WO2019004319A1 - 固体撮像装置 - Google Patents
固体撮像装置 Download PDFInfo
- Publication number
- WO2019004319A1 WO2019004319A1 PCT/JP2018/024461 JP2018024461W WO2019004319A1 WO 2019004319 A1 WO2019004319 A1 WO 2019004319A1 JP 2018024461 W JP2018024461 W JP 2018024461W WO 2019004319 A1 WO2019004319 A1 WO 2019004319A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- infrared cut
- solid
- cut filter
- state imaging
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 109
- 239000011521 glass Substances 0.000 claims abstract description 40
- 230000003287 optical effect Effects 0.000 claims abstract description 40
- 239000004065 semiconductor Substances 0.000 claims abstract description 36
- 150000001875 compounds Chemical class 0.000 claims description 118
- 229920005989 resin Polymers 0.000 claims description 108
- 239000011347 resin Substances 0.000 claims description 108
- 238000003384 imaging method Methods 0.000 claims description 90
- -1 cesium tungsten oxide compound Chemical class 0.000 claims description 71
- 239000000463 material Substances 0.000 claims description 52
- 239000006096 absorbing agent Substances 0.000 claims description 42
- RQGPLDBZHMVWCH-UHFFFAOYSA-N pyrrolo[3,2-b]pyrrole Chemical compound C1=NC2=CC=NC2=C1 RQGPLDBZHMVWCH-UHFFFAOYSA-N 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 8
- 239000005303 fluorophosphate glass Substances 0.000 claims description 4
- 239000005365 phosphate glass Substances 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 161
- 239000010408 film Substances 0.000 description 142
- 239000000203 mixture Substances 0.000 description 50
- 239000002585 base Substances 0.000 description 42
- 238000002834 transmittance Methods 0.000 description 28
- 238000000034 method Methods 0.000 description 19
- 229920000178 Acrylic resin Polymers 0.000 description 17
- 239000004925 Acrylic resin Substances 0.000 description 17
- 239000002904 solvent Substances 0.000 description 17
- 238000010521 absorption reaction Methods 0.000 description 16
- 229920000642 polymer Polymers 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 239000002270 dispersing agent Substances 0.000 description 14
- 239000000975 dye Substances 0.000 description 14
- 239000011230 binding agent Substances 0.000 description 11
- 229920001577 copolymer Polymers 0.000 description 11
- 239000003822 epoxy resin Substances 0.000 description 11
- 229920000647 polyepoxide Polymers 0.000 description 11
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 10
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 10
- 238000001514 detection method Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 229910052814 silicon oxide Inorganic materials 0.000 description 10
- 239000002253 acid Substances 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 125000000623 heterocyclic group Chemical group 0.000 description 9
- 239000000178 monomer Substances 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 229920006122 polyamide resin Polymers 0.000 description 9
- 229920001721 polyimide Polymers 0.000 description 9
- 239000009719 polyimide resin Substances 0.000 description 9
- 239000012860 organic pigment Substances 0.000 description 8
- 239000003504 photosensitizing agent Substances 0.000 description 8
- 229920001296 polysiloxane Polymers 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000035945 sensitivity Effects 0.000 description 8
- 229910000679 solder Inorganic materials 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 7
- 239000000654 additive Substances 0.000 description 7
- 239000003513 alkali Substances 0.000 description 7
- 125000000466 oxiranyl group Chemical group 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 230000002378 acidificating effect Effects 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229920001225 polyester resin Polymers 0.000 description 5
- 239000004645 polyester resin Substances 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 4
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 4
- 125000002947 alkylene group Chemical group 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 230000003078 antioxidant effect Effects 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005227 gel permeation chromatography Methods 0.000 description 4
- 229920005668 polycarbonate resin Polymers 0.000 description 4
- 239000004431 polycarbonate resin Substances 0.000 description 4
- 229920005672 polyolefin resin Polymers 0.000 description 4
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical class [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 4
- 239000005749 Copper compound Substances 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 150000001880 copper compounds Chemical class 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- VPXSRGLTQINCRV-UHFFFAOYSA-N dicesium;dioxido(dioxo)tungsten Chemical compound [Cs+].[Cs+].[O-][W]([O-])(=O)=O VPXSRGLTQINCRV-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- LKKPNUDVOYAOBB-UHFFFAOYSA-N naphthalocyanine Chemical class N1C(N=C2C3=CC4=CC=CC=C4C=C3C(N=C3C4=CC5=CC=CC=C5C=C4C(=N4)N3)=N2)=C(C=C2C(C=CC=C2)=C2)C2=C1N=C1C2=CC3=CC=CC=C3C=C2C4=N1 LKKPNUDVOYAOBB-UHFFFAOYSA-N 0.000 description 3
- 125000003566 oxetanyl group Chemical group 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 229920005749 polyurethane resin Polymers 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 150000003658 tungsten compounds Chemical class 0.000 description 3
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 2
- FDSUVTROAWLVJA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OCC(CO)(CO)COCC(CO)(CO)CO FDSUVTROAWLVJA-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 125000004849 alkoxymethyl group Chemical group 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- XLLIQLLCWZCATF-UHFFFAOYSA-N ethylene glycol monomethyl ether acetate Natural products COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- BDYJTMSAJACSQH-UHFFFAOYSA-N oxotungsten;rubidium Chemical compound [Rb].[W]=O BDYJTMSAJACSQH-UHFFFAOYSA-N 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 150000004032 porphyrins Chemical class 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229940014800 succinic anhydride Drugs 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 229910001930 tungsten oxide Inorganic materials 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- YSWBUABBMRVQAC-UHFFFAOYSA-N (2-nitrophenyl)methanesulfonic acid Chemical compound OS(=O)(=O)CC1=CC=CC=C1[N+]([O-])=O YSWBUABBMRVQAC-UHFFFAOYSA-N 0.000 description 1
- JOLQKTGDSGKSKJ-UHFFFAOYSA-N 1-ethoxypropan-2-ol Chemical compound CCOCC(C)O JOLQKTGDSGKSKJ-UHFFFAOYSA-N 0.000 description 1
- LIPRQQHINVWJCH-UHFFFAOYSA-N 1-ethoxypropan-2-yl acetate Chemical compound CCOCC(C)OC(C)=O LIPRQQHINVWJCH-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- ZXDDPOHVAMWLBH-UHFFFAOYSA-N 2,4-Dihydroxybenzophenone Chemical compound OC1=CC(O)=CC=C1C(=O)C1=CC=CC=C1 ZXDDPOHVAMWLBH-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical class COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- ROHFBIREHKPELA-UHFFFAOYSA-N 2-[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]prop-2-enoic acid;methane Chemical compound C.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O ROHFBIREHKPELA-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- QMYGFTJCQFEDST-UHFFFAOYSA-N 3-methoxybutyl acetate Chemical compound COC(C)CCOC(C)=O QMYGFTJCQFEDST-UHFFFAOYSA-N 0.000 description 1
- WTQZSMDDRMKJRI-UHFFFAOYSA-N 4-diazoniophenolate Chemical class [O-]C1=CC=C([N+]#N)C=C1 WTQZSMDDRMKJRI-UHFFFAOYSA-N 0.000 description 1
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 239000004386 Erythritol Substances 0.000 description 1
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 1
- 229920004142 LEXAN™ Polymers 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N Lactic Acid Natural products CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 1
- 239000004418 Lexan Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- RUFZJUYWZZUTJE-UHFFFAOYSA-J [F-].[F-].[F-].[F-].F.F.[Na+].[Al+3] Chemical compound [F-].[F-].[F-].[F-].F.F.[Na+].[Al+3] RUFZJUYWZZUTJE-UHFFFAOYSA-J 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 150000008062 acetophenones Chemical class 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 125000005037 alkyl phenyl group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000005260 alpha ray Effects 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 239000001000 anthraquinone dye Substances 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000000987 azo dye Substances 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical class C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical class C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- ZOQFQCPEFAOSCA-UHFFFAOYSA-N cesium;oxotungsten Chemical class [Cs].[W]=O ZOQFQCPEFAOSCA-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 150000004699 copper complex Chemical class 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000008049 diazo compounds Chemical class 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012156 elution solvent Substances 0.000 description 1
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 1
- 229940009714 erythritol Drugs 0.000 description 1
- 235000019414 erythritol Nutrition 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- AUONHKJOIZSQGR-UHFFFAOYSA-N oxophosphane Chemical compound P=O AUONHKJOIZSQGR-UHFFFAOYSA-N 0.000 description 1
- DXGLGDHPHMLXJC-UHFFFAOYSA-N oxybenzone Chemical compound OC1=CC(OC)=CC=C1C(=O)C1=CC=CC=C1 DXGLGDHPHMLXJC-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 150000004714 phosphonium salts Chemical class 0.000 description 1
- DOIRQSBPFJWKBE-UHFFFAOYSA-N phthalic acid di-n-butyl ester Natural products CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 1
- 239000001007 phthalocyanine dye Substances 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920000205 poly(isobutyl methacrylate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000412 polyarylene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 150000007519 polyprotic acids Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- GGVMPKQSTZIOIU-UHFFFAOYSA-N quaterrylene Chemical group C12=C3C4=CC=C2C(C2=C56)=CC=C5C(C=57)=CC=CC7=CC=CC=5C6=CC=C2C1=CC=C3C1=CC=CC2=CC=CC4=C21 GGVMPKQSTZIOIU-UHFFFAOYSA-N 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 150000003553 thiiranes Chemical group 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical class C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- BYMUNNMMXKDFEZ-UHFFFAOYSA-K trifluorolanthanum Chemical compound F[La](F)F BYMUNNMMXKDFEZ-UHFFFAOYSA-K 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229940124543 ultraviolet light absorber Drugs 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical class O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/22—Absorbing filters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/10—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
- H04N23/12—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
Definitions
- the present invention relates to a solid-state imaging device.
- a semiconductor solid-state imaging device such as a CCD image sensor or a CMOS image sensor is mounted. Since the sensitivity of these solid-state imaging devices ranges from the visible region to the infrared region, in the imaging device, an infrared cut filter for blocking infrared radiation is provided between the imaging lens and the solid-state imaging device. With this infrared cut filter, the sensitivity of the solid-state imaging device can be corrected so as to approach human visibility.
- Patent Document 1 discloses an infrared cut filter formed by providing a dielectric multilayer film on a glass substrate. Moreover, it is disclosed about the structure in which the coating layer was provided in the glass base material, and the dielectric multilayer was provided on the application layer.
- an object of the present invention is to provide a high quality solid-state imaging device with high yield.
- a solid-state imaging device includes a first near-infrared cut filter and a solid-state imaging device, wherein the first near-infrared cut filter is formed on at least one of a glass substrate and a glass substrate
- a solid state imaging device having a semiconductor substrate, a first light receiving element provided on the semiconductor substrate, and an optical filter provided on the first light receiving element; Has a color filter layer provided on the first light receiving element, and a second near infrared cut filter provided on the color filter, wherein the first near infrared cut filter is a second near infrared cut filter and
- the dielectric multilayer films are provided at opposing positions, and the number of laminated layers of the dielectric multilayer film is 10 or more and less than 40.
- the glass substrate is a CuO-containing fluorophosphate glass or a CuO-containing phosphate glass.
- the optical filter further includes a first cured film on the second near infrared cut filter.
- the optical filter further includes a second cured film between the color filter layer and the second near infrared cut filter.
- the above configuration further includes a second light receiving element provided on the semiconductor substrate and a pass filter layer overlapping the second light receiving element.
- the number of laminated layers of the dielectric multilayer film is set to 20 or more and 30 or less.
- the second near-infrared cut filter includes a cesium tungsten oxide compound, a diiminium compound, a squarylium compound, a cyanine compound, a phthalocyanine compound, a naphthalocyanine compound, a quaterrylene compound, an aminium compound, and an iminium compound And at least one organic pigment selected from pyrrolopyrrole compounds and organic pigment compounds of croconium compounds.
