WO2019003557A1 - 三次元レーザ加工機および三次元レーザ加工機の制御方法 - Google Patents

三次元レーザ加工機および三次元レーザ加工機の制御方法 Download PDF

Info

Publication number
WO2019003557A1
WO2019003557A1 PCT/JP2018/014734 JP2018014734W WO2019003557A1 WO 2019003557 A1 WO2019003557 A1 WO 2019003557A1 JP 2018014734 W JP2018014734 W JP 2018014734W WO 2019003557 A1 WO2019003557 A1 WO 2019003557A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
processing head
controller
start position
nozzle
Prior art date
Application number
PCT/JP2018/014734
Other languages
English (en)
French (fr)
Inventor
竜二 谷口
圭太 屋嘉比
Original Assignee
コマツ産機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コマツ産機株式会社 filed Critical コマツ産機株式会社
Priority to CN201880026103.1A priority Critical patent/CN110545949B/zh
Priority to US16/613,470 priority patent/US11504806B2/en
Publication of WO2019003557A1 publication Critical patent/WO2019003557A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0892Controlling the laser beam travel length
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/402Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for positioning, e.g. centring a tool relative to a hole in the workpiece, additional detection means to correct position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • B23K26/048Automatically focusing the laser beam by controlling the distance between laser head and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • B23K26/0884Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36199Laser cutting
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45165Laser machining
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49012Remove material by laser beam, air, water jet to form 3-D object

