WO2023209792A1 - 制御装置及びこれを含むレーザ加工装置、並びにレーザ加工装置のレーザ出射機構の加工開始点移動制御方法 - Google Patents

制御装置及びこれを含むレーザ加工装置、並びにレーザ加工装置のレーザ出射機構の加工開始点移動制御方法 Download PDF

Info

Publication number
WO2023209792A1
WO2023209792A1 PCT/JP2022/018836 JP2022018836W WO2023209792A1 WO 2023209792 A1 WO2023209792 A1 WO 2023209792A1 JP 2022018836 W JP2022018836 W JP 2022018836W WO 2023209792 A1 WO2023209792 A1 WO 2023209792A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
processing
start point
point
movement
Prior art date
Application number
PCT/JP2022/018836
Other languages
English (en)
French (fr)
Inventor
駿 寳澤
健太 山本
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2022/018836 priority Critical patent/WO2023209792A1/ja
Priority to TW112113616A priority patent/TW202346012A/zh
Publication of WO2023209792A1 publication Critical patent/WO2023209792A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head

Definitions

  • the present invention relates to a control device for a laser processing device, and particularly to a control device having a function of controlling movement of a laser emitting mechanism such as a processing head to a processing start point.
  • Laser processing equipment such as laser cutting machines and laser welding machines, transmits a processing laser beam output from a laser oscillator, irradiates the workpiece, and moves the processing laser beam and the workpiece relative to each other, thereby performing a predetermined processing. It can be carried out.
  • a gap sensor installed in a laser emission mechanism such as a processing head detects the distance between the workpiece and the laser emission mechanism, and the detected distance is A control operation is known in which laser processing is performed according to a processing program while maintaining a predetermined value.
  • Patent Document 1 discloses a laser processing device that rotates the processing nozzle around a predetermined rotation axis while moving the processing nozzle relative to the workpiece according to a processing program.
  • a laser processing device that performs laser processing on a workpiece using a laser beam irradiated from a processing nozzle comprising: a three-dimensional moving part that moves the processing nozzle relative to the workpiece in a three-dimensional direction; and the rotation axis.
  • a rotating part that rotates the processing nozzle around the center, a gap amount detection part that detects the gap amount between the processing nozzle and the workpiece, a rotation position detection part that detects the rotational position of the rotation axis by the rotating part, and a command calculation unit that generates a command signal for maintaining the gap amount constant based on the gap amount and rotational position, and the three-dimensional movement unit moves the processing nozzle to the workpiece based on the command signal.
  • a device configured to move relative to an object in a three-dimensional direction is disclosed. According to such a laser processing apparatus, it is said that errors in the processed shape of the workpiece due to the control of the gap amount can be reduced.
  • position control is performed to bring the laser emitting mechanism closer to the workpiece based on the control start point described above.
  • the correction operation the correction movement amount of the processing nozzle is grasped using the intersection between the workpiece and the center axis of the processing nozzle as a reference position, and the nozzle tip position from the intersection point is moved in the unit vector direction according to the above correction movement amount. position control is executed.
  • the reference position for position control to move the laser emission mechanism is the control start point in the approach operation, whereas in the correction operation, the reference position is the center of the workpiece and the processing nozzle. This is the intersection with the axis. Therefore, when the control device shifts from approach operation to correction operation, it is necessary to calculate the position of the laser emission mechanism related to position control in correction operation after determining the reference position of the control command, which increases the calculation load. Additionally, there is a problem in that a time lag occurs when transitioning to the correction operation.
  • tracing control is performed to keep the distance between the workpiece and the laser emitting mechanism constant based on the detected value from the gap sensor.
  • a control device that can reduce the calculation load of the movement position of the laser emission mechanism included in the movement command.
  • a control device that controls the operation of a laser processing apparatus includes a laser emission mechanism that emits processing laser light in a direction along a unit vector, and a gap sensor provided in the laser emission mechanism.
  • a main control section that outputs drive commands to components of the processing device based on a processing program, and a movement command generation section that generates a movement command for moving the laser emitting mechanism using the detected value from the gap sensor.
  • the movement command generating unit generates an approach command to move the laser emitting mechanism from the control start position toward the laser irradiation point on the workpiece to the boundary gap point where the gap sensor starts detecting, and an approach command to move the laser emitting mechanism from the boundary gap point to the laser irradiation point on the workpiece.
  • It has a function to generate a machining start point movement command for moving to a machining start point within the detection range of the gap sensor, and the machining start point movement command moves the unit vector at the boundary gap point to the machining start point. It is configured to include a posture change to match the machining vector.
  • a control device that controls the operation of each component of the laser processing device, and this control device includes a main control unit that outputs a drive command to each component of the laser processing device based on a processing program, and a control device that outputs a drive command to each component of the laser processing device based on a processing program, and a control device that outputs a drive command to each component of the laser processing device based on a processing program, and further comprising a movement command generation unit that generates a movement command for moving the laser emission mechanism using A function that generates an approach command to move to the boundary gap point where the sensor starts detection, and a machining start point movement command to move the laser emission mechanism from the boundary gap point to the machining start point within the detection range of the gap sensor.
  • the machining start point movement command is configured to include a posture change that makes the unit vector at the boundary gap point coincide with the machining vector at the machining start point.
  • a laser emitting mechanism of a laser processing apparatus including a laser emitting mechanism that emits a processing laser beam in a direction along a unit vector, and a gap sensor provided in the laser emitting mechanism.
  • the method of controlling the movement of the machining start point of the laser emission mechanism to move it to the machining start point of copying control is to move the laser emission mechanism from the control start position to the laser irradiation point on the workpiece to the boundary gap point where the gap sensor starts detecting.
  • the processing start point movement routine includes an approach routine for moving the laser emitting mechanism from the boundary gap point to a processing start point within the detection range of the gap sensor. It includes an attitude change step of making the unit vector at the point coincide with the machining vector at the machining start point.
  • the movement command generation unit generates an approach command to move the laser emission mechanism from a control start position to a boundary gap point, and a processing command to move the laser emission mechanism from the boundary gap point to a processing start point.
  • the laser emitting mechanism is moved to the machining start point by having a function of generating a start point movement command and by configuring the machining start point movement command to be calculated based on the coordinate values and vector of the boundary gap point.
  • movement control the calculation load of the movement position of the laser emission mechanism included in the movement command can be reduced.
  • FIG. 1 is a schematic diagram showing the configuration of a laser processing apparatus including a control device according to a first embodiment.
  • 2 is a block diagram showing an example of the configuration of the laser processing apparatus shown in FIG. 1.
  • FIG. 2 is a flowchart showing an overview of a processing start point movement control method executed by a control device in the laser processing apparatus according to the first embodiment.
  • 4 is a flowchart showing an overview of the approach routine shown in FIG. 3.
  • FIG. 4 is a flowchart showing an overview of a machining start point movement routine shown in FIG. 3.
  • FIG. FIG. 3 is a partial front view showing an overview of the positional relationship between the laser emitting mechanism and the workpiece at the start of the approach routine.
  • FIG. 3 is a partial front view schematically showing the positional relationship between the laser emitting mechanism and the workpiece at the end of the approach routine.
  • FIG. 3 is a partial front view showing an overview of the positional relationship between the laser emitting mechanism and the workpiece at the start of a processing start point movement routine.
  • FIG. 3 is a partial front view showing an overview of the positional relationship between the laser emitting mechanism and the workpiece at the end of the processing start point movement routine.
  • 12 is a flowchart showing an overview of a machining start point movement routine in a machining start point movement control method executed by a control device according to a second embodiment, which is another example of the present invention.
  • FIG. 1 is a flowchart showing an overview of a machining start point movement routine in a machining start point movement control method executed by a control device according to a second embodiment, which is another example of the present invention.
  • FIG. 7 is a partial front view showing an overview of the distance correction operation of the laser emitting mechanism in the processing start point movement routine according to the second embodiment.
  • 12 is a flowchart showing an overview of a machining start point movement routine in a machining start point movement control method executed by a control device according to a third embodiment, which is still another example of the present invention.
  • FIG. 1 is a schematic diagram showing the configuration of a laser processing apparatus including a control device according to a first embodiment, which is a typical example of the present invention. Further, FIG. 2 is a block diagram showing an example of the configuration of the laser processing apparatus shown in FIG. 1.
  • the laser processing apparatus 1 includes, as an example, a laser oscillator 10 that oscillates a processing laser beam LB, a work holding mechanism 20 that holds a workpiece W, and a workpiece holding mechanism 20 that emits the processing laser beam LB to the workpiece W. It includes a laser emitting mechanism (for example, a processing head) 30, a transport mechanism 40 that moves the laser emitting mechanism 30 relative to the workpiece holding mechanism 20, and a control device 100 that controls a predetermined laser processing operation on the workpiece W. .
  • a laser emitting mechanism for example, a processing head
  • transport mechanism 40 that moves the laser emitting mechanism 30 relative to the workpiece holding mechanism 20
  • a control device 100 that controls a predetermined laser processing operation on the workpiece W.
  • the laser processing apparatus in this specification performs predetermined processing by irradiating a processing laser beam onto a workpiece W, such as laser welding, laser cutting, laser drilling (trepanning), laser marking, laser dicing, or laser annealing. It can be applied as any processing device.
  • a laser oscillation source having a wavelength with high absorption efficiency is applied depending on the material of the workpiece W to be processed.
  • Examples of such a laser oscillator 10 include those capable of fiber transmission, such as a YAG laser, a YVO 4 laser, a fiber laser, and a disk laser.
  • the processing laser beam LB output from the laser oscillator 10 is transmitted to the laser emitting mechanism 30 via a transmission path 34 such as an optical fiber.
