WO2019004127A1 - 強化ポリカーボネート樹脂組成物 - Google Patents

強化ポリカーボネート樹脂組成物 Download PDF

Info

Publication number
WO2019004127A1
WO2019004127A1 PCT/JP2018/024011 JP2018024011W WO2019004127A1 WO 2019004127 A1 WO2019004127 A1 WO 2019004127A1 JP 2018024011 W JP2018024011 W JP 2018024011W WO 2019004127 A1 WO2019004127 A1 WO 2019004127A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
weight
parts
bis
polycarbonate resin
Prior art date
Application number
PCT/JP2018/024011
Other languages
English (en)
French (fr)
Inventor
俊介 奥澤
利往 三宅
幸二 仲西
政二 小森
英樹 河野
Original Assignee
帝人株式会社
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017126245A external-priority patent/JP6991003B2/ja
Priority claimed from JP2017126244A external-priority patent/JP6956538B2/ja
Application filed by 帝人株式会社, ダイキン工業株式会社 filed Critical 帝人株式会社
Priority to CN201880035044.4A priority Critical patent/CN110691820B/zh
Priority to US16/626,407 priority patent/US11332614B2/en
Priority to EP18823129.4A priority patent/EP3647369B1/en
Publication of WO2019004127A1 publication Critical patent/WO2019004127A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to reinforced polycarbonate resin compositions. More specifically, while having excellent strength, it has good impact resistance, heat resistance, flame retardancy, thermal stability, and is suitably used in various fields such as electric and electronic fields, automotive fields, infrastructure and communication fields, etc.
  • the invention relates to a reinforced polycarbonate resin composition capable of
  • Polycarbonate resins are used in many applications such as machine parts, automobile parts, electric and electronic parts, office equipment parts, etc. because of their excellent properties such as mechanical strength, dimensional stability and flame retardancy. In recent years, with the miniaturization and higher performance of parts, the demand for strength and heat resistance of parts has increased. At least one member selected from the group consisting of a polycarbonate resin, a fibrous filler such as glass fiber and carbon fiber, a plate-like filler such as talc, and a particulate filler such as calcium carbonate as a material having improved strength and heat resistance
  • a reinforced polycarbonate resin composition is known which is blended with a filler of
  • polycarbonate resins have the disadvantage that the impact resistance is greatly reduced by the addition of glass fibers.
  • Patent Document 2 discloses a method of introducing a polycarbonate-polyorganosiloxane copolymer as a polycarbonate resin.
  • the impact resistance is improved, but the problem that the heat resistance and the flame retardancy decrease is left.
  • the heat resistance and the flame retardancy decrease, and the strength and the heat resistance of the glass reinforced resin composition Methods for improving impact resistance while maintaining the properties are still insufficient.
  • fluorine resins represented by polytetrafluoroethylene (PTFE) are extremely excellent in heat resistance, chemical resistance, weather resistance, and electrical properties as compared with other polymer materials, and are non-adhesive, Because of their unique properties such as slippery, they are widely used from automobiles, aircraft, semiconductors, information communication devices to familiar household goods.
  • the application as a drip prevention agent (patent document 3) and the application as a slidability imparting material (patent document 4) are known as a technique which mix
  • the application as an alloy material is limited due to the high melting point of the fluorocarbon resin.
  • Patent Document 5 reports a resin composition obtained by blending a fluororesin having a melting point of 150 to 230 ° C. with a polycarbonate resin. However, there is no description on fibrous fillers, and no mention is made of the improvement in impact resistance of reinforced resin compositions.
  • Patent Document 6 reports on a thermoplastic resin composition obtained by blending a base-treated fluorine-containing elastomer with a thermoplastic resin. However, there is no mention of polycarbonate and no mention of fibrous fillers.
  • Patent Document 7 reports on a slidable polycarbonate resin composition containing, in a polycarbonate resin, a fluoropolymer having no fibril forming ability and a carbon fiber. However, there is no description on impact resistance improvement and heat resistance.
  • Patent Document 8 describes a resin composition containing a polycarbonate, a fibrous filler and a fluorine resin. It is stated that polytetrafluoroethylene having a melting point of about 330 ° C. is preferred as the fluorocarbon resin.
  • An object of the present invention is to provide a reinforced polycarbonate resin composition having good impact resistance, flame retardancy, heat resistance and heat stability while maintaining excellent strength, and a molded article made therefrom.
  • the inventors of the present invention conducted intensive studies to achieve the above object, and as a result, excellent strength, heat resistance, and flame resistance can be obtained by blending a specific fluororesin with a component consisting of a polycarbonate resin and a fibrous filler. It has been found that a reinforced polycarbonate resin composition having properties, impact resistance and heat stability can be obtained, and reaches the present invention.
  • a component consisting of (1) 50 to 95 parts by weight of (A) polycarbonate resin (component A) and 5 to 50 parts by weight of (B) fibrous filler (component B) , (C) 2 to 45 parts by weight of a fluorine resin (C-I component) or 2 to 45 parts by weight of a fluorine resin (C-II component), (I)
  • the fluorocarbon resin (C-I component) is a copolymer containing polymerized units represented by the following general formulas [1] and [2], and has a melting point of 200 ° C. to 280 ° C.
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • the fluorine resin (component C-II) is a copolymer containing polymerized units represented by the following general formulas [1] and [2], and has a melting point of 240 ° C. to 300 ° C., and TGA ( 5% weight loss temperature in thermogravimetric analysis) is 470 ° C. or higher,
  • R 1 , R 2 , R 3 and R 4 each independently represent a fluorine atom or a fluoroalkyl group having 1 to 5 carbon atoms. However, the case where R 1 , R 2 , R 3 and R 4 are all fluorine atoms is excluded.
  • a reinforced polycarbonate resin is provided, characterized in that
  • One of the more preferable embodiments of the present invention is the above-mentioned constitution in which R 1 , R 2 , R 3 and R 4 in the general formula [2] in the (2) fluorine resin (C-I component) are hydrogen atoms It is a reinforced polycarbonate resin composition as described in (1).
  • One of the more preferable embodiments of the present invention is (3) the reinforced polycarbonate resin composition according to the above-mentioned constitution (1), wherein the melting point of the fluorine resin (C-I component) is 231 ° C to 280 ° C.
  • One of the more preferable embodiments of the present invention is the reinforced polycarbonate resin composition according to the above-mentioned constitution (1), wherein the (4) component B is glass fiber, carbon fiber or a mixture thereof.
  • One of the more preferable embodiments of the present invention is (5) a molded article comprising the reinforced polycarbonate resin composition according to the above-mentioned constitution (1).
  • the reinforced polycarbonate resin composition containing the fluorocarbon resin (C-I component) of the present invention is excellent in strength, heat resistance, flame retardancy and impact resistance.
  • the reinforced polycarbonate resin composition containing the fluororesin (C-II component) of the present invention is excellent in strength, heat resistance, flame retardancy, impact resistance and thermal stability.
  • the reinforced polycarbonate resin composition of the present invention is used in various applications such as various electronic / electrical device parts, camera parts, OA equipment parts, precision machine parts, machine parts, vehicle parts, other agricultural materials, transport containers, play equipment and sundries. It is useful and its industrial effects are outstanding.
  • the polycarbonate resin to be used as the component A of the present invention is generally obtained by reacting a dihydroxy compound with a carbonate precursor by an interfacial polycondensation method or a melt transesterification method, as well as solid phase transesterification of a carbonate prepolymer. It is obtained by polymerization according to a method, or obtained through polymerization through ring-opening polymerization of a cyclic carbonate compound.
  • bisphenols include 4,4′-dihydroxybiphenyl, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, and 1,1-bis (4-hydroxyphenyl) -1 -Phenylethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxyphenyl) -3,3,3 5-trimethylcyclohexane, 2,2-bis (4-hydroxy-3,3'-biphenyl) propane, 2,2-bis (4-hydroxy-3-isopropylphenyl) propane, 2,2-bis (3-t -Butyl-4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) propane Octane, 2,2-
  • R 11 , R 12 , R 13 , R 14 , R 15 and R 16 each independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an alkenyl having 2 to 9 carbon atoms
  • R 17 and R 18 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or a carbon number of 1 to 10, each of which is a substituted or unsubstituted aryl group having 6 to 12 carbon atoms.
  • p and q each represent an integer of 1 to 4
  • e is a natural number
  • f is 0 or a natural number
  • X is an alkylene group having 2 to 8 carbon atoms.
  • aliphatic diols for example, 2,2-bis- (4-hydroxycyclohexyl) -propane, 1,14-tetradecanediol, octaethylene glycol, 1,16-hexadecanediol, 4,4'-bis (2- Hydroxyethoxy) biphenyl, bis ⁇ (2-hydroxyethoxy) phenyl ⁇ methane, 1,1-bis ⁇ (2-hydroxyethoxy) phenyl ⁇ ethane, 1,1-bis ⁇ (2-hydroxyethoxy) phenyl ⁇ -1- Phenylethane, 2,2-bis ⁇ (2-hydroxyethoxy) phenyl ⁇ propane, 2,2-bis ⁇ (2-hydroxyethoxy) -3-methylphenyl ⁇ propane, 1,1-bis ⁇ (2-hydroxyethoxy) ) Phenyl ⁇ -3,3,5-trimethylcyclohexane, 2,2-bis ⁇ 4- (2-hydro) Siethoxy) -3,3'-
  • aromatic bisphenols are preferred.
  • 2,2-bis (4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 4,4'-sulfonyldiphenol and 9,9-bis (4-hydroxy-3-) Methylphenyl) fluorene and a bisphenol compound represented by the above general formula [3] are preferable.
  • 2,2-bis (4-hydroxyphenyl) propane having excellent strength and good durability is most preferable.
  • the polycarbonate resin used as A component of this invention can be made into branched polycarbonate resin, combining a branching agent with said dihydroxy compound.
  • trifunctional or higher polyfunctional aromatic compounds used for the branched polycarbonate resin include phloroglucin, phloroglucide, or 4,6-dimethyl-2,4,6-tris (4-hydroxydiphenyl) heptene-2,2 , 4,6-Trimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) Ethane, 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane, 2,6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol, 4- ⁇ 4- [4 Examples include trisphenol such as 1,1-bis (4-hydroxyphenyl) ethyl] benzene ⁇ - ⁇ ,
  • tetra (4-hydroxyphenyl) methane, bis (2,4-dihydroxyphenyl) ketone, 1,4-bis (4,4-dihydroxytriphenylmethyl) benzene, trimellitic acid, pyromellitic acid, benzophenone tetramer Carboxylic acids and their acid chlorides and the like can be mentioned.
  • 1,1,1-tris (4-hydroxyphenyl) ethane and 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane are preferable, and in particular 1,1,1-tris (4) -Hydroxyphenyl) ethane is preferred.
  • polycarbonate resins are produced by a reaction means known per se which produces ordinary polycarbonate resins, for example, a method of reacting an aromatic dihydroxy component with a carbonate precursor such as phosgene or carbonic acid diester.
  • a reaction means known per se which produces ordinary polycarbonate resins, for example, a method of reacting an aromatic dihydroxy component with a carbonate precursor such as phosgene or carbonic acid diester.
  • a carbonate precursor such as phosgene or carbonic acid diester.
  • the reaction is usually carried out in the presence of an acid binder and a solvent.
  • an acid binder for example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an amine compound such as pyridine is used.
  • the solvent for example, halogenated hydrocarbons such as methylene chloride and chlorobenzene are used.
  • catalysts such as tertiary amines or quaternary ammonium salts can be used to accelerate the reaction.
  • the reaction temperature is usually 0 to 40 ° C., and the reaction time is several minutes to 5 hours.
  • Transesterification using a carbonic acid diester as a carbonate precursor is carried out by a method in which a predetermined proportion of an aromatic dihydroxy component is heated and stirred with a carbonic acid diester in an inert gas atmosphere to distill off the alcohol or phenol formed.
  • the reaction temperature varies depending on the boiling point of the alcohol or phenol to be produced and the like, but is usually in the range of 120 to 300 ° C.
  • the reaction is initially completed under reduced pressure to complete the reaction while distilling off the alcohol or phenol formed.
  • a catalyst that is usually used for transesterification can be used.
  • a diphenyl carbonate As a carbonic diester used for the said transesterification, a diphenyl carbonate, a dinaphthyl carbonate, a bis (diphenyl) carbonate, a dimethyl carbonate, a diethyl carbonate, a dibutyl carbonate etc. are mentioned, for example. Among these, diphenyl carbonate is particularly preferred.
  • end terminator in the polymerization reaction.
  • End terminators are used for molecular weight control, and the polycarbonate resins obtained are superior in thermal stability compared to those which are not because they are end-capped.
  • monofunctional phenols represented by the following general formulas [4] to [6] can be shown.
  • A represents a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, an alkylphenyl group (the carbon number of the alkyl portion is 1 to 9), a phenyl group, or a phenylalkyl group (the carbon number of the alkyl portion To 9), and r is an integer of 1 to 5, preferably 1 to 3.
  • Y is —R—O—, —R—CO—O— or —R—O—CO—, wherein R is a single bond or a carbon number of 1 to 10, Preferably, it represents 1 to 5 divalent aliphatic hydrocarbon groups, and n represents an integer of 10 to 50.
  • monofunctional phenols represented by the above general formula [4] include, for example, phenol, isopropylphenol, p-tert-butylphenol, p-cresol, p-cumylphenol, 2-phenylphenol, 4- Phenylphenol, isooctylphenol and the like.
  • monofunctional phenols represented by the above general formulas [5] to [6] are phenols having a long chain alkyl group or aliphatic ester group as a substituent, and using these, the terminal of polycarbonate resin Not only functions as a termination agent or a molecular weight modifier, but also improves the melt flowability of the resin, facilitates molding and processing, and has the effect of reducing the water absorption of the resin, used.
  • substituted phenols of the above general formula [5] one having n of 10 to 30, particularly 10 to 26 is preferable. Specific examples thereof include decylphenol, dodecylphenol, tetradecylphenol, hexadecylphenol, octadecylphenol, eicosylphenol, docosylphenol and triacontylphenol.
  • substituted phenols of the above general formula [6] compounds in which X is -R-CO-O- and R is a single bond are suitable, and n is 10 to 30, particularly 10 to 26. Is preferred.
  • monofunctional phenols represented by the above general formula [4] are preferable, more preferable are alkyl-substituted or phenylalkyl-substituted phenols, and particularly preferable is p-tert-butylphenol, p -Cumylphenol or 2-phenylphenol.
  • At least 5 mol%, preferably at least 10 mol%, of these monofunctional phenol end-stoppers be introduced with respect to all the ends of the obtained polycarbonate resin, and the end-stop agent may be used alone. Or two or more of them may be used in combination.
  • the polycarbonate resin used as the component A of the present invention is a polyester carbonate obtained by copolymerizing an aromatic dicarboxylic acid such as terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid or a derivative thereof, as long as the purpose of the present invention is not impaired. Good.
  • the viscosity average molecular weight of the polycarbonate resin used as component A of the present invention is preferably in the range of 12,500 to 50,000, more preferably 16,000 to 30,000, and in the range of 18,000 to 28,000. Even more preferred, the range of 19,000 to 26,000 is most preferred. If the molecular weight is more than 50,000, the melt viscosity may be too high and the moldability may be poor.
  • the viscosity average molecular weight as referred to in the present invention is determined by using an Ostwald viscometer from a solution of 0.7 g of polycarbonate resin dissolved in 100 ml of methylene chloride at 20 ° C. The specific viscosity is inserted according to the following equation to determine the viscosity average molecular weight M.
  • Component B fibrous filler
  • a fibrous filler used as B component of this invention for example, glass fiber, carbon fiber, carbon milled fiber, metal fiber, asbestos, rock wool, ceramic fiber, slag fiber, potassium titanate whisker, boron whisker, boric acid Fibrous inorganic fillers such as aluminum whiskers, calcium carbonate whiskers, titanium oxide whiskers, wollastonite, sonotolite, palygorskite (attapulgite), and sepiolite.
  • Other examples include fibrous heat-resistant organic fillers represented by heat-resistant organic fibers such as aramid fibers, polyimide fibers and polybenzthiazole fibers. Moreover, with respect to these fillers, the fibrous filler etc.
  • a metal coat glass fiber, a metal coat carbon fiber, etc. are illustrated, for example.
  • a metal coat carbon fiber, etc. are illustrated, for example.
  • plating methods for example, electrolytic plating, electroless plating, hot-dip plating, etc.
  • vacuum evaporation method, ion plating method, CVD method for example
  • PVD method sputtering method etc.
  • the fibrous filler used as the component B of the present invention preferably has a fiber diameter in the range of 0.1 to 20 ⁇ m.
  • the upper limit of the fiber diameter is more preferably 18 ⁇ m, further preferably 15 ⁇ m.
  • the lower limit of the fiber diameter is more preferably 1 ⁇ m, still more preferably 6 ⁇ m.
  • the fiber diameter herein refers to the number average fiber diameter.
  • the number average fiber diameter may be determined by dissolving the molded product in a solvent or scanning the residue collected after the resin is decomposed with the basic compound, and the ashing residue collected after ashing in a crucible. It is a value calculated from an image observed by an electron microscope.
  • the fibrous filler used as the B component of the present invention is glass fiber
  • various glass compositions represented by A glass, C glass, E glass and the like are applied as the glass composition of the glass fiber, and particularly limited I will not.
  • a glass filler may optionally contain components such as TiO 2 , SO 3 , and P 2 O 5 .
  • E glass alkali-free glass
  • Such glass fibers are preferably those surface-treated with a well-known surface treatment agent such as a silane coupling agent, a titanate coupling agent, or an aluminate coupling agent from the viewpoint of improving the mechanical strength.
  • the resin is converged with an olefin resin, a styrene resin, an acrylic resin, a polyester resin, an epoxy resin, a urethane resin or the like, and the epoxy resin and the urethane resin have mechanical strength.
  • the binding agent adhesion amount of the glass fiber subjected to the focusing treatment is preferably 0.1 to 3% by weight, more preferably 0.2 to 1% by weight in 100% by weight of the glass fiber.
  • a flat cross section glass fiber can also be used as a fibrous filler used as B component of this invention.
  • the average cross-sectional diameter of the fiber cross section is preferably 10 to 50 ⁇ m, more preferably 15 to 40 ⁇ m, still more preferably 20 to 35 ⁇ m, and the ratio of the major axis to the minor axis (major axis / minor axis) Is preferably 1.5 to 8, more preferably 2 to 6, and still more preferably 2.5 to 5.
  • the flat cross section glass fiber in which the average value of the ratio of the major axis to the minor axis is in this range, the anisotropy is greatly improved as compared with the case of using the non-circular cross section fiber of less than 1.5.
  • the flat cross-sectional shape in addition to the flat shape, non-circular cross-sectional shapes such as an oval shape, an eyebrow shape, a three-leaf shape, or the like can be mentioned.
  • the ratio of the average fiber length to the average fiber diameter (aspect ratio) of the flat cross section glass fiber is preferably 2 to 120, more preferably 2.5 to 70, and still more preferably 3 to 50. If the ratio of the fiber length to the average fiber diameter is less than 2, the mechanical strength improvement effect may be reduced. If the ratio of the fiber length to the average fiber diameter exceeds 120, the anisotropy increases and molding Product appearance may also deteriorate.
  • the average fiber diameter of the flat cross-section glass fiber refers to the number average fiber diameter when the flat cross-sectional shape is converted to a true circle of the same area.
  • the average fiber length refers to the number average fiber length in the reinforced polycarbonate resin composition of the present invention.
  • the number average fiber length is a value calculated by an image analyzer from an image obtained by optical microscope observation of a filler residue collected by high temperature ashing of a molded article, dissolution by a solvent, decomposition by a chemical, and the like. It is. Moreover, in the case of calculation of this value, it is a value by the method which does not count the thing of the length below it on the basis of a fiber diameter.
  • the content of the fibrous filler used as the component B of the present invention is 5 to 50 parts by weight, preferably 5 to 35 parts by weight, and 10 to 35 parts by weight in 100 parts by weight of the components A and B in total. Part is more preferable, and 10 to 30 parts by weight is further preferable.
  • the content of the component B is less than 5 parts by weight, the strength and the heat resistance are not sufficient, and when it exceeds 50 parts by weight, not only the impact resistance is lowered but also the heat stability and the flame retardancy are deteriorated.
  • the fluorine resin of component C is a fluorine resin (component C-I) or a fluorine resin (component C-II).
  • the melting point of the fluorine resin (C-I component) is 200 ° C. to 280 ° C., preferably 210 ° C. to 280 ° C., and more preferably 230 ° C. to 280 ° C.
  • the lower limit of the melting point is preferably 231 ° C., more preferably 240 ° C., further preferably 250 ° C.
  • the upper limit of the melting point is preferably 278 ° C., more preferably 276 ° C.
  • the fluorocarbon resin (C-I component) is a copolymer containing polymerization units represented by the following general formulas [1] and [2]. When a fluorine resin not containing this structure is used, the impact resistance is lowered.
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • the polymerized unit represented by the formula [1] is a polymerized unit derived from tetrafluoroethylene.
  • Examples of the alkyl group having 1 to 5 carbon atoms of R 1 , R 2 , R 3 and R 4 in the general formula [2] include a methyl group, an ethyl group and a propyl group.
  • polymerization unit represented by the above formula [2] ethylene, propylene, 1-butene, 1-pentene, isobutylene, 3-methyl-1-butene, 1-hexene, 3-methyl-1-pentene, 1- Examples thereof include polymerized units derived from heptene, 3-methyl-1-hexene and the like. Among them, polymerized units derived from ethylene, propylene, 1-butene and isobutylene are preferred. Polymerization units derived from ethylene and propylene are more preferable, and polymerization units derived from ethylene are most preferable. These polymerization units may be used alone or in combination of two or more.
  • the molar ratio [2] / [1] of the general formulas [2] and [1] constituting the fluorine resin (C-I component) is preferably 95/5 to 5/95, and 90/10 to 10/90. Is more preferred, 80/20 to 20/80 is even more preferred, and 70/30 to 30/70 is most preferred. Further, it is preferable that the fluorocarbon resin (C-I component) consists only of the polymerization units represented by the above general formulas [1] and [2].
  • the content of the fluorine resin (C-I component) is 2 to 45 parts by weight, preferably 2 to 30 parts by weight, and 2 to 15 parts by weight with respect to 100 parts by weight of the component consisting of the component A and the component B. More preferable. When the content of the fluorocarbon resin (C-I component) is less than 2 parts by weight, the impact resistance is lowered, and when the content is more than 45 important parts, not only the impact resistance is lowered but also the strength is lowered.
  • the melting point of the fluorine resin (C-II component) is 240 ° C. to 300 ° C., preferably 250 ° C. to 300 ° C., and more preferably 250 ° C. to 290 ° C.