Definitions

  • the present disclosure relates to a three-dimensional laser beam machine and a control method of the three-dimensional laser beam machine.
  • a laser processing machine which irradiates a laser to a work is known.
  • the processing head moves from the processing end position to the next approach start position by moving processing called air cutting.
  • moving processing called air cutting.
  • an approach process of moving the processing head to the next processing start position is performed.
  • Patent Document 1 discloses, as such a laser processing machine, a three-dimensional laser processing machine capable of three-dimensional processing on a work.
  • the processing head is positioned by three axes of X, Y, and Z axes, and the attitude of the processing head is determined by two rotation axes of C and A axes. It is controlled.
  • this laser processing machine is performing laser processing (during irradiation of laser light)
  • the distance (gap amount) between the processing head and the processing surface of the work is a preset value (target value) determined in advance.
  • the copying control is performed to correct the position of the processing head as follows.
  • Patent Documents 2 and 3 disclose a two-dimensional laser beam machine capable of irradiating laser light only in the negative direction of the Z-axis.
  • the laser processing machine of Patent Document 2 executes copying control when the processing head starts to move obliquely downward.
  • the laser processing machine of Patent Document 3 performs copying control when the processing head descends from the middle point and the gap amount becomes a predetermined amount.
  • the three-dimensional laser beam machine of Patent Document 1 is configured to be able to emit laser light in three-dimensional directions from the nozzle of the processing head, it is assumed that the nozzle direction is always in the Z-axis direction during approach processing There is no limit. Moreover, such a three-dimensional laser beam machine may change the direction of the nozzle in the approach process. Therefore, the configuration of correcting the position of the processing head only in the Z-axis direction by scanning control as in Patent Documents 2 and 3 can not be applied as it is to a three-dimensional laser processing machine.
  • the present disclosure is to provide a three-dimensional laser processing machine and a control method of the three-dimensional laser processing machine capable of performing approach processing rapidly.
  • a three-dimensional laser beam machine has a nozzle and performs processing head positioning for irradiating a laser beam to the workpiece from the nozzle, positioning of the processing head, and controlling nozzle orientation.
  • a controller and a sensor that detects the distance between the workpiece and the nozzle.
  • the controller can execute copying control to correct the position of the processing head based on the detected distance.
  • the controller executes copying control when the processing head reaches a predetermined first position in the middle of an approach process of moving the processing head from the approach start position to the processing start position while controlling the direction of the nozzle. Move the processing head to the processing start position.
  • approach processing can be performed quickly.
  • FIG. 1 is a perspective view of a laser processing machine 1.
  • the laser processing machine 1 is a three-dimensional laser processing machine with five axes (X axis, Y axis, Z axis, C axis, A axis).
  • the laser processing machine 1 is a fiber laser processing machine as an example. According to the laser processing machine 1, the workpiece can be cut into a desired shape.
  • the laser processing machine 1 includes a processing machine main body 200, a table 300, a controller 400, and an oscillator 500.
  • the processing machine main body 200 is installed in a machine room (not shown).
  • the controller 400 and the oscillator 500 are installed outside the machine room.
  • the controller 400 is communicably connected to the machine body 200, a drive device (not shown) for driving the table 300, and the oscillator 500.
  • the controller 400 controls the operation of the machine body 200, the operation of the table 300, and the operation of the oscillator 500.
  • the oscillator 500 oscillates laser light based on a command from the controller 400.
  • the emitted laser light is sent to the processing machine main body 200 via an optical fiber.
  • a workpiece W (processing object, workpiece) is placed on the table 300.
  • the table 300 moves between the inside and the outside of the machine room based on a command from the controller 400.
  • the processing machine main body 200 includes a base member 201, a processing head 203, servomotors 207A, 207B, 207C, guide members 211, 221, 231, and movable members 212, 222, 232.
  • the servomotors 207A, 207B and 207C are driven based on an instruction from the controller 400.
  • the guide member 211 is provided on the base member 201.
  • the movable member 212 is movably supported by the guide member 211.
  • the movable member 212 is moved by the servomotor 207A.
  • the movement of the movable member 212 moves the processing head 203 in the positive and negative directions of the X axis.
  • the guide member 221 is provided on the movable member 212.
  • the movable member 222 is movably supported by the guide member 221.
  • the movable member 222 is moved by the servomotor 207B.
  • the movement of the movable member 222 moves the processing head 203 in the positive direction and the negative direction of the Y axis.
  • the guide member 231 is provided on the movable member 222.
  • the movable member 232 is movably supported by the guide member 231.
  • the movable member 232 is moved by the servomotor 207C.
  • the movement of the movable member 232 moves the processing head 203 in the positive direction and the negative direction of the Z axis.
  • the controller 400 positions the processing head 203 by moving the processing head 203 in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • FIG. 2 is an enlarged view of an essential part in which the periphery of the processing head 203 of FIG. 1 is enlarged.
  • the processing machine main body 200 further includes servomotors 207D and 207E and movable members 242 and 252.
  • the processing head 203 includes a nozzle 203N and a gap sensor 203G.
  • the nozzle 203 N is located at the tip of the processing head 203.
  • the nozzle 203 N irradiates the work W with the laser beam sent from the oscillator 500.
  • the gap sensor 203G detects the distance between the workpiece W and the nozzle 203N.
  • the gap sensor 203G sends the detection result to the controller 400.
  • a capacitive sensor can be used as the gap sensor 203G.
  • the servomotors 207D and 207E are driven based on an instruction from the controller 400.
  • the movable member 252 is rotatably supported by the movable member 232.
  • the movable member 252 is rotated about the C axis by the servomotor 207D.
  • the C axis is a rotation axis parallel to the Z axis.
  • the rotation of the movable member 252 causes the processing head 203 to rotate about the C axis.
  • the movable member 242 is rotatably supported by the movable member 252.
  • the movable member 242 is rotated about the A axis by the servomotor 207E.
  • the A axis is a rotation axis which is orthogonal to the C axis and whose axial direction changes according to the rotation of the C axis.
  • the rotation of the movable member 242 causes the processing head 203 to rotate about the A axis.
  • the controller 400 controls the attitude of the processing head 203 by rotating the C axis and the A axis. Thereby, the direction (posture) of the nozzle 203N is controlled.
  • FIG. 3 is a block diagram showing a part of the hardware configuration of the laser processing machine 1.
  • the laser beam machine 1 further includes servo amplifiers 206A, 206B, 206C, 206D, and 206E in addition to the controller 400, the processing head 203, and the servomotors 207A to 207E.
  • the controller 400 includes a numerical control device (NC device) 401, a motor control device 402, and an input / output device 403.
  • NC device numerical control device
  • motor control device 402 motor control device 402
  • the controller 400 can execute copying control to correct the position of the processing head 203 such that the distance detected by the gap sensor 203G becomes a predetermined set value.
  • the timing at which the controller 400 executes the copying control function will be described later.
  • the input / output device 403 is communicably connected to the numerical control device 401.
  • the input / output device 403 functions as a man-machine interface.
  • the input / output device 403 includes input devices such as a keyboard, a touch panel, and a mouse.
  • the input / output device 403 further includes an output device such as a display or a printer.
  • the numerical control device 401 executes a sequence program such as a ladder program stored in advance and a machining program (NC program) created by the user.
  • the machining program is described using a G code or the like.
  • the movement of the processing head 203, the control of the direction of the nozzle 203N, the control of the presence or absence of the irradiation of the laser light, etc. are performed. Further, the detection result by the gap sensor 203G is input to the numerical control device 401.
  • the sequence program and the machining program are also referred to as a "control program”.
  • the numerical control device 401 sends the execution result of the control program related to motor control to the motor control device.
  • the controller 400 executes the control program with reference to the value of the detection signal sent from the gap sensor 203G.
  • the motor control device 402 sends a command signal Jx to the servo amplifier 206A to drive the servomotor 207A.
  • the servo amplifier 206A supplies the servomotor 207A with power based on the command signal Jx. Thereby, the servomotor 207A is driven, and the position of the X coordinate of the processing head 203 becomes the position instructed from the controller 400.
  • the motor control device 402 sends command signals Jy, Jz, Ja, and Jc to the servo amplifiers 206B to 206E, respectively, to drive the servomotors 207B to 207E.
  • the servo amplifiers 206B to 206E supply respective powers based on the command signals Jy, Jz, Ja and Jc to the corresponding servomotors 207B to 207E.
  • the position of the Y coordinate of the processing head 203 and the position of the Z coordinate become the position instructed from the controller 400. Furthermore, the direction of the nozzle is the direction instructed from the controller 400.
  • FIG. 4 is a diagram for explaining copying control at the time of laser processing.
  • the nozzle is set such that the distance between the nozzle 203N and the processing surface (the processed region of the workpiece W) (hereinafter also referred to as “gap amount Dg”) becomes the reference gap amount Df.
  • the position of 203 N can be controlled.
  • the controller 400 corrects the position of the nozzle 203N in the Z direction such that the gap amount Dg becomes the reference gap amount Df.
  • the path of the processing head 203 is corrected from the path of arrow A1 to the path of arrow A2.
  • the controller 400 corrects the position of the processing head 203 so that the gap amount Dg satisfies the following equation (1).
  • is an allowable error.
  • FIG. 5 is a diagram showing the movement path of the processing head 203 from the processing end position Pf to the processing start position Ps. Referring to FIG. 5, the movement from the processing end position Pf to the approach start position P4 corresponds to the air cutting process.
  • the controller 400 moves the processing head 203 by executing a program stored in the controller 400, and controls the orientation of the nozzle 203N.
  • the controller 400 stores in advance a plurality of teaching positions designated by the teaching process.
  • the controller 400 moves the processing head 203 to the approach start position P4 via a plurality of teaching positions.
  • the retracted position P1, the position P2, the position P3, and the approach start position P4 are teaching positions.
  • the orientation of the nozzle 203N at each position P1, P2, P3, P4 is also taught in advance, the orientation of the nozzle 203N is the teaching orientation at each position P1, P2, P3, P4. It is controlled.
  • the machining head 203 reaches the retracted position P1 by moving from the previous machining end position Pf along the path R11. Thereafter, the machining head 203 moves along the path R12, the path R13, and the path R14 to reach the approach start position P4 via the positions P2 and P3. Subsequently, approach processing is performed.
  • the approach start position P4 is a teaching position where the machining head 203 finally passes among a plurality of teaching positions. Each teaching position is stored in association with order information indicating the order in which the machining head 203 passes.
  • the route R12 is a route connecting the retracted position P1 and the position P2 by a straight line.
  • the route R13 is a route connecting the position P2 and the position P3 by a straight line.
  • the route R14 is a route connecting the position P3 and the approach start position P4 by a straight line.
  • the controller 400 incorporates in advance a control program for causing the processing head 203 to linearly move between the teaching positions in the sequential order.
  • the position of the processing head 203 and the orientation of the nozzle 203N at the processing start position Ps are further defined.
  • the direction of the nozzle 203N is programmed in advance so that the laser beam is irradiated in the normal direction of the processing region Sr of the workpiece W at the processing start position Ps.
  • the control program also defines the speed (rotational angular velocity of the A axis and the C axis) and the like for changing the direction of the nozzle 203N.
  • the control program is created so that the change in direction is uniform between the approach start position P4 and the processing start position Ps.
  • the controller 400 moves from the approach start position P4 to the position Pu along a path connecting the approach start position P4 and the predetermined position Pu in a straight line.
  • Execute a control program to move the The controller 400 executes the copying control during the execution of the control program to move the moving path of the processing head 203 from the setting path Pc to the processing start position Ps from a path R1 connecting the setting position Pc and the position Pu in a straight line.
  • the position Pu is set at a position separated by a predetermined distance Dh in the normal direction of the processing area Sr from the processing area Sr of the workpiece W irradiated with the laser beam at the processing start position Ps . Further, the set position Pc is set at a position separated from the position Pu by a predetermined distance.
  • the route R1 is a route through which the processing head 203 passes when the controller 400 does not turn on the copying control function at the set position Pc.
  • the processing head 203 moves along the path R1, and then moves along the path R3 connecting the position Pu and the processing start position Ps in a straight line, thereby starting the processing.
  • the position Ps is reached.
  • the controller 400 stores in advance data (hereinafter also referred to as “posture data”) in which the irradiation direction of the laser light is the normal direction of the processing region Sr as the direction of the nozzle 203N at the processing start position Ps. While the processing head 203 moves from the setting position Pc to the processing start position Ps along the path R2, the controller 400 moves the position of the processing head 203 to the normal direction of the processing area Sr based on the posture data. (In the case of the example of FIG. 5, it correct
  • the controller 400 causes the position of the processing head 203 to be in the normal direction of the processing area Sr by the copying control.
  • the movement direction of the processing head 203 is distributed in the X-axis direction, the Y-axis direction, and the Z-axis direction so as to be corrected.
  • the controller 400 calculates the direction of the nozzle 203N at the processing start position Ps from the information (the information of the direction of the nozzle 203N) of the direction of the C axis and the direction of the A axis set at the processing start position Ps. .
  • the direction of the nozzle 203N is the direction from the lower end of the nozzle 203N to the tip, and also the direction of the optical axis of the laser beam to be irradiated. In the case of FIG. 5, the direction of the nozzle 203N is the Y-axis negative direction.
  • the controller 400 drives the servomotors 207A, 207B, and 207C so that the position of the processing head 203 is corrected in the normal direction of the processing area Sr by the copying control.
  • the controller 400 starts copying control when the processing head 203 reaches the set position Pc while the control program is being executed. By this, the controller 400 corrects the movement path of the processing head 203 from the path R1 to the path R2. The specific contents of this correction will be described below.
