WO2022080447A1 - レーザ加工システム及び制御方法 - Google Patents

レーザ加工システム及び制御方法 Download PDF

Info

Publication number
WO2022080447A1
WO2022080447A1 PCT/JP2021/038029 JP2021038029W WO2022080447A1 WO 2022080447 A1 WO2022080447 A1 WO 2022080447A1 JP 2021038029 W JP2021038029 W JP 2021038029W WO 2022080447 A1 WO2022080447 A1 WO 2022080447A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanner
control point
program
laser
control
Prior art date
Application number
PCT/JP2021/038029
Other languages
English (en)
French (fr)
Inventor
敦 森
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to US18/247,618 priority Critical patent/US20230381889A1/en
Priority to JP2022557430A priority patent/JPWO2022080447A1/ja
Priority to CN202180069543.7A priority patent/CN116323076A/zh
Priority to DE112021004701.9T priority patent/DE112021004701T5/de
Publication of WO2022080447A1 publication Critical patent/WO2022080447A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/044Seam tracking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • B23K26/0884Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots

Definitions

  • the present invention relates to a laser processing system and a control method.
  • a laser processing system has been proposed in which a work is irradiated with a laser beam from a distant position to perform welding.
  • the laser processing system has a scanner that irradiates the tip of the arm of the robot with a laser beam.
  • each robot axis of the laser processing system is driven according to a program stored in advance in the control device. Therefore, at the work site, teaching work of creating a program using an actual machine and a work is performed (see, for example, Patent Document 1).
  • the path of the laser irradiation point can be considered to be represented by a sequence of points in the coordinate system with respect to the base of the robot in the work space, so this is called a control point.
  • the control point may be a point on the path of the laser irradiation point, or is required to define the path of the laser irradiation point, even if it is not on the path of the laser irradiation point, such as the center of an arc. It may be a point.
  • the robot program and the scanner program are generated according to each point of the position and direction (coordinate system of the control point) of each control point set in the program generation device of the laser processing system.
  • the CAD data does not match the actual work, and there is a position error in the operation path of the robot, the jig, and the like. Therefore, it is necessary to teach and correct such deviations and errors.
  • TCP tool center point
  • the tool center point may also need to be modified.
  • TCP is represented by a position vector from the robot tip point to the scanner reference point.
  • control point correction and TCP setting have been performed using a teaching jig that points to a specific point directly under the scanner.
  • a particular point is the origin of the scanner's workspace and is set at the point where the laser focuses.
  • a teaching jig made of metal, resin, etc. is used, or multiple additional guide lasers are crossed and the intersection is visually recognized. Both methods acquire the coordinates of one point directly under the scanner, so it is necessary to operate the robot in order to match the desired position on the actual work with a specific point, which is not efficient. ..
  • the laser processing system includes a scanner capable of scanning a laser beam with respect to a work, a moving device for moving the scanner with respect to the work, a scanner control device for controlling the scanner, and the scanner control device.
  • a program generator for generating a scanner program for controlling the scanner is provided, and the program generator converts the scanner program into a control point modification program for modifying a preset control point.
  • the scanner control device Based on the control point correction program, the scanner control device causes the scanner to irradiate the work with a control point correction locus for correcting the control point while the moving device is stopped. It has a locus control unit to be controlled, and the locus control unit controls the scanner so as to repeatedly scan the control point correction locus in a predetermined cycle based on the control point correction program.
  • the control method of the laser processing system includes a step of converting a scanner program for controlling a scanner into a control point modification program for modifying a preset control point, and a laser beam for the work.
  • the work is provided with a step of controlling the scanner so as to irradiate the work with a control point correction locus for correcting a preset control point, and the step of controlling the scanner is the control point correction. It includes controlling the scanner to repeatedly scan the trajectory at a predetermined cycle.
  • control points can be easily modified.
  • FIG. 1 is a diagram showing an overall configuration of a laser processing system 1 according to the present embodiment.
  • the laser processing system 1 shown in FIG. 1 shows an example of a remote laser welding robot system.
  • the laser processing system 1 includes a robot 2, a laser oscillator 3, a scanner 4, a robot control device 5, a scanner control device 6, a laser control device 7, a robot teaching operation panel 8, a program generation device 9, and the like. To prepare for.
  • Robot 2 is, for example, an articulated robot having a plurality of joints.
  • the robot 2 includes a base 21, an arm 22, and joint shafts 23a to 23d having a plurality of rotation axes extending in the Y direction.
  • the robot 2 includes a plurality of robots such as a servomotor for a robot that rotates and moves the arm 22 with the Z direction as a rotation axis, and a servomotor for a robot that rotates each of the joint axes 23a to 23d to move the arm 22 in the X direction.
  • a servo motor for has a servo motor for.
  • Each robot servomotor is rotationally driven based on drive data from the robot control device 5 described later.
  • the scanner 4 is fixed to the tip 22a of the arm 22 of the robot 2. Therefore, the robot 2 can move the scanner 4 to an arbitrary position on the work space in an arbitrary direction at a predetermined robot speed by rotationally driving each servo motor for the robot. That is, the robot 2 is a moving device that moves the scanner 4 with respect to the work 10.
  • the laser processing system 1 uses the robot 2 as the moving device, but the robot 2 is not limited to this, and for example, a three-dimensional processing machine may be used as the moving device.
  • the laser oscillator 3 is composed of a laser medium, an optical resonator, an excitation source, and the like.
  • the laser oscillator 3 generates laser light of laser output based on the laser output command from the laser control device 7 described later, and supplies the generated laser light to the scanner 4.
  • the type of oscillated laser includes a Faber laser, a CO 2 laser, a YAG laser, and the like, but in the present embodiment, the type of the laser is not particularly limited.
  • the laser oscillator 3 can output a processing laser for processing the work 10 and a guide laser for adjusting the processing laser.
  • the guide laser is a visible light laser adjusted on the same axis as the processing laser.
  • the scanner 4 is a scanner capable of scanning the laser beam L with respect to the work 10 by receiving the laser beam L emitted from the laser oscillator 3.
  • FIG. 2 is a diagram illustrating an optical system of the scanner 4 in the laser processing system 1 according to the present embodiment.
  • the scanner 4 has, for example, two galvano mirrors 41 and 42 that reflect the laser beam L emitted from the laser oscillator 3 and galvano motors 41a and 42a that rotationally drive the galvano mirrors 41 and 42, respectively.
  • a cover glass 43 is provided.
  • the galvano mirrors 41 and 42 are configured to be rotatable around two rotation axes J1 and J2 that are orthogonal to each other.
  • the galvano motors 41a and 42a are rotationally driven based on the drive data from the laser control device 7, and the galvano mirrors 41 and 42 are independently rotated around the rotation axes J1 and J2.
  • the laser beam L emitted from the laser oscillator 3 is sequentially reflected by the two galvano mirrors 41 and 42 and then emitted from the scanner 4 to reach the processing point (welding point) of the work 10.
  • the two galvano mirrors 41 and 42 are rotated by the galvano motors 41a and 42a, respectively, the incident angle of the laser beam L incident on the galvano mirrors 41 and 42 changes continuously.
  • the laser beam L is scanned from the scanner 4 with respect to the work 10 by a predetermined path, and a welding locus is formed on the work 10 along the scanning path of the laser beam L.
  • the scanning path of the laser beam L emitted from the scanner 4 onto the work 10 is X, Y by appropriately controlling the rotational drive of the galvano motors 41a and 42a to change the rotation angles of the galvano mirrors 41 and 42, respectively. It can be changed arbitrarily in the direction.
  • the scanner 4 also has a zooming optical system (not shown) whose positional relationship can be freely changed by a Z-axis motor.
  • the scanner 4 can arbitrarily change the laser irradiation point in the Z direction by moving the point at which the laser is focused in the optical axis direction by the drive control of the Z-axis motor.
  • the cover glass 43 has a disk shape, is sequentially reflected by the galvano mirrors 41 and 42, transmits the laser beam L toward the work 10, and has a function of protecting the inside of the scanner 4.
  • the scanner 4 may be a trepanning head.
  • the scanner 4 can have a configuration in which, for example, a lens having one surface inclined is rotated by a motor to refract the incident laser and irradiate it at an arbitrary position.
  • the robot control device 5 outputs drive control data to each robot servomotor of the robot 2 according to a predetermined robot program, and controls the operation of the robot 2. Further, the robot control device 5 issues a laser irradiation command to the laser control device 7.