  • the work holding mechanism 20 includes a chuck mechanism (not shown) for attaching the work W, and is configured as a processing table that can freely move in the three axis directions of XYZ shown in the figure while gripping and fixing the work W.
  • the work holding mechanism 20 may include not only a mechanism for moving the work W in three axial directions, but also a rotation mechanism (for example, a configuration known as a B axis along the Y axis or a C axis along the Z axis). .
  • the laser emitting mechanism 30 introduces a processing laser beam LB from one end (upper end) side through a transmission line 34 such as an optical fiber, and emits it toward the workpiece W from a nozzle 32 at the other end (lower end) side. It is configured as a processing head that can be At this time, the processing laser beam LB is focused to a predetermined beam diameter at the laser irradiation point FP on the workpiece W by a condensing lens (not shown) disposed inside the laser emission mechanism 30.
  • a condensing lens not shown
  • the nozzle 32 serves as a gap for detecting the distance D between the lower end of the laser emission mechanism 30 (nozzle 32) and the workpiece W, in addition to functioning as an emission port for the processing laser beam LB in the laser emission mechanism 30. It has a function as a sensor.
  • An example of such a nozzle 32 is a capacitance sensor.
  • the nozzle 32 is configured as a part of the electrode of a capacitance sensor, but as described above, the gap between the workpiece W and the laser emission mechanism 30 can be detected.
  • Any sensor can be used, and such a sensor may be directly attached to the laser emitting mechanism 30.
  • a reference point for position measurement is provided in a part of the laser emission mechanism 30, and the relative position between the reference point and the sensor is used to correct the distance measured by the sensor, thereby emitting the laser.
  • a method of specifying the distance between the mechanism 30 and the workpiece W, etc. can be adopted.
  • the transport mechanism 40 includes, for example, a linear drive section 42 that moves relatively in three axes directions of X, Y, and Z that are perpendicular to each other, and a first arm that rotates around the C axis that extends from the bottom surface of the linear drive section 42 along the Z axis. 44, and a second arm 46, one end of which is attached orthogonally to the first arm and rotates around the A axis extending in the XY plane.
  • the laser emitting mechanism 30 is attached to the other end of the second arm 46, so that the laser emitting mechanism 30 can rotate around the A axis.
  • the control device 100 includes, for example, a main control section 110 that outputs drive commands based on a processing program to the components of the laser processing device 1, which will be described later, and a main control section 110 that outputs drive commands based on a processing program, and A movement command generation section 120 that generates a movement command for moving the laser emission mechanism 30 using detected values, a display section 130 that displays various parameters, etc., and a manual input section for manually inputting information for modifying the machining program and various parameters. and a possible input interface 140.
  • a main control section 110 is connected to the laser oscillator 10, the workpiece holding mechanism 20, and the transport mechanism 40 by wire or wirelessly, and exchanges signals with these peripheral devices to control the entire laser processing device 1. control the behavior of
  • the main control unit 110 has a function of extracting information such as a machining path and machining conditions from a machining program and outputting an output command signal to the laser oscillator 10 to instruct the output of the machining laser beam LB.
  • the main control unit 110 also extracts information such as the position of the irradiation point FP of the processing laser beam LB, the position of the laser emission mechanism 30, and a processing vector described below from the processing program, and It also has a function of outputting a machining position command signal for commanding relative movement to the workpiece holding mechanism 20 and the transport mechanism 40.
  • the movement command generating unit 120 generates an approach command to move the laser emitting mechanism 30 from the control start position toward the laser irradiation point on the workpiece to the boundary gap point where the gap sensor starts detecting, and an approach command to move the laser emitting mechanism 30 from the boundary gap point to the gap point. It has a function of generating a machining start point movement command for moving to a machining start point within the detection range of the sensor.
  • the approach command and the processing point movement command generated by the movement command generation unit 120 are sent to the main control unit 110, and the main control unit 110 converts them into individual drive commands for each component of the laser processing device 1. It is converted and output.
  • FIG. 3 is a flowchart outlining a processing start point movement control method executed by the control device in the laser processing apparatus according to the first embodiment.
  • FIG. 4 is a flowchart showing an overview of the approach routine shown in FIG. 3.
  • FIG. 5 is a flowchart showing an overview of the machining start point movement routine shown in FIG. 3.
  • FIG. 6A is a partial front view showing an overview of the positional relationship between the laser emission mechanism and the workpiece at the start of the approach routine.
  • FIG. 6B is a partial front view showing an overview of the positional relationship between the laser emission mechanism and the workpiece at the end of the approach routine.
  • FIG. 6C is a partial front view showing an overview of the positional relationship between the laser emitting mechanism and the workpiece at the start of the processing start point movement routine.
  • FIG. 6D is a partial front view showing an overview of the positional relationship between the laser emitting mechanism and the workpiece at the end of the processing start point movement routine.
  • the "position" or “point” of the laser emission mechanism 30 refers to the central point of the emission port of the nozzle 32 (for example, FIGS.
  • the nozzle tip point NP which is the intersection of the tip of the nozzle 32 and the central axis CA in FIG. 6D, is adopted.
  • the angle formed by the line passing through the processing start point PP and the laser irradiation point FP and the normal line of the workpiece W at the laser irradiation point FP is defined as the "inclination angle ⁇ " of the laser emission mechanism 30.
  • the "unit vector UV" of the laser emission mechanism 30 is defined as a vector having a predetermined length in the direction along the central axis of the laser emission mechanism 30, starting from the nozzle tip point NP of the laser emission mechanism 30 described above.
  • processing vector PV is a unit vector UV in the direction along the line passing through the above-mentioned processing start point PP and laser irradiation point FP (that is, in the same direction as the above-mentioned inclination angle ⁇ ), starting from the processing start point PP. Define as vectors with the same length. By defining these vectors, it becomes possible to calculate the displacement amount (correction amount) multiplied by the difference between the detection values obtained from the gap sensor.
  • a processing start point movement control method for moving the laser emitting mechanism 30 from a control start point (control start position) SP to a processing start point PP, which is executed when performing laser processing with the laser processing apparatus 1 according to the present invention, is shown in FIG.
  • the approach routine APR moves the laser emitting mechanism 30 from the control start point SP toward the laser irradiation point FP on the work W to the boundary gap point BP where the gap sensor starts detecting, and the laser emitting mechanism 30 is moved as described above.
  • the main control unit 110 acquires information on the current position coordinates of the nozzle tip point NP in the laser emission mechanism 30 from the transport mechanism 40 (step S1). , this is taken as the control starting point SP.
  • the main control unit 110 analyzes the machining program, for example, and acquires the irradiation position coordinates (laser irradiation point FP) of the machining laser beam LB on the workpiece W (step S2).
  • An example of the positional relationship between the laser emitting mechanism 30 and the workpiece W at this time is shown in FIG. 6A.
  • the main control unit 110 sends the acquired data on the control start point SP and the laser irradiation point FP to the movement command generation unit 120, and upon receiving the data, the movement command generation unit 120 generates the control start point SP and the laser irradiation point. From the coordinate values with the FP, an approach command for the transport mechanism 40 to move linearly between the two is generated. Then, the movement command generation unit 120 sends the generated approach command to the main control unit 110 (step S3).
  • the main control unit 110 outputs an approach command to the transport mechanism 40 (step S4), and checks whether the detection signal from the gap sensor is input at every predetermined control clock (that is, the nozzle tip point NP is It is determined whether the gap sensor has entered the detectable area DA at a predetermined distance from the surface of the workpiece W shown in FIG. 6A (step S5).
  • step S5 if it is determined that the detection signal from the gap sensor is not input, the main control unit 110 returns to step S4 and continues outputting the approach command again.
  • the approach operation of the laser emitting mechanism 30 toward the workpiece W is repeatedly performed until the gap sensor starts detecting the gap value (that is, until the gap sensor starts outputting the detection signal).
  • the moving speed of the laser emitting mechanism 30 in the approach operation may be set to be faster than in the processing start point moving operation, which will be described later.
  • step S5 if it is determined in step S5 that the detection signal from the gap sensor has been input, the main control unit 110 receives the coordinate values of the current nozzle tip point NP in the laser emission mechanism 30 from the transport mechanism 40, and The nozzle tip point NP is saved as a "boundary gap point BP" located at the boundary of the detectable area DA (step S6), and the approach routine is ended.
  • FIG. 6B An example of the positional relationship between the laser emitting mechanism 30 and the workpiece W at this time is shown in FIG. 6B.
  • a unit vector UV is obtained based on the position coordinates of the nozzle tip point NP in the laser emission mechanism 30 and the central axis CA (step S8).
  • the main control unit 110 analyzes the machining program, for example, and determines the position based on the laser irradiation point FP on the workpiece W and the nozzle tip point NP of the laser emission mechanism 30 at the time of starting machining (i.e., the machining start point PP).
  • a virtual beam axis VA is defined, and a machining vector PV in a direction along this is obtained (step S9).
  • the main control unit 110 sends the obtained data of the current unit vector UV and the machining vector PV at the machining start point PP to the movement command generation unit 120, and upon receiving the data, the movement command generation unit 120 generates the unit Laser emission mechanism 30 for calculating the vector difference between the vector UV and the processing vector PV (step S10) and canceling the difference (that is, matching the starting point and direction of the unit vector UV and the processing vector PV) A machining start point movement command including coordinate movement and attitude change is generated. Then, the movement command generation unit 120 sends the generated machining start point movement command to the main control unit 110 (step S11).
  • An example of the positional relationship between the unit vector UV of the laser emission mechanism 30 and the processing vector PV at the processing start point PP at this time is shown in FIG. 6C.
  • the main control unit 110 outputs a machining start point movement command to the transport mechanism 40 (step S12), and checks whether the unit vector UV and the machining vector PV match every predetermined control clock (that is, the current It is determined whether the angle between the nozzle tip point NP and the central axis CA of the laser emission mechanism 30 coincides with the processing start point PP and the virtual beam axis VA (step S13).