  • the controller 400 periodically corrects the moving direction of the processing head 203 based on a predetermined control cycle during the copying control.
  • FIG. 6 is an enlarged view of a part of FIG. As shown in FIG. 6, positions K21, K22, K23 and arrows V21, V22, V23, V24 represented by white circles are comparative examples to the control example of this embodiment, and copy control is performed. It represents the position and movement direction of the processing head 203 when it is assumed that the process was not performed.
  • Positions K21, K22, and K23 indicate the position of the processing head 203 (the position of the tip of the nozzle 203N) in each control cycle when the copying control is not performed.
  • the processing head 203 reaches the position K21 by advancing in the direction of the arrow V21 from the setting position Pc.
  • the machining head 203 reaches the position K22 by moving from the position K21 in the direction of the arrow V22. Thereafter, the machining head 203 moves from the position K22 in the direction of the arrow V23 to reach the position K23, and then moves in the direction of the arrow V24.
  • the moving speed of the processing head 203 on the path R1 is constant, the distance between the set position Pc and the position K21, the distance between the position K21 and the position K22, the position K22 and the position K23 Interval is the same. Further, since the path R1 is a straight line, the moving direction of the processing head 203 is the same in each control cycle.
  • positions K11, K12, and K13 are positions of the processing head 203 for each control cycle when copying control is started at the set position Pc.
  • Position correction of the nozzle 203N is started so as to be the amount Df.
  • the controller 400 corrects the position of the processing head 203 in the normal direction of the processing region Sr by the scanning control.
  • the controller 400 corrects the moving direction of the processing head 203 from the arrow V21 to the arrow V11 by performing the position correction in the normal direction of the processing area Sr described above at the setting position Pc. . Thereby, the position of the processing head 203 is corrected from the position K21 to the position K11. Thereafter, the controller 400 similarly corrects the position of the processing head 203 from the position K22 to the position K12 by correcting the moving direction of the processing head 203 from the arrow V22 to the arrow V12 at the position K11.
  • the controller 400 corrects the moving direction of the processing head 203 from the arrow V23 to the arrow V13 at the position K12, thereby correcting the position of the processing head 203 from the position K23 to the position K13, and thereafter the arrow V14. Move in the direction.
  • the moving speed of the head 203 and the moving speed of the processing head 203 between the position K12 and the position K13 are different from each other.
  • the moving speed of the processing head 203 is increased at each control cycle.
  • the interval between the set position Pc and the position K11, the interval between the position K11 and the position K12, and the interval between the position K12 and the position K13 also become longer for each control cycle.
  • the controller 400 calculates the gap amount (hereinafter referred to as “gap correction amount Q”) to be corrected in the control period for each control period, and calculates the calculated gap correction amount Q as a component Qx in the X axis direction. , And is divided into a component Qy in the Y-axis direction and a component Qz in the Z-axis direction.
  • the gap correction amount Q is a scalar amount.
  • the controller 400 corrects the command signal Jx output to the servo amplifier 206A using the value of the component Qx (see FIG. 3). Similarly, controller 400 corrects command signal Jy output to servo amplifier 206B using the value of component Qy, and corrects command signal Jz output to servo amplifier 206C using the value of component Qz.
  • FIG. 7 is a diagram for explaining a method of calculating the gap correction amount Q. As shown in FIG. 7, description will be given focusing on when the nozzle 203 N reaches the position K 11 by the scanning correction. A similar operation is also performed when the nozzle 203N reaches the set position Pc and the positions K12, K13, K14,.
  • the controller 400 acquires the gap amount Dg based on the output from the gap sensor 203G.
  • the controller 400 calculates the distance between the position K21 before correction of the position K11 and the position Pu. Furthermore, the controller 400 calculates the distance Dr of the normal direction component of the processing region Sr at the calculated distance. Thus, the controller 400 calculates a distance Dr which is a normal direction component of the processing region Sr in the distance between the position on the route R1 before correction and the position Pu.
  • the controller 400 calculates the distance Ds by subtracting the distance Dr from the gap amount Dg.
  • the controller 400 calculates the gap correction amount Q based on the distance Ds.
  • the calculation for calculating the gap correction amount from the distance is the same as the calculation of the gap correction amount at the time of processing by the conventional three-dimensional laser beam machine. However, the point of using the above-mentioned distance Ds differs from the calculation at the time of processing.
  • the processing head 203 moves to the processing start position Ps along the path R2.
  • the processing head 203 passes the path R1 and the path R3 and reaches the processing start position Ps. Become.
  • the controller 400 needs to decelerate the processing head 203 from the front of the position Pu and temporarily stop the processing head 203 at the position Pu. After that, the controller 400 has to accelerate the processing head 203 along the path R3.
  • the processing head 203 when the processing control is started after the processing head 203 reaches the set position Pc, as described above, the processing head 203 can be made to reach the processing start position Ps along the path R2. it can. In this case, unlike the configuration in which the scanning control is started after the processing head 203 reaches the position Pu, it is not necessary to temporarily stop the processing head 203 at the position Pu.
  • the time for the nozzle 203N to move from the setting position Pc to the processing start position Ps can be shorter than in the configuration in which the scanning control is started at the position Pu. Therefore, according to the laser processing machine 1, it is possible to perform approach processing quickly.
  • the nozzle 203N is placed on the surface of the workpiece W at a position considerably away from the processing area Sr depending on the method of determining the approach start position P4 (determination of the teaching position).
  • the nozzle 203N is the surface of the workpiece W at the position in the Z-axis positive direction with respect to the edge portion E of the workpiece W. It may be close to the In this case, the nozzle 203N moves along the surface of the workpiece W until it reaches the processing start position Ps.
  • the laser processing machine 1 can prevent the nozzle 203N from moving along such a path.
  • the approach start position P4 is a position (teaching position) designated by the teaching process. According to such a configuration, the controller 400 does not have to calculate the approach start position by path calculation (for example, calculation for calculating a path with the shortest distance).
  • the controller 400 can easily determine the path from the processing end position Pf to the approach start position P4.
  • the controller 400 moves from the approach start position P4 to the position Pu along the path connecting the approach start position P4 and the predetermined position Pu in a straight line.
  • the control program for moving the machining head 203 is executed. Further, the set position Pc is a position on the route.
  • the position Pu is a position separated by a predetermined distance Dh in the normal direction of the processing region Sr from the processing region Sr of the workpiece W irradiated with the laser beam at the processing start position Ps.
  • the position Pu is a position extending in the normal direction of the processing area Sr from the processing start position Ps, so that the processing head 203 can be moved to the processing start position Ps.
  • the controller 400 corrects the position of the processing head 203 in the normal direction of the processing area Sr by copying control.
  • the controller 400 calculates the correction amount (gap correction amount Q) of the position of the processing head 203 by the scanning control for each control cycle.
  • the controller 400 corrects the gap correction amount Q with the component Qx in the X-axis direction and the component Qy in the Y-axis direction for each control cycle so that the position of the processing head 203 is corrected in the normal direction of the processing region Sr. It distributes to the component Qz of Z-axis direction.
  • the controller 400 stores in advance posture data in which the irradiation direction of the laser light is the normal direction of the processing region Sr as the direction of the nozzle 203N at the processing start position Ps.
  • the controller 400 corrects the position of the processing head 203 by the copying control in the normal direction of the processing region Sr based on the posture data.
  • FIG. 8 is a flowchart for explaining the flow of processing executed by the controller 400 in the case of FIG.
  • step S1 when the machining head 203 reaches the approach start position P4, the controller 400 moves from the approach start position P4 along the path connecting the approach start position P4 and the position Pu in a straight line. A movement process of moving the processing head 203 to Pu is executed. In step S2, the controller 400 determines whether the processing head 203 has reached the set position Pc.
  • step S3 the controller 400 executes copying correction processing from the position Pu to the processing start position Ps. Specifically, the controller 400 executes correction processing for the distance in the route R3 which is the normal direction of the processing region Sr.
  • the controller 400 moves the processing head 203 from the setting position Pc to the processing start position Ps by the correction processing. As a result, the movement path of the processing head 203 after the set position Pc is corrected to the path R2 from the path R1 and the path R3.
  • the controller 400 determines that the processing head 203 has not reached the set position Pc (NO in step S2), the process returns to step S2.
  • step S4 the controller 400 determines whether the processing head 203 has reached the processing start position Ps.
  • the controller 400 determines that the processing head 203 has reached the processing start position Ps (YES in step S4), the approach processing is ended.
  • the controller 400 determines that the processing head 203 has not reached the processing start position Ps (NO in step S2), the process returns to step S3.
  • FIG. 9 is a flowchart showing the details of the process of step S3 of FIG. As shown in FIG. 9, the process of step S3 includes the processes of steps S321 to S327. Each of these processes and the process of step S4 shown in FIG. 8 are executed for each control cycle.
  • step S321 the controller 400 acquires a voltage value (analog value) from the gap sensor 203G.
  • step S322 the controller 400 converts the voltage value into a digital value by A / D (Analog / Digital) conversion.
  • step S323 the controller 400 converts the voltage value (digital value) into the gap amount Dg using the conversion equation or conversion table stored in advance.
  • step S324 the controller 400 calculates the distance Ds by subtracting the distance Dr from the gap amount Dg.
  • the distance Dr is a component in the normal direction of the processed region Sr at the distance between the position on the route R1 before correction and the position Pu.
  • step S325 the controller 400 calculates the gap correction amount Q (the gap amount to be corrected in the current control cycle) based on the distance Ds.
  • step S326 the controller 400 corrects the gap correction amount Q by the component Qx in the X-axis direction and the Y-axis direction so that the position of the processing head 203 by scanning control is corrected in the normal direction of the processing region Sr. It distributes to component Qy and component Qz in the Z-axis direction.
  • step S327 controller 400 corrects command signal Jx using the value of component Qx, corrects command signal Jy using the value of component Qy, and corrects command signal Jz using the value of component Qz. .
  • step S326 the controller 400 advances the process to step S4 in FIG.
  • FIG. 10 is a functional block diagram for explaining a functional configuration of the controller 400 at the time of approach processing.
  • controller 400 includes a control unit 410, a storage unit 420, a voltage value acquisition unit 430, and an A / D conversion unit 440.
  • the control unit 410 is realized by the processor executing various programs including a control program.
  • the storage unit 420 is configured to include a non-volatile memory such as a flash memory and a hard disk.
  • Control unit 410 includes a control program execution unit 411, a command signal generation unit 412, a copying control execution instructing unit 413, and a copying control execution unit 414.
  • the copying control execution unit 414 includes a gap amount calculation unit 4141, a correction amount calculation unit 4142, and a distribution processing unit 4143.
  • the storage unit 420 converts the operating system, various programs such as sequence programs and machining programs, coordinate values of teaching position, coordinate values of position Pu, reference gap amount Df, tolerance error ⁇ , and voltage value into gap amounts. Information such as the conversion equation or conversion table, the orientation at the teaching position (rotational angle between A axis and C axis), etc. is stored.
  • the voltage value acquisition unit 430 acquires, from the gap sensor 203G, a voltage value (analog value) as a detection result of the gap sensor 203G.
  • the A / D conversion unit 440 converts the analog voltage value acquired by the voltage value acquisition unit 430 into a digital voltage value.
  • the control unit 410 executes the operating system and various programs stored in the storage unit 420. For example, control unit 410 uses the various data stored in storage unit 420 to execute the control program stored in storage unit 420. In the example of FIG. 5, the control program execution unit 411 moves the machining head 203 to the approach start position P4 by executing the control program.
  • the operation of each part of the control unit 410 at the time of approach processing will be described.
  • the control program execution unit 411 executes a control program for moving the processing head 203 from the approach start position P4 to the position Pu during the approach process.
  • the control program execution unit 411 notifies the command signal generation unit 412 of the execution result of the control program.
  • the command signal generation unit 412 generates command signals Jx, Jy, Jz, Jc, and Ja based on the execution result.
  • the command signal generation unit 412 sends the generated command signal to the corresponding servo amplifiers 206A, 206B, 206C, 206D, and 206E.
  • the copying control execution instruction unit 413 determines whether the position of the processing head 203 has reached the set position Pc. When it is determined that the position of the processing head 203 has reached the set position Pc, the copying control execution instructing unit 413 sends a command to the copying control execution unit 414 to execute copying control.
  • each unit of the copying control execution unit 414 executes the following processing for each control cycle.
  • the gap amount calculation unit 4141 calculates the gap amount Dg from the voltage value (digital value) sent from the A / D conversion unit 440 by using a conversion formula.
  • the correction amount calculation unit 4142 calculates the distance Ds by subtracting the distance Dr from the gap amount Dg calculated by the gap amount calculation unit 4141.
  • the correction amount calculation unit 4142 calculates the gap correction amount Q based on the distance Ds.
  • the distribution processing unit 4143 sets the gap correction amount Q calculated by the correction amount calculation unit 4142 to the components Qx and Y in the X-axis direction so that the position of the processing head 203 is corrected in the normal direction of the processing region Sr. It is divided into an axial component Qy and a component Qz in the Z-axis direction.
  • the distribution processing unit 4143 notifies the command signal generation unit 412 of the components Qx, Qy, and Qz as correction amounts.
  • the command signal generation unit 412 generates command signals Jx, Jy, Jz in consideration of the correction amounts (components Qx, Qy, Qz) received from the distribution processing unit 4143.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Laser Beam Processing (AREA)
  • Numerical Control (AREA)