  • the lower limit of the melting point is preferably 245 ° C, more preferably 247 ° C.
  • the upper limit of the melting point is preferably 296 ° C., more preferably 295 ° C.
  • the fluorine resin (component C-II) has a 5% weight loss temperature in TGA (thermogravimetric analysis) of 470 ° C. or higher, preferably 480 ° C. or higher, and more preferably 490 ° C. or higher. When the 5% weight loss temperature of the fluorine resin is lower than 470 ° C., the thermal stability is reduced.
  • the fluorocarbon resin (component C-II) is a copolymer containing polymerized units represented by the following general formulas [1] and [2]. When a fluorine resin not containing this structure is used, the heat resistance or the impact resistance is lowered.
  • R 1 , R 2 , R 3 and R 4 each independently represent a fluorine atom or a fluoroalkyl group having 1 to 5 carbon atoms. However, the case where R 1 , R 2 , R 3 and R 4 are all fluorine atoms is excluded. ]
  • the polymerized unit represented by the formula [1] is a polymerized unit derived from tetrafluoroethylene.
  • Examples of the fluoroalkyl group having 1 to 5 atoms in the polymerized unit represented by the above formula [2] include a trifluoromethyl group and a pentafluoropropyl group.
  • polymerized units derived from hexafluoropropylene, octafluoro-1-butene, decafluoro-1-pentene, octafluoroisobutylene and perfluorobutylethylene are preferable.
  • polymer units derived from hexafluoropropylene and perfluorobutylethylene are more preferable, and polymer units derived from hexafluoropropylene are more preferable.
  • These polymerization units may be used alone or in combination of two or more.
  • the mass ratio [1] / [2] of the general formulas [1] and [2] constituting the fluorine resin (component C-II) is preferably 98/2 to 50/50, and 98/2 to 60/40. Is more preferably 98/2 to 70/30, particularly preferably 95/5 to 70/30, and most preferably 95/5 to 80/20.
  • the content of the fluorine resin (C-II component) is 2 to 45 parts by weight, preferably 2 to 30 parts by weight, and 2 to 15 parts by weight with respect to 100 parts by weight of the component consisting of component A and component B. More preferable.
  • the content of the fluorine resin (C-II component) is less than 2 parts by weight, the impact resistance is lowered, and when it is more than 45 parts by weight, not only the impact resistance is lowered but also the strength is lowered.
  • the fluorocarbon resin (component C-II) consists only of the polymer units represented by the above general formulas [1] and [2].
  • the reinforced polycarbonate resin composition of the present invention can contain various known stabilizers.
  • a stabilizer a phosphorus type stabilizer, a hindered phenol type antioxidant, etc. are mentioned.
  • a phosphorus-based stabilizer be blended to an extent not promoting the hydrolyzability.
  • phosphorus stabilizers improve the thermal stability at the time of production or molding, and improve the mechanical properties, the color and the molding stability.
  • the phosphorus-based stabilizer include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid and esters thereof, and tertiary phosphines.
  • phosphite compounds for example, triphenyl phosphite, tris (nonylphenyl) phosphite, tridecyl phosphite, trioctyl phosphite, trioctadecyl phosphite, didecyl monophenyl phosphite, dioctyl monophenyl Phosphite, diisopropyl monophenyl phosphite, monobutyl diphenyl phosphite, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite, tris ( Diethylphenyl) phosphite, tris (di-iso-propylphenyl) phosphite
  • phosphite compound one having a cyclic structure by reacting with a dihydric phenol can be used.
  • 2,2'-methylenebis (4,6-di-tert-butylphenyl) (2,4-di-tert-butylphenyl) phosphite 2,2'-methylenebis (4,6-di-tert-Butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite
  • 2,2'-ethylidenebis (4-methyl-6-tert-butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite and the like.
  • tributyl phosphate trimethyl phosphate, tricresyl phosphate, triphenyl phosphate, trichlorophenyl phosphate, triethyl phosphate, diphenyl cresyl phosphate, diphenyl monooroxenyl phosphate, tributoxyethyl phosphate, dibutyl phosphate, dioctyl phosphate, Diisopropyl phosphate and the like can be mentioned.
  • Preferred is triphenyl phosphate, trimethyl phosphate.
  • tetrakis (di-tert-butylphenyl) -biphenylenediphosphonite and bis (di-tert-butylphenyl) -phenyl-phenylphosphonite are preferable.
  • tetrakis (2,4-di-tert-butylphenyl) -biphenylene diphosphonite and bis (2,4-di-tert-butylphenyl) -phenyl-phenyl phosphonite are more preferable.
  • Such a phosphonite compound can be used in combination with a phosphite compound having an aryl group in which two or more of the above-mentioned alkyl groups are substituted, which is preferable.
  • dimethyl benzenephosphonate, diethyl benzenephosphonate, and dipropyl benzenephosphonate can be mentioned.
  • tertiary phosphines triethyl phosphine, tripropyl phosphine, tributyl phosphine, trioctyl phosphine, triamyl phosphine, dimethylphenyl phosphine, dibutylphenyl phosphine, diphenylmethyl phosphine, diphenyl octyl phosphine, triphenyl phosphine, tri-p-tolyl Phosphine, trinaphthyl phosphine, diphenylbenzyl phosphine and the like are exemplified.
  • Particularly preferred tertiary phosphines are triphenyl phosphines.
  • the above-mentioned phosphorus stabilizers can be used alone or in combination of two or more.
  • an alkyl phosphate compound typified by trimethyl phosphate it is preferable that an alkyl phosphate compound typified by trimethyl phosphate be blended.
  • the combined use of such an alkyl phosphate compound and a phosphite compound and / or a phosphonite compound is also a preferred embodiment.
  • Hindered Phenol-Based Stabilizer A hindered phenol-based stabilizer can be blended in the reinforced polycarbonate resin composition of the present invention. Such a combination exhibits, for example, an effect of suppressing the hue deterioration at the time of molding processing and the hue deterioration in long-term use.
  • hindered phenol stabilizers include ⁇ -tocopherol, butylhydroxytoluene, sinapyl alcohol, vitamin E, n-octadecyl- ⁇ - (4′-hydroxy-3 ′, 5′-di-tert-butylfel) Propionate, 2-tert-butyl-6- (3'-tert-butyl-5'-methyl-2'-hydroxybenzyl) -4-methylphenyl acrylate, 2,6-di-tert-butyl-4- (N , N-Dimethylaminomethyl) phenol, 3,5-di-tert-butyl-4-hydroxybenzyl phosphonate diethyl ester, 2,2'-methylenebis (4-methyl-6-tert-butylphenol), 2,2'- Methylene bis (4-ethyl-6-tert-butylphenol), 4,4'-methylene bis (2,6- Di-tert-butylphenol), 2,2'-methylenebis (4-methyl-6-
  • the above hindered phenolic stabilizers can be used alone or in combination of two or more.
  • the compounding amount of the phosphorus-based stabilizer and the hindered phenol-based stabilizer is preferably 0.0001 to 1 part by weight, more preferably 0.001 to 0 based on 100 parts by weight of the component consisting of the component A and the component B, respectively. 0.5 parts by weight, more preferably 0.005 to 0.3 parts by weight.
  • Heat Stabilizers Other than the Above-mentioned Heat resistant polycarbonates other than the above-mentioned phosphorus stabilizers and hindered phenol stabilizers may be blended into the reinforced polycarbonate resin composition of the present invention.
  • heat stabilizers for example, lactone stabilizers represented by the reaction product of 3-hydroxy-5,7-di-tert-butyl-furan-2-one and o-xylene are preferably exemplified. Be done. The details of such stabilizers are described in JP-A-7-233160.
  • Such a compound is commercially available as Irganox HP-136 (trademark, manufactured by CIBA SPECIALTY CHEMICALS), and the compound can be used.
  • stabilizers obtained by mixing the compounds with various phosphite compounds and hindered phenol compounds are commercially available.
  • Irganox HP-2921 manufactured by the company is preferably exemplified.
  • the blending amount of the lactone stabilizer is preferably 0.0005 to 0.05 parts by weight, more preferably 0.001 to 0.03 parts by weight with respect to 100 parts by weight of the component consisting of the component A and the component B. .
  • Other stabilizers include sulfur-containing stabilizers such as pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-laurylthiopropionate), and glycerol-3-stearylthiopropionate. It is illustrated.
  • the blending amount of such a sulfur-containing stabilizer is preferably 0.001 to 0.1 parts by weight, more preferably 0.01 to 0.08 parts by weight with respect to 100 parts by weight of the component consisting of the component A and the component B. is there.
  • An epoxy compound can be blended with the reinforced polycarbonate resin composition of the present invention as required. Such an epoxy compound is blended for the purpose of suppressing mold corrosion, and basically, all epoxy functional groups can be applied.
  • Specific examples of preferred epoxy compounds include 3,4-epoxycyclohexylmethyl-3 ', 4'-epoxycyclohexylcarboxylate, 1,2-epoxy-4--2, 4-bis (hydroxymethyl) -1-butanol (2-Oxiranyl) cyclotexane adduct, copolymer of methyl methacrylate and glycidyl methacrylate, copolymer of styrene and glycidyl methacrylate, and the like.
  • the addition amount of such an epoxy compound is preferably 0.003 to 0.2 parts by weight, more preferably 0.004 to 0.15 parts by weight with respect to 100 parts by weight of the component consisting of the component A and the component B. More preferably, it is 0.005 to 0.1 parts by weight.
  • a flame retardant can be blended in the reinforced polycarbonate resin composition of the present invention.
  • the compounding of such compounds brings about the improvement of the flame retardance, other than that, based on the properties of each compound, for example, the improvement of the antistatic property, the flowability, the rigidity and the thermal stability etc. are brought about.
  • Such flame retardants include (i) organic metal salt based flame retardants (eg, organic sulfonic acid alkali (earth) metal salts, organic borate metal salt based flame retardants, organic stannate metal salt based flame retardants, etc.), ii) Silicone-based flame retardants comprising organophosphorus flame retardants (eg, organic group-containing monophosphate compounds, phosphate oligomer compounds, phosphonate oligomer compounds, phosphonitrile oligomer compounds, phosphonic acid amide compounds, etc.), (iii) silicone compounds , (Iv) fibrillated PTFE.
  • organic metal salt flame retardants and organic phosphorus flame retardants are preferable. These may be used alone or in combination.
  • the organic metal salt compound is an alkali (earth) metal salt of an organic acid having 1 to 50, preferably 1 to 40 carbon atoms, preferably an alkali (earth) metal of an organic sulfonate. It is preferably a salt.
  • the organic sulfonic acid alkali (earth) metal salt includes a fluorine-substituted alkyl sulfone such as a metal salt of a perfluoroalkyl sulfonic acid having 1 to 10, preferably 2 to 8 carbon atoms and an alkali metal or alkaline earth metal. Included are metal salts of acids.
  • metal salts of an aromatic sulfonic acid having 7 to 50, preferably 7 to 40 carbon atoms and an alkali metal or an alkaline earth metal examples include lithium, sodium, potassium, rubidium and cesium.
  • Alkaline earth metals include beryllium, magnesium, calcium, strontium and barium. More preferably, it is an alkali metal.
  • rubidium and cesium having larger ion radii are preferable when transparency is required at a higher level, while they are not versatile and difficult to purify, resulting in cost. It may be disadvantageous.
  • metals of smaller ionic radius such as lithium and sodium may be disadvantageous in terms of flame retardancy.
  • the alkali metal in the sulfonic acid alkali metal salt.
  • the sulfonic acid potassium salt which is excellent in the balance of properties in any point is most preferable. It is also possible to use such a potassium salt in combination with a sulfonic acid alkali metal salt comprising another alkali metal.
  • perfluoroalkyl sulfonic acid alkali metal salt examples include potassium trifluoromethane sulfonate, potassium perfluorobutane sulfonate, potassium perfluorohexane sulfonate, potassium perfluorooctane sulfonate, sodium pentafluoroethane sulfonate, and perfluoro Sodium butane sulfonate, sodium perfluorooctane sulfonate, lithium trifluoromethane sulfonate, lithium perfluorobutane sulfonate, lithium perfluoroheptane sulfonate, cesium trifluoromethane sulfonate, cesium perfluorobutane sulfonate, perfluorooctane sulfonate Cesium, cesium cesium perfluorohexane sulfonate, rubidium perfluor
  • potassium perfluorobutane sulfonate is particularly preferable.
  • the perfluoroalkylsulfonic acid alkali (earth) in the metal salt consisting of alkali metal, usually, not least fluoride ions (F -) is mixed. Since the presence of such fluoride ions can be a factor to reduce the flame retardancy, it is preferably reduced as much as possible.
  • the proportion of such fluoride ions can be measured by ion chromatography.
  • the content of the fluoride ion is preferably 100 ppm or less, more preferably 40 ppm or less, and particularly preferably 10 ppm or less. In addition, it is preferable that the production efficiency be 0.2 ppm or more.
  • Such a metal ion of perfluoroalkylsulfonic acid with a reduced amount of fluoride ion can be produced by known production methods. At that time, a method of reducing the amount of fluoride ions contained in the raw material at the time of producing a fluorine organic metal salt, a method of removing hydrogen fluoride and the like obtained by the reaction by the gas generated during the reaction and heating The fluorine-containing organic metal salt can be produced by a purification method such as recrystallization and reprecipitation for production to reduce the amount of fluoride ion.
  • the organic metal salt flame retardant is relatively soluble in water
  • ion exchange water particularly water having an electric resistance value of 18 M ⁇ ⁇ cm or more, ie, an electric conductivity of about 0.55 ⁇ S / cm or less, is used.
  • aromatic sulfonic acid alkali (earth) metal salt examples include, for example, disodium diphenyl sulfide-4,4'-disulfonate, dipotassium diphenyl sulfide-4,4'-disulfonate, potassium 5-sulfoisophthalate Sodium 5-sulfoisophthalate, polysodium polyethylene terephthalate polysulfonate, calcium 1-methoxynaphthalene-4-sulfonate, disodium 4-dodecylphenyl ether disulfonate, poly (2,6-dimethylphenylene oxide) polysulfonate poly Sodium, poly (1,3-phenylene oxide) polysulfonic acid polysodium, poly (1,4-phenylene oxide) polysulfonic acid polysodium, poly (2,6-diphenylphenylene oxide) polysulfonic acid poly Lithium, poly (2-fluoro-6-butylphen
  • aromatic sulfonic acid alkali (earth) metal salts potassium salts are particularly preferred.
  • aromatic sulfonic acid alkali (earth) metal salts potassium diphenyl sulfone-3-sulfonate and dipotassium diphenyl sulfone-3,3'-disulfonate are preferred. Particularly preferred is a mixture of these (the weight ratio of the former to the latter is 15/85 to 30/70).
  • an alkali (earth) metal salt of a sulfuric ester and an alkali (earth) metal salt of an aromatic sulfonamide are preferably exemplified.
  • alkali (earth) metal salts of sulfuric acid esters mention may in particular be made of alkali (earth) metal salts of sulfuric acid esters of monohydric and / or polyhydric alcohols.
  • sulfuric acid esters of such monohydric and / or polyhydric alcohols include methyl sulfuric acid ester, ethyl sulfuric acid ester, lauryl sulfuric acid ester, hexadecyl sulfuric acid ester, sulfuric acid ester of polyoxyethylene alkylphenyl ether, and mono, di and tri of pentaerythritol. And tetrasulfate, sulfate of lauryl monoglyceride, sulfate of monoglyceride palmitate, sulfate of monoglyceride stearate and the like can be mentioned.
  • alkali (earth) metal salts of these sulfates include alkali (earth) metal salts of lauryl sulfate.
  • alkali (earth) metal salts of aromatic sulfonamides include saccharin, N- (p-tolylsulfonyl) -p-toluenesulfoimide, N- (N'-benzylaminocarbonyl) sulfanylimide, and N- ( And alkali (earth) metal salts of (phenylcarboxyl) sulfanylimide and the like.
  • the content of the organic metal salt flame retardant is preferably 0.001 to 1 part by weight, more preferably 0.005 to 0.5 parts by weight, and further preferably 100 parts by weight of the component consisting of the component A and the component B.
  • the amount is preferably 0.01 to 0.3 parts by weight, particularly preferably 0.03 to 0.15 parts by weight.
  • Organophosphorus Flame Retardant As the organophosphorus flame retardant, aryl phosphate compounds and phosphazene compounds are suitably used. These organophosphorus flame retardants are advantageous in that they can improve moldability because they have a plasticizing effect.
  • aryl phosphate compound various phosphate compounds conventionally known as flame retardants can be used, and more preferably, one or two or more phosphate compounds represented by the following general formula [7] can be mentioned particularly.
  • M in the above formula represents a divalent organic group derived from dihydric phenol
  • Ar 1 , Ar 2 , Ar 3 and Ar 4 each represent a monovalent organic group derived from monohydric phenol A, b, c and d are each independently 0 or 1
  • m is an integer of 0 to 5
  • m is an average value thereof
  • the phosphate compounds of the above formula may be a mixture of compounds having different m numbers, in the case of such mixtures the average m number is preferably 0.5 to 1.5, more preferably 0.8 to 1. 2, more preferably in the range of 0.95 to 1.15, particularly preferably in the range of 1 to 1.14.
  • M-derived dihydric phenol examples include hydroquinone, resorcinol, bis (4-hydroxydiphenyl) methane, bisphenol A, dihydroxydiphenyl, dihydroxynaphthalene, bis (4-hydroxyphenyl) sulfone, bis (4) And -hydroxyphenyl) ketone and bis (4-hydroxyphenyl) sulfide are exemplified, and resorcinol, bisphenol A and dihydroxydiphenyl are particularly preferable.
  • Ar 1 , Ar 2 , Ar 3 and Ar 4 -derived monohydric phenols include phenol, cresol, xylenol, isopropylphenol, butylphenol and p-cumylphenol. Particularly preferred are phenol and 2,6-dimethylphenol. Such monohydric phenol may be substituted by a halogen atom.
  • Specific examples of the phosphate compound having a group derived from monohydric phenol include tris (2,4,6-tribromophenyl) phosphate and tris (2,4-dibromophenyl) phosphate, tris (4-bromophenyl) phosphate And the like.
  • phosphate compounds not substituted with a halogen atom include monophosphate compounds such as triphenyl phosphate and tri (2,6-xylyl) phosphate, and resorcinol bis (2,6-xylyl) phosphate).
  • monophosphate compounds such as triphenyl phosphate and tri (2,6-xylyl) phosphate, and resorcinol bis (2,6-xylyl) phosphate).
  • phosphazene compounds various phosphazene compounds conventionally known as flame retardants can be used, but phosphazene compounds represented by the following general formulas [8] and [9] are preferable.
  • X 1 , X 2 , X 3 and X 4 each represent hydrogen, a hydroxyl group, an amino group or an organic group not containing a halogen atom.
  • R represents an integer of 3 to 10.
  • the formula [8], in [9], examples of the organic group containing no halogen atom represented by X 1, X 2, X 3 , X 4, for example, an alkoxy group, a phenyl group, an amino group, an allyl group Can be mentioned.
  • cyclic phosphazene compounds represented by the above formula [8] are preferable, and cyclic phenoxy phosphazene in which X 1 and X 2 in the above formula [8] are phenoxy groups is particularly preferable.
  • the content of the organophosphorus flame retardant is preferably 1 to 50 parts by weight, more preferably 2 to 30 parts by weight, with respect to 100 parts by weight of the component consisting of the component A and the component B, and more preferably 5 to 20 Parts by weight are more preferred. If the compounding amount of the organophosphorus flame retardant is less than 1 part by weight, the flame retarding effect can not be obtained, and if it exceeds 50 parts by weight, strand breakage or surging may occur during kneading and extrusion, resulting in a decrease in productivity. May occur.
  • the silicone compound used as a silicone flame retardant improves flame retardancy by a chemical reaction during combustion.
  • various compounds conventionally proposed as flame retardants for aromatic polycarbonate resins can be used.
  • the silicone compounds are particularly difficult when using polycarbonate resins, in particular by using polycarbonate resins, by forming a structure by bonding to itself or by combining with components derived from the resin upon combustion, or by a reduction reaction at the time of forming the structure. It is believed to impart a burning effect.
  • a highly active group in such reaction it is preferable to contain a highly active group in such reaction, and more specifically, to contain a predetermined amount of at least one group selected from an alkoxy group and hydrogen (that is, a Si-H group).
  • the content ratio of such groups is preferably in the range of 0.1 to 1.2 mol / 100 g, more preferably in the range of 0.12 to 1 mol / 100 g, and more preferably 0.15 to 0. The range of 6 mol / 100 g is more preferable.
  • Such a ratio can be determined by the alkali decomposition method by measuring the amount of hydrogen or alcohol generated per unit weight of the silicone compound.
  • the alkoxy group is preferably an alkoxy group having 1 to 4 carbon atoms, particularly preferably a methoxy group.
  • T unit (CH 3 ) SiO 3/2 , (C 3 H 7 ) SiO 3/2 , HSiO 3/2 , (CH 2 CHCH) SiO 3/2 , (C 6 H 5 ) trifunctional siloxane units such as SiO 3/2, Q unit: indicated by SiO 2 That is a tetrafunctional siloxane unit.
  • the structure of the silicone compound used for the silicone-based flame retardant include Dn, Tp, MmDn, MmTp, MmQq, MmDnTp, MmDnQq, MmTpQq, MmDnTpQq, DnTp, DnQq, and DnTpQq as the explicit formulas.
  • the preferred structures of the silicone compounds are MmDn, MmTp, MmDnTp and MmDnQq, and more preferred structures are MmDn or MmDnTp.
  • the coefficients m, n, p and q in the above-mentioned symbolic formula are integers of 1 or more representing the degree of polymerization of each siloxane unit, and the sum of the coefficients in the respective symbolic formulas is the average degree of polymerization of the silicone compound.
  • the average degree of polymerization is preferably in the range of 3 to 150, more preferably in the range of 3 to 80, still more preferably in the range of 3 to 60, and particularly preferably in the range of 4 to 40.
  • the more preferable range is, the more excellent in the flame retardancy.
  • a silicone compound containing a predetermined amount of an aromatic group it is excellent in transparency and hue. As a result, good reflected light is obtained.
  • the siloxane unit with the coefficient can be two or more types of siloxane units having different hydrogen atoms to be bonded or organic residues. .
  • the silicone compound may be linear or branched.
  • the organic residue bonded to a silicon atom is preferably an organic residue having preferably 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms.
  • an alkyl group such as methyl group, ethyl group, propyl group, butyl group, hexyl group and decyl group, a cycloalkyl group such as cyclohexyl group, an aryl group such as phenyl group, And aralkyl groups such as tolyl group. More preferably, it is an alkyl group having 1 to 8 carbon atoms, an alkenyl group or an aryl group.
  • the alkyl group is particularly preferably an alkyl group having 1 to 4 carbon atoms such as methyl group, ethyl group and propyl group.
  • the silicone compound used as a silicone type flame retardant contains an aryl group.
  • silane compounds and siloxane compounds as organic surface treatment agents for titanium dioxide pigments are clearly distinguished from silicone flame retardants in their preferred embodiments in that the preferred effect is obtained if they do not contain an aryl group.
  • Ru The silicone compound used as the silicone flame retardant may contain a reactive group in addition to the Si-H group and the alkoxy group. Examples of such reactive groups include amino group, carboxyl group, epoxy group, vinyl group, mercapto group and methacryloxy group.
  • the content of the silicone flame retardant is preferably 0.01 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, and still more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the component consisting of component A and component B. 5 parts by weight.
  • a fibril-forming polytetrafluoroethylene (fibrillated PTFE)
  • the fibrillated PTFE may be fibrillated PTFE alone or a mixed form of fibrillated PTFE, ie, a polytetrafluoroethylene-based mixture composed of fibrillated PTFE particles and an organic polymer.
  • the fibrillated PTFE has an extremely high molecular weight, and exhibits a tendency to bond the PTFEs to become fibrous by an external action such as shear force.
  • the number average molecular weight is in the range of 1.5 million to several tens of millions. The lower limit is more preferably 3,000,000.