  • step S13 If it is determined in step S13 that the current unit vector UV does not match the machining vector PV in position and direction, the main control unit 110 returns to step S12 and continues outputting the machining start point movement command again. As a result, the machining start point of the laser emitting mechanism 30 is moved until the unit vector UV matches the machining vector PV, that is, until the laser emitting mechanism 30 assumes the attitude specified (to be taken) at the machining start point PP in the machining program. The action is performed repeatedly.
  • step S13 if it is determined in step S13 that the current unit vector UV matches the machining vector PV in position and direction, the main control unit 110 sets the coordinate value of the current nozzle tip point NP of the laser emission mechanism 30 and the central axis.
  • Information for control including the attitude of the CA (inclination angle ⁇ ) is saved as "current settings" (step S14), and the machining start point movement routine is ended.
  • FIG. 6D An example of the positional relationship between the laser emitting mechanism 30 and the workpiece W at this time is shown in FIG. 6D.
  • the control device and processing start point movement control method for a laser processing apparatus is such that the movement command generation unit moves the laser emission mechanism from the control start position to the boundary gap point. It has a function to generate an approach command to move the laser emission mechanism from the boundary gap point to the machining start point, and a machining start point movement command to move the machining start point movement command from the coordinate value and vector of the boundary gap point.
  • the calculation to be performed based on it is possible to reduce the calculation load for the movement position of the laser emission mechanism included in the movement command in the movement control for moving the laser emission mechanism to the processing start point.
  • the laser processing apparatus including the control device according to the first embodiment of the present invention illustrated above executes movement control to move the laser emission mechanism to the processing start point, and then uses a generally known gap sensor. Then, copy processing control is executed to move the laser emitting mechanism so that the distance from the workpiece is constant. That is, the control device according to the first embodiment is configured to have a function of causing the laser processing device to execute copy processing control, and also a function of causing the above-described laser emission mechanism to move to the processing start point. be done.
  • FIG. 7 is a flowchart showing an overview of a machining start point movement routine in a machining start point movement control method executed by a control device according to a second embodiment, which is another example of the present invention.
  • FIG. 8 is a partial front view showing an outline of the distance correction operation of the laser emission mechanism in the processing start point movement routine according to the second embodiment.
  • parts that can have the same or common configuration as those in the first embodiment are denoted by the same reference numerals. The explanation of the repetition of is omitted.
  • the main control unit 110 and the movement command generation unit 120 perform operations from step S7 to step S12 as shown in FIG. Perform the same actions as shown in .
  • the main control unit 110 determines whether the unit vector UV and the processing vector PV match each predetermined control clock (step S13).
  • step S13 If it is determined in step S13 that the current unit vector CV (UV) does not match the machining vector PV in position and direction, the main control unit 110 proceeds to step S12, as in the first embodiment. Go back and continue outputting the machining start point movement command again. As a result, the operation of moving the processing start point of the laser emitting mechanism 30 is repeatedly executed until the unit vector CV matches the processing vector PV.
  • the processing laser is controlled based on the detected value from the gap sensor.
  • An operation may be performed to correct the condensing position (focal length) of the light LB in the direction of the central axis CA of the laser emission mechanism 30 so that it becomes an appropriate position. Therefore, in the second embodiment, after the laser emitting mechanism 30 is moved to the machining start point PP on the machining program, the above-described distance correction operation in the direction of the central axis CA is executed.
  • step S13 if it is determined in step S13 that the current unit vector CV matches the machining vector PV in position and direction, the main control unit 110 acquires the current detection value of the gap sensor (step S21), and Information on the gap value based on the detected value and the focal length in the machining program is sent to the movement command generation unit 120.
  • the movement command generation unit 120 further calculates the difference between the gap value calculated from the detected value from the gap sensor and the gap value based on the above-mentioned machining program, and in order to correct the difference, the movement command generation unit 120 A correction movement command is generated to move 30 in the direction along the unit vector CV (that is, the direction along the central axis CA). Then, the movement command generation unit 120 sends the generated corrected movement command to the main control unit 110 (step S22).
  • the main control unit 110 outputs a correction movement command to the transport mechanism 40 (step S23), and checks whether the correction movement is completed every predetermined control clock (that is, whether the current nozzle tip point NP is corrected or not). (step S24).
  • step S24 if it is determined that the correction movement operation is not completed, the main control unit 110 returns to step S23 and continues outputting the correction movement command again. Thereby, the correction movement operation of the laser emission mechanism 30 is repeatedly executed until the position of the nozzle tip point NP of the laser emission mechanism 30 coincides with the correction point CP.
  • step S24 determines the coordinate values of the nozzle tip point NP (i.e. correction point CP) of the laser emission mechanism 30 after correction and the attitude of the central axis CA.
  • Information for control including (inclination angle ⁇ ) is saved as "current settings" (step S14), and the machining start point movement routine is ended.
  • FIG. 8 shows an example of the positional relationship between the laser emission mechanism 30 and the workpiece W resulting from this series of correction operations.
  • the position of the laser emission mechanism 30 is corrected in the direction of the central axis CA based on the detected value from the gap sensor, and the distance between the laser emission mechanism 30 and the laser irradiation point FP is adjusted to the correction distance CD.
  • the operation is executed.
  • the control device and processing start point movement control method for a laser processing apparatus can provide the processing laser beam at the processing start point in addition to the effects described in the first embodiment. Since a correction operation is performed to correct the position of the laser emitting mechanism in the direction along the unit vector so that the light has an appropriate focal length, it is possible to control the movement of the laser emitting mechanism to a more precise processing starting point. .
  • FIG. 9 is a flowchart outlining a machining start point movement routine in a machining start point movement control method executed by a control device according to a third embodiment, which is still another example of the present invention.
  • a third embodiment in the schematic diagrams shown in FIGS. 1 to 8, the same or common configurations as those in the first embodiment and the second embodiment may be adopted. A description of these repetitions will be omitted by attaching reference numerals.
  • the movement command generation unit 120 generates a movement command for the laser emission mechanism 30, and the main control unit 110 controls the transport mechanism 40, etc.
  • the feature is that the command output operation is executed simultaneously and in parallel. That is, as shown in FIG. 9, in the machining start point movement routine according to the third embodiment, the main control unit 110 takes over the information of the boundary gap point BP from the approach routine APR (step S7), and A processing vector PV is acquired in the same way as in the case of (step S9).
  • the main control unit 110 obtains a unit vector UV from the transport mechanism 40 based on the current position coordinates of the nozzle tip point NP in the laser emission mechanism 30 and the central axis CA (step S31).
  • the main control unit 110 sends the obtained data of the current unit vector UV and processing vector PV to the movement command generation unit 120, and upon receiving the data, the movement command generation unit 120 generates data based on a predetermined control clock.
  • Calculates a minute time difference as a vector between the unit vector UV and the processing vector PV per minute unit time step S32), and includes moving the coordinates and changing the posture of the laser emitting mechanism 30 to offset the minute time difference. Generate minute time movement commands.
  • the movement command generation unit 120 sends the generated minute time movement command to the main control unit 110 (step S33).
  • the main control unit 110 outputs a small time movement command to the transport mechanism 40 (step S34), and determines whether the unit vector UV and the processing vector PV match each other at each of the above-described predetermined control clocks. (Step S13).
  • step S13 If it is determined in step S13 that the current unit vector UV does not match the machining vector PV in position and direction, the main control unit 110 returns to step S31 to obtain the current unit vector UV again.
  • the operations from step S32 to step S34 are executed.
  • the movement operation to the laser emitting mechanism 30 is repeatedly performed every minute unit time until the unit vector UV matches the processing vector PV.
  • step S13 if it is determined in step S13 that the current unit vector UV matches the machining vector PV in position and direction, the main control unit 110 controls the current nozzle of the laser emitting mechanism 30, as in the first embodiment.
  • Information for control including the coordinate value of the tip point NP and the attitude (inclination angle ⁇ ) of the center axis CA is saved as "current settings" (step S14), and the machining start point movement routine is ended. Thereby, at the start of laser processing, the movement control of the laser emitting mechanism 30 from the control start point SP to the processing start point PP shown in FIG. 6A is completed.
  • the minute time difference is, for example, on the line connecting the current nozzle tip point NP (boundary gap point BP at the start of control) and the machining start point PP. It can be calculated as the maximum amount of movement that can be made toward the processing start point PP per hour.
  • the amount of movement of the laser emitting mechanism 30 per unit time is determined in advance, and this is determined on the line connecting the current nozzle tip point NP and the processing start point PP, and the amount of movement from the current nozzle tip point NP is determined. It may be determined as
  • the control device and processing start point movement control method for a laser processing apparatus has the effects described in the first embodiment, as well as the laser processing by the movement command generation unit.
  • the main control unit By simultaneously executing the movement command generation operation for the ejection mechanism and the command output operation for the transport mechanism etc. by the main control unit, the overall control time is reduced compared to the case where the movement command is generated and then outputted. can be reduced.
  • the present invention is not limited to the above embodiments, and can be modified as appropriate without departing from the spirit.
  • any component of the embodiments may be modified or any component of the embodiments may be omitted.
  • the specific examples shown in the first to third embodiments may be applied by combining their respective characteristics.
  • Laser processing device 10 Laser oscillator 20 Work holding mechanism 30 Laser emission mechanism (processing head) 32 nozzle 34 transmission path 40 transport mechanism 42 linear drive section 44 first arm 46 second arm 100 control device 110 main control section 120 movement command generation section 130 display section 140 input interface