Abstract

三次元レーザ加工機は、加工ヘッド(203)と、加工ヘッド(203)の位置決めを行い、かつノズル(203N)の向きを制御するコントローラと、ワーク(W)とノズル(203N)との間の距離を検出するセンサとを備える。コントローラは、検出された距離に基づいて、加工ヘッド(203)の位置を補正する倣い制御を実行可能である。コントローラは、ノズル(203N)の姿勢を制御しながら加工ヘッド(203)をアプローチ開始位置(P4)から加工開始位置(Ps)へと移動させるアプローチ処理の途中で加工ヘッド(203)が予め定められた位置(Pc)に到達すると、倣い制御を実行して加工ヘッド(203)を加工開始位置(Ps)へと移動させる。

Description

三次元レーザ加工機および三次元レーザ加工機の制御方法
 本開示は、三次元レーザ加工機および三次元レーザ加工機の制御方法に関する。
 従来、ワークに対してレーザを照射するレーザ加工機が知られている。このようなレーザ加工機では、加工ヘッドは、エアーカットと称される移動処理によって、加工終了位置から次のアプローチ開始位置まで移動する。加工ヘッドがアプローチ開始位置に到達すると、次の加工開始位置まで加工ヘッドを移動させるアプローチ処理が実行される。
 特許文献1には、このようなレーザ加工機として、ワークに対して三次元加工が可能な三次元レーザ加工機が開示されている。特許文献1の三次元レーザ加工機では、X軸とY軸とZ軸との3軸によって加工ヘッドの位置決めが行なわれるとともに、C軸とA軸との2つの回転軸によって加工ヘッドの姿勢が制御される。このレーザ加工機は、レーザ加工を行っている際(レーザ光の照射中)に、加工ヘッドとワークの加工面との間の距離(ギャップ量)が予め定められた設定値(目標値)となるように加工ヘッドの位置を補正する倣い制御を実行する。
 また、たとえば特許文献2および3には、Z軸負方向にのみレーザ光の照射が可能な二次元レーザ加工機が開示されている。特許文献2のレーザ加工機は、加工ヘッドを退避位置から次の加工開始位置へと移動させる際に、加工ヘッドが斜め下降移動を開始すると倣い制御を実行する。また、特許文献3のレーザ加工機は、加工ヘッドを退避位置から次の加工開始位置へと移動させる際に、加工ヘッドが中間点から下降し、かつギャップ量が所定量となると倣い制御を行う。
特開平10-175085号公報 特開2008-110389号公報 特開2004-1067号公報
 特許文献1の三次元レーザ加工機は、加工ヘッドのノズルからレーザ光を三次元の各方向に照射可能な構成であるため、アプローチ処理の際にノズル方向が常にZ軸方向を向いているとは限らない。また、このような三次元レーザ加工機は、アプローチ処理においてノズルの方向を変化させる場合もある。それゆえ、特許文献2および3のように倣い制御によってZ軸方向にのみ加工ヘッドの位置を補正する構成を、そのまま3次元レーザ加工機に適用することはできない。
 本開示は、アプローチ処理を迅速に行うことが可能な三次元レーザ加工機および三次元レーザ加工機の制御方法を提供することにある。
 本開示のある局面に従うと、三次元レーザ加工機は、ノズルを有し、かつワークに対してレーザ光をノズルから照射する加工ヘッドと、加工ヘッドの位置決めを行い、かつノズルの向きを制御するコントローラと、ワークとノズルとの間の距離を検出するセンサとを備える。コントローラは、検出された距離に基づいて、加工ヘッドの位置を補正する倣い制御を実行可能である。コントローラは、ノズルの向きを制御しながら加工ヘッドをアプローチ開始位置から加工開始位置へと移動させるアプローチ処理の途中で加工ヘッドが予め定められた第1の位置に到達すると、倣い制御を実行して加工ヘッドを加工開始位置へと移動させる。
 本開示によれば、アプローチ処理を迅速に行うことが可能となる。
レーザ加工機の斜視図である。 図1の加工ヘッドの周囲を拡大した要部拡大図である。 レーザ加工機のハードウェア構成の一部を表したブロック図である。 レーザ加工時の倣い制御を説明するための図である。 加工終了位置から加工開始位置までの加工ヘッドの移動経路を表した図である。 図5の一部を拡大した拡大図である。 ギャップ補正量の算出方法を説明するための図である。 図5の場合においてコントローラにおいて実行される処理の流れを説明するためのフロー図である。 図8のステップS3の処理の詳細を表したフロー図である。 アプローチ処理時におけるコントローラの機能的構成を説明するための機能ブロック図である。
 以下、実施形態について図に基づいて説明する。実施形態における構成を適宜組み合わせて用いることは当初から予定されていることである。また、一部の構成要素を用いない場合もある。以下では、三次元直交座標系(XYZ座標系)を参照して説明する。
 <A.装置構成>
 図1は、レーザ加工機1の斜視図である。レーザ加工機1は、5軸(X軸,Y軸,Z軸,C軸,A軸)の三次元レーザ加工機である。レーザ加工機1は、一例として、ファイバレーザ加工機である。レーザ加工機1によれば、ワークを切断することにより所望の形状に加工することができる。
 図1に示されるように、レーザ加工機1は、加工機本体200と、テーブル300と、コントローラ400と、発振器500とを備える。加工機本体200は、図示しないマシンルーム内に設置される。コントローラ400と、発振器500とは、マシンルーム外に設置される。
 コントローラ400は、加工機本体200と、テーブル300を駆動する駆動装置(図示せず)と、発振器500とに通信可能に接続されている。コントローラ400は、加工機本体200の動作と、テーブル300の動作と、発振器500の動作とを制御する。
 発振器500は、コントローラ400からの指令に基づき、レーザ光を発振する。発信されたレーザ光は、光ファイバを介して加工機本体200に送られる。
 テーブル300には、ワークW(加工対象物、被加工部材)が載置される。テーブル300は、コントローラ400からの指令に基づき、マシンルームの内と外とを行き来する。
 加工機本体200は、ベース部材201と、加工ヘッド203と、サーボモータ207A,207B,207Cと、ガイド部材211,221,231と、可動部材212,222,232とを備える。
 サーボモータ207A,207B,207Cは、コントローラ400からの指示に基づき駆動する。
 ガイド部材211は、ベース部材201に設けられている。可動部材212は、ガイド部材211に移動可能に支持されている。可動部材212は、サーボモータ207Aによって移動する。可動部材212の移動によって、加工ヘッド203は、X軸の正方向および負方向に移動する。
 ガイド部材221は、可動部材212に設けられている。可動部材222は、ガイド部材221に移動可能に支持されている。可動部材222は、サーボモータ207Bによって移動する。可動部材222の移動によって、加工ヘッド203は、Y軸の正方向および負方向に移動する。
 ガイド部材231は、可動部材222に設けられている。可動部材232は、ガイド部材231に移動可能に支持されている。可動部材232は、サーボモータ207Cによって移動する。可動部材232の移動によって、加工ヘッド203は、Z軸の正方向および負方向に移動する。
 このような構成により、コントローラ400は、X軸方向とY軸方向とZ軸方向とに加工ヘッド203を移動させることによって、加工ヘッド203の位置決めを行う。
 図2は、図1の加工ヘッド203の周囲を拡大した要部拡大図である。
 図2に示されるように、加工機本体200は、加工ヘッド203と可動部材232とに加え、サーボモータ207D,207Eと、可動部材242,252とをさらに備える。加工ヘッド203は、ノズル203Nと、ギャップセンサ203Gとを備える。
 ノズル203Nは、加工ヘッド203の先端に位置する。ノズル203Nは、発振器500から送られてきたレーザ光をワークWに対して照射する。
 ギャップセンサ203Gは、ワークWとノズル203Nとの間の距離を検出する。ギャップセンサ203Gは、検出結果をコントローラ400に送る。ギャップセンサ203Gとしては、一例として、静電容量方式のセンサを利用することができる。
 サーボモータ207D,207Eは、コントローラ400からの指示に基づき駆動する。
 可動部材252は、可動部材232に回転可能に支持されている。可動部材252は、サーボモータ207Dによって、C軸回りに回転する。C軸は、Z軸に平行な回転軸である。可動部材252の回転によって、加工ヘッド203はC軸回りに回転する。
 可動部材242は、可動部材252に回転可能に支持されている。可動部材242は、サーボモータ207Eによって、A軸回りに回転する。A軸は、C軸に直交するとともにC軸の回転に応じて軸方向が変化する回転軸である。可動部材242の回転によって、加工ヘッド203はA軸回りに回転する。
 このような構成により、コントローラ400は、C軸とA軸とを回転させることによって、加工ヘッド203の姿勢を制御する。これにより、ノズル203Nの向き(姿勢)が制御される。
 図3は、レーザ加工機1のハードウェア構成の一部を表したブロック図である。
 図3に示されるように、レーザ加工機1は、コントローラ400と加工ヘッド203とサーボモータ207A~207Eとに加え、サーボアンプ206A,206B,206C,206D,206Eをさらに備える。
 コントローラ400は、数値制御装置(NC装置)401と、モータ制御装置402と、入出力装置403とを備える。
 コントローラ400は、ギャップセンサ203Gによって検出された距離が予め定められた設定値となるように、加工ヘッド203の位置を補正する倣い制御を実行可能である。コントローラ400が倣い制御の機能を実行するタイミングについては後述する。
 入出力装置403は、数値制御装置401と通信可能に接続される。入出力装置403は、マンマシンインターフェースとして機能する。入出力装置403は、キーボード、タッチパネル、マウス等の入力デバイスを有する。入出力装置403は、さらに、ディスプレイ、プリンタ等の出力デバイスを有する。
 数値制御装置401は、予め記憶されているラダープログラム等のシーケンスプログラムと、ユーザによって作成された加工プログラム(NCプログラム)とを実行する。加工プログラムは、Gコード等を用いて記述される。これらのプログラムの実行により、加工ヘッド203の移動、ノズル203Nの向きの制御、レーザ光の照射の有無の制御等が行われる。また、ギャップセンサ203Gによる検出結果は、数値制御装置401に入力される。以下では、シーケンスプログラムと、加工プログラムとを、「制御プログラム」とも称する。
 数値制御装置401は、モータ制御に関する制御プログラムの実行結果を、モータ制御装置に送る。コントローラ400は、倣い制御を実行している際には、ギャップセンサ203Gから送られてきた検出信号の値を参照して、制御プログラムを実行する。
 モータ制御装置402は、サーボモータ207Aを駆動するために、サーボアンプ206Aに指令信号Jxを送る。サーボアンプ206Aは、指令信号Jxに基づいた電力をサーボモータ207Aに供給する。これにより、サーボモータ207Aが駆動し、加工ヘッド203のX座標の位置がコントローラ400から指令された位置となる。
 同様に、モータ制御装置402は、サーボモータ207B~207Eを駆動するために、サーボアンプ206B~206Eに、それぞれ指令信号Jy、Jz、Ja,Jcを送る。サーボアンプ206B~206Eは、指令信号Jy、Jz、Ja,Jcに基づいた各電力を、対応するサーボモータ207B~207Eに供給する。
 これにより、加工ヘッド203のY座標の位置およびZ座標の位置がコントローラ400から指令された位置となる。さらに、ノズルの向きが、コントローラ400から指令された向きとなる。
 <B.倣い制御の概要>
 図4は、レーザ加工時の倣い制御を説明するための図である。
 図4に示すように、加工ヘッド203を矢印A1の方向に沿って移動させつつ、ノズル203Nからレーザ光を照射しようとする場合、ワークWにおいて矢印A6、A7方向にスプリングバックが生じているとする。このような場合、加工ヘッド203を矢印A1の方向に移動させると、ワークWにノズル203Nが接触してしまう。
 しかしながら、倣い制御を実行することによって、ノズル203NとワークWの加工面(被加工領域)との間の距離(以下、「ギャップ量Dg」とも称する)が基準ギャップ量Dfとなるように、ノズル203Nの位置を制御することができる。図4の場合には、コントローラ400は、ギャップ量Dgが基準ギャップ量Dfとなるように、ノズル203NのZ方向の位置を補正する。これにより、加工ヘッド203の経路は、矢印A1の経路から矢印A2の経路に補正される。
