質量MCを測定した。質量MBおよび質量MCを質量mで割った値を吸着率M/m(MB/m,MC/m)とする。また、上記式(8)を用いて、空隙率に対する吸着率の理論値を算出した。図15に、平均繊維径が1500nmの油脂吸着用ナノファイバー集積体における空隙率と吸着率の実測値および理論値との関係を示す。
Claims (6)
- 油脂吸着用ナノファイバー集積体であって、
前記油脂吸着用ナノファイバー集積体の平均繊維径をdとし、前記油脂吸着用ナノファイバー集積体のかさ密度をρbとしたとき、以下の式(i)および(ii)を満足することを特徴とする油脂吸着用ナノファイバー集積体。
(i) 1000nm≦d≦2000nm
(ii) 0.01g/cm3≦ρb≦0.2g/cm3 - 以下の式(i’)をさらに満足することを特徴とする請求項1に記載の油脂吸着用ナノファイバー集積体。
(i’) 1300nm≦d≦1700nm - 以下の式(ii’)をさらに満足することを特徴とする請求項2に記載の油脂吸着用ナノファイバー集積体。
(ii’) 0.01g/cm3≦ρb≦0.05g/cm3 - 前記油脂吸着用ナノファイバー集積体の厚さをtとしたとき、以下の式(iii)をさらに満足することを特徴とする請求項1に記載の油脂吸着用ナノファイバー集積体。
(iii)2mm≦t≦5mm - 油脂吸着用ナノファイバー集積体における油脂吸着後の体積Vを推定する油脂吸着後体積推定方法であって、
前記油脂吸着用ナノファイバー集積体の空隙率ηと、前記油脂吸着用ナノファイバーを構成する繊維の密度ρと、油脂の密度ρoとを用いて、以下の式(iv)により油脂吸着用ナノファイバー集積体における油脂吸着前の質量mに対する油脂吸着後の質量Mの比を示す油脂の吸着率M/mの推定値を算出し、
前記油脂の吸着率M/mの推定値と、油脂吸着用ナノファイバー集積体における油脂吸着前の質量mと、前記油脂吸着用ナノファイバーを構成する繊維の密度ρと、油脂の密度ρoとを用いて、以下の式(v)により油脂吸着後の体積Vの推定値を算出することを特徴とする油脂吸着後体積推定方法。
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237034918A KR20230146137A (ko) | 2017-06-30 | 2018-06-28 | 유지흡착용 나노 파이버 집적체, 유지흡착용 나노 파이버 집적체의 유지흡착률 추정방법 및 유지흡착후의 체적 추정방법 |
EP18823844.8A EP3673988A4 (en) | 2017-06-30 | 2018-06-28 | NANO FIBER AGGREGATE FOR FAT ADSORPTION, METHOD FOR ESTIMATING THE FAT ADSORPTION RATE OF NANO FIBER AGGREGATES FOR FAT ADSORPTION AND METHOD FOR DETERMINING THE VOLUME OF NANO FIBER AGGREGATES OF FAT TO FAT ADSORPTION |
RU2020103747A RU2020103747A (ru) | 2017-06-30 | 2018-06-28 | Нановолокнистый наполнитель для адсорбции жира, способ оценки степени адсорбции жира нановолокнистым наполнителем, предназначенным для адсорбции жира, и способ оценки объема нановолокнистого наполнителя, предназначенного для адсорбции жира, после адсорбции жира |
AU2018291356A AU2018291356A1 (en) | 2017-06-30 | 2018-06-28 | Nanofiber aggregate for fat adsorption, method for estimating fat adsorption rate of nanofiber aggregate for fat adsorption, and method for estimating volume of nanofiber aggregate for fat adsorption following fat adsorption |
CA3105334A CA3105334A1 (en) | 2017-06-30 | 2018-06-28 | Nanofiber aggregate for fat adsorption, method for estimating fat adsorption rate of nanofiber aggregate for fat adsorption, and method for estimating volume of nanofiber aggregate for fat adsorption following fat adsorption |
CN201880056946.6A CN111432923A (zh) | 2017-06-30 | 2018-06-28 | 油脂吸附用纳米纤维聚集体、油脂吸附用纳米纤维聚集体的油脂吸附率推算方法以及吸附油脂后的体积推算方法 |
US16/627,663 US20200368723A1 (en) | 2017-06-30 | 2018-06-28 | Nanofiber aggregate for fat adsorption, method for estimating fat adsorption rate of nanofiber aggregate for fat adsorption, and method for estimating volume of nanofiber aggregate for fat adsorption following fat adsorption |
SG11202107241PA SG11202107241PA (en) | 2017-06-30 | 2018-06-28 | Nanofiber aggregate for fat adsorption, method for estimating fat adsorption rate of nanofiber aggregate for fat adsorption, and method for estimating volume of nanofiber aggregate for fat adsorption following fat adsorption |
JP2019527048A JP6958938B2 (ja) | 2017-06-30 | 2018-06-28 | 油脂吸着用ナノファイバー集積体 |