  • the command from the robot control device 5 may include power, frequency, and duty which are irradiation conditions of the laser. Further, the irradiation conditions may be stored in advance in the memory in the laser control device 7, and the command from the robot control device 5 may include selection of which irradiation condition to use and timing of irradiation start and end. ..
  • the scanner control device 6 is a control device that adjusts the positions of the lens and the mirror in the mechanism of the scanner 4.
  • the scanner control device 6 may be incorporated in the robot control device 5.
  • the laser control device 7 is a control device that controls the laser oscillator 3, and controls so as to output laser light in response to a command from the scanner control device 6.
  • the laser control device 7 may be directly connected not only to the scanner control device 6 but also to the robot control device 5. Further, the laser control device 7 may be integrated with the scanner control device 6.
  • the robot teaching operation panel 8 is connected to the robot control device 5 and is used by the operator to operate the robot 2. For example, the operator inputs the machining information for performing the laser machining through the user interface on the robot teaching operation panel 8.
  • the program generation device 9 is connected to the robot control device 5 and the scanner control device 6 to generate a program for the robot 2 and the scanner 4.
  • the program generation device 9 will be described in detail with reference to FIG. In this embodiment, it is assumed that at least the scanner 4 is adjusted so that the robot 2 is also accurately driven in response to the command of the program.
  • FIG. 3 is a block diagram showing a functional configuration of the laser processing system 1 according to the present embodiment.
  • the laser processing system 1 includes a robot 2, a laser oscillator 3, a scanner 4, a robot control device 5, a scanner control device 6, a laser control device 7, a robot teaching operation panel 8, and a program.
  • a generator 9 is provided.
  • the operations of the robot control device, the scanner control device 6, the laser control device 7, and the program generation device 9 will be described in detail with reference to FIG.
  • the program generation device 9 generates a robot program P1 for the robot 2 and a scanner program P2 for the scanner 4 in the virtual workspace from the CAD / CAM data. Further, the program generation device 9 generates a program for irradiating the control point correction locus.
  • the generated robot program P1 and scanner program P2 are transferred to the robot control device 5 and the scanner control device 6, respectively.
  • the robot program P1 stored in the robot control device 5 is activated by the operation of the robot teaching operation panel 8
  • a command is sent from the robot control device 5 to the scanner control device 6, and the scanner program P2 is also activated.
  • the robot control device 5 outputs a signal when the robot 2 conveys the scanner 4 to a predetermined position.
  • the scanner control device 6 drives the optical system in the scanner 4 in response to the signal output from the robot control device 5.
  • the scanner control device 6 commands the laser control device 7 to output a laser.
  • the robot control device 5, the scanner control device 6, and the laser control device 7 synchronize the movement of the robot 2, the scanning of the laser optical axis, and the output of the laser beam by exchanging signals at appropriate timings.
  • the robot 2 and the scanner 4 share position information and time information, and control the laser irradiation point at a desired position in the work space. Further, the robot 2 and the scanner 4 start and end the laser irradiation at appropriate timings. As a result, the laser processing system 1 can perform laser processing such as welding.
  • the program generator 9 has a built-in 3D modeling software. The operator can operate the models of the robot 2 and the scanner 4 on a computer and check the laser irradiation point, the coordinate values, and the like.
  • the program generation device 9 generates 3D modeling of the work 10 using the CAD data of the work 10, and sets one or more control points on the work 10 of the 3D modeling. Then, the program generation device 9 defines the welding shape for each set control point.
  • the path of the laser irradiation point can be considered to be represented by a sequence of points in the coordinate system with respect to the base of the robot in the work space, so this is called a control point.
  • the control point may be a point on the path of the laser irradiation point, or is required to define the path of the laser irradiation point, even if it is not on the path of the laser irradiation point, such as the center of an arc. It may be a point.
  • the program generation device 9 calculates the robot path in which the robot 2 moves and the scanning path of the laser irradiation point by the scanner 4.
  • the program generation device 9 includes an algorithm for searching for an optimum solution that satisfies the conditions.
  • the conditions for generating the programs of the robot program P1 and the scanner program P2 are the shortest processing time, the limitation of the laser irradiation angle with respect to the work 10, the limitation of the posture range of the robot 2, and the like.
  • the scanner control device 6 transmits the corrected control point position information and direction information to the program generation device 9.
  • the program generation device 9 regenerates the robot program P1 and the scanner program P2 based on the corrected position information and direction information of the control point by using the algorithm for searching the optimum solution described above.
  • the generated robot program P1 and scanner program P2 are transmitted to the scanner control device 6 again.
  • the program generation device 9 generates the robot program P1 and the scanner program P2 that reflect the modified control points, whereby the robot path in the robot program P1 and the irradiation path of the laser beam by the scanner 4 in the scanner program P2. Can be modified.
  • the program generation device 9 converts the scanner program into a control point modification program for modifying preset control points.
  • the control point modification program may be converted from the scanner program in the program generation device 9 in advance, or may be converted from the scanner program once output by the program generation device 9.
  • the program generator 9 changes the output conditions of the laser beam, switches between the processing laser and the guide laser, or changes the scanning speed of the front laser beam. Do at least one of.
  • FIG. 4 is a block diagram showing a functional configuration of the scanner control device 6 according to the present embodiment.
  • the scanner control device 6 includes a locus control unit 61, a control point moving unit 62, and a control point storage unit 63.
  • the locus control unit 61 controls the scanner 4 so that the work 10 is irradiated with a control point correction locus for correcting the control point while the robot 2 is stopped. do.
  • the control point correction locus includes at least one of a control point, a path passing through the control point, and a path indicating the position of the control point.
  • the control point moving unit 62 moves the control point according to the operation of the robot teaching operation panel 8 based on the control point correction locus.
  • the control point storage unit 63 stores the position of the control point moved by the control point movement unit 62 and the direction of the coordinate system defined by the control point.
  • the locus control unit 61 controls the scanner 4 so as to irradiate the work 10 with a locus for correcting control points based on the position of the control point stored in the control point storage unit 63 and the direction of the coordinate system.
  • FIG. 5A is a diagram showing an example of a scanner program before conversion
  • FIG. 5B is a diagram showing a control point modification program after conversion.
  • examples of G codes are shown on the left side
  • comments for each G code are shown on the right side.
  • the scanner program fast-forwards the laser irradiation point to the control point (see (1) in FIG. 5A). Then, the scanner program irradiates the welding position with a laser beam to start welding, and then ends welding (see (2) in FIG. 5A).
  • the scanner program moves the laser irradiation point to the next welding position (see (3) in FIG. 5A).
  • the underlined G code indicates a program added by being converted from the scanner program ((4), (5), (7) and (8) in FIG. 5B. )reference).
  • control point correction program repeats the same locus for high-speed repetition of the control point correction locus (see (4) in FIG. 5B).
  • control point correction program rests for 20 ms at the starting point and irradiates the guide laser prior to scanning the control point correction locus once. (See (5) in FIG. 5B).
  • This starting point is a control point, and the control point correction locus is defined in the coordinate system space with the control point as the origin.
  • the control point modification program shown in FIG. 5B changes the machining speed to 120 m / min.
  • control point modification program sets the machining laser to the interlock and output command 0W (S0 command in the control point modification program shown in FIG. 5B) to prevent the machining laser from being output, and guides the machining laser.
  • the laser is output (see (6) in FIG. 5B).
  • Subprogram No. 1 After one scan of the control point correction locus, the control point correction program was changed to the subprogram No. 1 is called to determine the movement of the control point correction locus (see (7) in FIG. 5B).
  • Subprogram No. 1 changes the position and direction of laser irradiation at a subsequent welding point from operations related to translation in the X, Y, and Z directions by the robot teaching operation panel 8 and rotational movement of yaws, pitches, and rolls. The amount of movement in the changed position and direction is stored in the scanner control device 6.
  • control point correction locus moves to a desired position and presses the STOP button on the robot teaching operation panel 8, so that the position of the corrected control point correction locus is transferred to the program generation device 9. And the correction of the control point is completed.