  • the number average molecular weight is calculated based on the melt viscosity of polytetrafluoroethylene at 380 ° C., as disclosed in, for example, JP-A-6-145520. That is, the fibrillated PTFE has a melt viscosity at 380 ° C. in the range of 10 7 to 10 13 poise, preferably 10 8 to 10 12 poise, as measured by the method described in the publication. Such PTFE may be used in the form of an aqueous dispersion in addition to the solid form. Such fibrillated PTFE can also be used in the form of a mixture of PTFE with other resins in order to improve the dispersibility in the resin and to obtain good flame retardancy and mechanical properties. Further, as disclosed in JP-A-6-145520, one having a structure in which such fibrillated PTFE is used as a core and low molecular weight polytetrafluoroethylene is used as a shell is also preferably used.
  • Teflon (registered trademark) 6J of Mitsui-Dupont Fluorochemicals Co., Ltd., Polyflon MPA FA 500, F-201L of Daikin Chemical Industry Co., Ltd., and the like can be mentioned.
  • metabrene represented by “Metabrene A3000” (trade name) “Metabrene A3700” (trade name) of Mitsubishi Rayon Co., Ltd. and “Metabrene A3800” (trade name) Examples include A series, SN3300B7 (trade name) of Shine Polymer, and "BLENDEX B 449” (trade name) manufactured by GE Specialty Chemicals.
  • the proportion of fibrillated PTFE in the mixed form is preferably 1% by weight to 95% by weight, more preferably 10% by weight to 90% by weight, in 100% by weight of the mixture. % By weight to 80% by weight is most preferred.
  • the content of fibrillated PTFE is preferably 0.001 to 0.5 parts by weight, and more preferably 0.01 to 0.5 parts by weight with respect to 100 parts by weight of the component consisting of the component A and the component B. 0.1 to 0.5 parts by weight is more preferable.
  • the reinforced polycarbonate resin composition of the present invention can provide a molded article which further contains various dyes and pigments and expresses various design properties.
  • Dyes and pigments used in the present invention include perylene dyes, coumarin dyes, thioindigo dyes, anthraquinone dyes, thioxanthone dyes, ferrocyanides such as bitumen, perinone dyes, quinoline dyes, quinacridone dyes, Dioxazine dyes, isoindolinone dyes, phthalocyanine dyes and the like can be mentioned.
  • the polycarbonate resin composition of this invention can also mix
  • the fluorescent brightening agent is not particularly limited as long as it can be used to improve the color tone of a resin or the like to white or bluish white.
  • the fluorescent brightening agent may be mentioned compounds, benzimidazoles, benzoxazoles, naphthalimides, rhodamines, coumarins, oxazines and the like.
  • CI Fluorescent Brightener 219 1, Eastman Chemical Co., Ltd. EASTOBRITE OB-1, Showa Chemical Co., Ltd. "Hackol PSR", etc. can be mentioned.
  • the fluorescent whitening agent has the function of absorbing the energy of the ultraviolet portion of light and emitting the energy to the visible portion.
  • the content of the fluorescent whitening agent is preferably 0.001 to 0.1 parts by weight, more preferably 0.001 to 0.05 parts by weight with respect to 100 parts by weight of the component consisting of the component A and the component B. . Even if it exceeds 0.1 parts by weight, the effect of improving the color tone of the composition is small.
  • the reinforced polycarbonate resin composition of the present invention can contain a compound having heat ray absorbing ability.
  • a compound having heat ray absorbing ability include phthalocyanine-based near-infrared absorbers, ATO, ITO, iridium oxide and ruthenium oxide, metal oxide-based near-infrared absorbers such as immonium oxide and titanium oxide, lanthanum boride, cerium boride and tungsten boride, etc.
  • group near-infrared absorber, and a carbon filler are illustrated suitably.
  • a phthalocyanine-based near infrared absorber for example, MIR-362 manufactured by Mitsui Chemicals, Inc. is commercially available and easily available.
  • the carbon filler include carbon black, graphite (including both natural and artificial) and fullerene. Preferred are carbon black and graphite. These can be used alone or in combination of two or more.
  • the content of the phthalocyanine-based near infrared absorber is preferably 0.0005 to 0.2 parts by weight, and more preferably 0.0008 to 0.1 parts by weight with respect to 100 parts by weight of the component consisting of the component A and the component B. 0.001 to 0.07 parts by weight is more preferable.
  • the content of the metal oxide near infrared absorber, the metal boride near infrared absorber and the carbon filler is preferably in the range of 0.1 to 200 ppm (weight ratio) in the polycarbonate resin composition of the present invention.
  • the range of 5 to 100 ppm is more preferable.
  • a light diffusing agent can be blended into the reinforced polycarbonate resin composition of the present invention to impart a light diffusing effect.
  • light diffusing agents include polymer particles, inorganic particles having a low refractive index such as calcium carbonate, and composites of these.
  • Such polymer particles are particles already known as a light diffusing agent for polycarbonate resin. More preferably, acrylic crosslinked particles having a particle diameter of several ⁇ m and silicone crosslinked particles represented by polyorganosilsesquioxane are exemplified.
  • the shape of the light diffusing agent include a sphere, a disc, a pillar, and an amorphous.
  • Such spheres need not be perfect spheres, but include those that are deformed, and such pillars include cubes.
  • the preferred light diffusing agent is spherical, and its particle size is preferably as uniform as possible.
  • the content of the light diffusing agent is preferably 0.005 to 20 parts by weight, more preferably 0.01 to 10 parts by weight, still more preferably 0.01 based on 100 parts by weight of the component consisting of the component A and the component B. It is up to 3 parts by weight.
  • 2 or more types of light diffusing agents can be used together.
  • the reinforced polycarbonate resin composition of the present invention can be blended with a white pigment for high light reflection to give a light reflection effect.
  • a white pigment titanium dioxide (especially titanium dioxide treated with an organic surface treatment agent such as silicone) pigment is particularly preferred.
  • the content of the white pigment for high light reflection is preferably 3 to 30 parts by weight, and more preferably 8 to 25 parts by weight with respect to 100 parts by weight of the component consisting of the component A and the component B.
  • two or more kinds of white pigments for high light reflection can be used in combination.
  • the reinforced polycarbonate resin composition of the present invention can be blended with an ultraviolet absorber to impart weather resistance.
  • ultraviolet absorbers specifically, for example, benzophenone based on benzophenone, for example, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-benzyl Roxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, 2,2'-dihydroxy- 4,4'-Dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5-sodiumsulfoxybenzophenone, bis (5-benzoyl-4-hydroxy-2-methoxyphenyl) methane, 2-hydroxy -4-n-dodecyloxy bensophen
  • the ultraviolet absorber include, for example, 2- (2-hydroxy-5-methylphenyl) benzotriazole and 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole as benzotriazole-based compounds.
  • a copolymer of 2- (2'-hydroxy-5-methacryloxyethylphenyl) -2H-benzotriazole and a vinyl monomer copolymerizable with the monomer 2- (2'-hydroxy-5-)
  • Examples thereof include polymers having a 2-hydroxyphenyl-2H-benzotriazole skeleton such as a copolymer of acryloxyethylphenyl) -2H-benzotriazole and a vinyl monomer copolymerizable with the monomer.
  • the UV absorber is specifically a hydroxyphenyl triazine type, for example, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-hexyloxyphenol, 2- (4, 6-Diphenyl-1,3,5-triazin-2-yl) -5-methyloxyphenol, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-ethyloxyphenol , 2- (4,6-Diphenyl-1,3,5-triazin-2-yl) -5-propyloxyphenol, and 2- (4,6-diphenyl-1,3,5-triazin-2-yl) And the like.
  • 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-hexyloxyphenol 2- (4, 6-Diphenyl-1,3,5-triazin-2-yl) -5-methyloxyphenol
  • the phenyl group of the above exemplified compounds such as 2- (4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl) -5-hexyloxyphenol is 2,4-dimethyl
  • the UV absorber is specifically a cyclic imino ester type, for example, 2,2'-p-phenylenebis (3,1-benzoxazin-4-one), 2,2'-m-phenylenebis (3,1) And -benzoxazin-4-one), and 2,2'-p, p'-diphenylene bis (3,1-benzoxazin-4-one) and the like.
  • UV absorbers include cyanoacrylates such as 1,3-bis-[(2′-cyano-3 ′, 3′-diphenylacryloyl) oxy] -2,2-bis [(2- Examples thereof include cyano-3,3-diphenylacryloyl) oxy] methyl) propane and 1,3-bis-[(2-cyano-3,3-diphenylacryloyl) oxy] benzene.
  • the above-mentioned ultraviolet absorber takes such a structure as a monomer compound capable of radical polymerization, and thus the amount of such an ultraviolet-absorbing monomer and / or a light-stable monomer and a single amount of alkyl (meth) acrylate etc.
  • UV absorber It may be a polymer type UV absorber copolymerized with the body.
  • the UV absorbing monomer compounds having a benzotriazole skeleton, a benzophenone skeleton, a triazine skeleton, a cyclic imino ester skeleton, and a cyanoacrylate skeleton in an ester substituent of (meth) acrylic acid ester are suitably exemplified.
  • Ru Among the above, benzotriazole-based and hydroxyphenyltriazine-based ones are preferable in view of ultraviolet light absorbing ability, and cyclic imino ester-based ones and cyanoacrylate-based ones are preferable in view of heat resistance and hue.
  • Chemi-Pur Chemical Co., Ltd. “Chemisorb 79”, BASF Japan Ltd. “Tinuvin 234” and the like can be mentioned.
  • the UV absorbers may be used alone or in combination of two or more.
  • the content of the ultraviolet absorber is preferably 0.01 to 3 parts by weight, more preferably 0.01 to 1 parts by weight, still more preferably 0.05 with respect to 100 parts by weight of the component consisting of the component A and the component B. It is preferably 1 to 1 part by weight, particularly preferably 0.05 to 0.5 parts by weight.
  • the reinforced polycarbonate resin composition of the present invention may be required to have antistatic performance, and in such a case, it is preferable to include an antistatic agent.
  • antistatic agents include, for example, (1) arylsulfonic acid phosphonium salts represented by dodecylbenzenesulfonic acid phosphonium salts, organic sulfonic acid phosphonium salts such as alkylsulfonic acid phosphonium salts, and phosphonium tetrafluoroborate salts And boric acid phosphonium salts.
  • the content of the phosphonium salt is suitably 5 parts by weight or less, preferably 0.05 to 5 parts by weight, more preferably 1 to 3.5 parts by weight per 100 parts by weight of the component A and the component B. Parts, more preferably in the range of 1.5 to 3 parts by weight.
  • organic sulfonic acid alkali (earth) metal salts such as barium may be mentioned.
  • metal salts are also used as flame retardants as described above. More specifically, examples of such metal salts include metal salts of dodecylbenzenesulfonic acid and metal salts of perfluoroalkanesulfonic acid.
  • the content of the organic sulfonic acid alkali (earth) metal salt is suitably 0.5 parts by weight or less, preferably 0.001 to 0.3, with respect to 100 parts by weight of the component consisting of the component A and the component B. Parts by weight, more preferably 0.005 to 0.2 parts by weight.
  • alkali metal salts such as potassium, cesium and rubidium are preferred.
  • the antistatic agent examples include (3) ammonium ammonium sulfonates and organic sulfonic acid ammonium salts such as ammonium arylsulfonic acid salts.
  • the amount of the ammonium salt is suitably 0.05 parts by weight or less based on 100 parts by weight of the component consisting of the component A and the component B.
  • the antistatic agent include polymers containing a poly (oxyalkylene) glycol component such as (4) polyether ester amide as its component. The amount of the polymer is 5 parts by weight or less based on 100 parts by weight of the component A and the component B.
  • (X) Filler In the reinforced polycarbonate resin composition of the present invention, various fillers known as reinforcing fillers other than fibrous fillers can be blended. As such a filler, various plate-like fillers and particulate fillers can be used.
  • the plate-like filler is a filler having a plate-like shape (including those having irregularities on the surface and those having a curved plate).
  • the particulate filler is a filler of other shapes including irregular shapes. Examples of the plate-like filler include glass flakes, talc, mica, kaolin, metal flakes, carbon flakes, and graphite, and plate-like fillers obtained by surface-coating such fillers with different materials such as metals and metal oxides. Materials are preferably exemplified.
  • the particle size is preferably in the range of 0.1 to 300 ⁇ m.
  • This particle size refers to the median diameter (D50) of the particle size distribution measured by X-ray transmission method, one of the liquid phase sedimentation methods, in the region up to about 10 ⁇ m, and the laser diffraction in the region of 10 to 50 ⁇ m
  • the value according to the median diameter (D50) of the particle size distribution measured by the scattering method which is a value by vibration sieving in the region of 50 to 300 ⁇ m.
  • the particle size is the particle size in the resin composition.
  • the plate-like filler may be surface-treated with various silane based, titanate based, aluminate based, and zirconate based coupling agents, and also olefin based resins, styrene based resins, acrylic based resins, polyester based resins It may be a granulated material which is subjected to a convergence treatment or compression treatment with various resins such as an epoxy resin and a urethane resin or a higher fatty acid ester.
  • polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyamide resins, polyimide resins, polyetherimide resins, polyurethane resins, silicone resins, polyphenylene ether resins, polyphenylene sulfide resins, polysulfone resins, polymethacrylates
  • Resins such as resin, a phenol resin, an epoxy resin, are mentioned.
  • elastomer for example, isobutylene / isoprene rubber, styrene / butadiene rubber, ethylene / propylene rubber, acrylic elastomer, polyester elastomer, polyamide elastomer, core shell type elastomer MBS (methyl methacrylate / styrene / butadiene) Rubber, MB (methyl methacrylate / butadiene) rubber, MAS (methyl methacrylate / acrylonitrile / styrene) rubber and the like can be mentioned.
  • isobutylene / isoprene rubber for example, isobutylene / isoprene rubber, styrene / butadiene rubber, ethylene / propylene rubber, acrylic elastomer, polyester elastomer, polyamide elastomer, core shell type elastomer MBS (methyl methacrylate / styrene / buta
  • the reinforced polycarbonate resin composition of the present invention may contain other flow modifiers, antibacterial agents, dispersants such as liquid paraffin, photocatalytic antifouling agents, photochromic agents, etc. .
  • the reinforced polycarbonate resin composition of the present invention can be pelletized by melt-kneading using an extruder such as a single-screw extruder or a twin-screw extruder.
  • the above-described various reinforcing fillers and additives can also be blended to produce such pellets.
  • the reinforced polycarbonate resin composition of the present invention can usually produce various products by injection molding of the pellets produced as described above. Furthermore, it is also possible to make the resin melt-kneaded by an extruder directly into a sheet, a film, a profiled extrusion molded article, a direct blow molded article, and an injection molded article without passing through pellets.
  • injection molding injection compression molding, injection press molding, gas assist injection molding, foam molding (including injection of a supercritical fluid), insert molding, as well as ordinary molding methods according to the purpose as appropriate.
  • Molded articles can be obtained using injection molding methods such as in-mold coating molding, insulation mold molding, rapid heating and cooling mold molding, two-color molding, sandwich molding, and ultra high speed injection molding.
  • injection molding methods such as in-mold coating molding, insulation mold molding, rapid heating and cooling mold molding, two-color molding, sandwich molding, and ultra high speed injection molding.
  • cold runner method or hot runner method can be selected.
  • the resin composition of the present invention can also be used in the form of various profile extrusions, sheets, films and the like by extrusion molding.
  • an inflation method, a calendar method, a casting method and the like can be used to form a sheet and a film.
  • It is also possible to form a heat-shrinkable tube by subjecting it to a specific drawing operation.
  • a molded product made of the reinforced polycarbonate resin composition of the present invention can usually be obtained by injection molding such pellets to obtain a molded product.
  • injection molding it is also possible to manufacture by a hot runner which enables runnerless as well as a usual cold runner type molding method.
  • gas assisted injection molding injection compression molding, super high speed injection molding, injection press molding, two-color molding, sandwich molding, in-mold coating molding, insert molding, foam molding (super For example, rapid heating / cooling molding, insulation molding and in-mold remelt molding, and molding methods comprising a combination thereof can be used.
  • Charpy notched impact strength of the molded article of the present invention is preferably 10 kJ / m 2 or more, more preferably 13 kJ / m 2 or more, more preferably 15 kJ / m 2 or more.
  • the notched Charpy impact strength is measured in accordance with ISO 179 (measurement condition 23 ° C.) of a test piece (dimension: length 80 mm ⁇ width 10 mm ⁇ thickness 4 mm).
  • the deflection temperature under load of the molded article of the present invention is preferably 140 ° C. or more, more preferably 144 ° C. or more, still more preferably 145 ° C. or more.
  • the deflection temperature under load is measured for a test piece (dimension: length 80 mm ⁇ width 10 mm ⁇ thickness 4 mm) according to ISO 75-1, 2 under a load of 1.80 MPa.
  • the flexural modulus of the molded article of the present invention is preferably 3500 MPa or more, more preferably 3700 MPa or more, and still more preferably 3800 MPa or more.
  • the flexural modulus is measured on a test piece (dimension: length 80 mm ⁇ width 10 mm ⁇ thickness 4 mm) in accordance with ISO 178.
  • the molded article of the present invention preferably exhibits a flame retardancy of V-0 or V-1 with a thickness of 3.0 mm and a UL 94 rank.
  • Heat resistance The deflection temperature under load (load 1.80 MPa) was measured in accordance with ISO 75-1 and 2 according to ISO 75-1, 2 based on the test piece (dimension: length 80 mm ⁇ width 10 mm ⁇ thickness 4 mm) molded under the same conditions as 2-1.
  • the deflection temperature under load is preferably higher than 140 ° C. 2-3.
  • Strength The flexural modulus of the test piece (dimension: length 80 mm ⁇ width 10 mm ⁇ thickness 4 mm) molded under the same conditions as the condition 2-1 was measured according to ISO 178.
  • the flexural modulus is preferably higher than 3,500 MPa. 2-4.
  • Thermal stability (look after staying) Pellets obtained from each composition of the example were dried at 120 ° C. for 5 hours, and then cylinder temperature 300 ° C., mold temperature 80 using an injection molding machine (SG-150 U manufactured by Sumitomo Heavy Industries, Ltd.) A square plate (dimension: length 150 mm ⁇ width 150 mm ⁇ thickness 2 mm) was formed at ° C. Thereafter, the injection cylinder was retracted to allow the molten resin to stay in the cylinder for 10 minutes in a state where the measurement was completed, and then molding was performed under the same conditions. The thermal stability was evaluated by visually observing the appearance of the molded article of 3 shots after staying, and based on the following criteria. :: something that can not see silver ⁇ : something that can see silver 2-5.
  • the UL 94 rank was evaluated at a thickness of 3.0 mm according to the method (UL 94) defined by Underwriters Laboratories Inc. of the United States.
  • the test piece was molded at a cylinder temperature of 280 ° C. and a mold temperature of 80 ° C. by an injection molding machine (SG-150U manufactured by Sumitomo Heavy Industries, Ltd.).
  • SG-150U manufactured by Sumitomo Heavy Industries, Ltd.
  • Examples 1 to 34 and Comparative Examples 1 to 15 Components A to C and various additives were mixed in respective blend amounts described in Tables 1 to 4 in a blender, and then melt-kneaded using a vented twin-screw extruder to obtain pellets.
  • the various additives to be used were preliminarily mixed with a polycarbonate resin in advance with a concentration of 10 to 100 times the amount of each compound as a standard, and then the whole mixture was mixed with a blender.
  • the extrusion conditions are: discharge amount 20 kg / h, screw rotation speed 150 rpm, vent vacuum 3 kPa, and extrusion temperature 270 ° C. from the first supply port to the second supply port, 280 ° C. from the second supply port to the die part did.
  • the evaluation results of the obtained pellets are shown in Tables 1 to 4.
  • a component Polycarbonate resin powder having a viscosity average molecular weight of 22,400 obtained by the following production method [Production method] Charge 2340 parts of ion-exchanged water, 947 parts of 25% aqueous solution of sodium hydroxide and 0.7 parts of hydrosulfite into a reactor equipped with a thermometer, a stirrer and a reflux condenser, and stir for 2,2-bis (4-hydroxy under agitation) Dissolve 710 parts of phenyl) propane (hereinafter sometimes referred to as "bisphenol A”) (bisphenol A solution), add 2299 parts of methylene chloride and 112 parts of 48.5% aqueous sodium hydroxide solution, and then add 15 to 25 ° C.
  • Bisphenol A Bisphenol A
  • the phosgenation reaction was carried out by bubbling 354 parts of phosgene over about 90 minutes. After completion of phosgenation, 125 parts of a 11% concentration p-tert-butylphenol solution in methylene chloride and 88 parts of a 48.5% aqueous solution of sodium hydroxide are added, the stirring is stopped, and after standing for 10 minutes, the mixture is stirred and separated. After 5 minutes of emulsification, the mixture was treated with a homomixer (Tokushu Kika Kogyo Co., Ltd.) at a number of revolutions of 1200 rpm for 35 passes to obtain a high emulsification dope.
  • a homomixer Yamashu Kika Kogyo Co., Ltd.
  • the highly emulsified dope was reacted in a polymerization tank (with a stirrer) at a temperature of 35 ° C. for 3 hours under non-stirring conditions to complete the polymerization.
  • the organic phase is separated, diluted with methylene chloride and washed with water, then made acidic with hydrochloric acid and washed with water, and when the conductivity of the aqueous phase becomes almost the same as ion exchanged water, it is put into a kneader covered with warm water
  • the methylene chloride was evaporated while stirring to obtain a polycarbonate powder. After dehydration, it was dried at 120 ° C. for 12 hours with a hot air circulating dryer to obtain a polycarbonate resin powder.
  • A-2 Polycarbonate resin powder having a viscosity average molecular weight of 19,800 obtained by the following method
  • a polycarbonate resin powder was obtained in the same manner as in the production method of A-1, except that the methylene chloride solution of 11% concentration p-tert-butylphenol was changed to 128 parts.
  • B component B-1 Circular cross-section chopped glass fiber (manufactured by Nitto Boseki Co., Ltd .; CSG 3PE-455 (trade name), fiber diameter 13 ⁇ m, cut length 3 mm, urethane based sizing agent)
  • B-2 Carbon fiber (Toho Tenax Co., Ltd .; HT C 422, fiber diameter 7 ⁇ m)
  • B-3 Glass milled fiber (PFE-301 manufactured by Nitto Boseki Co., Ltd., average fiber diameter 9 ⁇ m, average fiber length 30 ⁇ m, treated with silane coupling agent)
  • B-4 Flat cross-section chopped glass fiber (manufactured by Nitto Boseki Co., Ltd .: CSG 3PA-830, long diameter 27 ⁇ m, short diameter 4 ⁇ m, cut length 3 mm, epoxy type focusing agent) (C ingredient) (C-I component)
  • CI-1 Ethylene / tetrafluoroethylene copolymer (melting point
  • TMP phosphate stabilizer (manufactured by Daihachi Chemical Industry Co., Ltd .: TMP (trade name))
  • TN carbonate oligomer of tetrabromobisphenol A (manufactured by Teijin Limited: Fireguard FG 8500 (trade name))
  • f-114 Perfluorobutanesulfonic acid potassium salt (Da Nippon Ink Co., Ltd.
  • UV Benzotriazole-based ultraviolet absorber (manufactured by Chemi-Pro Chemical Co., Ltd .: Chemisorb 79 (trade name))
  • DC copolymer of maleic anhydride and ⁇ -olefin (Diacaruna DC 30 M (trade name) manufactured by Mitsubishi Chemical Corporation)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、優れた強度、耐衝撃性、耐熱性、難燃性および熱安定性を併せ持つ強化ポリカーボネート樹脂組成物を提供する。 (A)ポリカーボネート樹脂(A成分)50~95重量部および(B)繊維状充填材(B成分)5~50重量部からなる樹脂組成物100重量部に対して、(C)2~45重量部のフッ素樹脂(C-I成分)または2~45重量部のフッ素樹脂(C-II成分)を含有し、 (I)フッ素樹脂(C-I成分)は、下記一般式〔1〕および〔2〕で表される重合単位を含む共重合体であり、融点が200℃~280℃であり、 (II)フッ素樹脂(C-II成分)は、下記一般式〔1〕および〔2〕で表される重合単位を含む共重合体であり、融点が240℃~300℃であり、かつTGA(熱重量解析)における5%重量減少温度が470℃以上である、 強化ポリカーボネート樹脂組成物。