KR1020207002902A KR20200054163A (ko) | 2017-06-30 | 2018-06-28 | 유지흡착용 나노 파이버 집적체, 유지흡착용 나노 파이버 집적체의 유지흡착률 추정방법 및 유지흡착후의 체적 추정방법 |
ZA2020/00081A ZA202000081B (en) | 2017-06-30 | 2020-01-07 | Nanofiber aggregate for fat adsorption, method for estimating fat adsorption rate of nanofiber aggregate for fat adsorption, and method for estimating volume of nanofiber aggregate for fat adsorption following fat adsorption |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762527761P | 2017-06-30 | 2017-06-30 | |
US62/527,761 | 2017-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019004407A1 true WO2019004407A1 (ja) | 2019-01-03 |
Family
ID=64742399
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/024744 WO2019004408A1 (ja) | 2017-06-30 | 2018-06-28 | 遮音用繊維集積体、吸遮音材および車両用吸遮音材 |
PCT/JP2018/024743 WO2019004407A1 (ja) | 2017-06-30 | 2018-06-28 | 油脂吸着用ナノファイバー集積体、ならびに、油脂吸着用ナノファイバー集積体の油脂吸着率推定方法および油脂吸着後体積推定方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/024744 WO2019004408A1 (ja) | 2017-06-30 | 2018-06-28 | 遮音用繊維集積体、吸遮音材および車両用吸遮音材 |
Country Status (12)
Country | Link |
---|---|
US (2) | US20200368723A1 (ja) |
EP (2) | EP3675118A4 (ja) |
JP (4) | JP6958938B2 (ja) |
KR (4) | KR20230122186A (ja) |
CN (2) | CN111432923A (ja) |
AU (3) | AU2018291356A1 (ja) |
CA (2) | CA3105334A1 (ja) |
RU (2) | RU2020103747A (ja) |
SG (2) | SG11202107241PA (ja) |
TW (2) | TWI687330B (ja) |
WO (2) | WO2019004408A1 (ja) |
ZA (2) | ZA202000081B (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020153027A (ja) * | 2019-03-19 | 2020-09-24 | エム・テックス株式会社 | ナノファイバー集積体の製造方法、ナノファイバー集積体の製造装置、及び、ナノファイバー集積体 |
JP2021066997A (ja) * | 2021-01-27 | 2021-04-30 | エム・テックス株式会社 | ナノファイバー集積体 |
JP2021178280A (ja) * | 2020-05-13 | 2021-11-18 | エム・テックス株式会社 | 油吸着材及び油吸着マット |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118742951A (zh) * | 2022-03-22 | 2024-10-01 | 富士胶片株式会社 | 带消音器的风道 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6047786B2 (ja) | 1977-11-22 | 1985-10-23 | 日本電気株式会社 | 特番交換網方式 |
JPH0374695U (ja) * | 1989-11-15 | 1991-07-26 | ||
JP2000005597A (ja) * | 1998-06-25 | 2000-01-11 | Kurita Water Ind Ltd | 油吸着材 |
JP2013184095A (ja) | 2012-03-06 | 2013-09-19 | Tamaru Seisakusho:Kk | 油吸着材 |
JP2015065171A (ja) | 2009-09-15 | 2015-04-09 | イドロ−ケベックHydro−Quebec | 複合酸化物粒子からなる材料、その製造法、及び電極活物質としてのその使用 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1120570A (ja) * | 1997-07-03 | 1999-01-26 | Nissan Motor Co Ltd | 自動車用内装材 |
US8403108B2 (en) * | 2009-06-12 | 2013-03-26 | Precision Fabrics Group, Inc. | Acoustically tunable sound absorption articles and methods of making same |
US20130115837A1 (en) * | 2011-11-09 | 2013-05-09 | Dale S. Kitchen | Nanofiber nonwovens and nanofiber nonwoven composites containing roped fiber bundles |
JP6030381B2 (ja) * | 2012-08-16 | 2016-11-24 | 株式会社クラレ | メルトブローン不織布を含む吸音材 |
JP6185277B2 (ja) * | 2013-04-25 | 2017-08-23 | 帝人株式会社 | 吸音材 |
JP6219601B2 (ja) * | 2013-05-30 | 2017-10-25 | 帝人株式会社 | 吸音材 |