 より詳しくは、コントローラ400は、ギャップ量Dgが、以下の式(1)を満たすように、加工ヘッド203の位置を補正する。なお、δは、許容誤差である。
 Df-δ≦Dg≦Df+δ … (1)
 <C.エアーカット処理>
 アプローチ処理を説明する前に、加工ヘッド203を加工終了位置(切断終了位置)からアプローチ開始位置まで移動させるエアーカット処理について説明する。なお、エアーカット処理においては、倣い制御は実行されない。
 図5は、加工終了位置Pfから加工開始位置Psまでの加工ヘッド203の移動経路を表した図である。図5を参照して、加工終了位置Pfからアプローチ開始位置P4までの移動がエアーカット処理に該当する。
 コントローラ400は、コントローラ400に記憶されたプログラムを実行することにより、加工ヘッド203を移動させるとともに、ノズル203Nの向きを制御する。
 詳しくは、コントローラ400は、ティーチング処理によって指定された複数のティーチング位置を予め記憶している。コントローラ400は、複数のティーチング位置を経由して、加工ヘッド203をアプローチ開始位置P4へと移動させる。本例では、退避位置P1と、位置P2と、位置P3と、アプローチ開始位置P4とが、ティーチング位置である。また、各位置P1,P2,P3,P4におけるノズル203Nの向きも事前にティーチングされているため、各位置P1,P2,P3,P4では、ティーチングされた向きになるように、ノズル203Nの向きが制御される。
 図5に示されるように、加工ヘッド203は、前回の加工終了位置Pfから経路R11に沿って移動することにより、退避位置P1に到達する。その後、加工ヘッド203は、経路R12と経路R13と経路R14とに沿って移動することにより、位置P2,P3を介してアプローチ開始位置P4に到達する。引き続き、アプローチ処理が実行される。
 なお、アプローチ開始位置P4は、複数のティーチング位置のうち、加工ヘッド203が最後に通過するティーチング位置である。各ティーチング位置は、加工ヘッド203が通過する順序を表す順序情報に関連付けて記憶されている。
 経路R12は、退避位置P1と位置P2とを直線で結んだ経路である。経路R13は、位置P2と位置P3とを直線で結んだ経路である。経路R14は、位置P3とアプローチ開始位置P4とを直線で結んだ経路である。コントローラ400では、連続する順序のティーチング位置同士の間を加工ヘッド203が直線移動させる制御プログラムが事前に組み込まれている。
 <D.アプローチ処理中の倣い制御>
 加工ヘッド203をアプローチ開始位置P4から加工開始位置Ps(切断開始位置)まで移動させるアプローチ処理について説明する。レーザ加工機1は、レーザ加工時のみならず、アプローチ処理においても倣い制御を実行する。詳細について後述するが、レーザ加工機1は、アプローチ処理の途中で倣い制御を開始する。
 上述した制御プログラムにおいては、加工開始位置Psにおける、加工ヘッド203の位置とノズル203Nの向きとがさらに規定されている。特に、加工開始位置Psにおいて、レーザ光がワークWの被加工領域Srの法線方向に照射されるように、ノズル203Nの向きが事前にプログラムされている。
 ノズル203Nの向きを変化させる速度(A軸およびC軸の回転角速度)等についても、当該制御プログラムに規定されている。本例では、一例として、アプローチ開始位置P4から加工開始位置Psまで間において向きの変化が均等になるように、制御プログラムが作成されている。
 (d1.倣い制御の実行)
 コントローラ400は、アプローチ処理により加工ヘッド203が予め定められた位置Pc(以下、「設定位置Pc」と称する)に到達すると、倣い制御を実行して加工ヘッド203を加工開始位置Psへと移動させる。
 詳しくは、コントローラ400は、加工ヘッド203がアプローチ開始位置P4に到達すると、アプローチ開始位置P4と予め定められた位置Puとを直線で結ぶ経路に沿ってアプローチ開始位置P4から位置Puまで加工ヘッド203を直線移動させる制御プログラムを実行する。コントローラ400は、この制御プログラムの実行中に倣い制御を実行することによって、加工ヘッド203の移動経路を、設定位置Pcと位置Puとを直線で結ぶ経路R1から、設定位置Pcと加工開始位置Psとを結ぶ経路R2に補正する。
 上記の位置Puは、加工開始位置Psにおいてレーザ光が照射されるワークWの被加工領域Srから当該被加工領域Srの法線方向に予め定められた距離Dhだけ離れた位置に設定されている。また、設定位置Pcは、位置Puから予め定められた距離だけ離れた位置に設定される。
 なお、経路R1は、コントローラ400が設定位置Pcにおいて倣い制御の機能をオンしなかった場合に、加工ヘッド203が通る経路である。なお、倣い制御が行われない場合には、加工ヘッド203は、経路R1に沿って移動した後、位置Puと加工開始位置Psとを直線で結ぶ経路R3に沿って移動することにより、加工開始位置Psに到達する。
 (d2.法線方向への補正)
 コントローラ400は、加工開始位置Psにおけるノズル203Nの向きとして、レーザ光の照射方向が被加工領域Srの法線方向となるデータ(以下、「姿勢データ」とも称する)を予め記憶している。コントローラ400は、加工ヘッド203が経路R2に沿って設定位置Pcから加工開始位置Psへと移動している間、当該姿勢データに基づいて、加工ヘッド203の位置を被加工領域Srの法線方向(図5の例の場合にはY軸方向)に補正する。
 詳しくは、コントローラ400は、加工ヘッド203が経路R2に沿って設定位置Pcから加工開始位置Psへと移動している間、倣い制御によって加工ヘッド203の位置が被加工領域Srの法線方向に補正されるように、加工ヘッド203の移動方向をX軸方向とY軸方向とZ軸方向とに分配する。
 さらに詳しくは、コントローラ400は、加工開始位置Psにおいて設定されるC軸の向きとA軸の向きとの情報(ノズル203Nの向きの情報)から、加工開始位置Psにおけるノズル203Nの向きを算出する。なお、ノズル203Nの向きとは、ノズル203Nの下端から先端への向きであり、照射されるレーザ光の光軸の向きでもある。なお、図5の場合には、ノズル203Nの向きは、Y軸負方向である。コントローラ400は、倣い制御によって加工ヘッド203の位置が被加工領域Srの法線方向に補正されるように、サーボモータ207A,207B,207Cを駆動する。
 (d3.移動経路の補正の詳細)
 上述したように、コントローラ400は、制御プログラムの実行中において加工ヘッド203が設定位置Pcに到達すると、倣い制御を開始する。これによって、コントローラ400は、加工ヘッド203の移動経路を経路R1から経路R2に補正する。以下、この補正の具体的内容を説明する。
 コントローラ400は、倣い制御中においては、予め定められた制御周期に基づき、加工ヘッド203の移動方向を周期的に補正する。
 図6は、図5の一部を拡大した拡大図である。図6に示されるように、白色の丸印で表した位置K21,K22,K23と矢印V21、V22,V23,V24とは、本実施の形態の制御例に対する比較例であって、倣い制御を実行しなかったと仮定した場合における加工ヘッド203の位置および移動方向を表している。
 位置K21,K22,K23は、倣い制御を実行しなかったとした場合における制御周期毎の加工ヘッド203の位置(ノズル203Nの先端位置)である。この場合、加工ヘッド203は、設定位置Pcから矢印V21の方向へ進むことにより位置K21に到達する。加工ヘッド203は、位置K21から矢印V22の方向へ移動することにより位置K22に到達する。以降、加工ヘッド203は、位置K22から矢印V23の方向へ移動することにより位置K23に到達し、その後、矢印V24の方向へ移動する。
 なお、本例の場合、経路R1上の加工ヘッド203の移動速度は一定であるため、設定位置Pcと位置K21との間隔と、位置K21と位置K22との間隔と、位置K22と位置K23との間隔とは同じである。また、経路R1が直線であるため、加工ヘッド203の移動方向は、各制御周期において同じである。
 一方、位置K11,K12,K13は、設定位置Pcで倣い制御を開始した場合における制御周期毎の加工ヘッド203の位置である。コントローラ400は、設定位置Pcで倣い制御を開始すると、ギャップセンサ203Gによる検出結果であるギャップ量Dgに基づいて、ノズル203Nとワークの被加工領域Srとの間の距離が目標値である基準ギャップ量Dfとなるように、ノズル203Nの位置補正を開始する。この場合、コントローラ400は、上述したように、倣い制御によって、加工ヘッド203の位置を被加工領域Srの法線方向に補正する。
 図6の例の場合、コントローラ400は、設定位置Pcにおいて上述した被加工領域Srの法線方向への位置補正を行うことによって、加工ヘッド203の移動方向を矢印V21から矢印V11へと補正する。これによって、加工ヘッド203の位置を位置K21から位置K11に補正する。その後、同様に、コントローラ400が、位置K11において加工ヘッド203の移動方向を矢印V22から矢印V12へと補正することによって、加工ヘッド203の位置を位置K22から位置K12に補正する。さらに同様に、コントローラ400が、位置K12において加工ヘッド203の移動方向を矢印V23から矢印V13へと補正することによって、加工ヘッド203の位置を位置K23から位置K13に補正し、その後、矢印V14の方向へ移動する。
 なお、倣い制御によって被加工領域Srの法線方向への位置補正が行われるため、設定位置Pcと位置K11との間の加工ヘッド203の移動速度と、位置K11と位置K12との間の加工ヘッド203の移動速度と、位置K12と位置K13との間の加工ヘッド203の移動速度とは、互いに異なる。本例の場合、加工ヘッド203の移動速度は、制御周期毎に早くなる。また、設定位置Pcと位置K11との間隔と、位置K11と位置K12との間隔と、位置K12と位置K13との間隔とも、制御周期毎に長くなる。
 より詳しくは、コントローラ400は、制御周期毎に制御周期において補正するギャップ量(以下、「ギャップ補正量Q」と称する)を算出し、算出されたギャップ補正量Qを、X軸方向の成分Qxと、Y軸方向の成分Qyと、Z軸方向の成分Qzとに分配にする。なお、ギャップ補正量Qは、スカラ量である。
 コントローラ400は、成分Qxの値を用いて、サーボアンプ206Aに出力する指令信号Jxを補正する(図3参照)。同様に、コントローラ400は、成分Qyの値を用いてサーボアンプ206Bに出力する指令信号Jyを補正し、かつ、成分Qzの値を用いてサーボアンプ206Cに出力する指令信号Jzを補正する。
 図7は、ギャップ補正量Qの算出方法を説明するための図である。
 説明の便宜上、図7に示されるように、ノズル203Nが倣い補正によって位置K11に到達したときに着目して説明する。なお、同様な演算は、ノズル203Nが、設定位置Pcおよび位置K12,K13,K14,…に到達したときにもなされる。
 コントローラ400は、ギャップセンサ203Gからの出力に基づき、ギャップ量Dgを取得する。コントローラ400は、位置K11の補正前の位置K21と、位置Puとの間の距離を算出する。さらに、コントローラ400は、当該算出された距離における、被加工領域Srの法線方向成分の距離Drを算出する。このように、コントローラ400は、補正前の経路R1上の位置と位置Puとの間の距離における被加工領域Srの法線方向成分である距離Drを算出する。
 コントローラ400は、ギャップ量Dgから距離Drを差し引くことにより、距離Dsを算出する。コントローラ400は、距離Dsに基づいて、ギャップ補正量Qを算出する。
 なお、距離からギャップ補正量を算出する演算は、従来の三次元レーザ加工機による加工時のギャップ補正量の演算と同じである。ただし、上記のような距離Dsを用いる点が、加工時の演算とは異なる。
 上記のような補正処理によって、加工ヘッド203は、経路R2に沿って加工開始位置Psまで移動することになる。
 (d4.利点)
 レーザ加工機1によって得られる利点について、図5に基づいて説明する。
 (1)以上のように、コントローラ400は、ノズル203Nの向きの制御をしながら加工ヘッド203をアプローチ開始位置から加工開始位置へと移動させるアプローチ処理の途中で加工ヘッド203が設定位置Pcに到達すると、倣い制御を実行して加工ヘッド203を加工開始位置Psへと移動させる。このような構成によれば、以下に説明するように、アプローチ処理を迅速に行うことが可能となる。
 加工ヘッド203が位置Puに到達してから倣い制御を開始するような構成の場合、上述したように、加工ヘッド203は、経路R1と経路R3とを通り、加工開始位置Psに到達することになる。この構成の場合、コントローラ400は、位置Puの手前から加工ヘッド203を減速させ、加工ヘッド203を位置Puで一旦停止させる必要がある。その後、コントローラ400は、経路R3に沿って、加工ヘッド203を加速させなければならない。