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

本発明は、加工レーザ光を単位ベクトルに沿う方向に出射するレーザ出射機構と、当該レーザ出射機構に設けられたギャップセンサと、を含むレーザ加工装置の制御装置及び加工開始点移動制御方法である。制御装置は、レーザ加工装置の構成要素に加工プログラムに基づいて駆動指令を出力する主制御部と、ギャップセンサからの検出値を用いてレーザ出射機構を移動させるための移動指令を生成する移動指令生成部と、を含み、移動指令生成部は、レーザ出射機構を制御開始位置からレーザ照射点に向けてギャップセンサが検出開始する境界ギャップ点まで移動させるアプローチ指令と、レーザ出射機構を境界ギャップ点からギャップセンサの検出範囲内にある加工開始点に移動させるための加工開始点移動指令と、を生成する機能を有し、加工開始点移動指令は、境界ギャップ点における単位ベクトルを加工開始点における加工ベクトルと一致させる姿勢変更を含む。

Description

制御装置及びこれを含むレーザ加工装置、並びにレーザ加工装置のレーザ出射機構の加工開始点移動制御方法
 本発明は、レーザ加工装置の制御装置に関し、特に、加工ヘッド等のレーザ出射機構を加工開始点に移動させる移動制御を行う機能を有する制御装置に関する。
 レーザ切断機やレーザ溶接機等のレーザ加工装置は、レーザ発振器から出力された加工レーザ光を伝送してワークに照射し、当該加工レーザ光とワークとを相対移動させることにより、所定の加工を行うことができる。このようなレーザ加工装置において、加工レーザ光をワークに照射する際に、加工ヘッド等のレーザ出射機構に設けられたギャップセンサでワークとレーザ出射機構との距離を検出しつつ、検出した距離を所定値に維持しつつ加工プログラムにしたがってレーザ加工を行う制御動作が知られている。
 このような制御動作を実行するレーザ加工装置として、例えば特許文献1には、加工プログラムに従って、被加工物に対して加工ノズルを相対移動させつつ、加工ノズルを所定の回転軸を中心に回転させ、加工ノズルから照射されるレーザ光によって被加工物に対してレーザ加工を施すレーザ加工装置において、加工ノズルを被加工物に対して三次元方向に相対移動させる三次元移動部と、上記回転軸を中心に加工ノズルを回転させる回転部と、加工ノズルと被加工物とのギャップ量を検出するギャップ量検出部と、回転部による回転軸の回転位置を検出する回転位置検出部と、検出されたギャップ量及び回転位置に基づいて、ギャップ量を一定に維持するための指令信号を生成する指令演算部と、を備え、三次元移動部は、上記指令信号に基づいて、加工ノズルを被加工物に対して三次元方向に相対移動させる構成のものが開示されている。このようなレーザ加工装置によれば、ギャップ量の制御に起因した被加工物の加工形状の誤差を低減することができるとされている。
特開2017-192970号公報
 上記のように、ギャップ量検出部からの検出値に基づいて加工ノズルと被加工物(ワーク)とのギャップ量を一定とするような倣い制御を行いつつレーザ加工を行う場合、加工開始に際して、レーザ出射機構を所定の制御開始点から上記ギャップ量検出部がギャップ量を検出し得る検出領域に向けて近づけるアプローチ動作と、レーザ出射機構を所定の回転軸(B軸)まわりに回転させる回転動作と、回転後の単位ベクトル(レーザ出射機構の中心軸に沿った方向にノズル先端を始点として定義されたベクトル)の位置を補正する補正動作と、が実行される。そして、補正動作後に加工プログラムに基づくレーザ加工の加工制御が実行される。
 上記した一連の動作において、アプローチ動作では、例えば上記の制御開始点を基準としてレーザ出射機構をワークへ接近させる位置制御が実行される。一方、補正動作では、加工ノズルの補正移動量をワークと加工ノズルの中心軸との交点を基準位置として把握し、当該交点からのノズル先端位置を上記補正移動量に応じて単位ベクトル方向に移動させる位置制御が実行される。
 このとき、レーザ加工装置の動作を制御する制御装置において、レーザ出射機構を移動させる位置制御の基準位置は、アプローチ動作では制御開始点となるのに対して、補正動作ではワークと加工ノズルの中心軸との交点となる。このため、制御装置はアプローチ動作から補正動作に移行する際に、補正動作における位置制御に関するレーザ出射機構の位置を、制御指令の基準位置を求めてから演算する必要があるため、演算負荷が高まるとともに補正動作移行時にタイムラグが生じてしまうという問題があった。
 このような経緯から、レーザ出射機構(例えば加工ヘッド)を加工開始点に移動させる移動制御において、ギャップセンサからの検出値に基づいてワークとレーザ出射機構との距離を一定とする倣い制御を行う際に、移動指令に含まれるレーザ出射機構の移動位置の演算負荷を低減することができる制御装置が求められている。
 本発明の一態様による、加工レーザ光を単位ベクトルに沿う方向に出射するレーザ出射機構と、レーザ出射機構に設けられたギャップセンサと、を含むレーザ加工装置の動作を制御する制御装置は、レーザ加工装置の構成要素に加工プログラムに基づいて駆動指令を出力する主制御部と、ギャップセンサからの検出値を用いてレーザ出射機構を移動させるための移動指令を生成する移動指令生成部と、を含み、当該移動指令生成部は、レーザ出射機構を制御開始位置からワーク上のレーザ照射点に向けてギャップセンサが検出開始する境界ギャップ点まで移動させるアプローチ指令と、レーザ出射機構を境界ギャップ点からギャップセンサの検出範囲内にある加工開始点に移動させるための加工開始点移動指令と、を生成する機能を有し、加工開始点移動指令は、境界ギャップ点における単位ベクトルを前記加工開始点における加工ベクトルと一致させる姿勢変更を含むように構成されている。
 また、本発明の別の一態様による、ワークに対して加工レーザ光を照射してレーザ加工を行うレーザ加工装置は、加工レーザ光を発振するレーザ発振器と、ワークを保持するワーク保持機構と、加工レーザ光を単位ベクトルに沿う方向に出射するレーザ出射機構と、当該レーザ出射機構に設けられたギャップセンサと、レーザ出射機構をワーク保持機構に対して相対移動させる搬送機構と、上記レーザ加工装置の各構成要素の動作を制御する制御装置と、を含み、この制御装置は、レーザ加工装置の各構成要素に加工プログラムに基づいて駆動指令を出力する主制御部と、ギャップセンサからの検出値を用いてレーザ出射機構を移動させるための移動指令を生成する移動指令生成部と、をさらに含み、移動指令生成部は、レーザ出射機構を制御開始位置からワーク上のレーザ照射点に向けてギャップセンサが検出開始する境界ギャップ点まで移動させるアプローチ指令と、レーザ出射機構を境界ギャップ点からギャップセンサの検出範囲内にある加工開始点に移動させるための加工開始点移動指令と、を生成する機能を有し、当該加工開始点移動指令は、境界ギャップ点における単位ベクトルを加工開始点における加工ベクトルと一致させる姿勢変更を含むように構成されている。
 さらに、本発明の別の一態様による、加工レーザ光を単位ベクトルに沿う方向に出射するレーザ出射機構と、当該レーザ出射機構に設けられたギャップセンサと、を含むレーザ加工装置のレーザ出射機構を倣い加工制御の加工開始点に移動させる、レーザ出射機構の加工開始点移動制御方法は、レーザ出射機構を制御開始位置からワーク上のレーザ照射点に向けてギャップセンサが検出開始する境界ギャップ点まで移動させるアプローチルーチンと、レーザ出射機構を境界ギャップ点からギャップセンサの検出範囲内にある加工開始点に移動させるための加工開始点移動ルーチンと、を含み、この加工開始点移動ルーチンは、境界ギャップ点における単位ベクトルを加工開始点における加工ベクトルと一致させる姿勢変更ステップを含んでいる。
 本発明の一態様によれば、移動指令生成部が、レーザ出射機構を制御開始位置から境界ギャップ点まで移動させるアプローチ指令と、レーザ出射機構を境界ギャップ点から加工開始点に移動させるための加工開始点移動指令と、を生成する機能を有するとともに、加工開始点移動指令を境界ギャップ点の座標値及びベクトルを基準に演算するように構成したことにより、レーザ出射機構を加工開始点に移動させる移動制御において、移動指令に含まれるレーザ出射機構の移動位置の演算負荷を低減することができる。