- a solid-state imaging device includes a first near-infrared cut filter and a solid-state imaging device, wherein the first near-infrared cut filter is provided on a base and a first surface of the base
- the solid-state imaging device has a semiconductor substrate, a first light receiving element provided on the semiconductor substrate, and an optical filter provided on the first light receiving element, and the optical filter is provided on the first light receiving element And the second near infrared cut filter provided on the color filter layer, and the resin layer of the first near infrared cut filter is provided at a position facing the second near infrared cut filter
- the number of stacked first dielectric multilayer films is 10 or more and less than 40 Eclipsed.
- the optical filter further includes a first cured film on the first near infrared cut filter.
- the optical filter further includes a second cured film between the color filter layer and the first near infrared cut filter.
- the above configuration further includes a second light receiving element provided on the semiconductor substrate and a pass filter layer overlapping the second light receiving element.
- the number of laminated layers of the first dielectric multilayer film is set to 20 or more and 30 or less.
- the second near-infrared cut filter includes a cesium tungsten oxide compound, a diiminium compound, a squarylium compound, a cyanine compound, a phthalocyanine compound, a naphthalocyanine compound, a quaterrylene compound, an aminium compound, and an iminium compound And at least one organic pigment selected from pyrrolopyrrole compounds and organic pigment compounds of croconium compounds.
- a solid-state imaging device includes a first near-infrared cut filter and a solid-state imaging device, and the first near-infrared cut filter includes a resin base material including a near-infrared absorber, and a resin
- the solid-state imaging device includes a semiconductor substrate, a first light receiving element provided on the semiconductor substrate, and an optical filter provided on the first light receiving element.
- the optical filter includes a color filter layer provided on the first light receiving element and a second near infrared cut filter provided on the color filter layer, and the first near infrared cut filter includes It is provided in the position which opposes a 2nd near-infrared cut off filter, and the lamination number of a dielectric material laminated film is provided by 10 or less and less than 40 layers.
- the incident angle dependency can be reduced by using it together with the second near infrared cut filter.
- the optical filter further includes a first cured film on the first near infrared cut filter.
- the optical filter further includes a second cured film between the color filter layer and the first near infrared cut filter.
- the above configuration further includes a second light receiving element provided on the semiconductor substrate and a pass filter layer overlapping the second light receiving element.
- the number of laminated layers of the dielectric multilayer film is set to 20 or more and 30 or less.
- the second near-infrared cut filter includes a cesium tungsten oxide compound, a diiminium compound, a squarylium compound, a cyanine compound, a phthalocyanine compound, a naphthalocyanine compound, a quaterrylene compound, an aminium compound, and an iminium compound And at least one organic pigment selected from pyrrolopyrrole compounds and organic pigment compounds of croconium compounds.
- the incidence angle dependency can be reduced, and a high quality solid-state imaging device can be provided with a high yield.
- FIG. 1 A cross-sectional view of the solid-state imaging device according to the present embodiment is shown in FIG.
- the solid-state imaging device 210 has a solid-state imaging device 110 and a near infrared cut filter 130.
- the solid-state imaging device 110 includes a semiconductor substrate 111 having a light receiving unit that photoelectrically converts incident light, and an optical filter layer 114 provided on the semiconductor substrate 111.
- a pixel portion 101 is provided on the semiconductor substrate 111.
- a plurality of pixels are arranged in the row direction and the column direction.
- FIG. 1 shows a cross-sectional view of a plurality of pixels in the row direction.
- the pixel portion 101 includes a visible light detection pixel 102 and an infrared light detection pixel 103.
- the visible light detection pixel 102 has first pixels 104 a to 104 c, and the infrared light detection pixel 103 has a second pixel 105.
- a semiconductor layer 112, a wiring layer 113, an optical filter layer 114, and a microlens array 115 are stacked on a semiconductor substrate 111.
- the semiconductor substrate 111 for example, a silicon substrate, a substrate in which a silicon layer is provided over an insulating layer (SOI substrate), or the like can be used.
- the semiconductor layer 112 is provided in the semiconductor region of the semiconductor substrate 111.
- the semiconductor layer 112 is included above the silicon substrate.
- photodiodes 106a to 106d are provided corresponding to the respective pixels.
- the photodiodes 106a to 106c are also referred to as a first light receiving element, and the photodiode 106d is also referred to as a second light receiving element.
- the first light receiving element and the second light receiving element are not limited to the photodiodes, and any other elements may be substituted as long as they have the function of generating current or voltage by the photovoltaic effect.
- a circuit for acquiring a detection signal from each of the plurality of photodiodes 106a to 106d is formed using an active element such as a transistor.
- the wiring layer 113 is a layer including wirings such as address lines and signal lines provided in the pixel portion 101.
- a plurality of wirings may be separated by an interlayer insulating film, and may be multilayered.
- the address lines and the signal lines extend in the row direction and the column direction and intersect with each other, and thus are provided in different layers with an insulating layer interposed therebetween.
- the optical filter layer 114 is composed of a plurality of layers having different optical properties.
- color filter layers 107a to 107c having a transmission band in the visible light wavelength region are provided on the wiring layer 113 in a region overlapping with the photodiodes 106a to 106c, and infrared light is disposed on a region overlapping on the photodiode 106d.
- a pass filter layer 108 is provided.
- a near infrared cut filter 122 which blocks light in the near infrared wavelength region and transmits light in the visible light wavelength region.
- the near infrared cut filter 122 is provided on the color filter layers 107a to 107c and is not provided on the infrared pass filter layer 108. That is, the near infrared cut filter 122 has an opening on the area where the photodiode 106 d is provided.
- a cured film 121 is provided between the color filter layers 107 a to 107 c and the infrared pass filter layer 108 and the near infrared cut filter 122.
- the surface irregularities of the color filter layers 107a to 107c and the infrared pass filter layer 108 can be alleviated, and the near infrared cut filter 122 can be provided on a flat surface. As a result, it is possible to reduce the thickness of the near infrared cut filter 122.
- a cured film 123 is further provided on the upper surface of the near infrared cut filter 122.
- the near infrared cut filter 122 is provided on the light receiving surface of the photodiodes 106a to 106c, and is not provided on the light receiving surface of the photodiode 106d. Therefore, a stepped portion by the near infrared cut filter 122 is formed.
- the cured film 123 it is possible to fill the step portion and make the base surface of the microlens array 115 flat.
- the microlens array 115 is provided on the top surface of the optical filter layer 114.
- the position of each micro lens corresponds to the position of each pixel, and the incident light collected by each micro lens corresponds to each corresponding pixel (specifically, each photodiode) Is received by Since the microlens array 115 can be formed using a resin material, it can be formed on-chip.
- the microlens array 115 can be formed by processing the resin material applied on the cured film 123.
- the near infrared cut filter 130 has a base material 131, a dielectric multilayer film 132, and a dielectric multilayer film 133.
- the near infrared cut filter 130 is provided at a position facing the near infrared cut filter 122.
- a glass substrate or a resin substrate can be used as the substrate 131.
- a quartz glass substrate, a borosilicate glass substrate, a soda glass substrate and the like can be used as the glass substrate.
- a near infrared absorbing glass made of CuO-containing fluorophosphate glass or CuO-containing phosphate glass can be used.
- the use of a CuO-containing glass as the substrate 131 is preferable because it has high transmittance to visible light and high shielding properties to near infrared rays.
- the thickness of the glass substrate is preferably 30 ⁇ m to 1000 ⁇ m, more preferably 50 ⁇ m to 750 ⁇ m, and particularly preferably 50 ⁇ m to 700 ⁇ m.
- the thickness of the glass substrate is thinner than 30 ⁇ m, the glass substrate itself is likely to be broken, which may make the handling extremely difficult.
- the objective of the thin film formation of a near-infrared cut off filter may become unachievable.
- the near infrared cut filter can be reduced in size and weight, and can be suitably used for various applications such as a solid-state imaging device.
- the height of the lens unit can be reduced.
- the dielectric multilayer film is a film having a function of reflecting near infrared light.
- the dielectric multilayer film may be provided on one side or both sides of the substrate 131. When provided on one side, it is excellent in manufacturing cost and manufacturability, and when provided on both sides, it is possible to obtain a near-infrared cut filter having high strength and in which warping does not easily occur.
- the dielectric multilayer films 132 and 133 are provided on both surfaces of the base material 131. Further, in the base material 131, the side facing the light receiving surface of the solid-state imaging device 110 is referred to as a first face, and the side opposite to the first face is referred to as a second face.
- a ceramic can be used as the dielectric multilayer film.
- the dielectric multilayer film preferably has a configuration in which high refractive index material layers and low refractive index material layers are alternately stacked.
- a material constituting the high refractive index material layer a material having a refractive index of 1.7 or more can be used, and a material having a refractive index of 1.7 to 2.5 is selected.
- this material for example, titanium oxide, zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide or indium oxide as a main component, titanium oxide, tin oxide and / or oxide What contains a small amount of cerium etc. is mentioned.
- a material having a refractive index of 1.6 or less can be used, and a material having a refractive index range of 1.2 to 1.6 is selected.
- this material include silica, alumina, lanthanum fluoride, magnesium fluoride, and sodium aluminum hexafluoride.
- a method of forming a dielectric multilayer film on the substrate 131 for example, a dielectric multilayer film in which high refractive index material layers and low refractive material layers are alternately laminated by a CVD method, a sputtering method, a vacuum evaporation method or the like.
- a CVD method a sputtering method, a vacuum evaporation method or the like.
- a sputtering method a vacuum evaporation method or the like.
- stacked alternately can be mentioned.
- each of the high refractive index material layer and the low refractive index material layer is a thickness of 0.1 ⁇ to 0.5 ⁇ of the near infrared wavelength ⁇ (nm) to be blocked.
- the thickness is out of the above range, the product (n ⁇ d) of the refractive index (n) and the film thickness (d) is largely different from the optical film thickness calculated by ⁇ / 4.
- the relationship between the optical characteristics of reflection and refraction breaks down, and it tends to be difficult to control blocking and transmission of a specific wavelength.
- the number of stacked layers in the dielectric multilayer film 133 provided on the first surface side of the substrate 131 is preferably smaller than the number of layers stacked in the dielectric multilayer film 132 provided on the second surface side. Further, the number of laminated layers in the dielectric multilayer film 133 provided on the first surface side of the substrate 131 is 10 or less, preferably 7 or less. The number of laminated layers in the dielectric multilayer film 132 provided on the second surface side of the substrate 131 is preferably 10 or more and less than 40, more preferably 20 or more and less than 40, and particularly preferably 20 or more and 30 or less.
- the dielectric multilayer film 132 or the dielectric multilayer film 133 is vapor-deposited, if the substrate 131 is warped, the dielectric multilayer film is vapor-deposited on both surfaces of the substrate 131 in order to eliminate this.
- the surface of the substrate 131 on which the dielectric multilayer film is deposited may be irradiated with radiation such as ultraviolet light. In the case of irradiating radiation, the irradiation may be performed while depositing the dielectric multilayer film 132 or the dielectric multilayer film 133, or may be separately performed after deposition.
- the number of layers of the dielectric multilayer film 133 provided on the first surface side of the substrate 131 be seven or less.
- the dielectric multilayer 132 provided on the second surface side of the substrate 131 is preferably, for example, 20 or more and 30 or less.
- FIG. 1 illustrates the case where the dielectric multilayer films 132 and 133 are provided on both surfaces of the base material 131
- the dielectric multilayer film 132 may be provided on the second surface without providing the dielectric multilayer film 133 on the first surface of the base material 131.
- the near-infrared cut filter 130 By providing the near-infrared cut filter 130 with the dielectric multilayer film 133 provided only on one surface of the base material 131, the number of layers of the entire dielectric multilayer film can be reduced. It is possible to further reduce the yield and improve the yield.
- near-infrared rays are cut by light being incident through the near-infrared cut filter 130.
- near-infrared rays of light incident through the microlens array 115 are further cut by the near-infrared cut filter 122, and visible light is incident on the color filter layers 107a to 107c.
- the infrared light detection pixel 103 the light is incident on the infrared pass filter layer 108 as it is.