  • the operator can stop the correction of the control point by pressing the CANCEL button on the robot teaching operation panel 8. Further, since the position of the original control point is also stored in the scanner control device 6, the operator can restart the work from the position of the original control point (see (8) in FIG. 5B).
  • FIG. 6 is a diagram showing an example of a control point correction locus irradiated using the control point correction program.
  • the program generation device 9 converts the scanner program into a control point correction program, and the locus control unit 61 determines a control point correction locus 12 based on the converted control point correction program.
  • the scanner 4 is controlled so as to repeatedly scan in a cycle.
  • the scanner program before conversion does not repeatedly scan the processing locus 11 to be irradiated with the laser, but the converted control point correction program repeatedly scans the control point correction locus 12 at a predetermined cycle.
  • the predetermined period is preferably, for example, 10 Hz or higher, and more preferably about 20 Hz.
  • the control point correction locus 12 includes a control point 13 as a reference point. As a result, the operator can clearly see the control point 13 in the control point correction locus 12, and can appropriately correct the control point 13.
  • the laser machining system 1 may use a correction pattern to correct the control point correction locus irradiated on the work 10.
  • the correction pattern has the same length and shape as the control point correction locus, and can be arranged on the work 10.
  • the correction pattern may be, for example, a sticker that can be attached on the work 10, a card-shaped article that can be placed on the work 10, a paper pattern, a magnet, or the like. Further, the correction pattern may be pre-printed on the work 10.
  • control point correction locus irradiated to the work 10 is a correction pattern having the same length and shape as the control point correction locus in the scanner program that controls the scanner 4. It is comparable.
  • the operator confirms the position, direction, size, and distortion of the control point correction locus by comparing the control point correction locus irradiated on the work 10 with the control point correction locus in the scanner program. And can be modified.
  • FIG. 7 is a diagram showing another example of the control point correction locus irradiated using the control point correction program.
  • the control point correction locus 14 is composed of three linear loci.
  • the control point correction locus 14 includes a path that clearly indicates the position of the control point 15.
  • the control point correction locus 14 defines an intersection point where line segments extending from each of the three linear loci intersect as the control point 15. As a result, the operator can clearly see the control point 15 in the control point correction locus 14, and can appropriately correct the control point 15.
  • FIG. 8 is a flowchart showing a processing flow of the laser processing system 1 according to the present embodiment.
  • the program generation device 9 converts the scanner program into a control point modification program for modifying preset control points.
  • step S2 the robot control device 5 controls the robot 2 so that the scanner 4 capable of scanning the laser beam with respect to the work 10 is moved with respect to the work 10 based on the robot program.
  • step S3 the robot control device 5 controls the robot 2 to be stopped based on the robot program.
  • step S4 the locus control unit 61 controls the scanner 4 so as to irradiate the work 10 with the control point correction locus while the robot 2 is stopped, based on the control point correction program.
  • step S5 the control point moving unit 62 moves the control point based on the control point correction locus.
  • step S6 the control point storage unit 63 stores the position of the moved control point and the direction of the coordinate system defined by the control point.
  • step S7 the locus control unit 61 controls the scanner 4 so as to irradiate the work 10 with the locus for correcting the control point based on the position of the moved control point and the direction of the coordinate system.
  • the laser processing system 1 controls a scanner 4 capable of scanning laser light with respect to the work 10, a robot 2 for moving the scanner 4 with respect to the work 10, and a scanner 4.
  • a scanner control device 6 for controlling the scanner 4 and a program generation device 9 for generating a scanner program for controlling the scanner 4 are provided.
  • the program generation device 9 converts the scanner program into a control point correction program that repeatedly scans a control point correction locus for correcting a preset control point in a predetermined cycle.
  • the scanner control device 6 controls the scanner 4 so as to irradiate the work 10 with a control point correction locus for correcting the control point while the robot 2 is stopped. It has a part 61.
  • the laser machining system 1 can irradiate the control point correction locus using the control point correction program converted from the scanner program, and correct the control point using the control point correction locus.
  • the laser processing system 1 can correct the control point which is the reference point for irradiating the work 10 with the laser only by the operation of the scanner 4 without moving the robot 2. Therefore, the laser processing system 1 can easily correct the path of the laser irradiation point by modifying the control point.
  • the operator can visually recognize the path corresponding to the actual laser machining path by repeatedly scanning the control point correction locus, so that the control point can be corrected accurately over time. It can be performed.
  • the operator of the laser machining system 1 corrects the control point by visually recognizing the machining shape actually machined by the laser machining system 1, so that the positional relationship with the work 10 and the jig is correct.
  • the control point can be corrected while checking. For example, when laser welding on a narrow flange, the operator can determine that the machining path is located within the flange.
  • the laser machining system 1 can confirm the actual machining shape, it is possible to check not only the position of the machining shape but also the orientation of the machining shape. Further, in the conventional teaching modification, a teaching jig or a plurality of additional guide lasers are crossed and the intersection thereof are visually recognized. However, the laser processing system 1 according to the present embodiment is described above. As described above, the teaching and correction can be performed while visually observing the actual processed shape.
  • the laser machining system 1 irradiates the control point correction locus using the control point correction program converted from the scanner program. Therefore, the operator of the laser machining system 1 can correct the control point by visually recognizing the machining shape actually machined by the laser machining system 1.
  • the laser machining system 1 controls the scanner 4 so as to repeatedly scan the control point correction locus at a predetermined cycle.
  • the afterimage effect allows the operator to perceive that the control point correction locus is continuously drawn. Therefore, the operator can confirm and correct the position, direction, size, and distortion of the control point correction locus by perceiving the control point correction locus.
  • the scanner control device 6 is a control that stores the control point moving unit 62 that moves the control point based on the control point correction locus, the position of the moved control point, and the direction of the coordinate system defined by the control point. Further provided with a point storage unit 63.
  • the locus control unit 61 controls the scanner 4 so as to irradiate the work 10 with a locus for correcting control points based on the position of the control point and the direction of the coordinate system.
  • the laser processing system 1 can correct the position of the control point and the direction of the coordinate system within the scanning range of the scanner 4 without moving the robot 2. Therefore, the laser processing system 1 can correct the control point only by scanning the guide laser without changing the posture of the robot 2.
  • control point correction locus irradiated on the work 10 has the same length and shape as the control point correction locus in the scanner program for controlling the scanner 4 in the control point correction locus irradiated on the work 10. However, it can be compared with the correction pattern that can be arranged on the work 10. As a result, the operator confirms the position, direction, size, and distortion of the control point correction locus by comparing the control point correction locus irradiated on the work 10 with the control point correction locus in the scanner program. And can be modified.
  • control point correction locus includes at least one of a control point, a path passing through the control point, and a path indicating the position of the control point.
  • the program generator 9 changes the output conditions of the laser beam, switches between the processing laser and the guide laser, or changes the scanning speed of the front laser beam. Do at least one of.
  • the laser machining system 1 can make it easier for the operator to visually recognize the control point correction locus irradiated by the control point correction program.
  • the above laser processing system 1 can be realized by hardware, software, or a combination thereof. Further, the control method performed by the laser processing system 1 described above can also be realized by hardware, software, or a combination thereof.
  • what is realized by software means that it is realized by a computer reading and executing a program.
  • Non-transitory computer-readable media include various types of tangible storage media (tangible studio media).
  • Examples of non-temporary computer-readable media include magnetic recording media (eg, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, CD-Rs / W, including semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (random access memory)).