Description

強化ポリカーボネート樹脂組成物
 本発明は、強化ポリカーボネート樹脂組成物に関する。さらに詳しくは、優れた強度を持ちながら、良好な耐衝撃性、耐熱性、難燃性、熱安定性を併せ持ち、電気・電子分野、自動車分野、インフラ・通信分野などの各種分野に好適に使用が可能な強化ポリカーボネート樹脂組成物に関する。
 ポリカーボネート樹脂は、機械的強度、寸法安定性および難燃性といったその優れた特性から機械部品、自動車部品、電気・電子部品、事務機器部品などの多くの用途に用いられている。近年、部品の小型化・高性能化に伴い、部品に対する強度・耐熱性の要求が高まっている。強度や耐熱性を向上させた材料としてポリカーボネート樹脂に、ガラス繊維やカーボン繊維などの繊維状充填材、タルクなどの板状充填材および炭酸カルシウムなどの粒状充填材からなる群より選ばれる少なくとも1種の充填材が配合された強化ポリカーボネート樹脂組成物が知られている。
 しかしながら、ポリカーボネート樹脂は、ガラス繊維を添加することによって、耐衝撃性が大幅に低下する欠点を有する。従来、ガラス繊維をポリカーボネート樹脂に添加することによって低下する耐衝撃性を向上させる方法について、種々検討されている。
 一般的に耐衝撃性を向上させるために、例えば特許文献1のようなエラストマーを配合する技術が知られている。しかしながら、耐衝撃性が向上する反面、耐熱性や難燃性が低下するといった問題がある。
 特許文献2では、ポリカーボネート樹脂として、ポリカーボネート-ポリオルガノシロキサン共重合体を導入する方法が開示されている。しかしながら、この場合でも耐衝撃性が向上する反面、耐熱性や難燃性が低下するといった問題が残る。またポリカーボネート樹脂と、ポリエステル系樹脂やスチレン系樹脂などの他樹脂とのアロイによる耐衝撃性の向上においても、耐熱性や難燃性が低下してしまい、ガラス強化樹脂組成物の持つ強度および耐熱性を維持しつつ耐衝撃性を向上させる方法は未だ不充分である。
 一方、ポリテトラフルオロエチレン(PTFE)に代表されるフッ素樹脂は、他の高分子材料と比較して、耐熱性、耐薬品性、耐候性、電気特性が極めて優れているうえ、非粘着性、滑り性などのユニークな性質を有していることから、自動車、航空機、半導体、情報通信機器から身近な家庭用品まで幅広く使用されている。ポリカーボネート樹脂にフッ素樹脂を配合する技術としては、ドリップ防止剤としての適用(特許文献3)や摺動性付与材としての適用(特許文献4)が知られている。しかしながら、フッ素樹脂は融点が高いため、アロイ材料としての適用は限られている。
 特許文献5では、融点150~230℃のフッ素樹脂をポリカーボネート樹脂に配合してなる樹脂組成物が報告されている。しかしながら、繊維状充填材に関する記載はなく、強化樹脂組成物の耐衝撃性向上については述べられていない。特許文献6では、塩基処理含フッ素エラストマーを熱可塑性樹脂に配合してなる熱可塑性樹脂組成物について報告されている。しかしながらポリカーボネートに関する記載はなく、また繊維状充填材に関する記載もない。特許文献7では、ポリカーボネート樹脂に、フィブリル形成能を有さないフルオロポリマーと炭素繊維を含有する摺動性ポリカーボネート樹脂組成物について報告されている。しかしながら耐衝撃性向上と耐熱性に関する記載はない。特許文献8には、ポリカーボネート、繊維状充填材およびフッ素樹脂を含有する樹脂組成物が記載されている。フッ素樹脂として融点が約330℃のポリテトラフルオロエチレンが好ましいことが記載されている。
特開平3-273052号公報 特開昭55-160052号公報 特開昭50-44241号公報 特開昭63-213555号公報 特開平5-171025号公報 WO93/21272号公報 特開2015-48409号公報 特開昭61-2750号公報
 本発明の目的は、優れた強度を保ちながら、良好な耐衝撃性、難燃性、耐熱性、熱安定性を併せ持った強化ポリカーボネート樹脂組成物およびそれからなる成形品を提供することにある。
 本発明者らは、上記目的を達成せんとして鋭意研究を重ねた結果、ポリカーボネート樹脂および繊維状充填材からなる成分に、特定のフッ素樹脂を配合することにより、優れた強度、耐熱性、難燃性、耐衝撃性および熱安定性を有する強化ポリカーボネート樹脂組成物が得られることを見出し、本発明に到達した。
 すなわち本発明によれば、(1)(A)ポリカーボネート樹脂(A成分)50~95重量部および(B)繊維状充填材(B成分)5~50重量部からなる成分100重量部に対して、
(C)2~45重量部のフッ素樹脂(C-I成分)または2~45重量部のフッ素樹脂(C-II成分)を含有し、
(I)フッ素樹脂(C-I成分)は、下記一般式〔1〕および〔2〕で表される重合単位を含む共重合体であり、融点が200℃~280℃であり、
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
[上記一般式〔2〕において、R、R、RおよびRは夫々独立して水素原子または炭素原子数1~5のアルキル基を表す。]
または
(II)フッ素樹脂(C-II成分)は、下記一般式〔1〕および〔2〕で表される重合単位を含む共重合体であり、融点が240℃~300℃であり、かつTGA(熱重量解析)における5%重量減少温度が470℃以上である、
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
[上記一般式〔2〕において、R、R、RおよびRは夫々独立して、フッ素原子または炭素原子数1~5のフルオロアルキル基を表す。ただしR、R、RおよびRが全てフッ素原子である場合を除く。]
ことを特徴とする強化ポリカーボネート樹脂が提供される。
 本発明のより好適な態様の一つは、(2)フッ素樹脂(C-I成分)中の一般式〔2〕において、R、R、RおよびRが水素原子である上記構成(1)に記載の強化ポリカーボネート樹脂組成物である。
 本発明のより好適な態様の一つは、(3)フッ素樹脂(C-I成分)の融点が231℃~280℃である上記構成(1)に記載の強化ポリカーボネート樹脂組成物である。
 本発明のより好適な態様の一つは、(4)B成分が、ガラス繊維、炭素繊維またはこれらの混合物である上記構成(1)に記載の強化ポリカーボネート樹脂組成物である。
 本発明のより好適な態様の一つは、(5)上記構成(1)に記載の強化ポリカーボネート樹脂組成物からなる成形体である。
 本発明のフッ素樹脂(C-I成分)を含有する強化ポリカーボネート樹脂組成物は、強度、耐熱性、難燃性および耐衝撃性に優れる。また本発明のフッ素樹脂(C-II成分)を含有する強化ポリカーボネート樹脂組成物は、強度、耐熱性、難燃性、耐衝撃性および熱安定性に優れる。
 本発明の強化ポリカーボネート樹脂組成物は、各種電子・電気機器部品、カメラ部品、OA機器部品、精密機械部品、機械部品、車両部品、その他農業資材、搬送容器、遊戯具および雑貨などの各種用途に有用であり、その奏する産業上の効果は格別である。
 以下、本発明について具体的に説明する。
<A成分:ポリカーボネート樹脂>
 本発明のA成分として使用されるポリカーボネート樹脂は、通常、ジヒドロキシ化合物とカーボネート前駆体とを界面重縮合法、溶融エステル交換法で反応させて得られたものの他、カーボネートプレポリマーを固相エステル交換法により重合させたもの、または環状カーボネート化合物の開環重合法により重合させて得られるものである。
 ここで使用されるジヒドロキシ成分としては、通常、ポリカーボネートのジヒドロキシ成分として使用されているものであればよく、ビスフェノール類でも脂肪族ジオール類でも良い。
 ビスフェノール類としては、例えば、4,4’-ジヒドロキシビフェニル、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシ-3,3’-ビフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-イソプロピルフェニル)プロパン、2,2-ビス(3-t-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、1,1-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)シクロヘキサン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、4,4’-ジヒドロキシジフェニルエ-テル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエ-テル、4,4’-スルホニルジフェノール、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシジフェニルスルフィド、2,2’-ジメチル-4,4’-スルホニルジフェノール、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド、2,2’-ジフェニル-4,4’-スルホニルジフェノール、4,4’-ジヒドロキシ-3,3’-ジフェニルジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジフェニルジフェニルスルフィド、1,3-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,3-ビス(4-ヒドロキシフェニル)シクロヘキサン、4,8-ビス(4-ヒドロキシフェニル)トリシクロ[5.2.1.02,6]デカン、4,4’-(1,3-アダマンタンジイル)ジフェノール、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタンおよび下記一般式〔3〕で表されるシロキサン構造を有するビスフェノール化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000009
(上記一般式〔3〕において、R11、R12、R13、R14、R15およびR16は、各々独立に水素原子、炭素数1~12のアルキル基、炭素数2~9のアルケニル基、または炭素数6~12の置換若しくは無置換のアリール基であり、R17およびR18は夫々独立して水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基、または炭素数6~12の置換若しくは無置換のアリール基であり、pおよびqは夫々1~4の整数であり、eは自然数であり、fは0または自然数であり、e+fは150以下の自然数である。Xは炭素数2~8のアルキレン基である。)
 脂肪族ジオール類としては、例えば2,2-ビス-(4-ヒドロキシシクロヘキシル)-プロパン、1,14-テトラデカンジオール、オクタエチレングリコール、1,16-ヘキサデカンジオール、4,4’-ビス(2-ヒドロキシエトキシ)ビフェニル、ビス{(2-ヒドロキシエトキシ)フェニル}メタン、1,1-ビス{(2-ヒドロキシエトキシ)フェニル}エタン、1,1-ビス{(2-ヒドロキシエトキシ)フェニル}-1-フェニルエタン、2,2-ビス{(2-ヒドロキシエトキシ)フェニル}プロパン、2,2-ビス{(2-ヒドロキシエトキシ)-3-メチルフェニル}プロパン、1,1-ビス{(2-ヒドロキシエトキシ)フェニル}-3,3,5-トリメチルシクロヘキサン、2,2-ビス{4-(2-ヒドロキシエトキシ)-3,3’-ビフェニル}プロパン、2,2-ビス{(2-ヒドロキシエトキシ)-3-イソプロピルフェニル}プロパン、2,2-ビス{3-t-ブチル-4-(2-ヒドロキシエトキシ)フェニル}プロパン、2,2-ビス{(2-ヒドロキシエトキシ)フェニル}ブタン、2,2-ビス{(2-ヒドロキシエトキシ)フェニル}-4-メチルペンタン、2,2-ビス{(2-ヒドロキシエトキシ)フェニル}オクタン、1,1-ビス{(2-ヒドロキシエトキシ)フェニル}デカン、2,2-ビス{3-ブロモ-4-(2-ヒドロキシエトキシ)フェニル}プロパン、2,2-ビス{3,5-ジメチル-4-(2-ヒドロキシエトキシ)フェニル}プロパン、2,2-ビス{3-シクロヘキシル-4-(2-ヒドロキシエトキシ)フェニル}プロパン、1,1-ビス{3-シクロヘキシル-4-(2-ヒドロキシエトキシ)フェニル}シクロヘキサン、ビス{(2-ヒドロキシエトキシ)フェニル}ジフェニルメタン、9,9-ビス{(2-ヒドロキシエトキシ)フェニル}フルオレン、9,9-ビス{4-(2-ヒドロキシエトキシ)-3-メチルフェニル}フルオレン、1,1-ビス{(2-ヒドロキシエトキシ)フェニル}シクロヘキサン、1,1-ビス{(2-ヒドロキシエトキシ)フェニル}シクロペンタン、4,4’-ビス(2-ヒドロキシエトキシ)ジフェニルエ-テル、4,4’-ビス(2-ヒドロキシエトキシ)-3,3’-ジメチルジフェニルエ-テル、1,3-ビス[2-{(2-ヒドロキシエトキシ)フェニル}プロピル]ベンゼン、1,4-ビス[2-{(2-ヒドロキシエトキシ)フェニル}プロピル]ベンゼン、1,4-ビス{(2-ヒドロキシエトキシ)フェニル}シクロヘキサン、1,3-ビス{(2-ヒドロキシエトキシ)フェニル}シクロヘキサン、4,8-ビス{(2-ヒドロキシエトキシ)フェニル}トリシクロ[5.2.1.02,6]デカン、1,3-ビス{(2-ヒドロキシエトキシ)フェニル}-5,7-ジメチルアダマンタン、3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン、1,4:3,6-ジアンヒドロ-D-ソルビトール(イソソルビド)、1,4:3,6-ジアンヒドロ-D-マンニトール(イソマンニド)、1,4:3,6-ジアンヒドロ-L-イジトール(イソイディッド)などが挙げられる。
 これらの中で芳香族ビスフェノール類が好ましい。なかでも1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、4,4’-スルホニルジフェノール、2,2’-ジメチル-4,4’-スルホニルジフェノール、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、1,3-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、および1,4-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、上記一般式〔3〕で表されるビスフェノール化合物が好ましい。
 殊に2,2-ビス(4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、4,4’-スルホニルジフェノール、および9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、上記一般式〔3〕で表されるビスフェノール化合物が好ましい。なかでも強度に優れ、良好な耐久性を有する2,2-ビス(4-ヒドロキシフェニル)プロパンが最も好適である。また、これらは単独または二種以上組み合わせて用いてもよい。
 本発明のA成分として使用されるポリカーボネート樹脂は、分岐化剤を上記のジヒドロキシ化合物と併用して分岐ポリカーボネート樹脂とすることができる。かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6-ジメチル-2,4,6-トリス(4-ヒドロキジフェニル)ヘプテン-2、2,4,6-トリメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、4-{4-[1,1-ビス(4-ヒドロキシフェニル)エチル]ベンゼン}-α,α-ジメチルベンジルフェノールなどのトリスフェノールが挙げられる。
 また、テトラ(4-ヒドロキシフェニル)メタン、ビス(2,4-ジヒドロキシフェニル)ケトン、1,4-ビス(4,4-ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライドなどが挙げられる。なかでも1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタンが好ましく、特に1,1,1-トリス(4-ヒドロキシフェニル)エタンが好ましい。
 これらのポリカーボネート樹脂は、通常のポリカーボネート樹脂を製造するそれ自体公知の反応手段、例えば芳香族ジヒドロキシ成分にホスゲンや炭酸ジエステルなどのカーボネート前駆物質を反応させる方法により製造される。その製造方法について基本的な手段を簡単に説明する。
 カーボネート前駆物質として、例えばホスゲンを使用する反応では、通常、酸結合剤および溶媒の存在下に反応を行う。酸結合剤としては、例えば水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物またはピリジンなどのアミン化合物が用いられる。溶媒としては、例えば塩化メチレン、クロロベンゼンなどのハロゲン化炭化水素が用いられる。また反応促進のために例えば第三級アミンまたは第四級アンモニウム塩などの触媒を用いることもできる。その際、反応温度は通常0~40℃であり、反応時間は数分~5時間である。
 カーボネート前駆物質として炭酸ジエステルを用いるエステル交換反応は、不活性ガス雰囲気下所定割合の芳香族ジヒドロキシ成分を炭酸ジエステルと加熱しながら撹拌して、生成するアルコールまたはフェノール類を留出させる方法により行われる。反応温度は生成するアルコールまたはフェノール類の沸点などにより異なるが、通常120~300℃の範囲である。反応はその初期から減圧にして生成するアルコールまたはフェノール類を留出させながら反応を完結させる。また、反応を促進するために、通常、エステル交換反応に使用される触媒を使用することもできる。前記エステル交換反応に使用される炭酸ジエステルとしては、例えばジフェニルカーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネートなどが挙げられる。これらのうち特にジフェニルカーボネートが好ましい。
 本発明において、重合反応においては末端停止剤を使用することが好ましい。末端停止剤は分子量調節のために使用され、また得られたポリカーボネート樹脂は、末端が封鎖されているので、そうでないものと比べて熱安定性に優れている。かかる末端停止剤としては、下記一般式〔4〕~〔6〕で表される単官能フェノール類を示すことができる。
Figure JPOXMLDOC01-appb-C000010
[式〔4〕中、Aは水素原子、炭素数1~9のアルキル基、アルキルフェニル基(アルキル部分の炭素数は1~9)、フェニル基、またはフェニルアルキル基(アルキル部分の炭素数1~9)であり、rは1~5、好ましくは1~3の整数である。]
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
[式〔5〕、〔6〕中、Yは-R-O-、-R-CO-O-または-R-O-CO-である、ここでRは単結合または炭素数1~10、好ましくは1~5の二価の脂肪族炭化水素基を示し、nは10~50の整数を示す。]
 上記一般式〔4〕で表される単官能フェノール類の具体例としては、例えば、フェノール、イソプロピルフェノール、p-tert-ブチルフェノール、p-クレゾール、p-クミルフェノール、2-フェニルフェノール、4-フェニルフェノール、およびイソオクチルフェノールなどが挙げられる。また、上記一般式〔5〕~〔6〕で表される単官能フェノール類は、長鎖のアルキル基あるいは脂肪族エステル基を置換基として有するフェノール類であり、これらを用いてポリカーボネート樹脂の末端を封鎖すると、これらは末端停止剤または分子量調節剤として機能するのみならず、樹脂の溶融流動性が改良され、成形加工が容易になるばかりでなく、樹脂の吸水率を低くする効果があり好ましく使用される。
 上記一般式〔5〕の置換フェノール類としては、nが10~30、特に10~26のものが好ましい。その具体例としては例えば、デシルフェノール、ドデシルフェノール、テトラデシルフェノール、ヘキサデシルフェノール、オクタデシルフェノール、エイコシルフェノール、ドコシルフェノールおよびトリアコンチルフェノールなどを挙げることができる。
 また、上記一般式〔6〕の置換フェノール類としては、Xが-R-CO-O-であり、Rが単結合である化合物が適当であり、nが10~30、特に10~26のものが好適である。その具体例としては例えば、ヒドロキシ安息香酸デシル、ヒドロキシ安息香酸ドデシル、ヒドロキシ安息香酸テトラデシル、ヒドロキシ安息香酸ヘキサデシル、ヒドロキシ安息香酸エイコシル、ヒドロキシ安息香酸ドコシルおよびヒドロキシ安息香酸トリアコンチルが挙げられる。
 これら単官能フェノール類の内、上記一般式〔4〕で表される単官能フェノール類が好ましく、より好ましくはアルキル置換もしくはフェニルアルキル置換のフェノール類であり、特に好ましくはp-tert-ブチルフェノール、p-クミルフェノールまたは2-フェニルフェノールである。これらの単官能フェノール類の末端停止剤は、得られたポリカーボネート樹脂の全末端に対して少なくとも5モル%、好ましくは少なくとも10モル% 末端に導入されることが望ましく、また、末端停止剤は単独でまたは2種以上混合して使用してもよい。
 本発明のA成分として用いられるポリカーボネート樹脂は、本発明の趣旨を損なわない範囲で、芳香族ジカルボン酸、例えばテレフタル酸、イソフタル酸、ナフタレンジカルボン酸あるいはその誘導体を共重合したポリエステルカーボネートであってもよい。
 本発明のA成分として使用されるポリカーボネート樹脂の粘度平均分子量は、12,500~50,000の範囲が好ましく、16,000~30,000がより好ましく、18,000~28,000の範囲がさらにより好ましく、19,000~26,000の範囲が最も好ましい。分子量が50,000を越えると溶融粘度が高くなりすぎて成形性に劣る場合があり、分子量が12,500未満であると機械的強度に問題が生じる場合がある。なお、本発明でいう粘度平均分子量は、まず次式にて算出される比粘度を塩化メチレン100mlにポリカーボネート樹脂0.7gを20℃で溶解した溶液からオストワルド粘度計を用いて求め、求められた比粘度を次式にて挿入して粘度平均分子量Mを求める。
  比粘度(ηSP)=(t-t)/t
  [tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
  ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
  [η]=1.23×10-40.83
  c=0.7
(B成分:繊維状充填材)
 本発明のB成分として用いられる繊維状充填材として、例えば、ガラス繊維、炭素繊維、カーボンミルドファイバー、メタルファイバー、アスベスト、ロックウール、セラミックファイバー、スラグファイバー、チタン酸カリウムウィスカー、ボロンウィスカー、ホウ酸アルミニウムウィスカー、炭酸カルシウムウィスカー、酸化チタンウィスカー、ワラストナイト、ゾノトライト、パリゴルスカイト(アタパルジャイト)、およびセピオライトなどの繊維状無機充填材が挙げられる。また、アラミド繊維、ポリイミド繊維およびポリベンズチアゾール繊維などの耐熱有機繊維に代表される繊維状耐熱有機充填材が挙げられる。
 またこれらの充填剤に対して、例えば、金属や金属酸化物などの異種材料を表面被覆した繊維状充填材などが例示される。異種材料を表面被覆した充填材としては、例えば金属コートガラス繊維および金属コート炭素繊維などが例示される。異種材料の表面被覆の方法としては特に限定されるものではなく、例えば公知の各種メッキ法(例えば、電解メッキ、無電解メッキ、溶融メッキなど)、真空蒸着法、イオンプレーティング法、CVD法(例えば熱CVD、MOCVD、プラズマCVDなど)、PVD法、およびスパッタリング法などを挙げることができる。