- the first pixels 104a to 104c visible light transmitted through the color filter layers 107a to 107c in the visible light wavelength region is incident on the photodiodes 106a to 106c in accordance with the respective optical characteristics. As a result, it is possible to detect the visible light with high accuracy without being affected by the noise due to the near infrared light.
- the second pixel 105 the light of the visible light wavelength region is cut by the infrared pass filter layer 108, and the light of the infrared light wavelength region (in particular, the near infrared light wavelength region) is incident on the photodiode 106d.
- the infrared light wavelength region in particular, the near infrared light wavelength region
- the near-infrared cut filter 122 is provided on the solid-state imaging device 110, and the near-infrared cut filter 130 is further provided on the near-infrared cut filter 122.
- the near infrared rays can also be cut by the near infrared cut filter provided on the solid-state imaging device 110.
- the number of layers of the dielectric multilayer films 132 and 133 can be reduced.
- the warpage of the near infrared cut filter 130 can be reduced.
- the number of manufacturing steps can be reduced and the yield can be improved.
- the color filter layers 107a to 107c are pass filters that transmit visible light in different wavelength bands.
- the color filter layer 107a transmits light in the wavelength band of red light (about wavelength 610 to 780 nm)
- the color filter layer 107b transmits light in the wavelength band of green light (about wavelength 500 to 570 nm) and the color filter
- Each of the layers 107c can be formed of a pass filter capable of transmitting light in the wavelength band of blue light (approximately 430 to 460 nm in wavelength).
- the transmitted light of the color filter layers 107a to 107c is incident on each of the plurality of photodiodes.
- the color filter layers 107a to 107c can be formed of a composition in which a resin material such as a binder resin and a curing agent contains a dye (pigment or dye) having absorption in a specific wavelength range. Such dyes may be used alone or in combination of two or more.
- the photodiode is a silicon photodiode, it has sensitivity over a wide range from the visible light wavelength range to the infrared wavelength range. Therefore, by providing the color filter layers 107a to 107c corresponding to the photodiodes, the pixel can be provided for a plurality of pixels corresponding to each color.
- the infrared pass filter layer 108 is a pass filter that transmits light of at least a near infrared wavelength region.
- the infrared pass filter layer 108 can be formed by adding a pigment (pigment or dye) having absorption in the wavelength of the visible light wavelength region to a binder resin, a polymerizable compound or the like.
- the infrared pass filter layer 108 absorbs (cuts) light of approximately less than 700 nm, preferably less than 750 nm, more preferably less than 800 nm, and transmits light having a wavelength of 700 nm or more, preferably 750 nm or more, more preferably 800 nm or more. It has transmission characteristics.
- the infrared pass filter layer 108 blocks light having a wavelength less than the predetermined wavelength (for example, less than 750 nm) as described above, and transmits near infrared rays in a predetermined wavelength range (for example, 750 to 950 nm). Near infrared rays can be made to be incident. Thus, the photodiode 106d can accurately detect near-infrared light without being affected by noise or the like caused by visible light. Thus, by providing the infrared pass filter layer 108, the second pixel 105 can be used as the infrared light detection pixel 103.
- the infrared pass filter layer 108 can be formed using, for example, a photosensitive composition described in JP-A 2014-130332.
- the near infrared cut filter 122 is a pass filter that transmits light in the visible light wavelength range and blocks light in the near infrared wavelength range.
- the near infrared cut filter 122 preferably contains a compound having a maximum absorption wavelength in the wavelength range of 600 to 2000 nm (hereinafter also referred to as “infrared absorber”).
- the infrared absorber, binder resin and polymerization It can form using the infrared rays absorptive composition containing at least 1 sort (s) chosen from the sex compound.
- infrared absorber examples include diiminium compounds, squarylium compounds, cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, quaterylene compounds, aminium compounds, iminium compounds, azo compounds, anthraquinone compounds, and porphyrins.
- a compound, a pyrrolopyrrole compound, an oxonol compound, a croconium compound, a hexaphilin compound, a metal dithiol compound, a copper compound, a tungsten compound, and a metal boride it can. These can be used alone or in combination of two or more.
- diiminium (diimmonium) compounds for example, compounds described in International Publication No. 2007/148595, JP-A-2011-338007, International Publication No. 2011-118171, etc. are listed.
- EPOLIGHT series manufactured by Epolin
- CIR-108X series such as CIR-1085 and CIR-96X series (manufactured by Nippon Carlit)
- IRG 022, IRG 023, PDC-220 Nippon Kayaku Co., Ltd.) Company
- squarylium compounds include, for example, compounds described in JP-A-1-228960, JP-A-2012-215806, paragraph [0178], and the like.
- cyanine compound examples include, for example, the compounds described in paragraph [0160] of JP 2012-215806 A, paragraphs [0047]-[0049] of JP 2013-155353 A, and the like.
- Examples of commercially available products include Daito chmix 1371F (manufactured by Daitoke Mix), NK series such as NK-3212 and NK-5060 (manufactured by Hayashibara Biochemical Research Laboratories), and the like.
- phthalocyanine compound examples include, for example, JP-A-2004-18561, JP-A-2005-220060, JP-A-2007-169343, and JP-A-2013-195480, paragraphs [0026] to [0027]. ] The compound etc. as described in etc. are mentioned.
- FB series made by Yamada Chemical Industry Co., Ltd.
- Excolor series Excolor TX-EX 720
- the same 708 K made by Nippon Shokubai
- Lumogen IR788 made by BASF
- FB series made by Yamada Chemical Industry Co., Ltd.
- Excolor series Excolor TX-EX 720
- the same 708 K made by Nippon Shokubai
- Lumogen IR788 made by BASF
- ABS643, ABS654, ABS667, ABS670T, IRA693N, IRA735 manufactured by Exciton
- naphthalocyanine compound examples include, for example, the compounds described in paragraphs [0046] to [0049] of JP-A-2009-215542.
- the copper compound is preferably a copper complex, and specific examples thereof include compounds described in JP-A-2014-139616, JP-A-2014-139617, and the like.
- tungsten oxide compound As a tungsten compound, a tungsten oxide compound is preferable, cesium tungsten oxide and rubidium tungsten oxide are more preferable, and cesium tungsten oxide is more preferable.
- Examples of the composition formula of cesium tungsten oxide include Cs 0.33 WO 3 and the like, and examples of the composition formula of rubidium tungsten oxide include Rb 0.33 WO 3 and the like.
- Tungsten oxide-based compounds are also available, for example, as a dispersion of tungsten fine particles such as YMF-02A manufactured by Sumitomo Metal Mining Co., Ltd.
- a metal boride As a specific example of a metal boride, the compound as described in stage of Unexamined-Japanese-Patent No. 2012-068418 etc. is mentioned, for example. Among these, lanthanum boride is preferred.
- infrared absorber when the above-mentioned infrared absorber is soluble in the organic solvent mentioned later, it can be laked and it can also be used as an infrared absorber insoluble in an organic solvent.
- a known method can be adopted as a method of raking, and, for example, Japanese Patent Application Laid-Open No. 2007-271745 and the like can be referred to.
- diiminium compounds, squarylium compounds, cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, quaterrylene compounds, aminium compounds, iminium compounds, pyrrolopyrrole compounds, croconium compounds It is preferable to include at least one selected from the group consisting of organic dye compounds such as metal dithiol compounds, and inorganic compounds such as copper compounds and tungsten compounds.
- cesium tungsten oxide compounds diiminium compounds, squalilium compounds, cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, quaterylene compounds, aminium compounds, iminium compounds, pyrrolopyrrole compounds, among others It is preferable at the point which shows the high blocking property of a high infrared rays absorption area
- the near infrared cut filter 122 can improve the infrared absorption characteristics as the film thickness increases. As a result, the solid-state imaging device can obtain a higher S / N ratio and can perform high-sensitivity imaging. However, when the film thickness of the near-infrared cut filter 122 is increased, there is a problem that the thickness reduction of the solid-state imaging device 230 can not be achieved.
- the near-infrared cut filter 122 is thinned in order to reduce the thickness of the solid-state imaging device, there is a problem that the infrared blocking ability is lowered and the visible light detecting pixel is easily influenced by the noise due to the infrared.
- the content ratio of the infrared absorber is increased, for example, the ratio of the polymerizable compound which is one of the other components forming the near infrared cut filter decreases, and the hardness of the near infrared cut filter 122 decreases. It will As a result, the optical filter layer 114 becomes brittle, which causes peeling or cracking of the layer in contact with the near infrared cut filter 122. For example, the adhesion between the cured film 121 and the cured film 123 in contact with the near-infrared cut filter 122 is lowered, and it becomes a problem that the film tends to be peeled off.
- the proportion of the infrared absorber selected from the above is preferably 0.1 to 80% by mass, more preferably 1 to 70% by mass, still more preferably 3 to 60% by mass, in the near-infrared cut filter 122 % Is preferred.
- the preferred content ratio of the infrared absorber to the total solid mass of the infrared-absorbing composition is the infrared absorber in the near-infrared cut filter 122 It is similar to the ratio of The solid content in this case is a component other than the solvent which constitutes the infrared absorbing composition.
- the infrared absorbing composition preferably contains a binder resin.
- the binder resin is not particularly limited, but is preferably at least one selected from the group consisting of an acrylic resin, a polyimide resin, a polyamide resin, a polyurethane resin, an epoxy resin, and a polysiloxane.
- acrylic resins having an acidic functional group such as a carboxyl group and a phenolic hydroxyl group are preferable.
- an acrylic resin having an acidic functional group when exposure is performed to form a near-infrared cut filter obtained from the infrared-absorbing composition into a predetermined pattern, the unexposed area is more reliably removed with an alkaline developer. It is possible to form a better pattern by alkali development.
- the polymer which has a carboxyl group is preferable. By using a polymer having a carboxyl group, an infrared-absorbing composition excellent in alkali developability and film formation can be obtained.
- polymers having a carboxyl group for example, copolymers disclosed in JP-A-11-258415, JP-A-2000-56118, JP-A-2004-101728, etc. can be used. It can be mentioned.
- a carboxyl group-containing polymer having a polymerizable unsaturated group such as (meth) acryloyl group in a side chain can also be used as a binder resin.
- the near-infrared cut filter 122 which is excellent in adhesiveness with a cured film can be formed.
- Examples of the carboxyl group-containing polymer having a polymerizable unsaturated group in the side chain include the following polymers (a) to (d).
- a polymer obtained by reacting an unsaturated isocyanate compound with a copolymer of a monomer comprising the unsaturated monomer (1) and a polymerizable unsaturated compound having a hydroxyl group (B) A (co) polymer obtained by reacting a (co) polymer of a monomer containing the unsaturated monomer (1) with a polymerizable unsaturated compound having an oxiranyl group, (C) a weight obtained by reacting an unsaturated monomer (1) with a copolymer of a polymerizable unsaturated compound having an oxiranyl group and a monomer comprising the unsaturated monomer (1) United, (D) A monomer (co) polymer comprising a polymerizable unsaturated compound having an oxiranyl group is reacted with the unsaturated monomer (1), and
- the acrylic resin has a weight average molecular weight (Mw) in terms of polystyrene as measured by gel permeation chromatography (hereinafter abbreviated as "GPC") is usually 1,000 to 100,000, preferably 3,000 to 50, More preferably, it is 5,000 to 30,000.
- the ratio of Mw to number average molecular weight (Mn) (Mw / Mn) is usually 1.0 to 5.0, preferably 1.0 to 3.0.
- Mw and Mn mean the weight average molecular weight of polystyrene conversion and the number average molecular weight which were measured by GPC (elution solvent: tetrahydrofuran).
- the acid value of the acrylic resin having an acidic functional group is preferably 10 to 300 mg KOH / g, more preferably 30 to 250 mg KOH / g, and still more preferably 50 to 200 mg KOH / g from the viewpoint of adhesion to the cured film.
- a near infrared cut filter having a low contact angle and excellent wettability can be formed, so that the adhesion to a cured film can be enhanced.