JP2015068072A (ja) * | 2013-09-30 | 2015-04-13 | 日本バルカー工業株式会社 | 油吸着剤 |
JP2015197601A (ja) * | 2014-04-01 | 2015-11-09 | 帝人株式会社 | 吸音材 |
WO2016051527A1 (ja) * | 2014-09-30 | 2016-04-07 | コンパニー ゼネラール デ エタブリッスマン ミシュラン | 吸音体 |
RU2589189C1 (ru) * | 2015-03-02 | 2016-07-10 | Грин Оушен Мальта Лимитед | Способ изготовления сорбирующего материала и материал для изделий, используемых для сбора нефти и нефтепродуктов, изготовленный по этому способу |
JP6594644B2 (ja) * | 2015-04-03 | 2019-10-23 | 旭ファイバーグラス株式会社 | ガラス繊維断熱吸音体及びその使用方法 |
JP6493276B2 (ja) | 2016-03-31 | 2019-04-03 | マツダ株式会社 | 吸音材 |
CN206008728U (zh) * | 2016-08-02 | 2017-03-15 | 中鸿纳米纤维技术丹阳有限公司 | 一种高吸油率纳米纤维吸油毡生产装置 |
-
2018
- 2018-06-28 CA CA3105334A patent/CA3105334A1/en active Pending
- 2018-06-28 WO PCT/JP2018/024744 patent/WO2019004408A1/ja active Application Filing
- 2018-06-28 CN CN201880056946.6A patent/CN111432923A/zh active Pending
- 2018-06-28 KR KR1020237027298A patent/KR20230122186A/ko not_active Application Discontinuation
- 2018-06-28 RU RU2020103747A patent/RU2020103747A/ru unknown
- 2018-06-28 SG SG11202107241PA patent/SG11202107241PA/en unknown
- 2018-06-28 KR KR1020207002903A patent/KR20200053467A/ko not_active Application Discontinuation
- 2018-06-28 EP EP18824548.4A patent/EP3675118A4/en active Pending
- 2018-06-28 JP JP2019527048A patent/JP6958938B2/ja active Active
- 2018-06-28 KR KR1020237034918A patent/KR20230146137A/ko active Application Filing
- 2018-06-28 AU AU2018291356A patent/AU2018291356A1/en not_active Abandoned
- 2018-06-28 US US16/627,663 patent/US20200368723A1/en not_active Abandoned
- 2018-06-28 WO PCT/JP2018/024743 patent/WO2019004407A1/ja active Application Filing
- 2018-06-28 EP EP18823844.8A patent/EP3673988A4/en not_active Withdrawn
- 2018-06-28 KR KR1020207002902A patent/KR20200054163A/ko active Application Filing
- 2018-06-28 CA CA3105336A patent/CA3105336A1/en active Pending
- 2018-06-28 RU RU2020103791A patent/RU2020103791A/ru unknown
- 2018-06-28 AU AU2018291357A patent/AU2018291357A1/en not_active Abandoned
- 2018-06-28 JP JP2019527049A patent/JP7298049B2/ja active Active
- 2018-06-28 CN CN201880056963.XA patent/CN111512361A/zh active Pending
- 2018-06-28 SG SG11202107243RA patent/SG11202107243RA/en unknown
- 2018-07-02 TW TW107122803A patent/TWI687330B/zh active
- 2018-07-02 TW TW107122802A patent/TWI685379B/zh active
-
2019
- 2019-06-28 US US16/627,667 patent/US20200369224A1/en not_active Abandoned
-
2020
- 2020-01-07 ZA ZA2020/00081A patent/ZA202000081B/en unknown
- 2020-01-07 ZA ZA2020/00082A patent/ZA202000082B/en unknown
- 2020-12-21 JP JP2020211216A patent/JP2021062371A/ja active Pending
-
2021
- 2021-10-08 JP JP2021166194A patent/JP7049720B2/ja active Active
-
2023
- 2023-09-13 AU AU2023229529A patent/AU2023229529A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6047786B2 (ja) | 1977-11-22 | 1985-10-23 | 日本電気株式会社 | 特番交換網方式 |
JPH0374695U (ja) * | 1989-11-15 | 1991-07-26 | ||
JP2000005597A (ja) * | 1998-06-25 | 2000-01-11 | Kurita Water Ind Ltd | 油吸着材 |