 一方、本例のように、加工ヘッド203が設定位置Pcに到達してから倣い制御を開始すると、上述したように、加工ヘッド203は、経路R2に沿って加工開始位置Psまで到達させることができる。この場合、加工ヘッド203が位置Puに到達してから倣い制御を開始するような構成とは異なり、位置Puで加工ヘッド203を一旦停止させる必要がなくなる。
 したがって、レーザ加工機1によれば、位置Puで倣い制御を開始する構成よりも、ノズル203Nが設定位置Pcから加工開始位置Psまで移動する時間を短くすることができる。それゆえ、レーザ加工機1によれば、アプローチ処理を迅速に行うことが可能となる。
 また、以下のような効果も得られる。アプローチ開始位置P4で倣い制御を開始するような構成の場合、アプローチ開始位置P4の決め方(ティーチング位置の決め方)によっては、被加工領域Srから、かなり離れた位置においてノズル203NがワークWの表面に近接してしまう可能性がある。たとえば、図5において、アプローチ開始位置P4が図示した位置よりもZ軸正方向にずれて設定された場合、ワークWのエッジ部EよりもZ軸正方向の位置においてノズル203NがワークWの表面に近接してしまう可能性がある。この場合、ノズル203Nは、加工開始位置Psに到達する迄、ワークWの表面に沿って移動することになる。レーザ加工機1では、このような経路でノズル203Nが移動することを防止できる。
 (2)アプローチ開始位置P4は、ティーチング処理によって指定された位置(ティーチング位置)である。このような構成によれば、コントローラ400は、アプローチ開始位置を経路演算(たとえば、最短距離となる経路を算出するための演算)により算出する必要がなくなる。
 特に、本例では、退避位置P1、位置P2,P3もティーチング処理によって決まっているため、コントローラ400は、加工終了位置Pfからアプローチ開始位置P4までの経路を容易に決定することができる。
 (3)コントローラ400は、エアーカット処理により加工ヘッド203がアプローチ開始位置P4に到達すると、アプローチ開始位置P4と予め定められた位置Puとを直線で結ぶ経路に沿ってアプローチ開始位置P4から位置Puまで加工ヘッド203を移動させる制御プログラムを実行する。また、設定位置Pcは当該経路上の位置である。
 このような構成によれば、加工ヘッド203をワークWの表面に近づけつつも、加工開始位置Psに加工ヘッド203に移動させることが可能となる。
 (4)位置Puは、加工開始位置Psにおいてレーザ光が照射されるワークWの被加工領域Srから被加工領域Srの法線方向に予め定められた距離Dhだけ離れた位置である。このような構成によれば、位置Puは加工開始位置Psから被加工領域Srの法線方向に延伸した位置となるため、加工ヘッド203を加工開始位置Psに移動させることが可能となる。
 (5)コントローラ400は、加工ヘッド203が設定位置Pcから加工開始位置Psへと移動している間、倣い制御によって加工ヘッド203の位置を被加工領域Srの法線方向に補正する。
 具体的には、コントローラ400は、制御周期毎に倣い制御による加工ヘッド203の位置の補正量(ギャップ補正量Q)を算出する。コントローラ400は、加工ヘッド203の位置が被加工領域Srの法線方向に補正されるように、制御周期毎に、当該ギャップ補正量QをX軸方向の成分QxとY軸方向の成分QyとZ軸方向の成分Qzとに分配する。
 このような構成によれば、加工ヘッド203を目標位置である加工開始位置Psに精度よく移動させることが可能となる。
 (6)コントローラ400は、加工開始位置Psにおけるノズル203Nの向きとして、レーザ光の照射方向が被加工領域Srの法線方向となる姿勢データを予め記憶している。コントローラ400は、当該姿勢データに基づいて、倣い制御による加工ヘッド203の位置を被加工領域Srの法線方向に補正する。
 このような構成によれば、ノズル203Nの向きが被加工領域Srの法線方向となるため、加工ヘッド203を目標位置である加工開始位置Psに精度よく移動させることが可能となる。
 <E.データ処理の流れ>
 図8は、図5の場合においてコントローラ400において実行される処理の流れを説明するためのフロー図である。
 図8に示されるように、ステップS1において、コントローラ400は、加工ヘッド203がアプローチ開始位置P4に到達すると、アプローチ開始位置P4と位置Puとを直線で結ぶ経路に沿ってアプローチ開始位置P4から位置Puまで加工ヘッド203を移動させる移動処理を実行する。ステップS2において、コントローラ400は、加工ヘッド203が設定位置Pcに到達したか否かを判断する。
 コントローラ400は、加工ヘッド203が設定位置Pcに到達したと判断した場合(ステップS2においてYES)、ステップS3において、位置Puから加工開始位置Psまでの倣い補正処理を実行する。詳しくは、コントローラ400は、被加工領域Srの法線方向である経路R3における距離分の補正処理を実行する。コントローラ400は、当該補正処理によって、加工ヘッド203を設定位置Pcから加工開始位置Psに移動させる。これにより、設定位置Pc以降の加工ヘッド203の移動経路が、経路R1と経路R3とから、経路R2に補正される。コントローラ400は、加工ヘッド203が設定位置Pcに到達していないと判断した場合(ステップS2においてNO)、処理をステップS2に戻す。
 ステップS4において、コントローラ400は、加工ヘッド203が加工開始位置Psに到達したか否かを判断する。コントローラ400は、加工ヘッド203が加工開始位置Psに到達したと判断した場合(ステップS4においてYES)、アプローチ処理を終了する。コントローラ400は、加工ヘッド203が加工開始位置Psに到達していないと判断した場合(ステップS2においてNO)、処理をステップS3に戻す。
 図9は、図8のステップS3の処理の詳細を表したフロー図である。図9に示されるように、ステップS3の処理は、ステップS321~S327の処理を含んでいる。これらの各処理と、図8に示したステップS4との処理とは、制御周期毎に実行される。
 ステップS321において、コントローラ400は、ギャップセンサ203Gから電圧値(アナログ値)を取得する。ステップS322において、コントローラ400は、A/D(Analog/Digital)変換により、電圧値をデジタル値に変換する。
 ステップS323において、コントローラ400は、予め記憶している変換式または変換テーブルを利用して、電圧値(デジタル値)をギャップ量Dgに変換する。ステップS324において、コントローラ400は、ギャップ量Dgから距離Drを引くことにより距離Dsを算出する。なお、距離Drは、上述したように、補正前の経路R1上の位置と位置Puとの間の距離における被加工領域Srの法線方向成分である。
 ステップS325において、コントローラ400は、距離Dsに基づきギャップ補正量Q(現在の制御周期において補正するギャップ量)を算出する。
 ステップS326において、コントローラ400は、倣い制御による加工ヘッド203の位置が被加工領域Srの法線方向に補正されるように、ギャップ補正量Qを、X軸方向の成分Qxと、Y軸方向の成分Qyと、Z軸方向の成分Qzとに分配する。ステップS327において、コントローラ400は、成分Qxの値を用いて指令信号Jxを補正し、成分Qyの値を用いて指令信号Jyを補正し、かつ成分Qzの値を用いて指令信号Jzを補正する。
 なお、コントローラ400は、ステップS326の後、処理を図8のステップS4に進める。
 <F.機能的構成>
 図10は、アプローチ処理時におけるコントローラ400の機能的構成を説明するための機能ブロック図である。
 図10を参照して、コントローラ400は、制御部410と、記憶部420と、電圧値取得部430と、A/D変換部440とを備える。
 制御部410は、プロセッサが制御プログラムを含む各種のプログラムを実行することにより実現される。記憶部420は、フラッシュメモリ、ハードディスク等の不揮発性のメモリを含んで構成される。
 制御部410は、制御プログラム実行部411と、指令信号生成部412と、倣い制御実行指示部413と、倣い制御実行部414とを含む。倣い制御実行部414は、ギャップ量算出部4141と、補正量算出部4142と、分配処理部4143とを有する。
 記憶部420は、オペレーティングシステム、シーケンスプログラムおよび加工プログラム等の各種のプログラム、ティーチング位置の座標値、位置Puの座標値、基準ギャップ量Df、許容誤差δ、電圧値をギャップ量に変換するための変換式または変換テーブル、ティーチング位置での向き(A軸とC軸との回転角)等の情報が記憶されている。
 電圧値取得部430は、ギャップセンサ203Gによる検出結果としての電圧値(アナログ値)を、ギャップセンサ203Gから取得する。A/D変換部440は、電圧値取得部430が取得したアナログの電圧値をデジタルの電圧値に変換する。
 制御部410は、記憶部420に記憶されたオペレーティングシステム、各種のプログラムを実行する。たとえば、制御部410は、記憶部420に記憶された各種のデータを利用して、記憶部420に記憶された制御プログラムを実行する。図5の例では、制御プログラム実行部411は、制御プログラムを実行することより、加工ヘッド203をアプローチ開始位置P4まで移動させる。以下、図5の例に基づき、アプローチ処理時における制御部410の各部の動作について説明する。
 制御プログラム実行部411は、アプローチ処理の際、加工ヘッド203をアプローチ開始位置P4から位置Puまで移動させる制御プログラムを実行する。制御プログラム実行部411は、この制御プログラムの実行結果を指令信号生成部412に通知する。
 指令信号生成部412は、当該実行結果に基づいて指令信号Jx、Jy,Jz,Jc,Jaを生成する。指令信号生成部412は、生成された指令信号を、対応するサーボアンプ206A,206B,206C,206D,206Eに送る。
 倣い制御実行指示部413は、制御プログラム実行部411の実行結果に基づき、加工ヘッド203の位置が設定位置Pcに到達したか否かを判断する。倣い制御実行指示部413は、加工ヘッド203の位置が設定位置Pcに到達したと判断すると、倣い制御実行部414に倣い制御を実行するように指令を送る。
 倣い制御実行部414の各部は、当該指令を受け付けた後、以下の処理を制御周期毎に実行する。
 ギャップ量算出部4141は、変換式を用いることによって、A/D変換部440から送られてきた電圧値(デジタル値)からギャップ量Dgを算出する。
 補正量算出部4142は、ギャップ量算出部4141によって算出されたギャップ量Dgから距離Drを差し引くことにより、距離Dsを算出する。補正量算出部4142は、距離Dsに基づき、ギャップ補正量Qを算出する。
 分配処理部4143は、加工ヘッド203の位置が被加工領域Srの法線方向に補正されるように、補正量算出部4142によって算出されたギャップ補正量Qを、X軸方向の成分QxとY軸方向の成分QyとZ軸方向の成分Qzとに分配にする。分配処理部4143は、各成分Qx,Qy,Qzを補正量として、指令信号生成部412に通知する。
 指令信号生成部412は、分配処理部4143から受け付けた補正量(成分Qx,Qy,Qz)を考慮して、指令信号Jx、Jy,Jzを生成する。
 今回開示された実施の形態は例示であって、上記内容のみに制限されるものではない。本開示の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 レーザ加工機、200 加工機本体、201 ベース部材、203 加工ヘッド、203G ギャップセンサ、203N ノズル、206A,206B,206C,206D,206E サーボアンプ、207A,207B,207C,207D,207E サーボモータ、211,221,231 ガイド部材、212,222,232,242,252 可動部材、300 テーブル、400 コントローラ、401 数値制御装置、402 モータ制御装置、403 入出力装置、410 制御部、411 制御プログラム実行部、412 指令信号生成部、413 倣い制御実行指示部、414 倣い制御実行部、420 記憶部、430 電圧値取得部、440 変換部、500 発振器、4141 ギャップ量算出部、4142 補正量算出部、4143 分配処理部、Df 基準ギャップ量、Dg ギャップ量、Dh 距離、E エッジ部、Jx,Jy,Jz 指令信号、P1 退避位置、P4 アプローチ開始位置、Pc 設定位置、Pf 加工終了位置、Ps 加工開始位置、R1,R2,R3,R11,R12,R13,R14 経路、Sr 被加工領域、W ワーク。