 これら繊維状充填材の中でも、ガラス繊維、炭素繊維、カーボンミルドファイバー、アラミド繊維が好ましい。なかでもガラス繊維、炭素繊維がより好ましい。本発明のB成分として用いられる繊維状充填材は、その繊維径が0.1~20μmの範囲が好ましい。繊維径の上限は18μmがより好ましく、15μmが更に好ましい。一方、繊維径の下限は、1μmがより好ましく、6μmが更に好ましい。ここでいう繊維径とは数平均繊維径を指す。尚、かかる数平均繊維径は、成形品を溶剤に溶解するかもくしは樹脂を塩基性化合物で分解した後に採取される残渣、およびるつぼで灰化を行った後に採取される灰化残渣を走査電子顕微鏡観察した画像から算出される値である。
 本発明のB成分として用いられる繊維状充填材がガラス繊維である場合、ガラス繊維のガラス組成は、Aガラス、Cガラス、およびEガラスなどに代表される各種のガラス組成が適用され、特に限定されない。かかるガラス充填材は、必要に応じてTiO、SO、およびPなどの成分を含有するものであってもよい。これらの中でもEガラス(無アルカリガラス)がより好ましい。
 かかるガラス繊維は、周知の表面処理剤、例えばシランカップリング剤、チタネートカップリング剤、またはアルミネートカップリング剤などで表面処理が施されたものが機械的強度の向上の点から好ましい。また、オレフィン系樹脂、スチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、およびウレタン系樹脂などで集束処理されたものが好ましく、エポキシ系樹脂、ウレタン系樹脂が機械的強度の点から特に好ましい。集束処理されたガラス繊維の集束剤付着量は、ガラス繊維100重量% 中好ましくは0.1~3重量%、より好ましくは0.2~1重量%である。
 本発明のB成分として用いられる繊維状充填材として、扁平断面ガラス繊維を用いることもできる。この扁平断面ガラス繊維としては、繊維断面の長径の平均値が、好ましくは10~50μm、より好ましくは15~40μm、さらに好ましくは20~35μmで、長径と短径の比(長径/短径)の平均値が、好ましくは1.5~8、より好ましくは2~6、さらに好ましくは2.5~5であるガラス繊維である。長径と短径の比の平均値がこの範囲の扁平断面ガラス繊維を使用した場合、1.5未満の非円形断面繊維を使用した場合に比べ、異方性が大きく改良される。また扁平断面形状としては扁平の他、楕円状、まゆ状、および三つ葉状、あるいはこれに類する形状の非円形断面形状を挙げることができる。
 なかでも機械的強度、低異方性の改良の点から扁平形状が好ましい。また、扁平断面ガラス繊維の平均繊維長と平均繊維径の比(アスペクト比)は2~120が好ましく、より好ましくは2.5~70、さらに好ましくは3~50である。繊維長と平均繊維径の比が2未満であると、機械的強度の向上効果が小さくなる場合があり、繊維長と平均繊維径の比が120を超えると異方性が大きくなる他、成形品外観も悪化する場合がある。
 かかる扁平断面ガラス繊維の平均繊維径とは、扁平断面形状を同一面積の真円形に換算したときの数平均繊維径をいう。また平均繊維長とは、本発明の強化ポリカーボネート樹脂組成物中における数平均繊維長をいう。尚、かかる数平均繊維長は、成形品の高温灰化、溶剤による溶解、並びに薬品による分解などの処理で採取される充填材の残さを光学顕微鏡観察した画像から画像解析装置により算出される値である。また、かかる値の算出に際しては繊維径を目安にそれ以下の長さのものはカウントしない方法による値である。
 本発明のB成分として用いられる繊維状充填材の含有量は、A成分とB成分との合計100重量部中、5~50重量部であり、5~35重量部が好ましく、10~35重量部がより好ましく、10~30重量部がさらに好ましい。B成分の含有量が5重量部より少ないと強度および耐熱性が充分でなく、50重量部を超えると耐衝撃性が低下するばかりではなく、熱安定性および難燃性も悪化する。
(C成分:フッ素樹脂)
 本発明においてC成分のフッ素樹脂は、フッ素樹脂(C-I成分)またはフッ素樹脂(C-II成分)である。
(C-I成分)
 フッ素樹脂(C-I成分)は、融点が200℃~280℃であり、210℃~280℃であることが好ましく、230℃~280℃であることがより好ましい。融点の下限は、好ましくは231℃、より好ましくは240℃、さらに好ましくは250℃である。融点の上限は、好ましくは278℃、より好ましくは276℃である。フッ素樹脂の融点が200℃より低いと、耐熱性が低下する。一方、融点が280℃より高くなると、ポリカーボネート樹脂との相溶性が低下し、耐衝撃性が低下する。
 フッ素樹脂(C-I成分)は、下記一般式〔1〕および〔2〕で表される重合単位を含む共重合体である。この構造を含まないフッ素樹脂を使用した場合、耐衝撃性が低下する。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
[上記一般式〔2〕において、R、R、RおよびRは夫々独立して水素原子または炭素原子数1~5のアルキル基を表す。]
 上記式〔1〕で表される重合単位は、テトラフルオロエチレンから誘導される重合単位である。
 上記一般式〔2〕において、R、R、RおよびRの炭素原子数1~5のアルキル基として、メチル基、エチル基、プロピル基などが挙げられる。上記式〔2〕で表される重合単位としては、エチレン、プロピレン、1-ブテン、1-ペンテン、イソブチレン、3-メチル-1-ブテン、1-ヘキセン、3―メチル-1-ペンテン、1-ヘプテン、3-メチル-1-ヘキセンなどから誘導される重合単位が挙げられる。なかでもエチレン、プロピレン、1-ブテン、イソブチレンから誘導される重合単位が好ましい。エチレン、プロピレンから誘導される重合単位がより好ましく、エチレンから誘導される重合単位が最も好ましい。なおこれらの重合単位は単独でまたは2種以上混合されていてもよい。
 フッ素樹脂(C-I成分)を構成する上記一般式〔2〕および〔1〕のモル比率〔2〕/〔1〕は、95/5~5/95が好ましく、90/10~10/90がより好ましく、80/20~20/80が更により好ましく、70/30~30/70が最も好ましい。また、フッ素樹脂(C-I成分)は上記一般式[1]および[2]で表される重合単位のみからなることが好ましい。
 フッ素樹脂(C-I成分)の含有量は、A成分およびB成分からなる成分100重量部に対して、2~45重量部であり、2~30重量部が好ましく、2~15重量部がより好ましい。フッ素樹脂(C-I成分)の含有量が2重量部より少ない場合、耐衝撃性が低下し、45重要部より多い場合は、耐衝撃性が低下するばかりではなく、強度も低下する。
(C-II成分)
 フッ素樹脂(C-II成分)は、融点が240℃~300℃であり、250℃~300℃であることが好ましく、250℃~290℃であることがより好ましい。融点の下限は、好ましくは245℃、より好ましくは247℃である。融点の上限は、好ましくは296℃、より好ましくは295℃である。フッ素樹脂の融点が240℃より低いと、耐熱性が低下する。一方、融点が300℃より高くなると、ポリカーボネート樹脂との相溶性が低下し、耐衝撃性が低下する。
 フッ素樹脂(C-II成分)は、TGA(熱重量解析)における5%重量減少温度が470℃以上であり、480℃以上であることが好ましく、490℃以上であることがより好ましい。フッ素樹脂の5%重量減少温度が470℃より低いと、熱安定性が低下する。
 フッ素樹脂(C-II成分)は、下記一般式〔1〕および〔2〕で表される重合単位を含む共重合体である。この構造を含まないフッ素樹脂を使用した場合、耐熱性または耐衝撃性が低下する。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
[上記一般式〔2〕において、R、R、RおよびRは夫々独立してフッ素原子または炭素原子数1~5のフルオロアルキル基を表す。ただしR、R、RおよびRが全てフッ素原子である場合を除く。]
 上記式〔1〕で表される重合単位は、テトラフルオロエチレンから誘導される重合単位である。
 上記式〔2〕で表される重合単位中の原子数1~5のフルオロアルキル基として、トリフルオロメチル基、ペンタフルオロプロピル基などが挙げられる。上記式〔2〕で表される重合単位としては、ヘキサフルオロプロピレン、オクタフルオロ-1-ブテン、デカフルオロ―1-ペンテン、オクタフルオロイソブチレン、パーフルオロブチルエチレンから誘導される重合単位が好ましい。なかでもヘキサフルオロプロピレン、パーフルオロブチルエチレンから誘導される重合単位がより好ましく、ヘキサフルオロプロピレンから誘導される重合単位がさらに好ましい。なおこれらの重合単位は単独でまたは2種以上混合されていてもよい。
 フッ素樹脂(C-II成分)を構成する上記一般式〔1〕および〔2〕の質量比〔1〕/〔2〕は、98/2~50/50が好ましく、98/2~60/40がより好ましく、98/2~70/30がさらに好ましく、95/5~70/30が殊更にさらに好ましく、95/5~80/20が最も好ましい。
 フッ素樹脂(C-II成分)の含有量は、A成分およびB成分からなる成分100重量部に対して、2~45重量部であり、2~30重量部が好ましく、2~15重量部がより好ましい。フッ素樹脂(C-II成分)の含有量が2重量部より少ない場合、耐衝撃性が低下し、45重量部より多い場合、耐衝撃性が低下するばかりではなく、強度も低下する。また、フッ素樹脂(C-II成分)は上記一般式[1]および[2]で表される重合単位のみからなることが好ましい。
(その他の添加剤)
 本発明の強化ポリカーボネート樹脂組成物、その熱安定性、意匠性の改良のために、これらの改良に使用されている添加剤が有利に使用される。以下これら添加剤について具体的に説明する。
(I)熱安定剤
 本発明の強化ポリカーボネート樹脂組成物は、公知の各種安定剤を配合することができる。安定剤としては、リン系安定剤、ヒンダードフェノール系酸化防止剤などが挙げられる。
(i)リン系安定剤
 本発明の強化ポリカーボネート樹脂組成物は、加水分解性を促進させない程度において、リン系安定剤が配合されることが好ましい。かかるリン系安定剤は製造時または成形加工時の熱安定性を向上させ、機械的特性、色相、および成形安定性を向上させる。リン系安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステル、並びに第3級ホスフィンなどが例示される。
 具体的にはホスファイト化合物としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ-iso-プロピルフェニル)ホスファイト、トリス(ジ-n-ブチルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-エチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイトなどが挙げられる。
 更に他のホスファイト化合物としては、二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2,4-ジ-tert-ブチルフェニル)ホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2’-エチリデンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイトなどを挙げることができる。
 ホスフェート化合物としては、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどを挙げることができる。好ましくはトリフェニルホスフェート、トリメチルホスフェートである。
 ホスホナイト化合物としては、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-n-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイトなどが挙げられる。
 なかでもテトラキス(ジ-tert-ブチルフェニル)-ビフェニレンジホスホナイト、ビス(ジ-tert-ブチルフェニル)-フェニル-フェニルホスホナイトが好ましい。また、テトラキス(2,4-ジ-tert-ブチルフェニル)-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-フェニル-フェニルホスホナイトがより好ましい。かかるホスホナイト化合物は上記アルキル基が2以上置換したアリール基を有するホスファイト化合物との併用可能であり好ましい。
 ホスホネイト化合物としては、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、およびベンゼンホスホン酸ジプロピルなどが挙げられる。第3級ホスフィンとしては、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリアミルホスフィン、ジメチルフェニルホスフィン、ジブチルフェニルホスフィン、ジフェニルメチルホスフィン、ジフェニルオクチルホスフィン、トリフェニルホスフィン、トリ-p-トリルホスフィン、トリナフチルホスフィン、およびジフェニルベンジルホスフィンなどが例示される。
 特に好ましい第3級ホスフィンは、トリフェニルホスフィンである。上記リン系安定剤は、1種のみならず2種以上を混合して用いることができる。上記リン系安定剤の中でも、トリメチルホスフェートに代表されるアルキルホスフェート化合物が配合されることが好ましい。またかかるアルキルホスフェート化合物と、ホスファイト化合物および/またはホスホナイト化合物との併用も好ましい態様である。
(ii)ヒンダードフェノール系安定剤
 本発明の強化ポリカーボネート樹脂組成物には、ヒンダードフェノール系安定剤を配合することができる。かかる配合は例えば、成形加工時の色相悪化や長期間の使用における色相の悪化などを抑制する効果が発揮される。
 ヒンダードフェノール系安定剤としては、例えば、α-トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、n-オクタデシル-β-(4’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェル)プロピオネート、2-tert-ブチル-6-(3’-tert-ブチル-5’-メチル-2’-ヒドロキシベンジル)-4-メチルフェニルアクリレート、2,6-ジ-tert-ブチル-4-(N,N-ジメチルアミノメチル)フェノール、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホネートジエチルエステル、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)、4,4’-メチレンビス(2,6-ジ-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-シクロヘキシルフェノール)、2,2’-ジメチレン-ビス(6-α-メチル-ベンジル-p-クレゾール)2,2’-エチリデン-ビス(4,6-ジ-tert-ブチルフェノール)、2,2’-ブチリデン-ビス(4-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、トリエチレングリコール-N-ビス-3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート、1,6-へキサンジオールビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、ビス[2-tert-ブチル-4-メチル6-(3-tert-ブチル-5-メチル-2-ヒドロキシベンジル)フェニル]テレフタレート、3,9-ビス{2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1,-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、4,4’-チオビス(6-tert-ブチル-m-クレゾール)、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2’-チオビス(4-メチル-6-tert-ブチルフェノール)、ビス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)スルフィド、4,4’-ジ-チオビス(2,6-ジ-tert-ブチルフェノール)、4,4’-トリ-チオビス(2,6-ジ-tert-ブチルフェノール)、2,2-チオジエチレンビス-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,4-ビス(n-オクチルチオ)-6-(4-ヒドロキシ-3’,5’-ジ-tert-ブチルアニリノ)-1,3,5-トリアジン、N,N’-ヘキサメチレンビス-(3,5-ジ-tert-ブチル-4-ヒドロキシヒドロシンナミド)、N,N’-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)イソシアヌレート、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(4-tert-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌレート、1,3,5-トリス2[3(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、およびテトラキス[メチレン-3-(3’,5’-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンなどが例示される。
 これらはいずれも入手容易である。上記ヒンダードフェノール系安定剤は、単独でまたは2種以上を組合せて使用することができる。リン系安定剤およびヒンダードフェノール系安定剤の配合量は、それぞれA成分およびB成分からなる成分100重量部に対して、好ましくは0.0001~1重量部、より好ましくは0.001~0.5重量部、さらに好ましくは0.005~0.3重量部である。
(iii)前記以外の熱安定剤
 本発明の強化ポリカーボネート樹脂組成物には、前記リン系安定剤およびヒンダードフェノール系安定剤以外の、他の熱安定剤を配合することもできる。かかる他の熱安定剤としては、例えば3-ヒドロキシ-5,7-ジ-tert-ブチル-フラン-2-オンとo-キシレンとの反応生成物に代表されるラクトン系安定剤が好適に例示される。かかる安定剤の詳細は特開平7-233160号公報に記載されている。かかる化合物はIrganox HP-136(商標、CIBA SPECIALTY CHEMICALS社製)として市販され、該化合物を利用できる。更に該化合物と各種のホスファイト化合物およびヒンダードフェノール化合物を混合した安定剤が市販されている。例えば前記社製のIrganoxHP-2921が好適に例示される。ラクトン系安定剤の配合量は、A成分およびB成分からなる成分100重量部に対して、好ましくは0.0005~0.05重量部、より好ましくは0.001~0.03重量部である。
 またその他の安定剤としては、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-ラウリルチオプロピオネート)、およびグリセロール-3-ステアリルチオプロピオネートなどのイオウ含有安定剤が例示される。かかるイオウ含有安定剤の配合量は、A成分およびB成分からなる成分100重量部に対して、好ましくは0.001~0.1重量部、より好ましくは0.01~0.08重量部である。
 本発明の強化ポリカーボネート樹脂組成物には、必要に応じてエポキシ化合物を配合することができる。かかるエポキシ化合物は、金型腐食を抑制するという目的で配合されるものであり、基本的にエポキシ官能基を有するもの全てが適用できる。
 好ましいエポキシ化合物の具体例としては、3,4-エポキシシクロヘキシルメチルー3’,4’-エポキシシクロヘキシルカルボキシレート、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロセキサン付加物、メチルメタクリレートとグリシジルメタクリレートの共重合体、スチレンとグリシジルメタクリレートの共重合体などが挙げられる。かかるエポキシ化合物の添加量としては、A成分およびB成分からなる成分100重量部に対して、0.003~0.2重量部が好ましく、より好ましくは0.004~0.15重量部であり、さらに好ましくは0.005~0.1重量部である。
(II)難燃剤
 本発明の強化ポリカーボネート樹脂組成物には、難燃剤を配合することができる。かかる化合物の配合は難燃性の向上をもたらすが、それ以外にも各化合物の性質に基づき、例えば帯電防止性、流動性、剛性、および熱安定性の向上などがもたらされる。かかる難燃剤としては、(i)有機金属塩系難燃剤(例えば有機スルホン酸アルカリ(土類)金属塩、有機ホウ酸金属塩系難燃剤、および有機錫酸金属塩系難燃剤など)、(ii)有機リン系難燃剤(例えば、有機基含有のモノホスフェート化合物、ホスフェートオリゴマー化合物、ホスホネートオリゴマー化合物、ホスホニトリルオリゴマー化合物、およびホスホン酸アミド化合物など)、(iii)シリコーン化合物からなるシリコーン系難燃剤、(iv)フィブリル化PTFEが挙げられる。その中でも有機金属塩系難燃剤、有機リン系難燃剤が好ましい。これらは一種または二種複合して使用しても良い。
(i)有機金属塩系難燃剤
 有機金属塩化合物は、炭素原子数1~50、好ましくは1~40の有機酸のアルカリ(土類)金属塩、好ましくは有機スルホン酸アルカリ(土類)金属塩であることが好ましい。この有機スルホン酸アルカリ(土類)金属塩には、炭素原子数1~10、好ましくは2~8のパーフルオロアルキルスルホン酸とアルカリ金属またはアルカリ土類金属との金属塩の如きフッ素置換アルキルスルホン酸の金属塩が含まれる。また、炭素原子数7~50、好ましくは7~40の芳香族スルホン酸とアルカリ金属またはアルカリ土類金属との金属塩が含まれる。
 金属塩を構成するアルカリ金属としてはリチウム、ナトリウム、カリウム、ルビジウムおよびセシウムが挙げられる。アルカリ土類金属としては、ベリリウム、マグネシウム、カルシウム、ストロンチウムおよびバリウムが挙げられる。より好適にはアルカリ金属である。かかるアルカリ金属の中でも、透明性の要求がより高い場合にはイオン半径のより大きいルビジウムおよびセシウムが好適である一方、これらは汎用的でなくまた精製もし難いことから、結果的にコストの点で不利となる場合がある。一方、リチウムおよびナトリウムなどのより小さいイオン半径の金属は逆に難燃性の点で不利な場合がある。これらを勘案してスルホン酸アルカリ金属塩中のアルカリ金属を使い分けることができる。いずれの点においても特性のバランスに優れたスルホン酸カリウム塩が最も好適である。かかるカリウム塩と他のアルカリ金属からなるスルホン酸アルカリ金属塩とを併用することもできる。