第1の実施形態による制御装置を含むレーザ加工装置の構成を示す概略図である。 図1で示したレーザ加工装置の構成の一例を示すブロック図である。 第1の実施形態によるレーザ加工装置において、制御装置が実行する加工開始点移動制御方法の概要を示すフローチャートである。 図3に示したアプローチルーチンの概要を示すフローチャートである。 図3に示した加工開始点移動ルーチンの概要を示すフローチャートである。 アプローチルーチンの開始時におけるレーザ出射機構とワークとの位置関係の概要を示す部分正面図である。 アプローチルーチンの終了時におけるレーザ出射機構とワークとの位置関係の概要を示す部分正面図である。 加工開始点移動ルーチンの開始時におけるレーザ出射機構とワークとの位置関係の概要を示す部分正面図である。 加工開始点移動ルーチンの終了時におけるレーザ出射機構とワークとの位置関係の概要を示す部分正面図である。 本発明の別の一例である第2の実施形態による制御装置が実行する加工開始点移動制御方法における加工開始点移動ルーチンの概要を示すフローチャートである。 第2の実施形態による加工開始点移動ルーチンにおけるレーザ出射機構の距離補正動作の概要を示す部分正面図である。 本発明のさらに別の一例である第3の実施形態による制御装置が実行する加工開始点移動制御方法における加工開始点移動ルーチンの概要を示すフローチャートである。
 以下、本発明の代表的な一例による制御装置を含むレーザ加工装置及び当該レーザ加工装置におけるレーザ出射機構(例えば加工ヘッド)の加工開始点移動制御方法の実施形態を図面と共に説明する。
<第1の実施形態>
 図1は、本発明の代表的な一例である第1の実施形態による制御装置を含むレーザ加工装置の構成を示す概略図である。また、図2は、図1で示したレーザ加工装置の構成の一例を示すブロック図である。
 図1に示すように、レーザ加工装置1は、その一例として、加工レーザ光LBを発振するレーザ発振器10と、ワークWを保持するワーク保持機構20と、ワークWに加工レーザ光LBを出射するレーザ出射機構(例えば加工ヘッド)30と、当該レーザ出射機構30をワーク保持機構20に対して相対移動させる搬送機構40と、ワークWに対する所定のレーザ加工動作を制御する制御装置100と、を含む。
 本明細書におけるレーザ加工装置は、例えばレーザ溶接、レーザ切断、レーザ穴あけ(トレパニング)、レーザマーキング、レーザダイシングあるいはレーザアニール等のワークWに対して加工レーザ光を照射することにより、所定の加工を実行する任意の加工装置として適用し得る。
 レーザ発振器10は、加工されるワークWの材質に応じて吸収効率が高い波長のレーザ発振源が適用される。このようなレーザ発振器10としては、その一例として、YAGレーザ、YVOレーザ、ファイバレーザ、ディスクレーザ等のファイバ伝送が可能なものが例示できる。また、レーザ発振器10から出力された加工レーザ光LBは、例えば光ファイバ等の伝送路34を介してレーザ出射機構30に伝送される。
 ワーク保持機構20は、その一例として、ワークWを取り付けるチャック機構(図示せず)を備え、ワークWを把持固定しつつ図示上のXYZの3軸方向に移動自在な加工テーブルとして構成されている。また、ワーク保持機構20は、例えばワークWを3軸方向に移動させる機構だけでなく、回転機構(例えばY軸に沿うB軸やZ軸に沿うC軸として公知な構成)を備えてもよい。
 レーザ出射機構30は、その一例として、光ファイバ等の伝送路34を介して一端(上端)側から加工レーザ光LBが導入され、他端(下端)側のノズル32からワークWに向けて出射されるような加工ヘッドとして構成される。このとき、レーザ出射機構30の内部に配置された集光レンズ(図示せず)により、加工レーザ光LBはワークW上のレーザ照射点FPで所定のビーム径に集光される。
[規則91に基づく訂正 30.08.2023]
 本発明において、ノズル32は、レーザ出射機構30における加工レーザ光LBの出射口としての機能に加えて、レーザ出射機構30(ノズル32)の下端とワークWとの間の距離Dを検出するギャップセンサとしての機能を有する。このようなノズル32としては、その一例として、静電容量センサが適用できる。
 なお、図1に示す例では、ノズル32を静電容量センサの一部の電極として構成する場合が例示されているが、上記のとおりワークWとレーザ出射機構30との間のギャップを検出できるセンサであれば任意のものを適用可能であり、そのようなセンサをレーザ出射機構30に直接取り付ける態様で構成してもよい。このとき、例えばレーザ出射機構30の一部に位置測定のための基準点を設けておき、当該基準点とセンサとの相対位置を用いてセンサが測定した距離に補正を行うことで、レーザ出射機構30とワークWとの距離を特定する手法等が採用できる。
 搬送機構40は、その一例として、互いに直交するXYZの3軸方向に相対移動するリニア駆動部42と、当該リニア駆動部42の下面からZ軸に沿って延びるC軸まわりに回転する第1アーム44と、一端が第1アームに直交して取り付けられてXY平面内に延びるA軸まわりに回転する第2アーム46と、を含む。そして、第2アーム46の他端にはレーザ出射機構30が取り付けられ、これによりレーザ出射機構30はA軸まわりに回動可能となる。
 図2に示すように、制御装置100は、その一例として、後述するレーザ加工装置1の構成要素に加工プログラムに基づいて駆動指令を出力する主制御部110と、ギャップセンサ(ノズル32)からの検出値を用いてレーザ出射機構30を移動させるための移動指令を生成する移動指令生成部120と、各種パラメータ等を表示する表示部130と、加工プログラムや各種パラメータの修正を行う情報を手入力可能な入力インターフェース140と、を含む。そして、制御装置100は、主制御部110がレーザ発振器10、ワーク保持機構20及び搬送機構40と有線あるいは無線で接続されており、これらの周辺機器と信号のやり取りを行ってレーザ加工装置1全体の動作を制御する。
[規則91に基づく訂正 30.08.2023]
 主制御部110は、その一例として、加工プログラムから加工経路や加工条件等の情報を抽出して、加工レーザ光LBの出力等を指令する出力指令信号をレーザ発振器10に出力する機能を有する。また、主制御部110は、加工プログラムから加工レーザ光LBの照射点FPの位置やレーザ出射機構30の位置及び後述する加工ベクトル等の情報を抽出して、ワークWとレーザ出射機構30との相対移動を指令する加工位置指令信号をワーク保持機構20及び搬送機構40に出力する機能も有する。
 移動指令生成部120は、レーザ出射機構30を制御開始位置からワーク上のレーザ照射点に向けてギャップセンサが検出開始する境界ギャップ点まで移動させるアプローチ指令と、レーザ出射機構を境界ギャップ点からギャップセンサの検出範囲内にある加工開始点に移動させるための加工開始点移動指令と、を生成する機能を有する。移動指令生成部120で生成されたアプローチ指令及び加工点移動指令は、その一例として、それぞれ主制御部110に送られ、主制御部110においてレーザ加工装置1の各構成要素に対する個別の駆動指令に変換して出力される。
 次に、図3~図6を用いて、第1の実施形態によるレーザ加工装置の制御装置が実行する加工開始点移動制御方法の具体的な動作態様を説明する。
 図3は、第1の実施形態によるレーザ加工装置において、制御装置が実行する加工開始点移動制御方法の概要を示すフローチャートである。また、図4は、図3に示したアプローチルーチンの概要を示すフローチャートである。また、図5は、図3に示した加工開始点移動ルーチンの概要を示すフローチャートである。
 さらに、図6Aは、アプローチルーチンの開始時におけるレーザ出射機構とワークとの位置関係の概要を示す部分正面図である。また、図6Bは、アプローチルーチンの終了時におけるレーザ出射機構とワークとの位置関係の概要を示す部分正面図である。また、図6Cは、加工開始点移動ルーチンの開始時におけるレーザ出射機構とワークとの位置関係の概要を示す部分正面図である。また、図6Dは、加工開始点移動ルーチンの終了時におけるレーザ出射機構とワークとの位置関係の概要を示す部分正面図である。
 なお、以下の説明において、レーザ出射機構30の「位置」あるいは「点」とは、当該レーザ出射機構30全体を一点で代表するものとして、ノズル32の出射口の中央点(例えば、図6A~図6Dにおけるノズル32の先端と中心軸CAとの交点であるノズル先端点NP)を採用するものとする。また、加工開始点PP及びレーザ照射点FPを通る線とレーザ照射点FPにおけるワークWの法線とのなす角をレーザ出射機構30の「傾斜角θ」と定義する。
[規則91に基づく訂正 30.08.2023]