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Laser Beam Processing (AREA)

Abstract

レーザ照射点の経路の修正を簡易に行うことができるレーザ加工システムを提供すること。レーザ加工システムは、ワークに対してレーザ光を走査可能なスキャナと、スキャナをワークに対して移動させる移動装置と、スキャナを制御するスキャナ制御装置と、スキャナ制御装置により前記スキャナを制御するためのスキャナプログラムを生成するプログラム生成装置と、を備え、プログラム生成装置は、スキャナプログラムを、予め設定された制御点を修正するための制御点修正プログラムに変換し、スキャナ制御装置は、制御点修正プログラムに基づいて、移動装置を停止した状態で、制御点を修正するための制御点修正用軌跡を前記ワークに照射するように、スキャナを制御する軌跡制御部を有し、軌跡制御部は、制御点修正プログラムに基づいて、制御点修正用軌跡を所定の周期で反復走査するようにスキャナを制御する。

Description

レーザ加工システム及び制御方法
 本発明は、レーザ加工システム及び制御方法に関する。
 従来より、ワークにレーザ光を離れた位置から照射して、溶接を行うレーザ加工システムが提案されている。レーザ加工システムは、ロボットのアーム先端にレーザ光を照射するスキャナを有する。レーザ加工システムのロボット各軸は、他の産業用ロボットと同様、予め制御装置に記憶されたプログラムに従って駆動される。このため、作業現場では、実機とワークを使ってプログラムを作成する教示作業が行われる(例えば、特許文献1参照)。
特開2012-135781号公報
 このようなレーザ加工システムを用いてレーザ加工を行う場合、プログラムにおけるレーザ照射点の経路と実際のレーザ照射点の経路とのずれが問題となる。
 レーザ照射点の経路は、作業空間内のロボットの基部を基準とした座標系の点の列によって表現されると考えることができるため、これを制御点と呼ぶ。制御点は、レーザ照射点の経路上の点であってもよく、又は円弧の中心のように、レーザ照射点の経路上でなくても、レーザ照射点の経路を定義するために必要となる点であってもよい。
 ロボットプログラム及びスキャナプログラムは、レーザ加工システムのプログラム生成装置において設定された各制御点の位置及び方向(制御点の座標系)の各点に応じて、生成される。しかし、CADデータと実際のワークとは一致せず、ロボットの動作経路や治具等にも位置の誤差が存在する。そのため、このようなずれや誤差を教示修正する作業が必要となる。
 また、レーザ加工システムにおいてロボットとスキャナを組み合わせるときに、工具中心点(TCP)も修正を要することがある。TCPは、ロボット先端点からスキャナ基準点への位置ベクトルで表される。TCPを正しく設定することによって、ロボットの姿勢によらず、プログラム上のレーザ照射位置と実際のレーザ照射位置とが一致する。
 従来、制御点の修正及びTCPの設定は、スキャナ直下の特定の点を指し示す教示用治具を用いて行っていた。通常、特定の点は、スキャナの作業空間の原点であり、レーザが集光する点に設定される。
 特定の点を指し示すために、金属や樹脂等で製造された教示用治具を用いたり、複数の付加的なガイドレーザを交差させ、その交点を視認したりすることが行われている。いずれの方法も、スキャナの直下の一点の座標を取得するため、実際のワーク上の所望の位置と特定の点とを一致させるためには、ロボットを操作する必要があり、効率が良くなかった。
 また、従来の手法では、ロボットに教示用治具を取り付けたり、スキャナに付加的なガイドレーザを装備したりする必要があった。そのため、教示用治具や付加的なガイドレーザ等を必要とせず、制御点の修正を簡易に行うことができるレーザ加工システムが望まれていた。
 本開示に係るレーザ加工システムは、ワークに対してレーザ光を走査可能なスキャナと、前記スキャナを前記ワークに対して移動させる移動装置と、前記スキャナを制御するスキャナ制御装置と、前記スキャナ制御装置により前記スキャナを制御するためのスキャナプログラムを生成するプログラム生成装置と、を備え、前記プログラム生成装置は、前記スキャナプログラムを、予め設定された制御点を修正するための制御点修正プログラムに変換し、前記スキャナ制御装置は、前記制御点修正プログラムに基づいて、前記移動装置を停止した状態で、前記制御点を修正するための制御点修正用軌跡を前記ワークに照射するように、前記スキャナを制御する軌跡制御部を有し、前記軌跡制御部は、前記制御点修正プログラムに基づいて、前記制御点修正用軌跡を所定の周期で反復走査するように前記スキャナを制御する。
 本開示に係るレーザ加工システムの制御方法は、スキャナを制御するためのスキャナプログラムを、予め設定された制御点を修正するための制御点修正プログラムに変換するステップと、ワークに対してレーザ光を走査可能な前記スキャナを前記ワークに対して移動させるステップと、前記スキャナを前記ワークに対して移動させる移動装置を停止させるステップと、前記制御点修正プログラムに基づいて、前記移動装置を停止した状態で、予め設定された制御点を修正するための制御点修正用軌跡を前記ワークに照射するように、前記スキャナを制御するステップと、を備え、前記スキャナを制御するステップは、前記制御点修正用軌跡を所定の周期で反復走査するように前記スキャナを制御することを含む。
 本発明によれば、制御点の修正を簡易に行うことができる。
本実施形態に係るレーザ加工システムの全体構成を示す図である。 本実施形態に係るレーザ加工システムにおけるスキャナの光学系を説明する図である。 本実施形態に係るレーザ加工システムの機能構成を示すブロック図である。 本実施形態に係るスキャナ制御装置の機能構成を示すブロック図である。 変換前のスキャナプログラムの一例を示す図である。 変換後の制御点修正プログラムを示す図である。 制御点修正プログラムを用いて照射される制御点修正用軌跡の例を示す図である。 制御点修正プログラムを用いて照射される制御点修正用軌跡の別の例を示す図である。 本実施形態に係るレーザ加工システムの処理の流れを示すフローチャートである。
 以下、本発明の実施形態について図面を参照して説明する。図1は、本実施形態に係るレーザ加工システム1の全体構成を示す図である。図1に示すレーザ加工システム1は、リモートレーザ溶接ロボットシステムの一例を示す。
 レーザ加工システム1は、ロボット2と、レーザ発振器3と、スキャナ4と、ロボット制御装置5と、スキャナ制御装置6と、レーザ制御装置7と、ロボット教示操作盤8と、プログラム生成装置9と、を備える。
 ロボット2は、例えば、複数の関節を有する多関節ロボットである。ロボット2は、基部21と、アーム22と、複数のY方向に延びる回転軸を有する関節軸23a~23dを備える。
 また、ロボット2は、Z方向を回転軸としてアーム22を回転移動させるロボット用サーボモータ、各関節軸23a~23dを回転させてアーム22をX方向に移動させるロボット用サーボモータ等の複数のロボット用サーボモータを有する。各ロボット用サーボモータは、後述するロボット制御装置5からの駆動データに基づいてそれぞれ回転駆動する。
 ロボット2のアーム22の先端部22aには、スキャナ4が固定されている。したがって、ロボット2は、各ロボット用サーボモータの回転駆動によって、スキャナ4を所定のロボット速度で、作業空間上の任意の位置に任意の向きになるよう移動させることができる。すなわち、ロボット2は、スキャナ4をワーク10に対して移動させる移動装置である。なお、本実施形態では、レーザ加工システム1は、移動装置としてロボット2を用いているが、これに限定されず、例えば、移動装置として三次元加工機を用いてもよい。