 パーフルオロアルキルスルホン酸アルカリ金属塩の具体例としては、トリフルオロメタンスルホン酸カリウム、パーフルオロブタンスルホン酸カリウム、パーフルオロヘキサンスルホン酸カリウム、パーフルオロオクタンスルホン酸カリウム、ペンタフルオロエタンスルホン酸ナトリウム、パーフルオロブタンスルホン酸ナトリウム、パーフルオロオクタンスルホン酸ナトリウム、トリフルオロメタンスルホン酸リチウム、パーフルオロブタンスルホン酸リチウム、パーフルオロヘプタンスルホン酸リチウム、トリフルオロメタンスルホン酸セシウム、パーフルオロブタンスルホン酸セシウム、パーフルオロオクタンスルホン酸セシウム、パーフルオロヘキサンスルホン酸セシウム、パーフルオロブタンスルホン酸ルビジウム、およびパーフルオロヘキサンスルホン酸ルビジウムなどが挙げられる。これらは1種もしくは2種以上を併用して使用することができる。ここでパーフルオロアルキル基の炭素数は、1~18の範囲が好ましく、1~10の範囲がより好ましく、更に好ましくは1~8の範囲である。
 これらの中で特にパーフルオロブタンスルホン酸カリウムが好ましい。アルカリ金属からなるパーフルオロアルキルスルホン酸アルカリ(土類)金属塩中には、通常、少なからず弗化物イオン(F)が混入する。かかる弗化物イオンの存在は難燃性を低下させる要因となり得るので、できる限り低減されることが好ましい。かかる弗化物イオンの割合はイオンクロマトグラフィー法により測定できる。弗化物イオンの含有量は、100ppm以下が好ましく、40ppm以下が更に好ましく、10ppm以下が特に好ましい。また製造効率的に0.2ppm以上であることが好適である。
 かかる弗化物イオン量の低減されたパーフルオロアルキルスルホン酸アルカリ(土類)金属塩は、公知の製造方法によって製造することができる。その際、フッ素有機金属塩を製造する際の原料中に含有される弗化物イオンの量を低減する方法、反応により得られた弗化水素などを反応時に発生するガスや加熱によって除去する方法、並びに含フッ素有機金属塩を製造に再結晶および再沈殿などの精製方法を用いて弗化物イオンの量を低減する方法などによって製造することができる。特に有機金属塩系難燃剤は比較的水に溶けやすいこことから、イオン交換水、特に電気抵抗値が18MΩ・cm以上、すなわち電気伝導度が約0.55μS/cm以下を満足する水を用い、かつ常温よりも高い温度で溶解させて洗浄を行い、その後冷却させて再結晶化させる工程により製造することが好ましい。
 芳香族スルホン酸アルカリ(土類)金属塩の具体例としては、例えば、ジフェニルサルファイド-4,4’-ジスルホン酸ジナトリウム、ジフェニルサルファイド-4,4’-ジスルホン酸ジカリウム、5-スルホイソフタル酸カリウム、5-スルホイソフタル酸ナトリウム、ポリエチレンテレフタル酸ポリスルホン酸ポリナトリウム、1-メトキシナフタレン-4-スルホン酸カルシウム、4-ドデシルフェニルエーテルジスルホン酸ジナトリウム、ポリ(2,6-ジメチルフェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,3-フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,4-フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(2,6-ジフェニルフェニレンオキシド)ポリスルホン酸ポリカリウム、ポリ(2-フルオロ-6-ブチルフェニレンオキシド)ポリスルホン酸リチウム、ベンゼンスルホネートのスルホン酸カリウム、ベンゼンスルホン酸ナトリウム、ベンゼンスルホン酸ストロンチウム、ベンゼンスルホン酸マグネシウム、p-ベンゼンジスルホン酸ジカリウム、ナフタレン-2,6-ジスルホン酸ジカリウム、ビフェニル-3,3’-ジスルホン酸カルシウム、ジフェニルスルホン-3-スルホン酸ナトリウム、ジフェニルスルホン-3-スルホン酸カリウム、ジフェニルスルホン-3,3’-ジスルホン酸ジカリウム、ジフェニルスルホン-3,4’-ジスルホン酸ジカリウム、α,α,α-トリフルオロアセトフェノン-4-スルホン酸ナトリウム、ベンゾフェノン-3,3’-ジスルホン酸ジカリウム、チオフェン-2,5-ジスルホン酸ジナトリウム、チオフェン-2,5-ジスルホン酸ジカリウム、チオフェン-2,5-ジスルホン酸カルシウム、ベンゾチオフェンスルホン酸ナトリウム、ジフェニルスルホキサイド-4-スルホン酸カリウム、ナフタレンスルホン酸ナトリウムのホルマリン縮合物、およびアントラセンスルホン酸ナトリウムのホルマリン縮合物などを挙げることができる。
 これら芳香族スルホン酸アルカリ(土類)金属塩では、特にカリウム塩が好適である。これらの芳香族スルホン酸アルカリ(土類)金属塩の中でも、ジフェニルスルホン-3-スルホン酸カリウム、およびジフェニルスルホン-3,3’-ジスルホン酸ジカリウムが好適である。特にこれらの混合物(前者と後者の重量比が15/85~30/70)が好適である。
 スルホン酸アルカリ(土類)金属塩以外の有機金属塩としては、硫酸エステルのアルカリ(土類)金属塩および芳香族スルホンアミドのアルカリ(土類)金属塩などが好適に例示される。
 硫酸エステルのアルカリ(土類)金属塩としては、特に一価および/または多価アルコール類の硫酸エステルのアルカリ(土類)金属塩を挙げることができる。かかる一価および/または多価アルコール類の硫酸エステルとしては、メチル硫酸エステル、エチル硫酸エステル、ラウリル硫酸エステル、ヘキサデシル硫酸エステル、ポリオキシエチレンアルキルフェニルエーテルの硫酸エステル、ペンタエリスリトールのモノ、ジ、トリ、テトラ硫酸エステル、ラウリン酸モノグリセライドの硫酸エステル、パルミチン酸モノグリセライドの硫酸エステル、およびステアリン酸モノグリセライドの硫酸エステルなどを挙げることができる。これらの硫酸エステルのアルカリ(土類)金属塩として好ましくはラウリル硫酸エステルのアルカリ(土類)金属塩が挙げられる。
 芳香族スルホンアミドのアルカリ(土類)金属塩としては、例えばサッカリン、N-(p-トリルスルホニル)-p-トルエンスルホイミド、N-(N’-ベンジルアミノカルボニル)スルファニルイミド、およびN-(フェニルカルボキシル)スルファニルイミドのアルカリ(土類)金属塩などが挙げられる。
 有機金属塩系難燃剤の含有量は、A成分およびB成分からなる成分100重量部に対して、好ましくは0.001~1重量部、より好ましくは0.005~0.5重量部、さらに好ましくは0.01~0.3重量部、特に好ましくは0.03~0.15重量部である。
(ii)有機リン系難燃剤
 有機リン系難燃剤としては、アリールホスフェート化合物、ホスファゼン化合物が好適に用いられる。これらの有機リン系難燃剤は、可塑化効果があるため、成形加工性を高められる点で有利である。アリールホスフェート化合物は、従来、難燃剤として公知の各種ホスフェート化合物が使用できるが、より好適には特に下記一般式〔7〕で表される1種または2種以上のホスフェート化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000017
(但し上記式中のMは、二価フェノールから誘導される二価の有機基を表し、Ar、Ar、Ar、およびArはそれぞれ一価フェノールから誘導される一価の有機基を表す。a、b、cおよびdはそれぞれ独立して0または1であり、mは0~5の整数であり、重合度mの異なるリン酸エステルの混合物の場合は、mはその平均値を表し、0~5の値である。)
 前記式のホスフェート化合物は、異なるm数を有する化合物の混合物であってもよく、かかる混合物の場合、平均のm数は好ましくは0.5~1.5、より好ましくは0.8~1.2、更に好ましくは0.95~1.15、特に好ましくは1~1.14の範囲である。
 上記Mを誘導する二価フェノールの好適な具体例としては、ハイドロキノン、レゾルシノール、ビス(4-ヒドロキシジフェニル)メタン、ビスフェノールA、ジヒドロキシジフェニル、ジヒドロキシナフタレン、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)ケトン、およびビス(4-ヒドロキシフェニル)サルファイドが例示され、なかでも好ましくはレゾルシノール、ビスフェノールA、およびジヒドロキシジフェニルである。
 上記Ar、Ar、Ar、およびArを誘導する一価フェノールの好適な具体例としては、フェノール、クレゾール、キシレノール、イソプロピルフェノール、ブチルフェノール、およびp-クミルフェノールが例示される。なかでも好ましくはフェノール、および2,6-ジメチルフェノールである。
 尚、かかる一価フェノールはハロゲン原子で置換されてもよい。該一価フェノールから誘導される基を有するホスフェート化合物の具体例としては、トリス(2,4,6-トリブロモフェニル)ホスフェートおよびトリス(2,4-ジブロモフェニル)ホスフェート、トリス(4-ブロモフェニル)ホスフェートなどが例示される。
 一方、ハロゲン原子で置換されていないホスフェート化合物の具体例としては、トリフェニルホスフェートおよびトリ(2,6-キシリル)ホスフェートなどのモノホスフェート化合物、並びにレゾルシノールビスジ(2,6-キシリル)ホスフェート)を主体とするホスフェートオリゴマー、4,4-ジヒドロキシジフェニルビス(ジフェニルホスフェート)を主体とするホスフェートオリゴマー、およびビスフェノールAビス(ジフェニルホスフェート)を主体とするリン酸エステルオリゴマーが好適である。ここで主体とするとは、重合度の異なる他の成分を少量含んでよいことを示し、より好適には前記式〔7〕におけるm=1の成分が80重量%以上、より好ましくは85重量%以上、更に好ましくは90重量%以上含有されることを示す。
 ホスファゼン化合物は、従来難燃剤として公知の各種ホスファゼン化合物が使用できるが、下記一般式〔8〕、〔9〕で表されるホスファゼン化合物が好ましい。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
(式中、X、X、X、Xは、水素、水酸基、アミノ基、またはハロゲン原子を含まない有機基を表す。また、rは3~10の整数を表す。)
 上記式〔8〕、〔9〕中、X、X、X、Xで表されるハロゲン原子を含まない有機基としては、例えば、アルコキシ基、フェニル基、アミノ基、アリル基などが挙げられる。なかでも上記式〔8〕で表される環状ホスファゼン化合物が好ましく、更に、上記式〔8〕中のX、Xがフェノキシ基である環状フェノキシホスファゼンが特に好ましい。
 有機リン系難燃剤の含有量は、A成分およびB成分からなる成分100重量部に対して、1~50重量部であることが好ましく、より好ましくは2~30重量部であり、5~20重量部がさらに好ましい。有機リン系難燃剤の配合量が1重量部未満であると難燃化の効果が得がたく、50重量部を超えると混練押出時にストランド切れやサージングなどが起こり、生産性が低下するという問題が生ずる場合がある。
(iii)シリコーン系難燃剤
 シリコーン系難燃剤として使用されるシリコーン化合物は、燃焼時の化学反応によって難燃性を向上させるものである。該化合物としては、従来、芳香族ポリカーボート樹脂の難燃剤として提案された各種の化合物を使用することができる。シリコーン化合物は、その燃焼時にそれ自体が結合してまたは樹脂に由来する成分と結合してストラクチャーを形成することにより、または該ストラクチャー形成時の還元反応により、特にポリカーボネート樹脂を用いた場合に高い難燃効果を付与するものと考えられている。
 従って、かかる反応における活性の高い基を含んでいることが好ましく、より具体的には、アルコキシ基およびハイドロジェン(即ちSi-H基)から選択された少なくとも1種の基を所定量含んでいることが好ましい。かかる基(アルコキシ基、Si-H基)の含有割合としては、0.1~1.2mol/100gの範囲が好ましく、0.12~1mol/100gの範囲がより好ましく、0.15~0.6mol/100gの範囲が更に好ましい。かかる割合はアルカリ分解法より、シリコーン化合物の単位重量当たりに発生した水素またはアルコールの量を測定することにより求められる。尚、アルコキシ基は炭素数1~4のアルコキシ基が好ましく、特にメトキシ基が好適である。
 一般的にシリコーン化合物の構造は、以下に示す4種類のシロキサン単位を任意に組み合わせることによって構成される。すなわち、M単位:(CHSiO1/2、H(CHSiO1/2、H(CH)SiO1/2、(CH(CH=CH)SiO1/2、(CH(C)SiO1/2、(CH)(C)(CH=CH)SiO1/2などの1官能性シロキサン単位、D単位:(CHSiO、H(CH)SiO、HSiO、H(C)SiO、(CH)(CH=CH)SiO、(CSiOなどの2官能性シロキサン単位、T単位:(CH)SiO3/2、(C)SiO3/2、HSiO3/2、(CH=CH)SiO3/2、(C)SiO3/2などの3官能性シロキサン単位、Q単位:SiOで示される4官能性シロキサン単位である。
 シリコーン系難燃剤に使用されるシリコーン化合物の構造は、具体的には、示性式としてDn、Tp、MmDn、MmTp、MmQq、MmDnTp、MmDnQq、MmTpQq、MmDnTpQq、DnTp、DnQq、DnTpQqが挙げられる。この中で好ましいシリコーン化合物の構造は、MmDn、MmTp、MmDnTp、MmDnQqであり、さらに好ましい構造は、MmDnまたはMmDnTpである。
 ここで、前記示性式中の係数m、n、p、qは、各シロキサン単位の重合度を表す1以上の整数であり、各示性式における係数の合計がシリコーン化合物の平均重合度となる。この平均重合度は、好ましくは3~150の範囲、より好ましくは3~80の範囲、更に好ましくは3~60の範囲、特に好ましくは4~40の範囲である。かかる好適な範囲であるほど難燃性において優れるようになる。更に後述するように芳香族基を所定量含むシリコーン化合物においては透明性や色相にも優れる。その結果良好な反射光が得られる。またm、n、p、qのいずれかが2以上の数値である場合、その係数の付いたシロキサン単位は、結合する水素原子や有機残基が異なる2種以上のシロキサン単位とすることができる。
 シリコーン化合物は、直鎖状であっても分岐構造を持つものであってもよい。またケイ素原子に結合する有機残基は、好ましくは炭素数1~30、より好ましくは炭素数1~20の有機残基であることが好ましい。かかる有機残基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、およびデシル基などのアルキル基、シクロヘキシル基の如きシクロアルキル基、フェニル基の如きアリール基、並びにトリル基の如きアラルキル基を挙げることがでる。さらに好ましくは炭素数1~8のアルキル基、アルケニル基またはアリール基である。アルキル基としては、特にはメチル基、エチル基、およびプロピル基などの炭素数1~4のアルキル基が好ましい。さらにシリコーン系難燃剤として使用されるシリコーン化合物はアリール基を含有することが好ましい。
 一方、二酸化チタン顔料の有機表面処理剤としてのシラン化合物およびシロキサン化合物は、アリール基を含有しない方が、好ましい効果が得られる点で、シリコーン系難燃剤とはその好適な態様において明確に区別される。シリコーン系難燃剤として使用されるシリコーン化合物は、前記Si-H基およびアルコキシ基以外にも反応基を含有していてもよい。かかる反応基としては例えば、アミノ基、カルボキシル基、エポキシ基、ビニル基、メルカプト基、およびメタクリロキシ基などが例示される。
 シリコーン系難燃剤の含有量は、A成分およびB成分からなる成分100重量部に対して、好ましくは0.01~20重量部、より好ましくは0.5~10重量部、さらに好ましくは1~5重量部である。
(iv)フィブリル形成能を有するポリテトラフルオロエチレン(フィブリル化PTFE)
 フィブリル化PTFEは、フィブリル化PTFE単独であっても、混合形態のフィブリル化PTFE、すなわちフィブリル化PTFE粒子と有機系重合体とからなるポリテトラフルオロエチレン系混合体であってもよい。フィブリル化PTFEは極めて高い分子量を有し、せん断力などの外的作用によりPTFE同士を結合して繊維状になる傾向を示すものである。
 その数平均分子量は、150万~数千万の範囲である。かかる下限はより好ましくは300万である。かかる数平均分子量は、例えば特開平6-145520号公報に開示されているとおり、380℃でのポリテトラフルオロエチレンの溶融粘度に基づき算出される。即ち、フィブリル化PTFEは、かかる公報に記載された方法で測定される380℃における溶融粘度が10~1013poiseの範囲であり、好ましくは10~1012poiseの範囲である。
 かかるPTFEは、固体形状の他、水性分散液形態のものも使用可能である。またかかるフィブリル化PTFEは樹脂中での分散性を向上させ、さらに良好な難燃性および機械的特性を得るために他の樹脂との混合形態のPTFE混合物を使用することも可能である。
 また、特開平6-145520号公報に開示されているとおり、かかるフィブリル化PTFEを芯とし、低分子量のポリテトラフルオロエチレンを殻とした構造を有するものも好ましく利用される。
 かかるフィブリル化PTFEの市販品としては例えば三井・デュポンフロロケミカル(株)のテフロン(登録商標)6J、ダイキン化学工業(株)のポリフロンMPA FA500、F-201Lなどを挙げることができる。
 混合形態のフィブリル化PTFEとしては、(1)フィブリル化PTFEの水性分散液と有機重合体の水性分散液または溶液とを混合し、共沈殿を行い、共凝集混合物を得る方法(特開昭60-258263号公報、特開昭63-154744号公報などに記載された方法)、(2)フィブリル化PTFEの水性分散液と乾燥した有機重合体粒子とを混合する方法(特開平4-272957号公報に記載された方法)、(3)フィブリル化PTFEの水性分散液と有機重合体粒子溶液を均一に混合し、かかる混合物からそれぞれの媒体を同時に除去する方法(特開平06-220210号公報、特開平08-188653号公報などに記載された方法)、(4)フィブリル化PTFEの水性分散液中で有機重合体を形成する単量体を重合する方法(特開平9-95583号公報に記載された方法)、および(5)PTFEの水性分散液と有機重合体分散液を均一に混合後、更に該混合分散液中でビニル系単量体を重合し、その後混合物を得る方法(特開平11-29679号公報などに記載された方法)により得られたものが使用できる。
 これらの混合形態のフィブリル化PTFEの市販品としては、三菱レイヨン(株)の「メタブレン A3000」(商品名)「メタブレン A3700」(商品名)、「メタブレン A3800」(商品名)で代表されるメタブレンAシリーズ、Shine Polymer社のSN3300B7(商品名)、およびGEスペシャリティーケミカルズ社製 「BLENDEX B449」(商品名)などが例示される。
 混合形態におけるフィブリル化PTFEの割合としては、かかる混合物100重量%中、フィブリル化PTFEが1重量%~95重量%であることが好ましく、10重量%~90重量%であるのがより好ましく、20重量%~80重量%が最も好ましい。
 混合形態におけるフィブリル化PTFEの割合がかかる範囲にある場合は、フィブリル化PTFEの良好な分散性を達成することができる。フィブリル化PTFEの含有量は、A成分およびB成分からなる成分100重量部に対して、好ましくは0.001~0.5重量部であり、0.01~0.5重量部がより好ましく、0.1~0.5重量部がさらに好ましい。
(III)染顔料
 本発明の強化ポリカーボネート樹脂組成物は、更に各種の染顔料を含有し多様な意匠性を発現する成形品を提供できる。本発明で使用する染顔料としては、ペリレン系染料、クマリン系染料、チオインジゴ系染料、アンスラキノン系染料、チオキサントン系染料、紺青などのフェロシアン化物、ペリノン系染料、キノリン系染料、キナクリドン系染料、ジオキサジン系染料、イソインドリノン系染料、およびフタロシアニン系染料などを挙げることができる。
 更に本発明のポリカーボネート樹脂組成物は、メタリック顔料を配合してより良好なメタリック色彩を得ることもできる。メタリック顔料としては、アルミ粉が好適である。また、蛍光増白剤やそれ以外の発光をする蛍光染料を配合することにより、発光色を生かした更に良好な意匠効果を付与することができる。
(IV)蛍光増白剤
 本発明の強化ポリカーボネート樹脂組成物において、蛍光増白剤は、樹脂などの色調を白色あるいは青白色に改善するために用いられるものであれば特に制限はなく、例えばスチルベン系、ベンズイミダゾール系、ベンズオキサゾール系、ナフタルイミド系、ローダミン系、クマリン系、オキサジン系化合物などが挙げられる。具体的には、例えば、CI Fluorescent Brightener 219:1や、イーストマンケミカル社製EASTOBRITE OB-1や昭和化学(株)製「ハッコールPSR」、などを挙げることができる。ここで蛍光増白剤は、光線の紫外部のエネルギーを吸収し、このエネルギーを可視部に放射する作用を有するものである。蛍光増白剤の含有量は、A成分およびB成分からなる成分100重量部に対して、0.001~0.1重量部が好ましく、より好ましくは0.001~0.05重量部である。0.1重量部を超えても該組成物の色調の改良効果は小さい。
(V)熱線吸収能を有する化合物
 本発明の強化ポリカーボネート樹脂組成物は、熱線吸収能を有する化合物を含有することができる。かかる化合物としては、フタロシアニン系近赤外線吸収剤、ATO、ITO、酸化イリジウムおよび酸化ルテニウム、酸化イモニウム、酸化チタンなどの金属酸化物系近赤外線吸収剤、ホウ化ランタン、ホウ化セリウムおよびホウ化タングステンなどの金属ホウ化物系や酸化タングステン系近赤外線吸収剤などの近赤外吸収能に優れた各種の金属化合物、ならびに炭素フィラーが好適に例示される。
 かかるフタロシアニン系近赤外線吸収剤としては、例えば、三井化学(株)製MIR-362が市販され容易に入手可能である。炭素フィラーとしてはカーボンブラック、グラファイト(天然、および人工のいずれも含む)およびフラーレンなどが例示される。好ましくはカーボンブラックおよびグラファイトである。これらは単体または2種以上を併用して使用することができる。
 フタロシアニン系近赤外線吸収剤の含有量は、A成分およびB成分からなる成分100重量部に対して、0.0005~0.2重量部が好ましく、0.0008~0.1重量部がより好ましく、0.001~0.07重量部がさらに好ましい。金属酸化物系近赤外線吸収剤、金属ホウ化物系近赤外線吸収剤および炭素フィラーの含有量は、本発明のポリカーボネート樹脂組成物中、0.1~200ppm(重量割合)の範囲が好ましく、0.5~100ppmの範囲がより好ましい。
(VI)光拡散剤
 本発明の強化ポリカーボネート樹脂組成物には、光拡散剤を配合して光拡散効果を付与することができる。かかる光拡散剤としては高分子微粒子、炭酸カルシウムの如き低屈折率の無機微粒子、およびこれらの複合物などが例示される。かかる高分子微粒子は、既にポリカーボネート樹脂の光拡散剤として公知の微粒子である。より好適には、粒径数μmのアクリル架橋粒子およびポリオルガノシルセスキオキサンに代表されるシリコーン架橋粒子などが例示される。光拡散剤の形状は、球形、円盤形、柱形、および不定形などが例示される。かかる球形は、完全球である必要はなく変形しているものを含み、かかる柱形は立方体を含む。好ましい光拡散剤は球形であり、その粒径は均一であるほど好ましい。光拡散剤の含有量は、A成分およびB成分からなる成分100重量部に対して、好ましくは0.005~20重量部、より好ましくは0.01~10重量部、更に好ましくは0.01~3重量部である。尚、光拡散剤は2種以上を併用することができる。