 さらに、レーザ出射機構30の「単位ベクトルUV」とは、上記したレーザ出射機構30のノズル先端点NPを始点として、レーザ出射機構30の中心軸に沿う方向に所定長さを有するベクトルと定義する。また、「加工ベクトルPV」とは、加工開始点PPを始点として、上記した加工開始点PP及びレーザ照射点FPを通る線に沿う方向(すなわち上記傾斜角θと同一方向)に単位ベクトルUVと同一の長さを有するベクトルと定義する。これらのベクトルを定義することにより、ギャップセンサから得られた検出値の差分を乗じたものを変位量(補正量)として算出することが可能となる。
 本発明によるレーザ加工装置1でレーザ加工を行う際に実行されるレーザ出射機構30を制御開始点(制御開始位置)SPから加工開始点PPに移動させる加工開始点移動制御方法は、図3に示すように、レーザ出射機構30を制御開始点SPからワークW上のレーザ照射点FPに向けて、ギャップセンサが検出開始する境界ギャップ点BPまで移動させるアプローチルーチンAPRと、レーザ出射機構30を上記境界ギャップ点BPから加工開始点PPに移動させる加工開始点移動ルーチンSTRと、を含む。なお、アプローチルーチンAPRと加工開始点移動ルーチンSTRとの間では、レーザ加工に関するレーザ出射機構30の位置や姿勢の情報に加えて、加工レーザ光LBの出力や速度等の加工条件の情報も引き継がれる。
 アプローチルーチンAPRでは、その一例として図4に示すように、主制御部110が、例えば搬送機構40から現在のレーザ出射機構30におけるノズル先端点NPの位置座標の情報を取得する(ステップS1)し、これを制御開始点SPとする。次に、主制御部110は、例えば加工プログラムを解析して、ワークW上の加工レーザ光LBの照射位置座標(レーザ照射点FP)を取得する(ステップS2)。このときのレーザ出射機構30とワークWとの位置関係の一例を図6Aに示す。
 続いて、主制御部110が取得した制御開始点SP及びレーザ照射点FPのデータを移動指令生成部120に送付し、これを受けた移動指令生成部120は、制御開始点SPとレーザ照射点FPとの座標値から、両者の間を直線的に移動するための搬送機構40に対するアプローチ指令を生成する。そして、移動指令生成部120は、生成したアプローチ指令を主制御部110に送る(ステップS3)。
 続いて、主制御部110は、搬送機構40に対してアプローチ指令を出力し(ステップS4)、所定の制御クロック毎にギャップセンサからの検出信号が入力されたかどうか(すなわち、ノズル先端点NPが図6Aに示すワークWの表面から所定距離のギャップセンサによる検出可能領域DAに侵入したかどうか)を判別する(ステップS5)。
 ステップS5において、ギャップセンサからの検出信号が入力されていないと判別した場合、主制御部110は、ステップS4に戻って再度アプローチ指令の出力を継続する。これにより、ギャップセンサがギャップ値を検出し始めるまで(すなわち検出信号を出力し始めるまで)のレーザ出射機構30のワークWに対するアプローチ動作が繰り返し実行される。このとき、アプローチ動作におけるレーザ出射機構30の移動速度を後述する加工開始点移動動作よりも大きくなるように設定してもよい。
 一方、ステップS5において、ギャップセンサからの検出信号が入力されたと判別した場合、主制御部110は、搬送機構40から現在のレーザ出射機構30におけるノズル先端点NPの座標値を受信して、当該ノズル先端点NPを検出可能領域DAの境界に位置する「境界ギャップ点BP」として保存して(ステップS6)、アプローチルーチンを終了する。このときのレーザ出射機構30とワークWとの位置関係の一例を図6Bに示す。
 次に、加工開始点移動ルーチンSTRでは、その一例として図5に示すように、主制御部110が、アプローチルーチンAPRから境界ギャップ点BPの情報を引き継ぎ(ステップS7)、例えば搬送機構40から現在のレーザ出射機構30におけるノズル先端点NPの位置座標と中心軸CAに基づいて単位ベクトルUVを取得する(ステップS8)。続いて、主制御部110は、例えば加工プログラムを解析して、ワークW上のレーザ照射点FPと加工開始時におけるレーザ出射機構30のノズル先端点NP(すなわち加工開始点PP)とに基づいて仮想ビーム軸VAを定義し、これに沿う方向の加工ベクトルPVを取得する(ステップS9)。
 続いて、主制御部110が取得した現在の単位ベクトルUVと加工開始点PPでの加工ベクトルPVとのデータを移動指令生成部120に送付し、これを受けた移動指令生成部120は、単位ベクトルUVと加工ベクトルPVとのベクトルとしての差分を演算し(ステップS10)、当該差分を相殺する(すなわち、単位ベクトルUVと加工ベクトルPVとの始点及び方向を一致させる)ためのレーザ出射機構30の座標移動及び姿勢変更を含む加工開始点移動指令を生成する。そして、移動指令生成部120は、生成した加工開始点移動指令を主制御部110に送る(ステップS11)。このときのレーザ出射機構30の単位ベクトルUVと加工開始点PPでの加工ベクトルPVとの位置関係の一例を図6Cに示す。
 続いて、主制御部110は、搬送機構40に対して加工開始点移動指令を出力し(ステップS12)、所定の制御クロック毎に単位ベクトルUVと加工ベクトルPVとが一致したか(すなわち、現在のレーザ出射機構30のノズル先端点NP及び中心軸CAの角度が加工開始点PP及び仮想ビーム軸VAと一致したかどうか)を判別する(ステップS13)。
 ステップS13において、現在の単位ベクトルUVが加工ベクトルPVと位置及び方向において一致していないと判別した場合、主制御部110は、ステップS12に戻って再度加工開始点移動指令の出力を継続する。これにより、単位ベクトルUVが加工ベクトルPVと一致するまで、すなわち加工プログラムにおいてレーザ出射機構30が加工開始点PPで指定された(取るべき)姿勢となるまで、レーザ出射機構30の加工開始点移動動作が繰り返し実行される。
 一方、ステップS13において、現在の単位ベクトルUVが加工ベクトルPVと位置及び方向において一致したと判別した場合、主制御部110は、現在のレーザ出射機構30のノズル先端点NPの座標値と中心軸CAの姿勢(傾斜角θ)を含む制御のための情報を「現在の設定」として保存して(ステップS14)、加工開始点移動ルーチンを終了する。このときのレーザ出射機構30とワークWとの位置関係の一例を図6Dに示す。これにより、レーザ加工開始時において、図6Aに示した制御開始点SPから加工開始点PPに至るレーザ出射機構30の移動制御が終了し、レーザ出射機構30は加工開始点PPにおいてレーザ照射点FPから所定距離PDだけ離れて位置付けられる。
 上記のような構成を備えることにより、第1の実施形態によるレーザ加工装置の制御装置及び加工開始点移動制御方法は、移動指令生成部が、レーザ出射機構を制御開始位置から境界ギャップ点まで移動させるアプローチ指令と、レーザ出射機構を境界ギャップ点から加工開始点に移動させるための加工開始点移動指令と、を生成する機能を有するとともに、加工開始点移動指令を境界ギャップ点の座標値及びベクトルを基準に演算するように構成したことにより、レーザ出射機構を加工開始点に移動させる移動制御において、移動指令に含まれるレーザ出射機構の移動位置の演算負荷を低減することができる。
 なお、上記に例示した本発明の第1の実施形態による制御装置を含むレーザ加工装置は、レーザ出射機構を加工開始点に移動させる移動制御を実行した後、一般的に公知なギャップセンサを用いてレーザ出射機構をワークとの距離が一定となるように移動させる倣い加工制御を実行する。すなわち、第1の実施形態による制御装置は、レーザ加工装置に倣い加工制御を実行させる機能に加えて、上記したレーザ出射機構を加工開始点に移動させる移動制御を実行させる機能を有するものとして構成される。
<第2の実施形態>
 図7は、本発明の別の一例である第2の実施形態による制御装置が実行する加工開始点移動制御方法における加工開始点移動ルーチンの概要を示すフローチャートである。また、図8は、第2の実施形態による加工開始点移動ルーチンにおけるレーザ出射機構の距離補正動作の概要を示す部分正面図である。なお、第2の実施形態においては、図1~図6に示した概略図等において、第1の実施形態と同一あるいは共通の構成を採用し得るものについては、同一の符号を付してこれらの繰り返しの説明は省略する。
[規則91に基づく訂正 30.08.2023]