 レーザ発振器3は、レーザ媒質、光共振器及び励起源等から構成される。レーザ発振器3は、後述するレーザ制御装置7からのレーザ出力指令に基づくレーザ出力のレーザ光を生成し、スキャナ4に対して、生成したレーザ光を供給する。発振されるレーザの種類として、ファーバーレーザ、COレーザ、YAGレーザ等があるが、本実施形態においては、レーザの種類について特に問わない。
 レーザ発振器3は、ワーク10を加工するための加工用レーザと、加工用レーザを調整するためのガイドレーザとを出力可能である。ガイドレーザは、加工用レーザと同一の軸上に調整された可視光レーザである。
 スキャナ4は、レーザ発振器3から出射されるレーザ光Lを受けて、ワーク10に対してレーザ光Lを走査可能なスキャナである。
 図2は、本実施形態に係るレーザ加工システム1におけるスキャナ4の光学系を説明する図である。図2に示すように、スキャナ4は、例えば、レーザ発振器3から出射されるレーザ光Lを反射させる2つのガルバノミラー41、42と、ガルバノミラー41、42をそれぞれ回転駆動するガルバノモータ41a、42aと、カバーガラス43を備える。
 ガルバノミラー41、42は、互いに直交する2つの回転軸J1、J2回りにそれぞれ回転可能に構成される。ガルバノモータ41a、42aは、レーザ制御装置7からの駆動データに基づいて回転駆動し、ガルバノミラー41、42を回転軸J1、J2回りに独立して回転させる。
 レーザ発振器3から出射されたレーザ光Lは、2つのガルバノミラー41、42で順次反射された後にスキャナ4から出射され、ワーク10の加工点(溶接点)に到達する。このとき、ガルバノモータ41a、42aにより2つのガルバノミラー41、42がそれぞれ回転すると、これらガルバノミラー41、42に入射するレーザ光Lの入射角が連続的に変化する。その結果、スキャナ4からワーク10に対して所定の経路でレーザ光Lが走査され、そのレーザ光Lの走査経路に沿ってワーク10上に溶接軌跡を形成する。
 スキャナ4からワーク10上に出射されるレーザ光Lの走査経路は、ガルバノモータ41a、42aの回転駆動を適宜制御してガルバノミラー41、42のそれぞれの回転角度を変化させることにより、X、Y方向に任意に変化させることができる。
 スキャナ4は、Z軸モータによって位置関係を変更自在としたズーミング光学系(図示せず)も備えている。スキャナ4は、Z軸モータの駆動制御により、レーザを集光する点を光軸方向に移動させることで、レーザ照射点をZ方向にも任意に変化させることができる。
 カバーガラス43は、円盤状であり、ガルバノミラー41、42によって順次反射されてワーク10に向かうレーザ光Lを透過すると共に、スキャナ4の内部を保護する機能を有する。
 また、スキャナ4は、トレパニングヘッドであってもよい。この場合、スキャナ4は、例えば、一方の面が傾斜した形式のレンズをモータで回転させることで、入射したレーザを屈折させて、任意の位置に照射する構成を有することが可能である。
 ロボット制御装置5は、所定のロボットプログラムに応じて、ロボット2の各ロボット用サーボモータに駆動制御データを出力し、ロボット2の動作を制御する。また、ロボット制御装置5は、レーザ制御装置7に対してレーザ照射の指令を行う。ロボット制御装置5からの指令は、レーザの照射条件であるパワー、周波数、デューティを含んでもよい。また、レーザ制御装置7内のメモリ内に予め照射条件を保存しておき、ロボット制御装置5からの指令は、どの照射条件を使用するかの選択、並びに照射開始及び終了のタイミングを含んでもよい。
 スキャナ制御装置6は、スキャナ4の機構内のレンズ、ミラーの位置調整を行う制御装置である。なお、スキャナ制御装置6は、ロボット制御装置5に組み込まれてもよい。
 レーザ制御装置7は、レーザ発振器3を制御する制御装置であり、スキャナ制御装置6からの指令に応じて、レーザ光を出力するように制御を行う。レーザ制御装置7は、スキャナ制御装置6と接続されるだけでなく、ロボット制御装置5と直接接続されてもよい。また、レーザ制御装置7は、スキャナ制御装置6と一体化されていてもよい。
 ロボット教示操作盤8は、ロボット制御装置5に接続され、ロボット2の操作を行うために操作者によって使用される。例えば、操作者は、レーザ加工を行うための加工情報を、ロボット教示操作盤8上のユーザインターフェースを通して入力する。
 プログラム生成装置9は、ロボット制御装置5及びスキャナ制御装置6に接続され、ロボット2及びスキャナ4のためのプログラムを生成する。なお、プログラム生成装置9については、図3を参照しながら詳述する。本実施形態において、少なくともスキャナ4は、好ましくはロボット2も、プログラムの指令に対して正確に駆動するように調整されているとする。
 図3は、本実施形態に係るレーザ加工システム1の機能構成を示すブロック図である。
 前述したように、レーザ加工システム1は、ロボット2と、レーザ発振器3と、スキャナ4と、ロボット制御装置5と、スキャナ制御装置6と、レーザ制御装置7と、ロボット教示操作盤8と、プログラム生成装置9と、を備える。
 以下、図3を参照しながら、ロボット制御装置と、スキャナ制御装置6、レーザ制御装置7及びプログラム生成装置9の動作について詳述する。
 プログラム生成装置9は、CAD/CAMデータから仮想作業空間内におけるロボット2のためのロボットプログラムP1及びスキャナ4のためのスキャナプログラムP2を生成する。更に、プログラム生成装置9は、制御点修正用軌跡を照射するためのプログラムを生成する。
 生成されたロボットプログラムP1及びスキャナプログラムP2は、それぞれ、ロボット制御装置5及びスキャナ制御装置6に転送される。
 ロボット教示操作盤8の操作によって、ロボット制御装置5内に格納されたロボットプログラムP1が起動されると、ロボット制御装置5からスキャナ制御装置6に指令が送られ、スキャナプログラムP2も起動される。
 ロボット制御装置5は、ロボット2がスキャナ4を所定の位置まで搬送したときに信号を出力する。ロボット制御装置5から出力された信号に応じて、スキャナ制御装置6は、スキャナ4内の光学系を駆動する。
 また、スキャナ制御装置6は、レーザ制御装置7にレーザ出力を指令する。ロボット制御装置5、スキャナ制御装置6及びレーザ制御装置7は、適切なタイミングで信号をやりとりすることによって、ロボット2の動き、レーザ光軸の走査及びレーザビームの出力を同期する。
 ロボット2及びスキャナ4は、位置情報及び時刻情報を共有し、作業空間内の所望の位置にレーザ照射点を制御する。また、ロボット2及びスキャナ4は、適切なタイミングでレーザ照射を開始及び終了させる。これにより、レーザ加工システム1は、溶接等のレーザ加工を行うことができる。
 また、プログラム生成装置9は、3Dモデリングソフトウェアを内蔵している。操作者は、ロボット2及びスキャナ4のモデルをコンピュータ上で操作し、レーザ照射点や座標値等を確認することができる。
 更に、プログラム生成装置9は、ワーク10のCADデータを用いて、ワーク10の3Dモデリングを生成し、当該3Dモデリングのワーク10上に1以上の制御点を設定する。そして、プログラム生成装置9は、設定された各制御点に対して溶接形状を定義する。
 上述したように、レーザ照射点の経路は、作業空間内のロボットの基部を基準とした座標系の点の列によって表現されると考えることができるため、これを制御点と呼ぶ。制御点は、レーザ照射点の経路上の点であってもよく、又は円弧の中心のように、レーザ照射点の経路上でなくても、レーザ照射点の経路を定義するために必要となる点であってもよい。
 制御点及び溶接形状の定義を終えると、プログラム生成装置9は、ロボット2が移動するロボット経路、及びスキャナ4によるレーザ照射点の走査経路を計算する。