- the "acid value" is the number of mg of KOH necessary to neutralize 1 g of the acrylic resin having an acidic functional group.
- the acrylic resin can be produced by a known method, for example, by the method disclosed in JP-A-2003-222717, JP-A-2006-259680, WO2007 / 029871 and the like. Its structure, Mw and Mw / Mn can also be controlled.
- the polyurethane resin is not particularly limited as long as it has a urethane bond as a repeating unit, and can be produced by the reaction of a diisocyanate compound and a diol compound.
- the diisocyanate compound include the compounds described in paragraph [0043] of JP-A-2014-189746.
- a diol compound the compound as described in stage of Unexamined-Japanese-Patent No. 2014-189746 is mentioned, for example.
- epoxy resin examples include bisphenol-type epoxy resin, hydrogenated bisphenol-type epoxy resin, and novolak-type epoxy resin. Among them, bisphenol-type epoxy resin and novolac-type epoxy resin are preferable.
- Such epoxy resins are commercially available, and include, for example, the commercially available products described in paragraph [0121] of Japanese Patent No. 5213944.
- the polysiloxane is preferably a hydrolytic condensate of a hydrolyzable silane compound.
- a hydrolyzable silane compound having an oxiranyl group, an oxetanyl group, an episulfide group, a vinyl group, an allyl group, a (meth) acryloyl group, a carboxyl group and the like can be suitably used.
- hydrolyzable silane compounds compounds described in paragraphs [0047] to [0051] and paragraphs [0060] to [0069] of JP-A-2010-055066 can be mentioned.
- the polysiloxane can be synthesized by a known method.
- the Mw by GPC is usually 500 to 20,000, preferably 1,000 to 10,000, more preferably 1,500 to 7,000, and still more preferably 2,000 to 5,000. Further, Mw / Mn is preferably 1.0 to 4.0, more preferably 1.0 to 3.0. By setting it as such a mode, while being excellent in coatability, sufficient adhesiveness can be expressed.
- binder resins can be used alone or in combination of two or more.
- acrylic resin, polyimide resin, polyamide resin, epoxy resin, and polysiloxane are preferable as the binder resin constituting the infrared absorbing composition from the viewpoint of forming a near infrared cut filter having excellent adhesion to the cured film.
- Acrylic resin, polyimide resin, polyamide resin and epoxy resin are more preferable, and acrylic resin is still more preferable.
- the content of the binder resin is usually 5 to 1,000 parts by mass, preferably 10 to 500 parts by mass, more preferably 20 to 150 parts by mass, with respect to 100 parts by mass of the infrared absorber. It is. By adopting such an embodiment, it is possible to obtain an infrared ray absorbing composition excellent in coatability and storage stability, and when alkali developability is imparted, an infrared ray absorbing composition excellent in alkali developability is obtained. be able to.
- the infrared absorbing composition preferably contains a polymerizable compound (excluding the binder resin).
- a polymerizable compound refers to a compound having two or more polymerizable groups.
- the molecular weight of the polymerizable compound is preferably 4,000 or less, more preferably 2,500 or less, and further preferably 1,500 or less.
- the polymerizable group include an ethylenically unsaturated group, an oxiranyl group, an oxetanyl group, an N-hydroxymethylamino group, and an N-alkoxymethylamino group.
- a compound having two or more (meth) acryloyl groups or a compound having two or more N-alkoxymethylamino groups is preferable.
- a compound having two or more (meth) acryloyl groups and a compound having two or more N-alkoxymethylamino groups are preferable, and a trivalent or more aliphatic polyhydroxy compound and (meth) Multifunctional (meth) acrylate obtained by reacting acrylic acid, caprolactone modified with polyfunctional (meth) acrylate, alkylene oxide modified with polyfunctional (meth) acrylate, polyfunctional urethane (meth) acrylate, having carboxyl group Polyfunctional (meth) acrylates, N, N, N ', N', N', N' '-hexa (alkoxymethyl) melamine, N, N, N', N'- tetra (alkoxymethyl) benzoguanamine
- it is obtained by reacting a trivalent or higher aliphatic polyhydroxy compound with (meth) acrylic acid
- polyfunctional (meth) acrylates obtained by reacting a trivalent or higher aliphatic polyhydroxy compound with (meth) acrylic acid, trimethylolpropane triacrylate, pentaerythritol triacrylate, dipentaerythritol pentaacrylate, dipentamer Among multifunctional (meth) acrylates in which erythritol hexaacrylate is alkylene oxide-modified, trimethylolpropane tri (meth) acrylate modified with at least one selected from ethylene oxide and propylene oxide, ethylene oxide and propylene oxide At least one selected from pentaerythritol tetra (meth) acrylate modified by at least one selected from ethylene oxide and propylene oxide.
- dipentaerythritol penta (meth) acrylate modified with one kind dipentaerythritol hexa (meth) acrylate modified with at least one kind selected from ethylene oxide and propylene oxide
- the infrared absorbing composition is particularly preferable in that it is difficult to generate ground stains, film residue and the like on the substrate of the unexposed area.
- the polymerizable compounds can be used alone or in combination of two or more.
- the content of the polymerizable compound in one embodiment of the present invention is preferably 10 to 1,000 parts by mass, more preferably 15 to 500 parts by mass, and 20 to 150 parts by mass with respect to 100 parts by mass of the infrared absorber. preferable. By setting it as such an aspect, curability and adhesion are further improved.
- the infrared absorbing composition is usually prepared as a liquid composition by blending a solvent.
- a solvent components which constitute the infrared absorbing composition can be dispersed or dissolved, and they can be appropriately selected and used as long as they do not react with these components and have appropriate volatility.
- Diacetates, alkoxycarboxylic acid esters and other esters are preferred, and particularly propylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, 3- Methoxy butyl acetate, diethylene glycol dimethyl ether and the like are preferable.
- the solvents can be used alone or in combination of two or more.
- the content of the solvent is not particularly limited, but the total concentration of each component of the infrared absorbing composition excluding the solvent is preferably 5 to 50% by mass, and is preferably 10 to 30% by mass. The amount is more preferred. By adopting such an embodiment, it is possible to obtain an infrared-absorbing composition with good coatability.
- the infrared absorbing composition of the present invention can contain a photosensitizer.
- the "photosensitizer” refers to a compound having a property of changing the solubility of the infrared absorbing composition in the solvent by light irradiation.
- a photoinitiator, an acid generator, etc. can be mentioned, for example.
- the photosensitizers can be used alone or in combination of two or more.
- the photopolymerization initiator is not particularly limited as long as it can generate an acid or a radical by light, and, for example, thioxanthone compounds, acetophenone compounds, biimidazole compounds, triazine compounds, O-acyloxime compounds, Onium salt compounds, benzoin compounds, benzophenone compounds, ⁇ -diketone compounds, polynuclear quinone compounds, diazo compounds, imidosulfonate compounds and the like can be mentioned.
- a photoinitiator can be used individually or in combination of 2 or more types.
- the acid generator is not particularly limited as long as it is a compound capable of generating an acid by heat or light, and onium salts such as sulfonium salts, benzothiazolium salts, ammonium salts and phosphonium salts, N-hydroxyimidosulfonate compounds, oximes Sulfonate, o-nitrobenzyl sulfonate, quinone diazide compounds and the like can be mentioned.
- the acid generator can be used alone or in combination of two or more.
- the oxime sulfonate for example, compounds described in paragraphs [0122] to [0131] of JP-A-2014-115438 can be mentioned.
- quinone diazide compound for example, compounds described in paragraphs [0040] to [0048] of JP-A-2008-156393, or paragraphs [0172] to [0186] described in JP-A-2014-174406. Compounds can be mentioned.
- the content of the photosensitizer is preferably 0.03 to 10% by mass, more preferably 0.1 to 8% by mass, still more preferably 0.5 to 6% by mass, in the solid content of the infrared absorbing composition. is there. By setting it as such an aspect, curability and adhesiveness can be made still more favorable.
- the infrared absorbing composition can contain a dispersant.
- the dispersant include urethane dispersants, polyethyleneimine dispersants, polyoxyalkylene alkyl ether dispersants, polyoxyalkylene alkyl phenyl ether dispersants, poly (alkylene glycol) diester dispersants, sorbitan fatty acid esters
- the dispersant include polyester dispersants, (meth) acrylic dispersants, and the like.
- a dispersant containing a repeating unit having an alkylene oxide structure is preferable from the viewpoint of forming the near infrared cut filter 122 with a small amount of development residues.
- the dispersants can be used alone or in combination of two or more.
- the content of the dispersant is preferably 5 to 200 parts by mass, more preferably 10 to 100 parts by mass, and still more preferably 20 to 70 parts by mass with respect to 100 parts by mass of the total solid content of the infrared absorbing composition.
- the infrared absorbing composition can also contain various additives, if necessary.
- Additives include, for example, fillers such as glass and alumina; polymer compounds such as polyvinyl alcohol and poly (fluoroalkyl acrylate); surfactants such as fluorosurfactant and silicon surfactant; An accelerator, an antioxidant, etc. can be mentioned.
- the cured film 144 is provided between the color filter layers 107 a to 107 c and the microlens array 115.
- the cured film 144 preferably has translucency to both the visible light wavelength range and the infrared wavelength range.
- the light incident through the microlens array 115 is incident on the photodiodes 106a to 106d in a specific wavelength band by the near infrared cut filter 122, the infrared pass filter layer 108, and the color filter layers 107a to 107c. It is preferable that light is not attenuated as much as possible in the region other than the various filter layers described above in the light path of the light.
- the cured film 144 preferably has an insulating property so that parasitic capacitance does not occur with the wiring layer 113, for example. Since the cured film 144 is provided substantially in front of the optical filter layer 114, if the cured film 144 has conductivity, an unintended parasitic capacitance is generated with the wiring layer 113. It is preferable that the cured film 144 have an insulating property, because generation of parasitic capacitance interferes with the detection operation of the photodiodes 106a to 106d.
- the cured film 144 be excellent in adhesion to the layer in contact therewith. For example, if the adhesion between the cured film 144 and the near infrared cut filter 122 is poor, peeling occurs and the optical filter layer 114 is damaged.
- the surface of the cured film 144 be planarized in order to embed the near infrared cut filter 122, the infrared pass filter layer 108, the color filter layers 107a to 107c, etc. and provide the microlens array 115 thereon. . That is, the cured film 144 is preferably used also as a planarization film.
- the organic film is a planarizing film obtained by using the curable composition for forming a planarizing film. That is, by the leveling action after applying the curable composition for forming a flattening film, it is possible to obtain a flattening film (cured film) having a flat surface even if the base surface includes unevenness.
- a curable composition containing a curable compound and a solvent in particular, a curable composition for forming a planarized film containing a curable compound and a solvent is preferable.
- the solvent in the curable composition the same solvents as those described as the solvent in the infrared ray absorbing composition can be used, and preferred embodiments are also the same as described above.
- the curable compound constituting the curable composition may be any compound that can be cured by light or heat, for example, a resin having an oxygen-containing saturated heterocyclic group, a resin having a polymerizable unsaturated group in a side chain, A polysiloxane, a polyimide resin, a polyamide resin, a polymeric compound etc. can be mentioned.
- Examples of the oxygen-containing saturated heterocyclic group in the resin having an oxygen-containing saturated heterocyclic group include the same as those described above. Among them, an oxiranyl group and an oxetanyl group are preferable, and an oxiranyl group is more preferable.
- an acrylic resin having an oxygen-containing saturated heterocyclic group is preferable.
- a (co) polymer of a (meth) acrylate having an oxygen-containing saturated heterocyclic group Can be mentioned.
- the same ones as described for the infrared absorbing composition can be mentioned.
- a resin having an oxygen-containing saturated heterocyclic group, and a polymer having a polymerizable side chain Resins having unsaturated groups, polysiloxanes, polyimide resins, and polyamide resins are preferable, resins having oxygen-containing saturated heterocyclic groups, resins having polymerizable unsaturated groups in side chains, and polysiloxanes are more preferable.
- the curable composition may further contain a photosensitizer.