JP2015065171A (ja) | 2009-09-15 | 2015-04-09 | イドロ−ケベックHydro−Quebec | 複合酸化物粒子からなる材料、その製造法、及び電極活物質としてのその使用 |
JP2013184095A (ja) | 2012-03-06 | 2013-09-19 | Tamaru Seisakusho:Kk | 油吸着材 |
Non-Patent Citations (6)
Title |
---|
"hawatchai Phaechamud and Chirayu Savedkairop, Contact Angle and Surface Tension of Some Solvents Used in Pharmaceuticals", RESEARCH JOURNAL OF PHARMACEUTICAL, BIOLOGICAL AND CHEMICAL SCIENCES, vol. 3, no. 4, 2012, pages 513 - 529, ISSN: 0975-8585 |
KEIZO OGINOKEN-ICHI SHIGEMURA: "Studies of the Removal of Oily Soil by Rolling-up in Detergency. II. On Binary Soil Systems Consisting of Oleic Acid and Liquid Paraffin", BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, vol. 49, no. 11, 1976, pages 3236 - 3238 |
TIINA RASILAINEN: "Department of CHEMISTRY", 2010, UNIVERSITY OF EASTERN FINLAND, article "Controlling water on polypropylene surfaces with micro- and micro/nanostructures", pages: 1 - 42 |
VICTORIA BROJEARTURO A. KELLER: "Interfacial interactions between hydrocarbon liquids and solid surfaces used in mechanical oil spill recovery", JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 305, 2007, pages 286 - 292, XP005727617, DOI: 10.1016/j.jcis.2006.09.078 |
WU, WEI ET AL.: "Investigation of Production of Nano Fiber Non-woven Fabric and Its Base Features for Applications", PROCEEDINGS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS (JSME); MARCH 13, 2017 - MARCH 14, 2017, 13 March 2017 (2017-03-13), pages 130 - 133, XP009518654, DOI: 10.1299/jsmekansai.2017.92.603 * |
YUEHUA YUANT. RANDALL LEE: "Contact Angle and Wetting Properties", SURFACE SCIENCE TECHNIQUES, 2013, pages 3 - 34, XP055191922, ISBN: 978-3-642-34242-4, DOI: 10.1007/978-3-642-34243-1_1 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020153027A (ja) * | 2019-03-19 | 2020-09-24 | エム・テックス株式会社 | ナノファイバー集積体の製造方法、ナノファイバー集積体の製造装置、及び、ナノファイバー集積体 |
WO2020189791A3 (ja) * | 2019-03-19 | 2020-11-12 | エム・テックス株式会社 | ナノファイバー集積体の製造方法、ナノファイバー集積体の製造装置、及び、ナノファイバー集積体 |
CN113825865A (zh) * | 2019-03-19 | 2021-12-21 | 艾姆特克斯股份有限公司 | 纳米纤维聚集体的制造方法、纳米纤维聚集体的制造装置和纳米纤维聚集体 |
JP2021178280A (ja) * | 2020-05-13 | 2021-11-18 | エム・テックス株式会社 | 油吸着材及び油吸着マット |
JP2021066997A (ja) * | 2021-01-27 | 2021-04-30 | エム・テックス株式会社 | ナノファイバー集積体 |
JP7105508B2 (ja) | 2021-01-27 | 2022-07-25 | エム・テックス株式会社 | ナノファイバー集積体 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019004407A1 (ja) | 油脂吸着用ナノファイバー集積体、ならびに、油脂吸着用ナノファイバー集積体の油脂吸着率推定方法および油脂吸着後体積推定方法 | |
Peng et al. | Durable self-cleaning surfaces with superhydrophobic and highly oleophobic properties | |
Si et al. | Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions | |
Chen et al. | One-step electrospinning to produce nonsolvent-induced macroporous fibers with ultrahigh oil adsorption capability | |
Zhou et al. | Superhydrophobic cellulose nanofiber-assembled aerogels for highly efficient water-in-oil emulsions separation | |
Zeng et al. | Inspired by stenocara beetles: from water collection to high-efficiency water-in-oil emulsion separation | |