 3次元空間内のレーザ照射点に対して、ロボット2の姿勢及びスキャナ4によるレーザ照射点のガルバノモータ41a、42aの回転角度は、一意に決定されない。そのため、プログラム生成装置9は、条件を満たす最適解を探索するアルゴリズムを備える。ロボットプログラムP1及びスキャナプログラムP2のプログラム生成における条件とは、加工時間の最短化、ワーク10に対するレーザ照射角の制限、ロボット2の姿勢範囲の制限等である。
 そして、制御点が修正されると、スキャナ制御装置6は、修正後の制御点の位置情報及び方向情報をプログラム生成装置9へ送信する。
 プログラム生成装置9は、上述した最適解を探索するアルゴリズムを用いて、修正後の制御点の位置情報及び方向情報に基づいて、ロボットプログラムP1及びスキャナプログラムP2を再度生成する。生成されたロボットプログラムP1及びスキャナプログラムP2は、再びスキャナ制御装置6へ送信される。
 このようにプログラム生成装置9は、修正された制御点を反映したロボットプログラムP1及びスキャナプログラムP2を生成することによって、ロボットプログラムP1におけるロボット経路、及びスキャナプログラムP2におけるスキャナ4によるレーザ光の照射経路を修正することができる。
 また、プログラム生成装置9は、スキャナプログラムを、予め設定された制御点を修正するための制御点修正プログラムに変換する。制御点修正プログラムは、予めプログラム生成装置9内においてスキャナプログラムから変換されてもよく、又は、一旦プログラム生成装置9によって出力されたスキャナプログラムから変換されてもよい。
 また、プログラム生成装置9は、スキャナプログラムを制御点修正プログラムに変換する際に、レーザ光の出力条件の変更、加工用レーザとガイドレーザとの切り替え、又は前レーザ光の走査速度の変更のうちの少なくとも1つを実行する。
 図4は、本実施形態に係るスキャナ制御装置6の機能構成を示すブロック図である。
 図4に示すように、スキャナ制御装置6は、軌跡制御部61と、制御点移動部62と、制御点記憶部63と、を備える。
 軌跡制御部61は、変換された制御点修正プログラムに基づいて、ロボット2を停止した状態で、制御点を修正するための制御点修正用軌跡をワーク10に照射するように、スキャナ4を制御する。また、制御点修正用軌跡は、制御点、制御点を通過する経路及び制御点の位置を明示する経路の少なくとも1つを含む。
 制御点移動部62は、制御点修正用軌跡に基づいて、ロボット教示操作盤8の操作に従って制御点を移動する。
 制御点記憶部63は、制御点移動部62によって移動された制御点の位置及び制御点によって定義される座標系の方向を記憶する。
 軌跡制御部61は、制御点記憶部63に記憶された制御点の位置及び座標系の方向に基づいて、制御点修正用軌跡をワーク10に照射するようにスキャナ4を制御する。
 図5Aは、変換前のスキャナプログラムの一例を示す図であり、図5Bは、変換後の制御点修正プログラムを示す図である。
 図5A及び図5Bに示すプログラムにおいて、左側にはGコードの例を示し、右側には各Gコードについてのコメントを示す。
 図5Aにおいて、先ず、スキャナプログラムは、早送りでレーザ照射点を制御点に移動させる(図5Aの(1)参照)。
 そして、スキャナプログラムは、レーザ光を溶接位置に照射して溶接を開始し、その後、溶接を終了する(図5Aの(2)参照)。
 溶接位置での溶接が終了すると、スキャナプログラムは、次の溶接位置へレーザ照射点を移動する(図5Aの(3)参照)。
 図5Bに示す制御点修正プログラムにおいて、下線を付したGコードは、スキャナプログラムから変換されることによって追加されたプログラムを示す(図5Bの(4)、(5)、(7)及び(8)参照)。
 具体的には、制御点修正プログラムは、制御点修正用軌跡の高速反復のために、同一の軌跡を繰り返す(図5Bの(4)参照)。
 また、制御点修正プログラムは、一回の制御点修正用軌跡の走査に先立ち、起点において20ms静止し、ガイドレーザを照射する。(図5Bの(5)参照)。この起点は、制御点であり、制御点修正用軌跡は、制御点を原点とする座標系空間内で規定される。
 また、図5Aに示されるスキャナプログラムは、加工速度が5m/minであり、走査速度が遅いため、図5Bに示される制御点修正プログラムは、加工速度を120m/minに変更する。
 更に、制御点修正プログラムは、加工用レーザをインタロック及び出力指令0W(図5Bに示される制御点修正プログラム中のS0指令)に設定して、加工用レーザを出力させないようにすると共に、ガイドレーザを出力させる(図5Bの(6)参照)。
 一回の制御点修正用軌跡の走査の後に、制御点修正プログラムは、サブプログラムNo.1を呼び出し、制御点修正用軌跡の移動を判断する(図5Bの(7)参照)。サブプログラムNo.1は、ロボット教示操作盤8によるX、Y、及びZ方向の平行移動、並びにヨー、ピッチ及びロールの回転移動に関する操作から、後続の溶接点におけるレーザ照射の位置及び方向を変更する。変更された位置及び方向の移動量は、スキャナ制御装置6に記憶される。
 また、操作者は、制御点修正用軌跡を所望の位置に移動させ、ロボット教示操作盤8のSTOPボタンを押すことによって、修正された制御点修正用軌跡の位置は、プログラム生成装置9に転送され、制御点の修正が完了する。
 このとき、何らかの理由によって修正を断念した場合、操作者は、ロボット教示操作盤8のCANCELボタンを押すことによって、制御点の修正を中止することができる。また、元の制御点の位置もスキャナ制御装置6に記憶されているため、操作者は、元の制御点の位置から再度作業を再開することもできる(図5Bの(8)参照)。
 図6は、制御点修正プログラムを用いて照射される制御点修正用軌跡の例を示す図である。図6に示すように、プログラム生成装置9は、スキャナプログラムを制御点修正プログラムに変換し、軌跡制御部61は、変換された制御点修正プログラムに基づいて、制御点修正用軌跡12を所定の周期で反復走査するようにスキャナ4を制御する。
 上述したように変換前のスキャナプログラムは、レーザ照射する加工軌跡11を反復走査しないが、変換された制御点修正プログラムは、制御点修正用軌跡12を所定の周期で反復走査する。ここで、所定の周期は、残像効果を得るために、例えば、10Hz以上であることが好ましく、20Hz程度であることがより好ましい。また、制御点修正用軌跡12は、基準点としての制御点13を含む。これにより、操作者は、制御点修正用軌跡12において制御点13を明確に視認することができ、制御点13の修正を適切に行うことができる。
 また、レーザ加工システム1は、ワーク10に照射される制御点修正用軌跡を修正するために修正用パターンを用いてもよい。修正用パターンは、制御点修正用軌跡と同一の長さ及び形状を有し、かつワーク10上に配置可能である。修正用パターンは、例えば、ワーク10上に貼り付け可能なシール、ワーク10上に配置可能なカード状の物品、型紙、磁石等であってもよい。また、修正用パターンは、ワーク10上に予め印刷されていてもよい。
 このような修正用パターンを用いることによって、ワーク10に照射される制御点修正用軌跡は、スキャナ4を制御するスキャナプログラムにおける制御点修正用軌跡と同一の長さ及び形状を有する修正用パターンと比較可能である。
 これにより、操作者は、ワーク10に照射される制御点修正用軌跡とスキャナプログラムにおける制御点修正用軌跡とを比較することによって、制御点修正用軌跡の位置、方向、大きさ及び歪みを確認及び修正することができる。