(VII)光高反射用白色顔料
 本発明の強化ポリカーボネート樹脂組成物には、光高反射用白色顔料を配合して光反射効果を付与することができる。かかる白色顔料としては二酸化チタン(特にシリコーンなど有機表面処理剤により処理された二酸化チタン)顔料が、特に好ましい。かかる光高反射用白色顔料の含有量は、A成分およびB成分からなる成分100重量部に対して、3~30重量部が好ましく、8~25重量部がより好ましい。尚、光高反射用白色顔料は2種以上を併用することができる。
(VIII)紫外線吸収剤
 本発明の強化ポリカーボネート樹脂組成物には、紫外線吸収剤を配合して耐候性を付与することができる。
 かかる紫外線吸収剤としては、具体的にはベンゾフェノン系では、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-ベンジロキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシ-5-ソジウムスルホキシベンゾフェノン、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン、2-ヒドロキシ-4-n-ドデシルオキシベンソフェノン、および2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノンなどが例示される。
 紫外線吸収剤としては、具体的に、ベンゾトリアゾール系では、例えば、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-3,5-ジクミルフェニル)フェニルベンゾトリアゾール、2-(2-ヒドロキシ-3-tert-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-アミルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-ブチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-4-オクトキシフェニル)ベンゾトリアゾ-ル、2,2’-メチレンビス(4-クミル-6-ベンゾトリアゾールフェニル)、2,2’-p-フェニレンビス(1,3-ベンゾオキサジン-4-オン)、および2-[2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミドメチル)-5-メチルフェニル]ベンゾトリアゾ-ルなどが例示される。また、2-(2’-ヒドロキシ-5-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体や、2-(2’―ヒドロキシ-5-アクリロキシエチルフェニル)―2H―ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体などの2-ヒドロキシフェニル-2H-ベンゾトリアゾール骨格を有する重合体などが例示される。
 紫外線吸収剤は、具体的に、ヒドロキシフェニルトリアジン系では、例えば、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-ヘキシルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-メチルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-エチルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-プロピルオキシフェノール、および2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-ブチルオキシフェノールなどが例示される。
 さらに2-(4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-ヘキシルオキシフェノールなど、上記例示化合物のフェニル基が2,4-ジメチルフェニル基となった化合物が例示される。
 紫外線吸収剤は、具体的に環状イミノエステル系では、例えば2,2’-p-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-m-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、および2,2’-p,p’-ジフェニレンビス(3,1-ベンゾオキサジン-4-オン)などが例示される。
 また紫外線吸収剤としては、具体的にシアノアクリレート系では、例えば1,3-ビス-[(2’-シアノ-3’,3’-ジフェニルアクリロイル)オキシ]-2,2-ビス[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3-ビス-[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]ベンゼンなどが例示される。
 さらに上記紫外線吸収剤は、ラジカル重合が可能な単量体化合物の構造をとることにより、かかる紫外線吸収性単量体および/または光安定性単量体と、アルキル(メタ)アクリレートなどの単量体とを共重合したポリマー型の紫外線吸収剤であってもよい。前記紫外線吸収性単量体としては、(メタ)アクリル酸エステルのエステル置換基中にベンゾトリアゾール骨格、ベンゾフェノン骨格、トリアジン骨格、環状イミノエステル骨格、およびシアノアクリレート骨格を含有する化合物が好適に例示される。前記の中でも紫外線吸収能の点においてはベンゾトリアゾール系およびヒドロキシフェニルトリアジン系が好ましく、耐熱性や色相の点では、環状イミノエステル系およびシアノアクリレート系が好ましい。具体的には例えばケミプロ化成(株)「ケミソーブ79」、BASFジャパン(株)「チヌビン234」などが挙げられる。前記紫外線吸収剤は単独であるいは2種以上の混合物で用いてもよい。
 紫外線吸収剤の含有量は、A成分およびB成分からなる成分100重量部に対して、好ましくは0.01~3重量部、より好ましくは0.01~1重量部、さらに好ましくは0.05~1重量部、特に好ましくは0.05~0.5重量部である。
(IX)帯電防止剤
 本発明の強化ポリカーボネート樹脂組成物には、帯電防止性能が求められる場合があり、かかる場合、帯電防止剤を含むことが好ましい。かかる帯電防止剤としては、例えば(1)ドデシルベンゼンスルホン酸ホスホニウム塩に代表されるアリールスルホン酸ホスホニウム塩、およびアルキルスルホン酸ホスホニウム塩などの有機スルホン酸ホスホニウム塩、並びにテトラフルオロホウ酸ホスホニウム塩の如きホウ酸ホスホニウム塩が挙げられる。該ホスホニウム塩の含有量は、A成分およびB成分からなる成分100重量部に対し、5重量部以下が適切であり、好ましくは0.05~5重量部、より好ましくは1~3.5重量部、更に好ましくは1.5~3重量部の範囲である。
 帯電防止剤としては、例えば、(2)有機スルホン酸リチウム、有機スルホン酸ナトリウム、有機スルホン酸カリウム、有機スルホン酸セシウム、有機スルホン酸ルビジウム、有機スルホン酸カルシウム、有機スルホン酸マグネシウム、および有機スルホン酸バリウムなどの有機スルホン酸アルカリ(土類)金属塩が挙げられる。かかる金属塩は前述のとおり、難燃剤としても使用される。かかる金属塩は、より具体的には例えばドデシルベンゼンスルホン酸の金属塩やパーフルオロアルカンスルホン酸の金属塩などが例示される。有機スルホン酸アルカリ(土類)金属塩の含有量は、A成分およびB成分からなる成分100重量部に対して、0.5重量部以下が適切であり、好ましくは0.001~0.3重量部、より好ましくは0.005~0.2重量部である。特にカリウム、セシウム、およびルビジウムなどのアルカリ金属塩が好適である。
 帯電防止剤としては、例えば(3)アルキルスルホン酸アンモニウム塩、およびアリールスルホン酸アンモニウム塩などの有機スルホン酸アンモニウム塩が挙げられる。該アンモニウム塩は、A成分およびB成分からなる成分100重量部に対して、0.05重量部以下が適切である。帯電防止剤としては、例えば(4)ポリエーテルエステルアミドの如きポリ(オキシアルキレン)グリコール成分をその構成成分として含有するポリマーが挙げられる。該ポリマーはA成分およびB成分からなる成分100重量部に対して、5重量部以下が適切である。
(X)充填材
 本発明の強化ポリカーボネート樹脂組成物には、繊維状充填剤以外の強化フィラーとして公知の各種充填材を配合することができる。かかる充填材としては、各種の板状充填材および粒状充填材が利用できる。ここで、板状充填材はその形状が板状(表面に凹凸を有するものや、板が湾曲を有するものを含む)である充填材である。粒状充填材は、不定形状を含むこれら以外の形状の充填材である。
 板状充填材としては、ガラスフレーク、タルク、マイカ、カオリン、メタルフレーク、カーボンフレーク、およびグラファイト、並びにこれらの充填剤に対して例えば金属や金属酸化物などの異種材料を表面被覆した板状充填材などが好ましく例示される。
 その粒径は、0.1~300μmの範囲が好ましい。かかる粒径は、10μm程度までの領域は液相沈降法の1つであるX線透過法で測定された粒子径分布のメジアン径(D50)による値をいい、10~50μmの領域ではレーザー回折・散乱法で測定された粒子径分布のメジアン径(D50)による値をいい、50~300μmの領域では振動式篩分け法による値である。かかる粒径は、樹脂組成物中での粒径である。
 板状充填材は、各種のシラン系、チタネート系、アルミネート系、およびジルコネート系などのカップリング剤で表面処理されてもよく、またオレフィン系樹脂、スチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、およびウレタン系樹脂などの各種樹脂や高級脂肪酸エステルなどにより集束処理されるか、または圧縮処理された造粒物であってもよい。
(XI)他の樹脂やエラストマー
 本発明の強化ポリカーボネート樹脂組成物には、本発明の効果を損なわない範囲で、樹脂成分の一部に代えて、他の樹脂やエラストマーを本発明の効果を発揮する範囲において、少割合使用することもできる。他の樹脂やエラストマーの配合量は、A成分およびB成分からなる成分100重量部に対して、好ましくは20重量部以下、より好ましくは10重量部以下、更に好ましくは5重量部以下、最も好ましくは3重量部以下である。
 かかる他の樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリウレタン樹脂、シリコーン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリメタクリレート樹脂、フェノール樹脂、エポキシ樹脂などの樹脂が挙げられる。
 また、エラストマーとしては、例えばイソブチレン/イソプレンゴム、スチレン/ブタジエンゴム、エチレン/プロピレンゴム、アクリル系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、コアシェル型のエラストマーであるMBS(メタクリル酸メチル/スチレン/ブタジエン)ゴム、MB(メタクリル酸メチル/ブタジエン)ゴム、MAS(メタクリル酸メチル/アクリロニトリル/スチレン)ゴムなどが挙げられる。
(XII)その他の添加剤
 本発明の強化ポリカーボネート樹脂組成物には、その他の流動改質剤、抗菌剤、流動パラフィンの如き分散剤、光触媒系防汚剤およびフォトクロミック剤などを配合することができる。
 <樹脂組成物の製造について>
 本発明の強化ポリカーボネート樹脂組成物は、単軸押出機、二軸押出機の如き押出機を用いて、溶融混練することによりペレット化することができる。かかるペレットを作製するにあたり、上記各種強化充填剤、添加剤を配合することもできる。本発明の強化ポリカーボネート樹脂組成物は、通常、前記の如く製造されたペレットを射出成形して各種製品を製造することができる。
 更にペレットを経由することなく、押出機で溶融混練された樹脂を直接シート、フィルム、異型押出成形品、ダイレクトブロー成形品、および射出成形品にすることも可能である。かかる射出成形においては、通常の成形方法だけでなく、適宜目的に応じて、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体の注入によるものを含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、サンドイッチ成形、および超高速射出成形などの射出成形法を用いて成形品を得ることができる。これら各種成形法の利点は既に広く知られるところである。
 また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。また本発明の樹脂組成物は、押出成形により各種異形押出成形品、シート、およびフィルムなどの形で利用することもできる。またシート、フィルムの成形にはインフレーション法や、カレンダー法、キャスティング法なども使用可能である。さらに特定の延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また本発明の樹脂組成物を回転成形やブロー成形などにより成形品とすることも可能である。
 <成形品の製造>
 本発明の強化ポリカーボネート樹脂組成物からなる成形体は、通常、かかるペレットを射出成形して成形品を得ることができる。かかる射出成形においては、通常のコールドランナー方式の成形法だけでなく、ランナーレスを可能とするホットランナーによって製造することも可能である。また射出成形においても、通常の成形方法だけでなくガスアシスト射出成形、射出圧縮成形、超高速射出成形、射出プレス成形、二色成形、サンドイッチ成形、インモールドコーティング成形、インサート成形、発泡成形(超臨界流体を利用するものを含む)、急速加熱冷却金型成形、断熱金型成形および金型内再溶融成形、並びにこれらの組合せからなる成形法などを使用することができる。
 本発明の成形体のノッチ付シャルピー衝撃強度は、好ましく10kJ/m以上、より好ましくは13kJ/m以上、さらに好ましくは15kJ/m以上である。ノッチ付シャルピー衝撃強度は、試験片(寸法:長さ80mm×幅10mm×厚み4mm)を、ISO179(測定条件23℃)に準拠して測定する。
 本発明の成形体の荷重たわみ温度は、好ましくは140℃以上、より好ましくは144℃以上、さらに好ましくは145℃以上である。荷重たわみ温度は、試験片(寸法:長さ80mm×幅10mm×厚み4mm)を、ISO75-1、2に準拠し、荷重1.80MPaで測定する。
 本発明の成形体の曲げ弾性率は、好ましくは3500MPa以上、より好ましくは3700MPa以上、さらに好ましくは3800MPa以上である。曲げ弾性率は、試験片(寸法:長さ80mm×幅10mm×厚み4mm)を、ISO178に準拠しで測定する。
 本発明の成形体は、厚み3.0mmにてUL94ランクで、V-0若しくはV-1の難燃性を示すことが好ましい。
 本発明者が現在最良と考える本発明の形態は、前記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。
1.フッ素樹脂の評価
1-1.融点
 示差走査熱量測定(DSC)装置を用いて、10℃/分の速度で昇温したときの融解熱曲線における極大値に対応する温度として求めた。
1-2.5%重量減少温度
 JIS K7120に準拠し、TGA測定装置を用いて、窒素ガス雰囲気中、23℃から900℃までの温度範囲および20℃/分の昇温速度からなる測定条件の下で測定した。かかる重量減少挙動において、5%の重量減少が認められる温度を5%重量減少温度とした。
 2.ガラス強化ポリカーボネート樹脂組成物の評価
2-1.耐衝撃性(シャルピー衝撃強度)
 実施例の各組成から得られたペレットを、120℃の条件下5時間乾燥させた後、射出成形機(住友重機械工業(株)製 SG-150U)によりシリンダー温度300℃、金型温度80℃で試験片(寸法:長さ80mm×幅10mm×厚み4mm)を成形した。ノッチ付シャルピー衝撃強度はISO179(測定条件23℃)に準拠して測定した。ノッチ付シャルピー衝撃強度は10kJ/mより大きいことが好ましい。
2-2.耐熱性(荷重たわみ温度)
 前記2-1と同条件で成形した試験片(寸法:長さ80mm×幅10mm×厚み4mm)を、ISO75-1、2に準拠し、荷重たわみ温度(荷重1.80MPa)を測定した。荷重たわみ温度は、140℃より高いことが好ましい。
2-3.強度(曲げ弾性率)
 前記2-1と同条件で成形した試験片(寸法:長さ80mm×幅10mm×厚み4mm)を、ISO178に準拠し、曲げ弾性率を測定した。曲げ弾性率は、3,500MPaより高いことが好ましい。
2-4.熱安定性(滞留後の外観)
 実施例の各組成から得られたペレットを、120℃の条件下5時間乾燥させた後、射出成形機(住友重機械工業(株)製 SG-150U)によりシリンダー温度300℃、金型温度80℃で角板(寸法:長さ150mm×幅150mm×厚み2mm)を成形した。その後、計量が完了した状態で射出シリンダーを後退させてシリンダー内で溶融樹脂を10分間滞留させた後、同様の条件で成形を行った。熱安定性は、滞留後3ショットの成形品の外観を目視にて観察し、下記基準で評価を行った。
     〇:シルバーが見られないもの
     ×:シルバーが見られるもの
2-5.難燃性
 米国アンダーライターラボラトリー社の定める方法(UL94)に準拠し、厚み3.0mmにてUL94ランクを評価した。なお試験片は、射出成形機(住友重機械工業(株)製 SG-150U)によりシリンダー温度280℃、金型温度80℃で成形した。なお、判定がV-0、V-1、V-2のいずれの基準も満たすことが出来なかった場合「notV」と示すこととした。燃焼試験時にドリップしないことが重要であり、UL94ランクではV-1もしくはV-0であることが好ましい。
[実施例1~34、および比較例1~15]
 A~C成分および各種添加剤を、表1~4記載の各配合量で、ブレンダーにて混合した後、ベント式二軸押出機を用いて溶融混練してペレットを得た。使用する各種添加剤は、それぞれ配合量の10~100倍の濃度を目安に予めポリカーボネート樹脂との予備混合物を作成した後、ブレンダーによる全体の混合を行った。
 ベント式二軸押出機は、(株)日本製鋼所製:TEX30α(完全かみ合い、同方向回転、2条ネジスクリュー)を使用した。押出条件は吐出量20kg/h、スクリュー回転数150rpm、ベントの真空度3kPaであり、また押出温度は第一供給口から第二供給口まで270℃、第二供給口からダイス部分まで280℃とした。得られたペレットの評価結果を表1~表4に示す。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
 なお、使用した各成分の詳細は以下の通りである。
(A成分)
A-1:下記製法により得られた粘度平均分子量22,400のポリカーボネート樹脂パウダー
[製造方法]
 温度計、攪拌機、還流冷却器付き反応器に、イオン交換水2340部、25%水酸化ナトリウム水溶液947部、ハイドロサルファイト0.7部を仕込み、攪拌下に2,2-ビス(4-ヒドロキシフェニル)プロパン(以下「ビスフェノールA」と称する事がある)710部を溶解した(ビスフェノールA溶液)後、塩化メチレン2299部と48.5%水酸化ナトリウム水溶液112部を加えて、15~25℃でホスゲン354部を約90分かけて吹き込みホスゲン化反応を行った。
 ホスゲン化終了後、11%濃度のp-tert-ブチルフェノールの塩化メチレン溶液125部と48.5%水酸化ナトリウム水溶液88部を加えて、攪拌を停止し、10分間静置分離後、攪拌を行い乳化させ5分後、ホモミキサー(特殊機化工業(株))で回転数1200rpm、パス回数35回で処理し高乳化ドープを得た。該高乳化ドープを重合槽(攪拌機付き)で、無攪拌条件下、温度35℃で3時間反応し重合を終了した。
 反応終了後、有機相を分離し、塩化メチレンで希釈して水洗した後、塩酸酸性にして水洗し、水相の導電率がイオン交換水と殆ど同じになったところで温水を張ったニーダーに投入して、攪拌しながら塩化メチレンを蒸発させ、ポリカーボネートのパウダーを得た。脱水後、熱風循環式乾燥機により120℃で12時間乾燥し、ポリカーボネート樹脂パウダーを得た。
A-2:下記製法により得られた粘度平均分子量19,800のポリカーボネート樹脂パウダー
 [製造方法]
 11%濃度のp-tert-ブチルフェノールの塩化メチレン溶液を128部に変更した以外は、A-1の製造方法と同様に行い、ポリカーボネート樹脂パウダーを得た。
(B成分)
B-1:円形断面チョップドガラス繊維(日東紡績(株)製;CSG 3PE-455(商品名)、繊維径13μm、カット長3mm、ウレタン系集束剤)
B-2:炭素繊維(東邦テナックス(株)製;HT C422、繊維径7μm)
B-3:ガラスミルドファイバー(日東紡績(株)製PFE-301、平均繊維径9μm、平均繊維長30μm、シランカップリング剤処理)
B-4:扁平断面チョップドガラス繊維(日東紡績(株)製:CSG 3PA-830、長径27μm、短径4μm、カット長3mm、エポキシ系集束剤)
(C成分)
(C-I成分)
C-I-1:エチレン/テトラフルオロエチレン共重合体(融点:275℃)
C-I-2:エチレン/テトラフルオロエチレン共重合体(融点:231℃)
C-I-3(比較):エチレン/テトラフルオロエチレン共重合体(融点:191℃)
C-I-4(比較):エチレン/テトラフルオロエチレン共重合体(融点:285℃)
C-I-5(比較):ポリテトラフルオロエチレン(ダイキン工業株式会社製:ルブロンL7(商品名))(融点:327℃)
(C-II成分)
C-II-1:テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(融点:253℃、5%重量減少温度:477℃)
C-II-2:テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(融点:292℃、5%重量減少温度:495℃)
C-II-3(比較):エチレン/テトラフルオロエチレン共重合体(融点:191℃、5%重量減少温度:461℃)
C-II-4(比較):ポリテトラフルオロエチレン(ダイキン工業株式会社製:ルブロンL7(商品名))(融点:327℃、5%重量減少温度:499℃)
C-II-5(比較):テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(融点:306℃、5%重量減少温度:496℃)
C-II-6(比較):テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(融点:236℃、5%重量減少温度:466℃)
(その他の成分)
TMP:ホスフェート系安定剤(大八化学工業株式会社製:TMP(商品名))
TN:テトラブロモビスフェノールAのカーボネートオリゴマー(帝人(株)製:ファイヤガード FG8500(商品名))
f-114:パーフルオロブタンスルホン酸カリウム塩(大日本インキ(株)製メガファックF-114P(商品名))
UV:ベンゾトリアゾール系紫外線吸収剤(ケミプロ化成工業(株)製:ケミソーブ79(商品名))
DC:無水マレイン酸とα-オレフィンとの共重合体(三菱化学(株)製ダイヤカルナDC30M(商品名))