Claims (8)

  1.  ノズルを有し、かつワークに対してレーザ光を前記ノズルから照射する加工ヘッドと、
     前記加工ヘッドの位置決めを行い、かつ前記ノズルの向きを制御するコントローラと、
     前記ワークと前記ノズルとの間の距離を検出するセンサとを備え、
     前記コントローラは、
      検出された前記距離に基づいて、前記加工ヘッドの位置を補正する倣い制御を実行可能であって、
      前記ノズルの向きを制御しながら前記加工ヘッドをアプローチ開始位置から加工開始位置へと移動させるアプローチ処理の途中で前記加工ヘッドが予め定められた第1の位置に到達すると、前記倣い制御を実行して前記加工ヘッドを前記加工開始位置へと移動させる、三次元レーザ加工機。
  2.  前記アプローチ開始位置は、ティーチング処理によって指定された位置である、請求項1に記載の三次元レーザ加工機。
  3.  前記コントローラは、前記加工ヘッドが前記アプローチ開始位置に到達すると、前記アプローチ開始位置と予め定められた第2の位置とを直線で結ぶ経路に沿って前記アプローチ開始位置から前記第2の位置まで前記加工ヘッドを移動させる制御プログラムを実行し、
     前記第1の位置は前記経路上の位置である、請求項1または2に記載の三次元レーザ加工機。
  4.  前記第2の位置は、前記加工開始位置において前記レーザ光が照射される前記ワークの被加工領域から前記被加工領域の法線方向に予め定められた距離だけ離れた位置である、請求項3に記載の三次元レーザ加工機。
  5.  前記コントローラは、前記加工ヘッドが前記第1の位置から前記加工開始位置へと移動している間、前記倣い制御によって前記加工ヘッドの位置を前記被加工領域の法線方向に補正する、請求項4に記載の三次元レーザ加工機。
  6.  前記コントローラは、
      X軸方向と、前記X軸方向に直交するY軸方向と、前記X軸方向および前記Y軸方向に直交するZ軸方向とに前記加工ヘッドを移動させることによって、前記加工ヘッドの位置決めを行い、
      予め定められた周期毎に前記倣い制御による前記加工ヘッドの位置の補正量を算出し、
      前記加工ヘッドの位置が前記被加工領域の法線方向に補正されるように、前記周期毎に、前記補正量を前記X軸方向の成分と前記Y軸方向の成分と前記Z軸方向の成分とに分配する、請求項5に記載の三次元レーザ加工機。
  7.  前記コントローラは、
      前記加工開始位置における前記ノズルの向きとして、前記レーザ光の照射方向が前記被加工領域の法線方向となるデータを予め記憶しており、
      前記データに基づいて、前記加工ヘッドの位置を前記被加工領域の法線方向に補正する、請求項5または6に記載の三次元レーザ加工機。
  8.  三次元レーザ加工機の制御方法であって、
     前記三次元レーザ加工機の加工ヘッドのノズルの向きを制御しながら、前記加工ヘッドをアプローチ開始位置から加工開始位置へとアプローチさせるステップと、
     前記アプローチの途中で前記加工ヘッドが予め定められた位置に到達すると、ワークと前記ノズルとの間の距離に基づいて前記加工ヘッドの位置を補正する倣い制御を実行するステップとを備える、三次元レーザ加工機の制御方法。
PCT/JP2018/014734 2017-06-28 2018-04-06 三次元レーザ加工機および三次元レーザ加工機の制御方法 WO2019003557A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880026103.1A CN110545949B (zh) 2017-06-28 2018-04-06 三维激光加工机及三维激光加工机的控制方法
US16/613,470 US11504806B2 (en) 2017-06-28 2018-04-06 Three-dimensional laser machine and method for controlling the three-dimensional laser machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-126393 2017-06-28
JP2017126393A JP6918603B2 (ja) 2017-06-28 2017-06-28 三次元レーザ加工機および三次元レーザ加工機の制御方法