 図7は、制御点修正プログラムを用いて照射される制御点修正用軌跡の別の例を示す図である。図7に示すように、制御点修正用軌跡14は、3つの直線軌跡によって構成される。また、制御点修正用軌跡14は、制御点15の位置を明示する経路を含む。具体的には、制御点修正用軌跡14は、3つの直線軌跡をそれぞれ延長した線分が交わる交点を制御点15として規定する。これにより、操作者は、制御点修正用軌跡14において制御点15を明確に視認することができ、制御点15の修正を適切に行うことができる。
 図8は、本実施形態に係るレーザ加工システム1の処理の流れを示すフローチャートである。
 ステップS1において、プログラム生成装置9は、スキャナプログラムを、予め設定された制御点を修正するための制御点修正プログラムに変換する。
 ステップS2において、ロボット制御装置5は、ロボットプログラムに基づいて、ワーク10に対してレーザ光を走査可能なスキャナ4を、ワーク10に対して移動させるようにロボット2を制御する。
 ステップS3において、ロボット制御装置5は、ロボットプログラムに基づいて、ロボット2を停止させるように制御する。
 ステップS4において、軌跡制御部61は、制御点修正プログラムに基づいて、ロボット2を停止した状態で、制御点修正用軌跡をワーク10に照射するようにスキャナ4を制御する。
 ステップS5において、制御点移動部62は、制御点修正用軌跡に基づいて制御点を移動する。
 ステップS6において、制御点記憶部63は、移動された制御点の位置及び制御点によって定義される座標系の方向を記憶する。
 ステップS7において、軌跡制御部61は、移動された制御点の位置及び座標系の方向に基づいて、制御点修正用軌跡をワーク10に照射するようにスキャナ4を制御する。
 以上説明したように、本実施形態に係るレーザ加工システム1は、ワーク10に対してレーザ光を走査可能なスキャナ4と、スキャナ4をワーク10に対して移動させるロボット2と、スキャナ4を制御するスキャナ制御装置6と、スキャナ4を制御するためのスキャナプログラムを生成するプログラム生成装置9と、を備える。プログラム生成装置9は、スキャナプログラムを、予め設定された制御点を修正するための制御点修正用軌跡を所定の周期で反復走査する制御点修正プログラムに変換する。スキャナ制御装置6は、制御点修正プログラムに基づいて、ロボット2を停止した状態で、制御点を修正するための制御点修正用軌跡をワーク10に照射するように、スキャナ4を制御する軌跡制御部61を有する。
 これにより、レーザ加工システム1は、スキャナプログラムから変換された制御点修正プログラムを用いて制御点修正用軌跡を照射し、制御点修正用軌跡を用いて制御点を修正することができる。
 また、レーザ加工システム1は、ロボット2を動かさず、スキャナ4の動作のみによって、ワーク10上にレーザを照射するための基準点である制御点を修正することができる。したがって、レーザ加工システム1は、制御点を修正することによって、レーザ照射点の経路の修正を簡易に行うことができる。
 また、レーザ加工システム1は、制御点修正用軌跡を反復走査することによって、操作者は実際のレーザ加工経路に対応する経路を視認することができるため、時間を掛けて正確な制御点の修正を行うことができる。
 また、レーザ加工システム1は、レーザ加工システム1の操作者は、実際にレーザ加工システム1によって加工される加工形状を視認することによって制御点を修正するため、ワーク10や治具との位置関係を確認しながら制御点を修正することができる。例えば、狭いフランジ上をレーザ溶接する場合、操作者は、加工経路がフランジ内に位置することを見極めることができる。
 また、レーザ加工システム1は、実際の加工形状を確認することができるため、加工形状の位置だけなく、加工形状の向きも確認することができる。また、従来の教示修正では、教示用治具や複数の付加的なガイドレーザを交差させ、その交点を視認したりすることを用いていたが、本実施形態に係るレーザ加工システム1は、上述したように、実際の加工形状を視認しながら教示修正を行うことができる。
 また、レーザ加工システム1は、スキャナプログラムから変換された制御点修正プログラムを用いて制御点修正用軌跡を照射する。そのため、レーザ加工システム1の操作者は、実際にレーザ加工システム1によって加工される加工形状を視認することによって制御点を修正することができる。
 また、レーザ加工システム1は、制御点修正用軌跡を所定の周期で反復走査するようにスキャナ4を制御する。これにより、残像効果によって、操作者は、制御点修正用軌跡が継続して描画されるように知覚することができる。したがって、操作者は、制御点修正用軌跡を知覚することによって、制御点修正用軌跡の位置、方向、大きさ及び歪みを確認及び修正することができる。
 また、スキャナ制御装置6は、制御点修正用軌跡に基づいて制御点を移動する制御点移動部62と、移動された制御点の位置及び制御点によって定義される座標系の方向を記憶する制御点記憶部63と、更に備える。軌跡制御部61は、制御点の位置及び座標系の方向に基づいて、制御点修正用軌跡をワーク10に照射するようにスキャナ4を制御する。
 これにより、レーザ加工システム1は、ロボット2を動かさず、スキャナ4の走査範囲内の制御点の位置及び座標系の方向を修正することができる。したがって、レーザ加工システム1は、ロボット2の姿勢を変えずに、ガイドレーザの走査のみによって制御点を修正することができる。
 また、ワーク10に照射される制御点修正用軌跡は、ワーク10に照射される制御点修正用軌跡は、スキャナ4を制御するスキャナプログラムにおける制御点修正用軌跡と同一の長さ及び形状を有し、かつワーク10上に配置可能な修正用パターンと比較可能である。これにより、操作者は、ワーク10に照射される制御点修正用軌跡とスキャナプログラムにおける制御点修正用軌跡とを比較することによって、制御点修正用軌跡の位置、方向、大きさ及び歪みを確認及び修正することができる。
 また、制御点修正用軌跡は、制御点、制御点を通過する経路及び制御点の位置を明示する経路の少なくとも1つを含む。これにより、操作者は、制御点修正用軌跡において制御点を明確に視認することができ、制御点の修正を適切に行うことができる。
 また、プログラム生成装置9は、スキャナプログラムを制御点修正プログラムに変換する際に、レーザ光の出力条件の変更、加工用レーザとガイドレーザとの切り替え、又は前レーザ光の走査速度の変更のうちの少なくとも1つを実行する。これにより、レーザ加工システム1は、制御点修正プログラムによって照射される制御点修正用軌跡を、操作者にとって視認しやすくすることができる。
 以上、本発明の実施形態について説明したが、上記のレーザ加工システム1は、ハードウェア、ソフトウェア又はこれらの組み合わせにより実現することができる。また、上記のレーザ加工システム1により行なわれる制御方法も、ハードウェア、ソフトウェア又はこれらの組み合わせにより実現することができる。ここで、ソフトウェアによって実現されるとは、コンピュータがプログラムを読み込んで実行することにより実現されることを意味する。
 プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えば、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。
 また、上述した各実施形態は、本発明の好適な実施形態ではあるが、上記各実施形態のみに本発明の範囲を限定するものではない。本発明の要旨を逸脱しない範囲において種々の変更を施した形態での実施が可能である。
 1 レーザ加工システム
 2 ロボット
 3 レーザ発振器
 4 スキャナ4
 5 ロボット制御装置
 6 スキャナ制御装置
 7 レーザ制御装置
 8 ロボット教示操作盤
 9 プログラム生成装置
 10 ワーク
 61 軌跡制御部
 62 制御点移動部
 63 制御点記憶部