Claims (5)

  1.  (A)ポリカーボネート樹脂(A成分)50~95重量部および(B)繊維状充填材(B成分)5~50重量部からなる成分100重量部に対して、
    (C)2~45重量部のフッ素樹脂(C-I成分)または2~45重量部のフッ素樹脂(C-II成分)を含有し、
    (I)フッ素樹脂(C-I成分)は、下記一般式〔1〕および〔2〕で表される重合単位を含む共重合体であり、融点が200℃~280℃であり、
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    [上記一般式〔2〕において、R、R、RおよびRは夫々独立して水素原子または炭素原子数1~5のアルキル基を表す。]
    または
    (II)フッ素樹脂(C-II成分)は、下記一般式〔1〕および〔2〕で表される重合単位を含む共重合体であり、融点が240℃~300℃であり、かつTGA(熱重量解析)における5%重量減少温度が470℃以上である、
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    [上記一般式〔2〕において、R、R、RおよびRは夫々独立して、フッ素原子または炭素原子数1~5のフルオロアルキル基を表す。ただしR、R、RおよびRが全てフッ素原子である場合を除く。]
    ことを特徴とする強化ポリカーボネート樹脂組成物。
  2.  フッ素樹脂(C-I成分)中の一般式〔2〕において、R、R、RおよびRが水素原子である請求項1に記載の強化ポリカーボネート樹脂組成物。
  3.  フッ素樹脂(C-I成分)の融点が231℃~280℃である請求項1に記載の強化ポリカーボネート樹脂組成物。
  4.  B成分が、ガラス繊維、炭素繊維またはこれらの混合物である請求項1に記載の強化ポリカーボネート樹脂組成物。
  5.  請求項1に記載の強化ポリカーボネート樹脂組成物からなる成形体。
PCT/JP2018/024011 2017-06-28 2018-06-25 強化ポリカーボネート樹脂組成物 WO2019004127A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880035044.4A CN110691820B (zh) 2017-06-28 2018-06-25 增强聚碳酸酯树脂组合物
US16/626,407 US11332614B2 (en) 2017-06-28 2018-06-25 Reinforced polycarbonate resin composition
EP18823129.4A EP3647369B1 (en) 2017-06-28 2018-06-25 Reinforced polycarbonate resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017126245A JP6991003B2 (ja) 2017-06-28 2017-06-28 強化ポリカーボネート樹脂組成物
JP2017126244A JP6956538B2 (ja) 2017-06-28 2017-06-28 強化ポリカーボネート樹脂組成物
JP2017-126245 2017-06-28
JP2017-126244 2017-06-28

Publications (1)

Publication Number Publication Date
WO2019004127A1 true WO2019004127A1 (ja) 2019-01-03

Family

ID=64741565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024011 WO2019004127A1 (ja) 2017-06-28 2018-06-25 強化ポリカーボネート樹脂組成物

Country Status (5)

Country Link
US (1) US11332614B2 (ja)
EP (1) EP3647369B1 (ja)
CN (1) CN110691820B (ja)
TW (1) TW201920463A (ja)
WO (1) WO2019004127A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019156924A (ja) * 2018-03-09 2019-09-19 帝人株式会社 熱可塑性樹脂組成物

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5044241A (ja) 1973-07-30 1975-04-21
JPS55160052A (en) 1979-04-20 1980-12-12 Gen Electric Polycarbonate composition
JPS60258263A (ja) 1984-05-29 1985-12-20 バイエル・アクチエンゲゼルシヤフト テトラフルオロエチレン重合体を含む重合体粉末混合物の製造方法
JPS612750A (ja) 1984-06-15 1986-01-08 Sumitomo Chem Co Ltd ポリカ−ボネ−ト樹脂組成物
JPS63154744A (ja) 1986-12-02 1988-06-28 モベイ・コーポレーシヨン ポリカーボネートにフルオロポリマーを混入する方法
JPS63213555A (ja) 1987-02-28 1988-09-06 Sanko Shoji Kk 樹脂組成物
JPH03273052A (ja) 1990-03-22 1991-12-04 Idemitsu Petrochem Co Ltd ガラス繊維強化ポリカーボネート樹脂組成物
JPH04272957A (ja) 1990-10-31 1992-09-29 General Electric Co <Ge> 改良された外観及び改良された難燃性をもつポリカーボネート
JPH05171025A (ja) 1991-12-18 1993-07-09 Asahi Glass Co Ltd 樹脂組成物
WO1993021272A1 (en) 1992-04-10 1993-10-28 Idemitsu Kosan Co., Ltd. Fluoroelastomer-containing resin composition
JPH06145520A (ja) 1992-11-05 1994-05-24 Daikin Ind Ltd ポリフェニレンサルファイド樹脂組成物およびその製法
JPH06220210A (ja) 1992-11-17 1994-08-09 General Electric Co <Ge> 固体の添加剤をポリマー性樹脂に分散させる方法
JPH07233160A (ja) 1993-09-17 1995-09-05 Ciba Geigy Ag 安定剤としての3−アリールベンゾフラノン
JPH08188653A (ja) 1995-01-10 1996-07-23 General Electric Co <Ge> 固体の添加剤をポリマー中に分散させる方法およびそれによって得られる製品
JPH0995583A (ja) 1995-04-28 1997-04-08 General Electric Co <Ge> テトラフルオロエチレン誘導体の群を含んでなる重合物を基体とする新規ポリマーブレンド、該ブレンドの製造法と該ブレンドから得られる製品並びに該ブレンドのポリマー組成物における使用
JPH09302209A (ja) * 1996-05-14 1997-11-25 Teijin Chem Ltd 樹脂組成物及びこれから成形された成形品
JPH1129679A (ja) 1996-07-31 1999-02-02 Mitsubishi Rayon Co Ltd ポリテトラフルオロエチレン含有混合粉体、その製造方法、それを含む熱可塑性樹脂組成物およびその成形体
KR20100077939A (ko) * 2008-12-29 2010-07-08 제일모직주식회사 휨특성 및 난연성이 우수한 폴리카보네이트 수지 조성물
KR20140137536A (ko) * 2013-05-23 2014-12-03 주식회사 엘지화학 유리섬유 보강 폴리카보네이트 수지용 난연 보조제 및 이를 포함하는 유리섬유 보강 폴리카보네이트 수지 조성물
JP2015048409A (ja) 2013-09-02 2015-03-16 三菱エンジニアリングプラスチックス株式会社 摺動性ポリカーボネート樹脂組成物及び成形品
JP2015168771A (ja) * 2014-03-07 2015-09-28 旭硝子株式会社 エチレン/テトラフルオロエチレン共重合体組成物
CN105802181A (zh) * 2016-05-11 2016-07-27 南京京锦元科技实业有限公司 一种玻璃纤维增强聚碳酸酯复合材料

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629704B2 (ja) 1973-03-19 1981-07-10
US4749752A (en) * 1985-04-01 1988-06-07 Shanghai Institute Of Organic Chemistry Academia Sinica Fluoropolymer alloys
US5684088A (en) 1992-11-05 1997-11-04 Daikin Industries, Ltd. Polyphenylene sulfide resin compositions and process for preparation of same
US5521230A (en) 1992-11-17 1996-05-28 General Electric Company Method of dispersing solid additives in polymers and products made therewith
KR100466355B1 (ko) 1996-07-31 2005-06-16 미쯔비시 레이온 가부시끼가이샤 폴리테트라플루오로에틸렌함유혼합분체,이를함유하는열가소성수지조성물및그성형체
CN101065441A (zh) * 2004-11-26 2007-10-31 大金工业株式会社 热塑性聚合物组合物
TWI355401B (en) * 2006-09-29 2012-01-01 Cheil Ind Inc Thermoplastic resin composition and plastic articl
JP2010275346A (ja) * 2009-05-26 2010-12-09 Teijin Chem Ltd ガラス繊維強化樹脂組成物
JP2015199892A (ja) * 2014-04-04 2015-11-12 三菱エンジニアリングプラスチックス株式会社 摺動性ポリカーボネート樹脂組成物、その製造方法及び成形品

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5044241A (ja) 1973-07-30 1975-04-21
JPS55160052A (en) 1979-04-20 1980-12-12 Gen Electric Polycarbonate composition
JPS60258263A (ja) 1984-05-29 1985-12-20 バイエル・アクチエンゲゼルシヤフト テトラフルオロエチレン重合体を含む重合体粉末混合物の製造方法
JPS612750A (ja) 1984-06-15 1986-01-08 Sumitomo Chem Co Ltd ポリカ−ボネ−ト樹脂組成物
JPS63154744A (ja) 1986-12-02 1988-06-28 モベイ・コーポレーシヨン ポリカーボネートにフルオロポリマーを混入する方法
JPS63213555A (ja) 1987-02-28 1988-09-06 Sanko Shoji Kk 樹脂組成物
JPH03273052A (ja) 1990-03-22 1991-12-04 Idemitsu Petrochem Co Ltd ガラス繊維強化ポリカーボネート樹脂組成物
JPH04272957A (ja) 1990-10-31 1992-09-29 General Electric Co <Ge> 改良された外観及び改良された難燃性をもつポリカーボネート
JPH05171025A (ja) 1991-12-18 1993-07-09 Asahi Glass Co Ltd 樹脂組成物
WO1993021272A1 (en) 1992-04-10 1993-10-28 Idemitsu Kosan Co., Ltd. Fluoroelastomer-containing resin composition
JPH06145520A (ja) 1992-11-05 1994-05-24 Daikin Ind Ltd ポリフェニレンサルファイド樹脂組成物およびその製法
JPH06220210A (ja) 1992-11-17 1994-08-09 General Electric Co <Ge> 固体の添加剤をポリマー性樹脂に分散させる方法
JPH07233160A (ja) 1993-09-17 1995-09-05 Ciba Geigy Ag 安定剤としての3−アリールベンゾフラノン
JPH08188653A (ja) 1995-01-10 1996-07-23 General Electric Co <Ge> 固体の添加剤をポリマー中に分散させる方法およびそれによって得られる製品
JPH0995583A (ja) 1995-04-28 1997-04-08 General Electric Co <Ge> テトラフルオロエチレン誘導体の群を含んでなる重合物を基体とする新規ポリマーブレンド、該ブレンドの製造法と該ブレンドから得られる製品並びに該ブレンドのポリマー組成物における使用
JPH09302209A (ja) * 1996-05-14 1997-11-25 Teijin Chem Ltd 樹脂組成物及びこれから成形された成形品
JPH1129679A (ja) 1996-07-31 1999-02-02 Mitsubishi Rayon Co Ltd ポリテトラフルオロエチレン含有混合粉体、その製造方法、それを含む熱可塑性樹脂組成物およびその成形体
KR20100077939A (ko) * 2008-12-29 2010-07-08 제일모직주식회사 휨특성 및 난연성이 우수한 폴리카보네이트 수지 조성물
KR20140137536A (ko) * 2013-05-23 2014-12-03 주식회사 엘지화학 유리섬유 보강 폴리카보네이트 수지용 난연 보조제 및 이를 포함하는 유리섬유 보강 폴리카보네이트 수지 조성물
JP2015048409A (ja) 2013-09-02 2015-03-16 三菱エンジニアリングプラスチックス株式会社 摺動性ポリカーボネート樹脂組成物及び成形品
JP2015168771A (ja) * 2014-03-07 2015-09-28 旭硝子株式会社 エチレン/テトラフルオロエチレン共重合体組成物
CN105802181A (zh) * 2016-05-11 2016-07-27 南京京锦元科技实业有限公司 一种玻璃纤维增强聚碳酸酯复合材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3647369A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019156924A (ja) * 2018-03-09 2019-09-19 帝人株式会社 熱可塑性樹脂組成物
JP7044595B2 (ja) 2018-03-09 2022-03-30 帝人株式会社 熱可塑性樹脂組成物

Also Published As

Publication number Publication date
EP3647369A1 (en) 2020-05-06
US11332614B2 (en) 2022-05-17
CN110691820A (zh) 2020-01-14
EP3647369A4 (en) 2020-07-08
CN110691820B (zh) 2022-03-18
US20200140682A1 (en) 2020-05-07
TW201920463A (zh) 2019-06-01
EP3647369B1 (en) 2022-03-16

Similar Documents

Publication Publication Date Title
JP5602997B2 (ja) ガラス繊維強化芳香族ポリカーボネート樹脂組成物
JP5524463B2 (ja) ガラス繊維強化難燃性樹脂組成物からなる鏡筒
JP5021928B2 (ja) ガラス繊維強化難燃性樹脂組成物からなる鏡筒
JP5048948B2 (ja) ガラス繊維強化芳香族ポリカーボネート樹脂組成物
JP6343680B2 (ja) ポリカーボネート樹脂組成物およびそれからなる成形品
JP5431758B2 (ja) ポリカーボネート樹脂組成物
JP2011026439A (ja) ガラス繊維強化樹脂組成物
JP6426372B2 (ja) ポリカーボネート樹脂組成物およびそれからなる成形品
WO2013141005A1 (ja) 光拡散性樹脂組成物
JP6224331B2 (ja) 熱可塑性樹脂組成物およびその成形品
JP6181394B2 (ja) 熱可塑性樹脂組成物およびその成形品
JP5583883B2 (ja) 難燃性ポリカーボネート樹脂組成物
JP2013221072A (ja) ガラス繊維強化ポリカーボネート樹脂組成物
JP6110197B2 (ja) 導電性ポリカーボネート樹脂組成物
JP2016108389A (ja) 光拡散性ポリカーボネート樹脂組成物
US11332614B2 (en) Reinforced polycarbonate resin composition
JP2008231441A (ja) ガラス繊維強化芳香族ポリカーボネート樹脂組成物
JP6991003B2 (ja) 強化ポリカーボネート樹脂組成物
JP6820776B2 (ja) 熱カシメ結合体
JP6956538B2 (ja) 強化ポリカーボネート樹脂組成物
JP2015218325A (ja) 光拡散性樹脂組成物
JP2020066652A (ja) ポリカーボネート樹脂組成物およびそれからなる樹脂金属複合成形体
JP6843703B2 (ja) 熱カシメ結合体
JP4870367B2 (ja) 強化芳香族ポリカーボネート樹脂組成物
JP2024034738A (ja) ポリカーボネート樹脂組成物およびそれからなる成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018823129

Country of ref document: EP

Effective date: 20200128