- the photosensitizer may be the same as described above, and specific compounds and embodiments are the same as described above.
- the curable composition can further contain an additive.
- an additive the same as those described above can be mentioned. Among them, adhesion promoters and blocked isocyanate compounds are preferable.
- any of the following is preferable from the viewpoint of forming a cured film having excellent adhesion to the near infrared cut filter.
- a curable composition comprising a resin having an oxygen-containing saturated heterocyclic group and a solvent
- (2-II) a curable composition comprising a resin having a polymerizable unsaturated group in a side chain and a solvent
- (2-III) A curable composition comprising a polysiloxane and a solvent. Preferred embodiments of these (2-I) to (2-III) are as described above.
- the solid-state imaging device 210 may be provided with a two band pass filter on the microlens array 115. That is, the average transmittance in the wavelength range of 430 to 580 nm is 75% or more, the average transmittance in the wavelength range of 720 to 750 nm is 15% or less, and the wavelength on the upper surface of the near infrared cut filter 122 and the infrared pass filter layer 108
- a two band pass filter may be provided which has an average transmittance of 60% or more in the range of 820 nm and an average transmittance of 15% or less in the wavelength range of 900 to 2000 nm.
- the addition of the two band pass filter can further enhance the filtering ability in the visible light wavelength region and the infrared wavelength region.
- the light transmittance in the present specification and the like refers to a value measured using a Hitachi spectrophotometer U-4100.
- the spectrophotometer can then automatically calculate the average value of the transmittance over a given wavelength range.
- the average transmittance is a value obtained by measuring the transmittance at each wavelength in 1 nm steps in a given wavelength range, and dividing the sum of the transmittances by the number of measured transmittances (wavelength range) It is.
- the configuration of the solid-state imaging device 220 according to the present embodiment is shown in FIG.
- the difference from the first embodiment is that the configuration of the near-infrared cut filter 140 further includes a silicon oxide layer 134 and a resin layer 135.
- the configuration of the solid-state imaging device 110 is the same as that of the first embodiment, and thus the detailed description will be omitted.
- the near-infrared cut filter 140 includes a base material 131, a dielectric multilayer film 132, a dielectric multilayer film 133, a silicon oxide layer 134, and a resin layer 135.
- a dielectric multilayer film 133 is provided on one surface of the base material 131. Further, on the other surface of the base material 131, a silicon oxide layer 134, a resin layer 135, and a dielectric multilayer film 133 are provided.
- the resin layer 135 of the near infrared cut filter 140 is provided at a position facing the near infrared cut filter 122.
- a glass substrate or a resin substrate can be used as the substrate 131.
- the glass substrate described in the first embodiment can be used.
- the thickness of the glass substrate is preferably 30 to 1000 ⁇ m, more preferably 50 to 750 ⁇ m, and particularly preferably 50 to 700 ⁇ m.
- the thickness of the glass substrate is smaller than 30 ⁇ m, the glass substrate itself is likely to be broken, which may make the handling extremely difficult.
- the thickness of a glass substrate is thicker than 1000 micrometers, the original purpose of thinning of a near-infrared cut off filter may become unattainable.
- the near-infrared cut filter can be miniaturized and reduced in weight, and can be suitably used for various applications such as a solid-state imaging device.
- a lens unit such as a camera module
- a CuO-containing fluorophosphate glass or a CuO-containing phosphate glass is particularly preferable, and specifically, the glass substrate described in JP-A-2006-342024 and the like can be used.
- the resin layer 135 is formed directly on the substrate 131, the adhesion between the resin and the substrate is poor, so the resin layer tends to peel off.
- the layer made of this oxide is not limited to silicon oxide, but silicon oxide is preferable from the viewpoint of light transmittance.
- the surface of the glass substrate can be cleaned by ultraviolet light from the viewpoint of improving adhesion.
- the resin layer 135 has a near infrared absorber.
- the near infrared absorber preferably has an absorption maximum wavelength (hereinafter also referred to as “ ⁇ max”) between 600 and 800 nm, more preferably between 640 and 770 nm, and between 660 and 720 nm. Particularly preferred.
- ⁇ max absorption maximum wavelength
- the wavelength range of light incident on the light receiving element having sensitivity to near infrared light is limited, so the color of the image captured by the solid-state imaging element is actually visually checked. It is closer to the observed hue.
- the resin layer 135 has resin which has the heat resistance applicable to a solder reflow process.
- the number of stacked layers in the dielectric multilayer film 133 provided on the first surface side of the substrate 131 is preferably smaller than the number of layers stacked in the dielectric multilayer film 132 provided on the second surface side. Further, the number of laminated layers in the dielectric multilayer film 133 provided on the first surface side of the substrate 131 is 10 or less, preferably 7 or less. The number of laminated layers in the dielectric multilayer film 132 provided on the second surface side of the substrate 131 is preferably 10 or more and less than 40, more preferably 20 or more and less than 40, and particularly preferably 20 or more and 30 or less. If the base material 131 has sufficient rigidity, the dielectric multilayer film 133 may be omitted. The configurations of the dielectric multilayer film 132 and the dielectric multilayer film 133 may be referred to the first embodiment, and thus the detailed description will be omitted.
- the solid-state imaging device 220 includes the near-infrared cut filter 140 having the silicon oxide layer 134 and the resin layer 135, so that it has heat resistance applicable to the solder reflow process and is sensitive to near-infrared light. Because the wavelength range of light incident on the light receiving element having the above is limited, the color of the image captured by the solid-state imaging element is closer to the color actually observed visually.
- the near-infrared cut filter 122 is provided on the solid-state imaging device 110, and the near-infrared cut filter 140 is further provided on the near-infrared cut filter 122.
- Infrared can be further cut by the near infrared cut filter and the resin layer 135 provided on the solid-state imaging device 110.
- the number of layers of the dielectric multilayer films 132 and 133 can be reduced.
- the warpage of the near infrared cut filter 140 can be reduced.
- the number of layers of the dielectric multilayer films 132 and 133 can be reduced, the number of manufacturing steps can be reduced and the yield can be improved.
- the resin layer 135 used in the present invention preferably contains a resin having heat resistance applicable to a solder reflow process, and a near infrared absorber having an absorption maximum between wavelengths of 600 to 800 nm.
- the resin having heat resistance preferably has a glass transition temperature (Tg) of 0 to 380 ° C.
- Tg glass transition temperature
- the lower limit of Tg is more preferably 40 ° C. or more, still more preferably 60 ° C. or more, still more preferably 70 ° C. or more, and particularly preferably 100 ° C. or more.
- the upper limit of Tg is more preferably 370 ° C. or less, and still more preferably 360 ° C. or less.
- Such resin include polyester resin, polyether resin, acrylic resin, polyolefin resin, cyclic olefin resin, polycarbonate resin, ene / thiol resin, epoxy resin, polyamide resin, polyamide resin, polyimide resin, polyamide imide resin, polyurethane resin And polystyrene resins, polyarylate resins, polysulfone resins, polyether sulfone resins, polyparaphenylene resins, polyarylene ether phosphine oxide resins and the like.
- acrylic resin, polyester resin, polycarbonate resin, or cyclic olefin resin is preferable.
- polyester resin polyethylene terephthalate resin, polyethylene naphthalate resin, etc. are preferable.
- polyester resins, polycarbonate resins and polyimide resins having high Tg are preferable.
- the transparent resin can adjust the refractive index by adjusting the molecular structure of the raw material component. Specifically, a method of providing a specific structure to the main chain or side chain of the polymer of the raw material component can be mentioned.
- the structure to be provided in the polymer is not particularly limited, and examples thereof include a fluorene skeleton.
- the transparent resin may be a polymer alloy in which a plurality of different resins are combined.
- a commercial item may be used as the above-mentioned resin.
- acrylic resin Ogsol (registered trademark) EA-F 5003 (Osaka Gas Chemical Co., Ltd. product name), polymethyl methacrylate, polyisobutyl methacrylate, BR50 (Mitsubishi Rayon Co., Ltd. product name) Etc.
- polyester resins OKPH4HT, OKPH4, B-OKP2, OKP-850 (all of which are trade names by Osaka Gas Chemical Co., Ltd., trade names), Byron (registered trademark) 103 (trade names, by Toyobo Co., Ltd.)
- polycarbonate resins LeXan (registered trademark) ML9103 (sabic, trade name), EP 5000 (Mitsubishi Gas Chemical Co., Ltd., trade name), SP3810 (Teijin Chemicals, Ltd., trade name), SP1516 (trade name) Teijin Kasei Co., Ltd. product name, TS2020 (Teijin Kasei Co., Ltd. product name, trade name), xylex (registered trademark) 7507 (sabic company, trade name), etc. are mentioned.
- cyclic olefin resin As cyclic olefin resin, ARTON (registered trademark) (made by JSR Corporation, trade name, Tg: 165 ° C), ZEONEX (registered trademark) (made by Nippon Zeon, trade name, Tg: 138 ° C), etc. Can be mentioned.
- the near infrared absorber which can be used for the near infrared cut filter of the present invention has a 5% weight loss temperature measured by thermogravimetric analysis in the atmosphere (iv) preferably of 250 ° C. or higher, more preferably 260 C. or higher, particularly preferably 270.degree. C. or higher.
- a weight loss temperature measured by thermogravimetric analysis in the atmosphere (iv) preferably of 250 ° C. or higher, more preferably 260 C. or higher, particularly preferably 270.degree. C. or higher.
- the near infrared absorber used in the present invention preferably has an absorption maximum at a wavelength of 600 to 800 nm, more preferably 640 to 770 (nm), particularly preferably 660 to 720 (nm). It is desirable to have.
- Examples of such near infrared absorbers include cyanine dyes, phthalocyanine dyes, aminium dyes, iminium dyes, azo dyes, anthraquinone dyes, dimonium dyes, squarylium dyes and porphyrin dyes.
- a resin layer containing such a near-infrared absorber has the above-described heat resistance, and can be applied to a solder reflow process.
- Lumogen IR765, Lumogen IR788 (made by BASF); ABS643, ABS654, ABS667, ABS670T, IRA693N, IRA735 (made by Exciton); SDA3598, SDA6075, SDA8030, specifically, SDA8303, SDA8470, SDA3039, SDA3040, SDA3922, SDA7257 (manufactured by H. W. SANDS); TAP-15, IR-706 (manufactured by Yamada Chemical Industries);
- These near infrared absorbers may be used alone or in combination of two or more.
- the amount of the near infrared absorber used is appropriately selected according to the desired properties, but is usually 0.01 to 10.0% by weight, preferably 100% by weight with respect to 100% by weight of the resin used in the present invention.
- the content is 0.01 to 8.0% by weight, more preferably 0.01 to 5.0% by weight.
- the amount of the near infrared absorber used is in the above range, the incident wavelength dependency of the absorption wavelength is small, and a near infrared cut filter having excellent near infrared cut ability and transmittance and intensity in the range of 430 to 580 nm is obtained. Can.
- the amount of the near infrared absorber used is larger than the above range, it may be possible to obtain a near infrared cut filter in which the characteristics of the near infrared absorber appear more strongly, but the transmittance in the range of 430 to 580 nm is a desired value.
- the strength of the resin layer and the near infrared cut filter may decrease, and if the amount of the near infrared absorber used is smaller than the above range, the near infrared cut filter having a high transmittance in the range of 430 to 580 nm In some cases, it may be difficult to obtain a near infrared cut filter in which the characteristics of the near infrared absorber hardly appear and the incident angle dependency of the absorption wavelength is small.
- the resin layer of the present invention has (i) an absorption maximum wavelength (hereinafter also referred to as “ ⁇ max”) between 600 and 800 (nm), preferably 640 to 770 (nm), more preferably 660 to 720 ( nm).
- ⁇ max absorption maximum wavelength
- the wavelength range of light incident on a light receiving element having sensitivity to near infrared light is limited. Therefore, the color of the image captured by the solid-state imaging element is actually visible Is closer to the observed color.