 図7に示すように、第2の実施形態による加工開始点移動ルーチンにおいて、主制御部110及び移動指令生成部120は、ステップS7からステップS12までの動作として、第1の実施形態の図5で示したものと同一の動作を実行する。続いて、主制御部110は、第1の実施形態の場合と同様に、所定の制御クロック毎に単位ベクトルUVと加工ベクトルPVとが一致したかを判別する(ステップS13)。
[規則91に基づく訂正 30.08.2023]
 そして、ステップS13において、現在の単位ベクトルCV(UV)が加工ベクトルPVと位置及び方向において一致していないと判別した場合、主制御部110は、第1の実施形態と同様に、ステップS12に戻って再度加工開始点移動指令の出力を継続する。これにより、単位ベクトルCVが加工ベクトルPVと一致するまで、レーザ出射機構30の加工開始点移動動作が繰り返し実行される。
 ギャップセンサを用いてレーザ出射機構30とワークWとの距離を制御しつつレーザ加工を行う場合、加工開始点PPで実際にレーザ加工を行う際に、ギャップセンサからの検出値に基づいて加工レーザ光LBの集光位置(焦点距離)を適正な位置となるようにレーザ出射機構30の中心軸CA方向に補正する動作を実行することがある。そこで、第2の実施形態では、加工プログラム上での加工開始点PPにレーザ出射機構30を移動させた後に、上記した中心軸CA方向の距離補正動作を実行する。
[規則91に基づく訂正 30.08.2023]
 すなわち、ステップS13において、現在の単位ベクトルCVが加工ベクトルPVと位置及び方向において一致したと判別した場合、主制御部110は、ギャップセンサの現在の検出値を取得し(ステップS21)、取得した検出値と加工プログラムにおける焦点距離に基づくギャップ値の情報を移動指令生成部120に送る。これを受けた移動指令生成部120は、ギャップセンサからの検出値から演算されるギャップ値と上記した加工プログラムに基づくギャップ値との差分をさらに演算し、当該差分を補正するためにレーザ出射機構30を単位ベクトルCVに沿う方向(すなわち中心軸CAに沿う方向)に移動させる補正移動指令を生成する。そして、移動指令生成部120は、生成した補正移動指令を主制御部110に送る(ステップS22)。
 続いて、主制御部110は、搬送機構40に対して補正移動指令を出力し(ステップS23)、所定の制御クロック毎に補正移動が完了したかどうか(すなわち、現在のノズル先端点NPが補正点CPと一致したかどうか)を判別する(ステップS24)。
 ステップS24において、補正移動動作が完了していないと判別した場合、主制御部110は、ステップS23に戻って再度補正移動指令の出力を継続する。これにより、レーザ出射機構30のノズル先端点NPの位置が補正点CPと一致するまで、レーザ出射機構30の補正移動動作が繰り返し実行される。
 一方、ステップS24において、補正移動動作が完了したと判別した場合、主制御部110は、補正後のレーザ出射機構30のノズル先端点NP(すなわち補正点CP)の座標値と中心軸CAの姿勢(傾斜角θ)を含む制御のための情報を「現在の設定」として保存して(ステップS14)、加工開始点移動ルーチンを終了する。この一連の補正動作によるレーザ出射機構30とワークWとの位置関係の一例を図8に示す。これにより、レーザ加工開始時において、ギャップセンサからの検出値に基づいてレーザ出射機構30の位置を中心軸CA方向に補正して、レーザ出射機構30とレーザ照射点FPとの距離を補正距離CDとする動作が実行される。
 上記のような構成を備えることにより、第2の実施形態によるレーザ加工装置の制御装置及び加工開始点移動制御方法は、第1の実施形態で説明した効果に加えて、加工開始点において加工レーザ光の適切な焦点距離となるように単位ベクトルに沿う方向にレーザ出射機構の位置を補正する補正動作を実施するため、より精緻な加工開始点へのレーザ出射機構の移動制御とすることができる。
<第3の実施形態>
 図9は、本発明のさらに別の一例である第3の実施形態による制御装置が実行する加工開始点移動制御方法における加工開始点移動ルーチンの概要を示すフローチャートである。なお、第3の実施形態においても、図1~図8に示した概略図等において、第1の実施形態及び第2の実施形態と同一あるいは共通の構成を採用し得るものについては、同一の符号を付してこれらの繰り返しの説明は省略する。
 第3の実施形態においては、第1の実施形態で示した例に対して、移動指令生成部120によるレーザ出射機構30の移動指令の生成動作と、主制御部110による搬送機構40等への指令出力動作とを、同時並行して実行する点を特徴とする。すなわち、図9に示すように、第3の実施形態による加工開始点移動ルーチンにおいて、主制御部110が、アプローチルーチンAPRから境界ギャップ点BPの情報を引き継ぎ(ステップS7)、第1の実施形態の場合と同様に加工ベクトルPVを取得する(ステップS9)。
 続いて、主制御部110は、例えば搬送機構40から現在のレーザ出射機構30におけるノズル先端点NPの位置座標と中心軸CAに基づいて単位ベクトルUVを取得する(ステップS31)。続いて、主制御部110は、取得した現在の単位ベクトルUVと加工ベクトルPVとのデータを移動指令生成部120に送付し、これを受けた移動指令生成部120は、所定の制御クロックに基づく微小な単位時間あたりの単位ベクトルUVと加工ベクトルPVとのベクトルとしての微小時間差分を演算し(ステップS32)、当該微小時間差分を相殺するためのレーザ出射機構30の座標移動及び姿勢変更を含む微小時間移動指令を生成する。そして、移動指令生成部120は、生成した微小時間移動指令を主制御部110に送る(ステップS33)。
 続いて、主制御部110は、搬送機構40に対して微小時間移動指令を出力し(ステップS34)、上記した所定の制御クロック毎に単位ベクトルUVと加工ベクトルPVとが一致したかを判別する(ステップS13)。
 ステップS13において、現在の単位ベクトルUVが加工ベクトルPVと位置及び方向において一致していないと判別した場合、主制御部110は、ステップS31に戻って再び現在の単位ベクトルUVの取得を行い、以後のステップS32からステップS34までの動作を実行する。これにより、単位ベクトルUVが加工ベクトルPVと一致するまで、微小な単位時間ごとにレーザ出射機構30への移動動作が繰り返し実行される。
 一方、ステップS13において、現在の単位ベクトルUVが加工ベクトルPVと位置及び方向において一致したと判別した場合、主制御部110は、第1の実施形態と同様に、現在のレーザ出射機構30のノズル先端点NPの座標値と中心軸CAの姿勢(傾斜角θ)を含む制御のための情報を「現在の設定」として保存して(ステップS14)、加工開始点移動ルーチンを終了する。これにより、レーザ加工開始時において、図6Aに示した制御開始点SPから加工開始点PPに至るレーザ出射機構30の移動制御が終了する。
 なお、ステップS32に示した微小時間差分の演算動作において、当該微小時間差分は、例えば現在のノズル先端点NP(制御開始時は境界ギャップ点BP)と加工開始点PPとを結ぶ線上で、単位時間あたりに加工開始点PPに向かって進むことができる最大移動量として演算することができる。また、予め単位時間あたりのレーザ出射機構30の移動量を決めておき、これを上記した現在のノズル先端点NPと加工開始点PPとを結ぶ線上で、現在のノズル先端点NPからの移動量として決定してもよい。
 上記のような構成を備えることにより、第3の実施形態によるレーザ加工装置の制御装置及び加工開始点移動制御方法は、第1の実施形態で説明した効果に加えて、移動指令生成部によるレーザ出射機構の移動指令の生成動作と、主制御部による搬送機構等への指令出力動作とを、同時並行して実行することにより、移動指令を生成後に指令出力する場合に比べて全体の制御時間を削減することができる。
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。本発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。例えば、第1の実施形態から第3の実施形態で示した具体例は、それぞれの特徴を組合せて適用してもよい。
 1 レーザ加工装置
 10 レーザ発振器
 20 ワーク保持機構
 30 レーザ出射機構(加工ヘッド)
 32 ノズル
 34 伝送路
 40 搬送機構
 42 リニア駆動部
 44 第1アーム
 46 第2アーム
 100 制御装置
 110 主制御部
 120 移動指令生成部
 130 表示部
 140 入力インターフェース