Publications (1)

Publication Number Publication Date
WO2019003557A1 true WO2019003557A1 (ja) 2019-01-03

Family

ID=64742453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014734 WO2019003557A1 (ja) 2017-06-28 2018-04-06 三次元レーザ加工機および三次元レーザ加工機の制御方法

Country Status (4)

Country Link
US (1) US11504806B2 (ja)
JP (1) JP6918603B2 (ja)
CN (1) CN110545949B (ja)
WO (1) WO2019003557A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111515552A (zh) * 2020-03-27 2020-08-11 大族激光科技产业集团股份有限公司 一种三维五轴激光加工设备
WO2023209792A1 (ja) * 2022-04-26 2023-11-02 ファナック株式会社 制御装置及びこれを含むレーザ加工装置、並びにレーザ加工装置のレーザ出射機構の加工開始点移動制御方法
JP7208445B1 (ja) * 2022-06-28 2023-01-19 ファナック株式会社 レーザ加工システム、及びレーザ加工方法
WO2024023985A1 (ja) * 2022-07-27 2024-02-01 ファナック株式会社 数値制御装置および数値制御プログラム
CN117742239B (zh) * 2024-02-19 2024-05-14 南京超颖新能源科技有限公司 机床的垂直矫正系统及矫正方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10175085A (ja) * 1996-12-16 1998-06-30 Amada Co Ltd 3次元レーザー加工機における倣い軸制御方法と装置
JP2000317665A (ja) * 1999-05-06 2000-11-21 Amada Eng Center Co Ltd 三次元レーザ加工機による加工方法
JP2000343255A (ja) * 1999-06-02 2000-12-12 Amada Wasino Co Ltd レーザ加工方法及びその装置
JP2008110389A (ja) * 2006-10-31 2008-05-15 Mitsubishi Electric Corp レーザ加工装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004001067A (ja) 2002-03-28 2004-01-08 Fanuc Ltd レーザ加工機及びレーザ加工方法
JP3652350B2 (ja) * 2002-12-17 2005-05-25 コマツ産機株式会社 プラズマ加工方法
JP4763254B2 (ja) * 2004-06-16 2011-08-31 コマツ産機株式会社 熱切断機
US7960669B2 (en) * 2004-06-25 2011-06-14 Komatsu Industries Corporation Hybrid thermal cutting apparatus
JP4869869B2 (ja) * 2006-10-24 2012-02-08 コマツ産機株式会社 プラズマ切断機、及びプラズマ電源システム
US9000321B2 (en) * 2007-06-22 2015-04-07 Komatsu Industries Corporation Thermal cutter with sound absorbent walls
CN103111760B (zh) * 2011-11-17 2015-08-05 大族激光科技产业集团股份有限公司 一种z轴空行程仿形控制方法、系统及激光切割机
JP5420009B2 (ja) * 2012-03-29 2014-02-19 コマツ産機株式会社 プラズマ切断方法及びプラズマ切断装置
JP6082967B2 (ja) * 2012-12-27 2017-02-22 株式会社小松製作所 プラズマ切断機および切断方法
JP5816370B2 (ja) * 2013-02-27 2015-11-18 コマツ産機株式会社 ファイバレーザ加工機の出力制御方法及びファイバレーザ加工機
JP6522967B2 (ja) * 2015-01-30 2019-05-29 株式会社小松製作所 プラズマトーチ用センタパイプ、接触子、電極、及びプラズマトーチ
CN106413971B (zh) * 2015-05-12 2017-11-17 三菱电机株式会社 激光加工机
JP6671648B2 (ja) * 2016-06-02 2020-03-25 コマツ産機株式会社 コントローラ、鍛圧機械、および制御方法
US10576526B2 (en) * 2018-07-03 2020-03-03 Komatsu Industries Corporation Workpiece conveying system, and workpiece conveying method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10175085A (ja) * 1996-12-16 1998-06-30 Amada Co Ltd 3次元レーザー加工機における倣い軸制御方法と装置
JP2000317665A (ja) * 1999-05-06 2000-11-21 Amada Eng Center Co Ltd 三次元レーザ加工機による加工方法
JP2000343255A (ja) * 1999-06-02 2000-12-12 Amada Wasino Co Ltd レーザ加工方法及びその装置
JP2008110389A (ja) * 2006-10-31 2008-05-15 Mitsubishi Electric Corp レーザ加工装置

Also Published As

Publication number Publication date
US20210086297A1 (en) 2021-03-25
CN110545949B (zh) 2021-04-06
JP6918603B2 (ja) 2021-08-11
JP2019005800A (ja) 2019-01-17
CN110545949A (zh) 2019-12-06
US11504806B2 (en) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2019003557A1 (ja) 三次元レーザ加工機および三次元レーザ加工機の制御方法
US10175684B2 (en) Laser processing robot system and control method of laser processing robot system
US10379519B2 (en) Servo controller, control method, and non-transitory computer-readable recording medium for machine tool used for oscillating cutting
US9915516B2 (en) Method for controlling shape measuring apparatus
JP2006227886A (ja) サーボ制御装置及びサーボ系の調整方法
TWI469500B (zh) 面鏡角定位設備和處理設備
CN109954955B (zh) 机器人系统
KR101511483B1 (ko) 가공 제어 장치, 레이저 가공 장치 및 가공 제어 방법
WO2012090394A1 (ja) レーザ加工システム及びその制御方法
JP6147022B2 (ja) 工作機械の空間精度測定方法および空間精度測定装置
KR101722916B1 (ko) 레이저 스캐너 기반 5축 표면 연속 가공 장치 및 그 제어 방법
CN110154043B (zh) 基于加工结果进行学习控制的机器人系统及其控制方法
WO2016031069A1 (ja) レーザ加工機及び数値制御プログラム作成ソフトウェア
JP2016055308A (ja) レーザ光を高速で走査可能なガルバノスキャナを含む加工システム
JP5897233B1 (ja) レーザ加工装置、校正データ生成方法およびプログラム
US10241495B2 (en) Apparatus and method for providing feedback force and machine tool system
JP6254965B2 (ja) スカイビング加工における工具補正機能を有する数値制御装置
US20160249411A1 (en) Laser processing system capable of adjusting timing to switch output command
WO2023053348A1 (ja) レーザ加工機の動作を教示する教示装置及び教示方法、並びに、干渉確認プログラムを生成する装置及び方法
US20230381889A1 (en) Laser processing system and control method
US20180178323A1 (en) Laser processing head and laser processing system including the same
JP2021096604A (ja) スキャナコントローラ及びスキャナ制御システム
WO2022186054A1 (ja) センサの出力に基づいて教示点を生成する教示点生成装置および教示点生成方法
KR20160143281A (ko) 레이저 스캐너 기반 3축 표면 연속 가공 장치 및 그 제어 방법
JP2004272686A (ja) 空間経路生成方法及び空間経路生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823188

Country of ref document: EP

Kind code of ref document: A1