- antioxidant for example, 2,6-di-t-butyl-4-methylphenol, 2,2'-dioxy-3,3'-di-t-butyl-5,5'-dimethyldiphenylmethane and tetrakis [ Methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane.
- UV absorbers examples include 2,4-dihydroxybenzophenone and 2-hydroxy-4-methoxybenzophenone.
- the production of the resin layer can be facilitated by adding a surfactant or an antifoaming agent.
- additives such as an antioxidant, an ultraviolet light absorber, and a surfactant may be mixed together with a resin component or the like when producing a resin layer, or may be added when synthesizing a resin.
- the addition amount is appropriately selected according to the desired characteristics, but is usually 0.01 to 5.0 parts by weight, preferably 0.05 to 2.0 parts by weight, based on 100 parts by weight of the resin. is there.
- FIG. A different point from the second embodiment is that in the configuration of the near infrared cut filter 150, a resin base 141 containing a near infrared absorber is provided instead of the base 131, and a resin layer 135 that absorbs infrared is provided. There is no point.
- the configuration of the solid-state imaging device 110 is the same as that of the first embodiment, and thus the detailed description will be omitted.
- the near infrared cut filter 150 has a resin base 141 containing a near infrared absorber, a dielectric multilayer 132, a dielectric multilayer 133, and a silicon oxide layer 134.
- a dielectric multilayer film 133 is provided on one surface of the resin base 141.
- a silicon oxide layer 134 and a dielectric multilayer film 133 are provided.
- the near infrared cut filter 150 is provided at a position facing the near infrared cut filter 122.
- the resin substrate 141 contains a resin having heat resistance applicable to a solder reflow process, and a near infrared absorber having an absorption maximum wavelength (hereinafter also referred to as “ ⁇ max”) between wavelengths 600 to 800 nm. .
- ⁇ max an absorption maximum wavelength
- the near infrared absorber of the resin substrate 141 preferably has an absorption maximum wavelength of 600 to 800 nm, more preferably 640 to 770 nm, and particularly preferably 660 to 720 nm. .
- ⁇ max the wavelength range of light incident on the light receiving element having sensitivity to near infrared light is limited, so the color of the image captured by the solid-state imaging element is actually visually checked. It is closer to the observed hue.
- the resin base material 141 has resin which has the heat resistance applicable to a solder reflow process.
- the resin base 141 is formed of a composition containing the above-mentioned infrared ray absorbent and a heat-resistant resin.
- the resin base material 141 has high infrared shielding properties on the relatively short wavelength side, and low infrared shielding properties on the relatively long wavelength side.
- the dielectric multilayer film one having a low infrared ray shielding property on the relatively short wavelength side and a high optical property having a relatively high infrared ray shielding property on the relatively long wavelength side is suitably used.
- the dielectric multilayer film preferably satisfies the following formula (i). x ⁇ y ⁇ z / 0.95 (i) (In the formula (i), x is an average value of absorbance of the dielectric multilayer film in a wavelength range of 700 nm to 800 nm. Y is an average value of absorbance of the dielectric multilayer film in a wavelength range of 800 nm to 900 nm. Z is the average value of the absorbance of the dielectric multilayer film in the wavelength range of 900 nm or more and 1200 nm or less.)
- the dielectric multilayer film can be produced, for example, by the method described in JP-A-2016-146619.
- the resin base material 141 can be manufactured by the method described in WO2016 / 117596.
- the number of stacked layers in the dielectric multilayer film 133 provided on the first surface side of the substrate 131 is preferably smaller than the number of layers stacked in the dielectric multilayer film 132 provided on the second surface side. Further, the number of laminated layers in the dielectric multilayer film 133 provided on the first surface side of the substrate 131 is 10 or less, preferably 7 or less. The number of laminated layers in the dielectric multilayer film 132 provided on the second surface side of the substrate 131 is preferably 10 or more and less than 40, more preferably 20 or more and less than 40, and particularly preferably 20 or more and 30 or less. If the base material 131 has sufficient rigidity, the dielectric multilayer film 133 may be omitted. The configurations of the dielectric multilayer film 132 and the dielectric multilayer film 133 may be referred to the first embodiment, and thus the detailed description will be omitted.
- the solid-state imaging device 230 has the near-infrared cut filter 150 having the silicon oxide layer 134 and the resin base 141 containing the near-infrared absorber, thereby having heat resistance applicable to the solder reflow process. Since the wavelength range of light incident on the light receiving element having sensitivity to near infrared light is limited, the color of the image captured by the solid-state imaging element becomes closer to the color actually observed visually .
- the resin base 141 of the near-infrared cut filter 150 has a dye that absorbs near-infrared light. As a result, it becomes unnecessary to provide the resin layer 135 described in the second embodiment. Further, in the solid-state imaging device 110, by providing the near-infrared cut filter 122 on the light receiving element, it is possible to have the near-infrared cutting effect also on the solid-state imaging device 110 side. In the near infrared cut filter 150, since it is not necessary to laminate many dielectric multilayer films having different refractive indexes, it is possible to suppress the occurrence of warpage in the entire near infrared cut filter 150. Further, in the near infrared cut filter 150, since it is not necessary to stack many dielectric multilayer films having different refractive indexes, the manufacturing process is reduced and the yield is improved.
- FIG. 4A is a view showing the configuration of sample A
- FIG. 4B is a view showing the configuration of samples B to D
- FIG. 4C is a view showing the configuration of sample E.
- the sample A is the structure by which the near-infrared cut off filter 202 was provided on the glass base material 201.
- the near infrared cut filter 202 corresponds to the near infrared cut filter 122 described in the previous embodiment.
- the sample B has a configuration in which the near infrared cut filter 202 is provided on the glass substrate 201, and ten dielectric multilayer films 203 are provided on the near infrared cut filter 202.
- the sample C has the same configuration as that of the sample B except that 20 dielectric multilayer films 203 are used.
- the sample D has the same configuration as that of the sample B except that 30 dielectric multilayer films 203 are used.
- the sample E is the structure by which the dielectric multilayer film 203 of 40 layers was provided on the resin base material 204 containing a near-infrared absorber.
- the resin base material 204 corresponds to the resin base material 141 described in the previous embodiment.
- the detailed configuration of sample E may be referred to Japanese Patent No. 5499669.
- the transmittance of samples A to E was measured using a Hitachi spectrophotometer U-4100.
- the spectrophotometer can automatically calculate the average value of the transmittance in a given wavelength range. Specifically, the average transmittance is measured at each wavelength in 1 nm steps in a given wavelength range, and the total transmittance is divided by the number of measured transmittances (wavelength range) It is a value.
- the horizontal axis indicates the wavelength (Wavelength (nm)), and the vertical axis indicates the transmittance (T (%)).
- the sample A had an average transmittance of 54.5% at a wavelength of 700 nm to 1000 nm.