Claims (9)

  1. [規則91に基づく訂正 30.08.2023]
     加工レーザ光を単位ベクトルに沿う方向に出射するレーザ出射機構と、前記レーザ出射機構に設けられたギャップセンサと、を含むレーザ加工装置の動作を制御する制御装置であって、
     前記レーザ加工装置の構成要素に加工プログラムに基づいて駆動指令を出力する主制御部と、
     前記ギャップセンサからの検出値を用いて前記レーザ出射機構を移動させるための移動指令を生成する移動指令生成部と、
    を含み、
     前記移動指令生成部は、前記レーザ出射機構を制御開始位置からワーク上のレーザ照射点に向けて前記ギャップセンサが検出開始する境界ギャップ点まで移動させるアプローチ指令と、前記レーザ出射機構を前記境界ギャップ点から前記ギャップセンサの検出範囲内にある加工開始点に移動させるための加工開始点移動指令と、を生成する機能を有し、
     前記加工開始点移動指令は、前記境界ギャップ点における前記単位ベクトルを前記加工開始点における加工ベクトルと一致させる姿勢変更を含む
    制御装置。
  2.  前記加工開始点移動指令は、前記ギャップセンサからの前記検出値に基づいて、前記加工開始点を前記加工ベクトルに沿う方向に変更する距離補正をさらに含む
    請求項1に記載の制御装置。
  3.  前記移動指令生成部における指令生成動作と前記主制御部による前記レーザ出射機構の移動動作とを同時並行して実行する
    請求項1又は2に記載の制御装置。
  4.  ワークに対して加工レーザ光を照射してレーザ加工を行うレーザ加工装置であって、

     前記ワークを保持するワーク保持機構と、
     前記加工レーザ光を単位ベクトルに沿う方向に出射するレーザ出射機構と、
     前記レーザ出射機構に設けられたギャップセンサと、
     前記レーザ出射機構を前記ワーク保持機構に対して相対移動させる搬送機構と、
     前記レーザ加工装置の各構成要素の動作を制御する制御装置と、
    を含み、
     前記制御装置は、前記レーザ加工装置の各構成要素に加工プログラムに基づいて駆動指令を出力する主制御部と、前記ギャップセンサからの検出値を用いて前記レーザ出射機構を移動させるための移動指令を生成する移動指令生成部と、をさらに含み、
     前記移動指令生成部は、前記レーザ出射機構を制御開始位置からワーク上のレーザ照射点に向けて前記ギャップセンサが検出開始する境界ギャップ点まで移動させるアプローチ指令と、前記レーザ出射機構を前記境界ギャップ点から前記ギャップセンサの検出範囲内にある加工開始点に移動させるための加工開始点移動指令と、を生成する機能を有し、
     前記加工開始点移動指令は、前記境界ギャップ点における前記単位ベクトルを前記加工開始点における加工ベクトルと一致させる姿勢変更を含む
    レーザ加工装置。
  5.  前記加工開始点移動指令は、前記ギャップセンサからの前記検出値に基づいて、前記加工開始点を前記加工ベクトルに沿う方向に変更する距離補正をさらに含む
    請求項4に記載のレーザ加工装置。
  6.  前記移動指令生成部における指令生成動作と前記主制御部による前記レーザ出射機構の移動動作とを同時並行して実行する
    請求項4又は5に記載のレーザ加工装置。
  7.  加工レーザ光を単位ベクトルに沿う方向に出射するレーザ出射機構と、前記レーザ出射機構に設けられたギャップセンサと、を含むレーザ加工装置の前記レーザ出射機構を倣い加工制御の加工開始点に移動させる、レーザ出射機構の加工開始点移動制御方法であって、
     前記レーザ出射機構を制御開始位置からワーク上のレーザ照射点に向けて前記ギャップセンサが検出開始する境界ギャップ点まで移動させるアプローチルーチンと、
     前記レーザ出射機構を前記境界ギャップ点から前記ギャップセンサの検出範囲内にある加工開始点に移動させるための加工開始点移動ルーチンと、
    を含み、
     前記加工開始点移動ルーチンは、前記境界ギャップ点における前記単位ベクトルを前記加工開始点における加工ベクトルと一致させる姿勢変更ステップを含む
    レーザ出射機構の加工開始点移動制御方法。
  8.  前記加工開始点移動ルーチンは、前記ギャップセンサからの検出値に基づいて、前記加工開始点を前記加工ベクトルに沿う方向に変更する距離補正ステップをさらに含む
    請求項7に記載のレーザ出射機構の加工開始点移動制御方法。
  9.  前記加工開始点移動ルーチンにおいて、前記レーザ出射機構に対する移動指令の生成動作と実際の指令出力動作とを同時並行して実行する
    請求項7又は8に記載のレーザ出射機構の加工開始点移動制御方法。
PCT/JP2022/018836 2022-04-26 2022-04-26 制御装置及びこれを含むレーザ加工装置、並びにレーザ加工装置のレーザ出射機構の加工開始点移動制御方法 WO2023209792A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/018836 WO2023209792A1 (ja) 2022-04-26 2022-04-26 制御装置及びこれを含むレーザ加工装置、並びにレーザ加工装置のレーザ出射機構の加工開始点移動制御方法
TW112113616A TW202346012A (zh) 2022-04-26 2023-04-12 控制裝置及具備此控制裝置之雷射加工裝置、以及雷射加工裝置之雷射出射機構的加工開始點移動控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018836 WO2023209792A1 (ja) 2022-04-26 2022-04-26 制御装置及びこれを含むレーザ加工装置、並びにレーザ加工装置のレーザ出射機構の加工開始点移動制御方法

Publications (1)

Publication Number Publication Date
WO2023209792A1 true WO2023209792A1 (ja) 2023-11-02

Family

ID=88518201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018836 WO2023209792A1 (ja) 2022-04-26 2022-04-26 制御装置及びこれを含むレーザ加工装置、並びにレーザ加工装置のレーザ出射機構の加工開始点移動制御方法

Country Status (2)

Country Link
TW (1) TW202346012A (ja)
WO (1) WO2023209792A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0535327A (ja) * 1991-07-30 1993-02-12 Toyoda Mach Works Ltd レーザ加工機
JP2000343255A (ja) * 1999-06-02 2000-12-12 Amada Wasino Co Ltd レーザ加工方法及びその装置
JP2008110389A (ja) * 2006-10-31 2008-05-15 Mitsubishi Electric Corp レーザ加工装置
JP2019005800A (ja) * 2017-06-28 2019-01-17 コマツ産機株式会社 三次元レーザ加工機および三次元レーザ加工機の制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0535327A (ja) * 1991-07-30 1993-02-12 Toyoda Mach Works Ltd レーザ加工機
JP2000343255A (ja) * 1999-06-02 2000-12-12 Amada Wasino Co Ltd レーザ加工方法及びその装置
JP2008110389A (ja) * 2006-10-31 2008-05-15 Mitsubishi Electric Corp レーザ加工装置
JP2019005800A (ja) * 2017-06-28 2019-01-17 コマツ産機株式会社 三次元レーザ加工機および三次元レーザ加工機の制御方法

Also Published As

Publication number Publication date
TW202346012A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
JP6325646B1 (ja) ロボットを用いてレーザ加工を行うレーザ加工ロボットシステム及びレーザ加工ロボットの制御方法
JP6626036B2 (ja) 測定機能を有するレーザ加工システム
KR100882967B1 (ko) 레이저 용접 장치 및 레이저 용접 장치의 레이저광 조정방법
CA2403596C (en) Method of welding three-dimensional structure and apparatus for use in such method
JP4020099B2 (ja) レーザ加工方法
JP4800939B2 (ja) レーザ加工装置、プログラム作成装置およびレーザ加工方法
JP2007098464A (ja) レーザー加工ロボット制御装置、レーザー加工ロボット制御方法およびレーザー加工ロボット制御プログラム
JPH10249566A (ja) レーザ加工方法および装置
WO2012090394A1 (ja) レーザ加工システム及びその制御方法
JP2019005800A (ja) 三次元レーザ加工機および三次元レーザ加工機の制御方法
WO2023209792A1 (ja) 制御装置及びこれを含むレーザ加工装置、並びにレーザ加工装置のレーザ出射機構の加工開始点移動制御方法
CN114746208A (zh) 补焊设备以及补焊方法
JP2012076088A (ja) レーザ切断加工方法及び装置
JP6333670B2 (ja) レーザ溶接装置及びその溶接方法
CN111604589A (zh) 激光加工装置
WO2022209929A1 (ja) レーザ加工ヘッド及びレーザ加工システム
WO2022080446A1 (ja) レーザ加工システム及び制御方法
JP2003326382A (ja) レーザ溶接装置およびレーザ溶接方法
JP6920540B2 (ja) レーザ加工ヘッド及びレーザ加工装置並びにレーザ加工ヘッドの調整方法
JP2006007287A (ja) レーザ加工方法と加工装置
JP2008188622A (ja) レーザ溶接部形成方法
WO2022080447A1 (ja) レーザ加工システム及び制御方法
JP7352787B1 (ja) レーザ溶接装置及びレーザ光の照射位置ずれの補正方法
WO2023116183A1 (zh) 激光指向改变时校正路径偏离的方法及其装置和机床
US20240123606A1 (en) Teaching point generation device that generates teaching points on basis of output of sensor, and teaching point generation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940072

Country of ref document: EP

Kind code of ref document: A1