Wang et al. | Low drag porous ship with superhydrophobic and superoleophilic surface for oil spills cleanup | |
Liu et al. | Lotus-and mussel-inspired PDA–PET/PTFE Janus membrane: toward integrated separation of light and heavy oils from water | |
Ju et al. | Bioinspired one-dimensional materials for directional liquid transport | |
Wang et al. | Preparation of hierarchical structured nano-sized/porous poly (lactic acid) composite fibrous membranes for air filtration | |
JP6516971B2 (ja) | 濾過媒体の繊維構造体およびその製造方法 | |
Chen et al. | Robust superhydrophobic polytetrafluoroethylene nanofibrous coating fabricated by self-assembly and its application for oil/water separation | |
CN102753246B (zh) | 液体过滤介质 | |
EP2510140B1 (en) | Oil collecting device | |
Wang et al. | Decomposable polyvinyl alcohol-based super-hydrophobic three-dimensional porous material for effective water/oil separation | |
JP2016064403A (ja) | 油水分離装置 | |
Li et al. | Stable superhydrophobic and superoleophilic silica coated polyurethane sponges for the continuous capture and removal of oils from the water surface | |
Shu et al. | Morphologies and properties of PET nano porous luminescence fiber: oil absorption and fluorescence-indicating functions | |
Gurave et al. | Pickering emulsion-templated nanocomposite membranes for excellent demulsification and oil–water separation | |
Balgis et al. | Enhanced aerosol particle filtration efficiency of nonwoven porous cellulose triacetate nanofiber mats | |
Shami et al. | Wool-like fibrous nonwoven mesh with ethanol-triggered transition between antiwater and antioil superwetting states for immiscible and emulsified light oil–water separation | |
Xue et al. | Fabrication of ecofriendly recycled marimo-like hierarchical micronanostructure superhydrophobic materials for effective and selective separation of oily pollutants from water | |
Li et al. | Preparation of a Phenolic-Resin-Based Polymer Sponge Composed of Intertwined Nanofibers with Tunable Wettability for High-Efficiency Separation of Oil–Water Emulsions | |
Hu et al. | A general in situ deposition strategy for synthesis of Janus composite fabrics with Co (CO3) 0.5 OH· 0.11 H2O nanoneedles for oil–water separation | |
Verma et al. | TiS2 Nanoparticle-Anchored Candle-Soot Decorated Carbon Nanofiber-Based Hydrophobic/Oleophilic Membrane for Oil/Water Separation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18823844 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018823844 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2018823844 Country of ref document: EP Effective date: 20200130 |
|
ENP | Entry into the national phase |
Ref document number: 2018291356 Country of ref document: AU Date of ref document: 20180628 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019527048 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3105334 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 520410927 Country of ref document: SA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 520410927 Country of ref document: SA |