- the sample E had an average transmittance of 0.2% at a wavelength of 700 nm to 1000 nm.
- the average transmittances at wavelengths of 700 nm to 1000 nm were 3.6%, 0.9% and 0.2%, respectively.
- the samples B to D differ from the sample E in that a near infrared cut filter 202 is used. It was shown that, by using the near infrared cut filter 202, sufficient infrared cut performance can be obtained even if the number of dielectric laminated films is as small as 20 to 30.
- the solid-state imaging device includes a digital still camera, a camera for a mobile phone, a digital video camera, a camera for a personal computer, a surveillance camera, a camera for an automobile, a television, an in-vehicle device for a car navigation system, a portable information terminal, a video game machine It can be suitably used for portable game machines, devices for fingerprint authentication systems, digital music players and the like.
- 101 pixel portion, 102: visible light detection pixel, 103: infrared light detection pixel, 104a: first pixel, 104b: first pixel, 104c: first pixel, 105: second pixel, 106a: photodiode 106b: photodiode 106c: photodiode 106d: photodiode 107a: color filter layer 107b: color filter layer 107c: color filter layer 108: infrared pass filter layer 110: solid-state imaging device 111: semiconductor Substrate, 112: semiconductor layer, 113: wiring layer, 114: optical filter layer, 115: microlens array, 121: cured film, 122: near infrared cut filter, 123: cured film, 130: near infrared cut filter, 131: Base material, 132: dielectric multilayer film, 133: dielectric multilayer film, 134: acid Silicon layer, 135: resin layer, 140: near infrared cut filter, 141: resin
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Optical Filters (AREA)
Abstract
Description
本実施形態に係る固体撮像装置の断面図について、図1に示す。図1に示すように、固体撮像装置210は、固体撮像素子110及び近赤外線カットフィルタ130を有する。
まず、固体撮像素子110の構成について説明する。固体撮像素子110は、入射光を光電変換する受光部を有する半導体基板111と、半導体基板111上に設けられた光学フィルタ層114と、を有する。
次に、近赤外線カットフィルタ130の構成について説明する。近赤外線カットフィルタ130は、基材131と、誘電体多層膜132と、誘電体多層膜133と、を有する。近赤外線カットフィルタ130は、近赤外線カットフィルタ122に対向する位置に設けられている。
基材131として、ガラス基材又は樹脂基材を使用することができる。ガラス基材としては、例えば、石英ガラス基材、ホウケイ酸ガラス基材、ソーダガラス基材などを使用することができる。また、CuO含有フツリン酸塩ガラスまたはCuO含有リン酸塩ガラスからなる近赤外線吸収ガラスを使用することができる。基材131として、CuO含有ガラスを使用することにより、可視光に対し、高い透過率を有し、また近赤外線に対しても高い遮蔽性を有するため、好ましい。
誘電体多層膜は、近赤外線を反射する機能を有する膜である。誘電体多層膜は、基材131の片面に設けてもよいし、両面に設けてもよい。片面に設ける場合には、製造コストや製造容易性に優れ、両面に設ける場合には、高い強度を有し、反りが生じにくい近赤外線カットフィルタを得ることができる。
図1に示す固体撮像装置210には、近赤外線カットフィルタ130を介して光が入射することで、近赤外線がカットされる。次に、マイクロレンズアレイ115を介して入射した光は、近赤外線カットフィルタ122により近赤外線がさらにカットされ、可視光がカラーフィルタ層107a~107cに入射する。一方、赤外光検出用画素103においては、赤外線パスフィルタ層108にそのまま入射する。
カラーフィルタ層107a~107cは、それぞれ異なる波長帯域の可視光線を透過するパスフィルタである。例えば、カラーフィルタ層107aは赤色光(概ね波長610~780nm)の波長帯域の光を透過し、カラーフィルタ層107bは緑色光(概ね波長500~570nm)の波長帯域の光を透過し、カラーフィルタ層107cは青色光(概ね波長430~460nm)の波長帯域の光を透過することができるパスフィルタによって、それぞれを構成することができる。複数のフォトダイオードの各々には、それぞれカラーフィルタ層107a~107cの透過光が入射される。
赤外線パスフィルタ層108は、少なくとも近赤外線波長領域の光を透過するパスフィルタである。赤外線パスフィルタ層108は、バインダー樹脂や重合性化合物等に、可視光線波長領域の波長に吸収を有する色素(顔料や染料)を加えて形成することができる。赤外線パスフィルタ層108は、概略700nm未満、好ましくは750nm未満、より好ましくは800nm未満の光を吸収(カット)し、波長700nm以上、好ましくは750nm以上、より好ましくは800nm以上の光を透過する分光透過特性を有している。
近赤外線カットフィルタ122は、可視光線波長領域の光を透過し、近赤外線波長領域の光を遮断するパスフィルタである。近赤外線カットフィルタ122は、波長600~2000nmの範囲内に極大吸収波長を有する化合物(以下、「赤外線吸収剤」とも称する。)を含むことが好ましく、例えば、赤外線吸収剤と、バインダー樹脂及び重合性化合物から選ばれる少なくとも1種とを含む赤外線吸収性組成物を用いて形成することができる。
赤外線吸収剤としては、例えば、ジイミニウム系化合物、スクアリリウム系化合物、シアニン系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、クアテリレン系化合物、アミニウム系化合物、イミニウム系化合物、アゾ系化合物、アントラキノン系化合物、ポルフィリン系化合物、ピロロピロール系化合物、オキソノール系化合物、クロコニウム系化合物、ヘキサフィリン系化合物、金属ジチオール系化合物、銅化合物、タングステン化合物、金属ホウ化物からなる群より選ばれる少なくとも1種の化合物を用いることができる。これらは、単独で又は2種以上を組み合わせて使用することができる。
赤外線吸収性組成物は、バインダー樹脂を含有することが好ましい。バインダー樹脂としては特に限定されるものではないが、アクリル樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリシロキサンよりなる群から選ばれる少なくとも1種が好ましい。
(a)不飽和単量体(1)及び水酸基を有する重合性不飽和化合物を含有してなる単量体の共重合体に、不飽和イソシアネート化合物を反応させて得られる重合体、
(b)不飽和単量体(1)を含有してなる単量体の(共)重合体に、オキシラニル基を有する重合性不飽和化合物を反応させて得られる(共)重合体、
(c)オキシラニル基を有する重合性不飽和化合物及び不飽和単量体(1)を含有してなる単量体の共重合体に、不飽和単量体(1)を反応させて得られる重合体、
(d)オキシラニル基を有する重合性不飽和化合物を含有してなる単量体の(共)重合体に、不飽和単量体(1)を反応させ、更に多塩基酸無水物を反応させて得られる(共)重合体。
なお本明細書において「(共)重合体」とは、重合体及び共重合体を包含する用語である。
赤外線吸収性組成物は、重合性化合物(但し、前記バインダー樹脂を除く。)を含有することが好ましい。本明細書において重合性化合物とは、2個以上の重合可能な基を有する化合物をいう。重合性化合物の分子量は、4,000以下、更に2,500以下、更に1,500以下であることが好ましい。重合可能な基としては、例えば、エチレン性不飽和基、オキシラニル基、オキセタニル基、N-ヒドロキシメチルアミノ基、N-アルコキシメチルアミノ基等を挙げることができる。本発明において、重合性化合物としては、2個以上の(メタ)アクリロイル基を有する化合物、又は2個以上のN-アルコキシメチルアミノ基を有する化合物が好ましい。
赤外線吸収性組成物は、通常、溶媒を配合して液状組成物として調製される。溶媒としては、赤外線吸収性組成物を構成する成分を分散又は溶解し、かつこれらの成分と反応せず、適度の揮発性を有するものである限り、適宜に選択して使用することができる。
本発明の赤外線吸収性組成物には、感光剤を含有することができる。ここで、本明細書において「感光剤」とは、光照射により赤外線吸収性組成物の溶媒に対する溶解性を変化させる性質を有する化合物をいう。このような化合物としては、例えば、光重合開始剤、酸発生剤等を挙げることができる。感光剤は、単独で又は2種以上を組み合わせて使用することができる。
赤外線吸収性組成物には、分散剤を含有せしめることができる。分散剤としては、例えば、ウレタン系分散剤、ポリエチレンイミン系分散剤、ポリオキシアルキレンアルキルエーテル系分散剤、ポリオキシアルキレンアルキルフェニルエーテル系分散剤、ポリ(アルキレングリコール)ジエステル系分散剤、ソルビタン脂肪酸エステル系分散剤、ポリエステル系分散剤、(メタ)アクリル系分散剤等が挙げられる。
赤外線吸収性組成物には、必要に応じて、種々の添加剤を含有することもできる。添加剤としては、例えば、ガラス、アルミナ等の充填剤;ポリビニルアルコール、ポリ(フロオロアルキルアクリレート)類等の高分子化合物;フッ素系界面活性剤、シリコン系界面活性剤等の界面活性剤、密着促進剤、酸化防止剤等を挙げることができる。
硬化膜144は、カラーフィルタ層107a~107cとマイクロレンズアレイ115との間に設けられる。硬化膜144は可視光線波長領域及び赤外線波長領域の双方に対し透光性を有することが好ましい。マイクロレンズアレイ115を介して入射した光は、近赤外線カットフィルタ122、赤外線パスフィルタ層108、カラーフィルタ層107a~107cによって特定の波長帯域の光がフォトダイオード106a~106dに入射されるが、入射光の光路において前述の各種フィルタ層以外の領域ではなるべく光が減衰しないようにすることが好ましい。
硬化性組成物を構成する硬化性化合物としては、光又は熱により硬化しうる化合物であればよく、例えば、含酸素飽和複素環基を有する樹脂、側鎖に重合性不飽和基を有する樹脂、ポリシロキサン、ポリイミド樹脂、ポリアミド樹脂、重合性化合物等を挙げることができる。
硬化性組成物には、更に感光剤を含有することができる。感光剤としては前述と同様のものを挙げることができ、具体的な化合物及び態様は、前述と同様である。
硬化性組成物には、更に添加剤を含有することができる。添加剤としては前述と同様のものを挙げることができる。その中でも、密着促進剤、ブロックイソシアネート化合物が好ましい。
(2-I)含酸素飽和複素環基を有する樹脂及び溶媒を含む硬化性組成物、
(2-II)側鎖に重合性不飽和基を有する樹脂及び溶媒を含む硬化性組成物、
(2-III)ポリシロキサン及び溶媒を含む硬化性組成物。
これら(2-I)~(2-III)における好ましい態様は、それぞれ上記した通りである。
本実施形態に係る固体撮像装置220の構成について、図2に示す。第1実施形態と異なる点は、近赤外線カットフィルタ140の構成について、酸化シリコン層134と、樹脂層135と、をさらに有する点である。固体撮像素子110の構成については、第1実施形態と同様であるため、詳細な説明は省略する。
図2に示すように、近赤外線カットフィルタ140は、基材131と、誘電体多層膜132と、誘電体多層膜133と、酸化シリコン層134と、樹脂層135と、を有する。基材131の一方の面に、誘電体多層膜133が設けられている。また、基材131の他方の面に、酸化シリコン層134と、樹脂層135と、誘電体多層膜133と、が設けられている。また、近赤外線カットフィルタ140の樹脂層135は、近赤外線カットフィルタ122と対向する位置に設けられている。
本発明に用いられる樹脂層135は、ハンダリフロー工程に適用可能な耐熱性を有する樹脂と、吸収極大を波長600~800nmの間に有する近赤外線吸収剤を含むことが好ましい。
耐熱性を有する樹脂は、ガラス転移温度(Tg)が、0~380℃であることが好ましい。Tgの下限は、40℃以上がより好ましく、60℃以上がより一層好ましく、70℃以上がさらに好ましく、100℃以上が特に好ましい。また、Tgの上限は、370℃以下がより好ましく、360℃以下がより一層好ましい。透明樹脂のTgが0~380℃の範囲であれば、本光学フィルタの製造プロセスや使用中において、熱による劣化や変形を抑制できる。
本発明の近赤外線カットフィルタに用いることができる近赤外線吸収剤は、(iv)大気中で熱重量分析にて測定した5%重量減少温度が、好ましくは250℃以上であり、更に好ましくは260℃以上、特に好ましくは270℃以上である。重量減少温度が前記条件を満たすことで、高温条件下でも分解することなく、ハンダリフロー工程での使用に十分な熱性が確保され、安定した品質の近赤外線カットフィルタを提供することができる。
本発明の樹脂層は、(i)吸収極大波長(以下「λmax」ともいう)を600~800(nm)の間に有し、好ましくは640~770(nm)、より好ましくは660~720(nm)に有する。前記λmaxを上記波長範囲に有することで、近赤外光に感度を有する受光素子に入射される光の波長範囲が限定されるため、固体撮像素子により撮像された画像の色が、実際に目視で観察される色合いにより近いものとなる。
前記樹脂層には、本発明の効果を損なわない範囲において、さらに、酸化防止剤、紫外線吸収剤および界面活性剤等のその他の成分を添加することができる。
本実施形態に係る固体撮像装置230の構成について、図3に示す。第2実施形態と異なる点は、近赤外線カットフィルタ150の構成において、基材131の代わりに、近赤外線吸収剤を含む樹脂基材141を設ける点と、赤外線を吸収する樹脂層135を設けていない点である。固体撮像素子110の構成については、第1実施形態と同様であるため、詳細な説明は省略する。
図3に示すように、近赤外線カットフィルタ150は、近赤外線吸収剤を含む樹脂基材141と、誘電体多層膜132と、誘電体多層膜133と、酸化シリコン層134と、を有する。樹脂基材141の一方の面に、誘電体多層膜133が設けられている。また、樹脂基材141の他方の面に、酸化シリコン層134と、誘電体多層膜133と、が設けられている。また、近赤外線カットフィルタ150は、近赤外線カットフィルタ122と対向する位置に設けられている。
x<y≦z/0.95 ・・・ (i)
(式(i)中、xは、波長700nm以上800nm以下の範囲における誘電体多層膜の吸光度の平均値である。yは、波長800nm以上900nm以下の範囲における誘電体多層膜の吸光度の平均値である。zは、波長900nm以上1200nm以下の範囲における誘電体多層膜の吸光度の平均値である。)
Claims (19)
- 第1近赤外線カットフィルタと、固体撮像素子と、を有し、
前記第1近赤外線カットフィルタは、
ガラス基材と、
前記ガラス基材の少なくとも一方に誘電体多層膜と、を有し、
前記固体撮像素子は、
半導体基板と、
前記半導体基板に設けられた第1受光素子と、
前記第1受光素子上に設けられた光学フィルタと、を有し、
前記光学フィルタは、
前記第1受光素子上に設けられたカラーフィルタ層と、
前記カラーフィルタ層上に設けられた第2近赤外線カットフィルタと、を有し、
前記第1近赤外線カットフィルタは、前記第2近赤外線カットフィルタと対向する位置に設けられ、
前記誘電体多層膜の積層数は、10層以上40層未満で設けられる、固体撮像装置。 - 前記ガラス基材は、CuO含有フツリン酸塩ガラスまたはCuO含有リン酸塩ガラスである、請求項1に記載の固体撮像装置。
- 前記光学フィルタは、前記第2近赤外線カットフィルタ上に、第1硬化膜をさらに有する、請求項1に記載の固体撮像装置。
- 前記光学フィルタは、前記カラーフィルタ層と、前記第2近赤外線カットフィルタとの間に、第2硬化膜をさらに有する、請求項1に記載の固体撮像装置。
- 前記半導体基板に設けられた第2受光素子と、
前記第2受光素子と重なるパスフィルタ層と、をさらに有する、請求項1に記載の固体撮像装置。 - 前記誘電体多層膜の積層数は、20層以上30層以下で設けられる、請求項1に記載の固体撮像装置。
- 前記第2近赤外線カットフィルタは、セシウム酸化タングステン化合物と、ジイミニウム系化合物、スクアリリウム系化合物、シアニン系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、クアテリレン系化合物、アミニウム系化合物、イミニウム系化合物、ピロロピロール系化合物、クロコニウム系化合物の有機色素系化合物から選ばれる少なくとも一種の有機色素を含む、請求項1に記載の固体撮像装置。
- 第1近赤外線カットフィルタと、固体撮像素子と、を有し、
前記第1近赤外線カットフィルタは、
基材と、
前記基材の第1面に設けられた第1誘電体多層膜と、
前記基材の第2面に設けられた樹脂層と、
前記基材の第2面に前記樹脂層を介して設けられた第2誘電体多層膜と、を有し、
前記固体撮像素子は、
半導体基板と、
前記半導体基板に設けられた第1受光素子と、
前記第1受光素子上に設けられた光学フィルタと、を有し、
前記光学フィルタは、
前記第1受光素子上に設けられたカラーフィルタ層と、
前記カラーフィルタ層上に設けられた第2近赤外線カットフィルタと、を有し、
前記第1近赤外線カットフィルタの前記樹脂層は、前記第2近赤外線カットフィルタと対向する位置に設けられ、
前記第1誘電体多層膜の積層数は、10層以上40層未満で設けられる、固体撮像装置。 - 前記光学フィルタは、前記第1近赤外線カットフィルタ上に、第1硬化膜をさらに有する、請求項8に記載の固体撮像装置。
- 前記光学フィルタは、前記カラーフィルタ層と、前記第1近赤外線カットフィルタとの間に、第2硬化膜をさらに有する、請求項8に記載の固体撮像装置。
- 前記半導体基板に設けられた第2受光素子と、
前記第2受光素子と重なるパスフィルタ層と、をさらに有する、請求項8に記載の固体撮像装置。 - 前記第1誘電体多層膜の積層数は、20層以上30層以下で設けられる、請求項8に記載の固体撮像装置。
- 前記第2近赤外線カットフィルタは、セシウム酸化タングステン化合物と、ジイミニウム系化合物、スクアリリウム系化合物、シアニン系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、クアテリレン系化合物、アミニウム系化合物、イミニウム系化合物、ピロロピロール系化合物、クロコニウム系化合物の有機色素系化合物から選ばれる少なくとも一種の有機色素を含む、請求項8に記載の固体撮像装置。
- 第1近赤外線カットフィルタと、固体撮像素子と、を有し、
前記第1近赤外線カットフィルタは、
近赤外線吸収剤を含む樹脂基材と、
前記樹脂基材の少なくとも一方に誘電体多層膜と、を有し、
前記固体撮像素子は、
半導体基板と、
前記半導体基板に設けられた第1受光素子と、
前記第1受光素子上に設けられた光学フィルタと、を有し、
前記光学フィルタは、
前記第1受光素子上に設けられたカラーフィルタ層と、
前記カラーフィルタ層上に設けられた第2近赤外線カットフィルタと、を有し、
前記第1近赤外線カットフィルタは、前記第2近赤外線カットフィルタと対向する位置に設けられ、
誘電体積層膜の積層数は、10層以上40層未満で設けられる、固体撮像装置。 - 前記光学フィルタは、前記第1近赤外線カットフィルタ上に、第1硬化膜をさらに有する、請求項14に記載の固体撮像装置。
- 前記光学フィルタは、前記カラーフィルタ層と、前記第1近赤外線カットフィルタとの間に、第2硬化膜をさらに有する、請求項14に記載の固体撮像装置。
- 前記半導体基板に設けられた第2受光素子と、
前記第2受光素子と重なるパスフィルタ層と、をさらに有する、請求項14に記載の固体撮像装置。 - 前記誘電体多層膜の積層数は、20層以上30層以下で設けられる、請求項14に記載の固体撮像装置。
- 前記第2近赤外線カットフィルタは、セシウム酸化タングステン化合物と、ジイミニウム系化合物、スクアリリウム系化合物、シアニン系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、クアテリレン系化合物、アミニウム系化合物、イミニウム系化合物、ピロロピロール系化合物、クロコニウム系化合物の有機色素系化合物から選ばれる少なくとも一種の有機色素を含む、請求項14に記載の固体撮像装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019527003A JPWO2019004319A1 (ja) | 2017-06-30 | 2018-06-27 | 固体撮像装置 |
KR1020197035070A KR20200018420A (ko) | 2017-06-30 | 2018-06-27 | 고체 촬상 장치 |
CN201880038033.1A CN110741288A (zh) | 2017-06-30 | 2018-06-27 | 固体摄像装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-129026 | 2017-06-30 | ||
JP2017129026 | 2017-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019004319A1 true WO2019004319A1 (ja) | 2019-01-03 |
Family
ID=64741616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/024461 WO2019004319A1 (ja) | 2017-06-30 | 2018-06-27 | 固体撮像装置 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPWO2019004319A1 (ja) |
KR (1) | KR20200018420A (ja) |
CN (1) | CN110741288A (ja) |
TW (1) | TW201904760A (ja) |
WO (1) | WO2019004319A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3105840A1 (fr) * | 2019-12-30 | 2021-07-02 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Composant de détection incluant des pixels noirs et procédé de fabrication d’un tel composant |
WO2022075291A1 (ja) * | 2020-10-09 | 2022-04-14 | Agc株式会社 | 光学フィルタ |
JP7520564B2 (ja) | 2019-07-11 | 2024-07-23 | Hoya株式会社 | 近赤外線カットフィルタ及びそれを備える撮像装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10964744B1 (en) * | 2019-09-13 | 2021-03-30 | Omnivision Technologies, Inc. | Light control for improved near infrared sensitivity and channel separation |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06217079A (ja) * | 1993-01-19 | 1994-08-05 | Canon Inc | イメージセンサ及び画像情報処理装置 |
JPH07170366A (ja) * | 1993-10-22 | 1995-07-04 | Canon Inc | イメージセンサー用フィルター、イメージセンサー及び画像情報処理装置 |
JP2012209913A (ja) * | 2011-03-16 | 2012-10-25 | Toshiba Corp | 固体撮像装置及びカメラモジュール |
WO2012169447A1 (ja) * | 2011-06-06 | 2012-12-13 | 旭硝子株式会社 | 光学フィルタ、固体撮像素子、撮像装置用レンズおよび撮像装置 |
WO2014168190A1 (ja) * | 2013-04-10 | 2014-10-16 | 旭硝子株式会社 | 赤外線遮蔽フィルタ、固体撮像素子、および撮像・表示装置 |
WO2016114362A1 (ja) * | 2015-01-14 | 2016-07-21 | 旭硝子株式会社 | 近赤外線カットフィルタおよび固体撮像装置 |
WO2016117597A1 (ja) * | 2015-01-21 | 2016-07-28 | Jsr株式会社 | 固体撮像装置及び赤外線吸収性組成物 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102056613B1 (ko) | 2012-08-23 | 2019-12-17 | 에이지씨 가부시키가이샤 | 근적외선 커트 필터 및 고체 촬상 장치 |
JP6383980B2 (ja) * | 2014-09-26 | 2018-09-05 | Agc株式会社 | 近赤外線カットフィルタ |
TWI675907B (zh) * | 2015-01-21 | 2019-11-01 | 日商Jsr股份有限公司 | 固體攝像裝置 |
KR101815823B1 (ko) * | 2015-04-23 | 2018-01-05 | 아사히 가라스 가부시키가이샤 | 광학 필터 및 촬상 장치 |
-
2018
- 2018-06-27 KR KR1020197035070A patent/KR20200018420A/ko not_active Application Discontinuation
- 2018-06-27 WO PCT/JP2018/024461 patent/WO2019004319A1/ja active Application Filing
- 2018-06-27 CN CN201880038033.1A patent/CN110741288A/zh active Pending
- 2018-06-27 JP JP2019527003A patent/JPWO2019004319A1/ja active Pending
- 2018-06-29 TW TW107122538A patent/TW201904760A/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06217079A (ja) * | 1993-01-19 | 1994-08-05 | Canon Inc | イメージセンサ及び画像情報処理装置 |
JPH07170366A (ja) * | 1993-10-22 | 1995-07-04 | Canon Inc | イメージセンサー用フィルター、イメージセンサー及び画像情報処理装置 |
JP2012209913A (ja) * | 2011-03-16 | 2012-10-25 | Toshiba Corp | 固体撮像装置及びカメラモジュール |
WO2012169447A1 (ja) * | 2011-06-06 | 2012-12-13 | 旭硝子株式会社 | 光学フィルタ、固体撮像素子、撮像装置用レンズおよび撮像装置 |
WO2014168190A1 (ja) * | 2013-04-10 | 2014-10-16 | 旭硝子株式会社 | 赤外線遮蔽フィルタ、固体撮像素子、および撮像・表示装置 |
WO2016114362A1 (ja) * | 2015-01-14 | 2016-07-21 | 旭硝子株式会社 | 近赤外線カットフィルタおよび固体撮像装置 |
WO2016117597A1 (ja) * | 2015-01-21 | 2016-07-28 | Jsr株式会社 | 固体撮像装置及び赤外線吸収性組成物 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7520564B2 (ja) | 2019-07-11 | 2024-07-23 | Hoya株式会社 | 近赤外線カットフィルタ及びそれを備える撮像装置 |
FR3105840A1 (fr) * | 2019-12-30 | 2021-07-02 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Composant de détection incluant des pixels noirs et procédé de fabrication d’un tel composant |
EP3846209A1 (fr) * | 2019-12-30 | 2021-07-07 | Commissariat à l'énergie atomique et aux énergies alternatives | Composant de détection incluant des pixels noirs et procédé de fabrication d'un tel composant |
US11652119B2 (en) | 2019-12-30 | 2023-05-16 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Detection component including black pixels and method for manufacturing such a component |
WO2022075291A1 (ja) * | 2020-10-09 | 2022-04-14 | Agc株式会社 | 光学フィルタ |
Also Published As
Publication number | Publication date |
---|---|
KR20200018420A (ko) | 2020-02-19 |
CN110741288A (zh) | 2020-01-31 |
JPWO2019004319A1 (ja) | 2020-05-21 |
TW201904760A (zh) | 2019-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10854661B2 (en) | Solid-state imaging device, infrared-absorbing composition, and flattened-film-forming curable composition | |
KR102261468B1 (ko) | 구조체, 근적외선 투과 필터층 형성용 조성물 및 광센서 | |
JP5946389B2 (ja) | 近赤外線吸収性組成物、これを用いた近赤外線カットフィルタ及びその製造方法、並びに、カメラモジュール及びその製造方法 | |
WO2016117597A1 (ja) | 固体撮像装置及び赤外線吸収性組成物 | |
WO2019004319A1 (ja) | 固体撮像装置 | |
CN112946804B (zh) | 光学滤波器及使用光学滤波器的装置 | |
KR101741609B1 (ko) | 근적외선 흡수성 조성물, 이를 이용한 근적외선 차단 필터, 및 그 제조 방법, 및 카메라 모듈 및 그 제조 방법 | |
KR102384896B1 (ko) | 광학 필터 및 광학 필터를 사용한 장치 | |
TWI768108B (zh) | 樹脂組成物、膜、近紅外線截止濾波器、紅外線透過濾波器、固體攝像元件、圖像顯示裝置、紅外線感測器及相機模組 | |
WO2016088645A1 (ja) | 固体撮像装置 | |
US12072568B2 (en) | Light-shielding resin composition, cured film, color filter, light-shielding film, solid-state imaging element, and image display device | |
TW201417257A (zh) | 攝像元件及攝像裝置 | |
KR20150097618A (ko) | 근적외선 흡수성 조성물, 및 이를 이용한 근적외선 차단 필터, 및 카메라 모듈과 그 제조 방법 | |
WO2016088644A1 (ja) | 固体撮像装置 | |
KR20220146660A (ko) | 적외선 차폐성 조성물, 경화막 및 고체 촬상 장치 | |
CN112513692A (zh) | 遮光膜、遮光膜的制造方法、光学元件、固体摄像元件、前照灯单元 | |
KR102294518B1 (ko) | 금속 질화물 함유 입자, 분산 조성물, 경화성 조성물, 경화막, 및 그들의 제조 방법과 컬러 필터, 고체 촬상 소자, 고체 촬상 장치, 적외선 센서 | |
CN114521246A (zh) | 分散液、组合物、固化膜、滤色器、固体摄像元件及图像显示装置 | |
KR20190031515A (ko) | 경화성 조성물, 경화막, 컬러 필터, 고체 촬상 소자, 적외선 센서, 경화막의 제조 방법, 및 컬러 필터의 제조 방법 | |
CN110337600B (zh) | 滤波器、光传感器、固体摄像元件及图像显示装置 | |
TW201924031A (zh) | 裝置、有機層形成用組成物 | |
CN111512194A (zh) | 红外线通过膜用组合物及覆盖构件的制造方法 | |
KR20220137949A (ko) | 감광성 조성물, 경화막, 컬러 필터, 차광막, 광학 소자, 고체 촬상 소자, 적외선 센서, 헤드라이트 유닛 | |
TW202338008A (zh) | 硬化性組成物、膜、濾光器、固體攝像元件及圖像顯示裝置 | |
JP2023049863A (ja) | 組成物、遮光膜、固体撮像素子、画像表示装置、硬化膜の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18822844 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197035070 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019527003 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18822844 Country of ref document: EP Kind code of ref document: A1 |