Claims (6)

  1.  ワークに対してレーザ光を走査可能なスキャナと、
     前記スキャナを前記ワークに対して移動させる移動装置と、
     前記スキャナを制御するスキャナ制御装置と、
     前記スキャナを制御するためのスキャナプログラムを生成するプログラム生成装置と、
     を備え、
     前記プログラム生成装置は、前記スキャナプログラムを、予め設定された制御点を修正するための制御点修正用軌跡を所定の周期で反復走査する制御点修正プログラムに変換し、
     前記スキャナ制御装置は、前記制御点修正プログラムに基づいて、前記移動装置を停止した状態で、前記制御点修正用軌跡を前記ワークに照射するように、前記スキャナを制御する軌跡制御部を有する、
     レーザ加工システム。
  2.  前記スキャナ制御装置は、
     前記制御点修正用軌跡に基づいて前記制御点を移動する制御点移動部と、
     移動された前記制御点の位置及び前記制御点によって定義される座標系の方向を記憶する制御点記憶部と、を更に備え、
     前記軌跡制御部は、前記制御点の位置及び前記制御点によって定義される座標系の方向に基づいて、前記制御点修正用軌跡を前記ワークに照射するように前記スキャナを制御する、
     請求項1に記載のレーザ加工システム。
  3.  前記ワークに照射される前記制御点修正用軌跡は、前記スキャナを制御するスキャナプログラムにおける制御点修正用軌跡と同一の長さ及び形状を有し、かつ前記ワーク上に配置可能な修正用パターンと比較可能である、請求項1又は2に記載のレーザ加工システム。
  4.  前記制御点修正用軌跡は、前記制御点、前記制御点を通過する経路及び前記制御点の位置を明示する経路の少なくとも1つを含む、請求項1から3のいずれか一項に記載のレーザ加工システム。
  5.  前記プログラム生成装置は、前記スキャナプログラムを前記制御点修正プログラムに変換する際に、前記レーザ光の出力条件の変更、加工用レーザとガイドレーザとの切り替え、又は前記レーザ光の走査速度の変更のうちの少なくとも1つを実行する、請求項1から4のいずれか一項に記載のレーザ加工システム。
  6.  スキャナを制御するためのスキャナプログラムを、予め設定された制御点を修正するための制御点修正プログラムに変換するステップと、
     ワークに対してレーザ光を走査可能な前記スキャナを前記ワークに対して移動させるステップと、
     前記スキャナを前記ワークに対して移動させる移動装置を停止させるステップと、
     前記制御点修正プログラムに基づいて、前記移動装置を停止した状態で、予め設定された制御点を修正するための制御点修正用軌跡を前記ワークに照射するように、前記スキャナを制御するステップと、
    を備え、
     前記スキャナを制御するステップは、前記制御点修正用軌跡を所定の周期で反復走査するように前記スキャナを制御することを含む、
    レーザ加工システムの制御方法。
PCT/JP2021/038029 2020-10-16 2021-10-14 レーザ加工システム及び制御方法 WO2022080447A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/247,618 US20230381889A1 (en) 2020-10-16 2021-10-14 Laser processing system and control method
JP2022557430A JPWO2022080447A1 (ja) 2020-10-16 2021-10-14
CN202180069543.7A CN116323076A (zh) 2020-10-16 2021-10-14 激光加工系统和控制方法
DE112021004701.9T DE112021004701T5 (de) 2020-10-16 2021-10-14 Laserbearbeitungssystem und Steuerungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-174436 2020-10-16
JP2020174436 2020-10-16

Publications (1)

Publication Number Publication Date
WO2022080447A1 true WO2022080447A1 (ja) 2022-04-21

Family

ID=81208091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038029 WO2022080447A1 (ja) 2020-10-16 2021-10-14 レーザ加工システム及び制御方法

Country Status (5)

Country Link
US (1) US20230381889A1 (ja)
JP (1) JPWO2022080447A1 (ja)
CN (1) CN116323076A (ja)
DE (1) DE112021004701T5 (ja)
WO (1) WO2022080447A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292483A (ja) * 2001-03-30 2002-10-08 Sunx Ltd レーザマーキング装置
JP2013146773A (ja) * 2012-01-20 2013-08-01 Panasonic Industrial Devices Sunx Co Ltd レーザ加工装置
JP2020032423A (ja) * 2018-08-27 2020-03-05 日本電産コパル株式会社 レーザマーキング装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135781A (ja) 2010-12-24 2012-07-19 Kawasaki Heavy Ind Ltd レーザ加工ロボットの教示方法及び教示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292483A (ja) * 2001-03-30 2002-10-08 Sunx Ltd レーザマーキング装置
JP2013146773A (ja) * 2012-01-20 2013-08-01 Panasonic Industrial Devices Sunx Co Ltd レーザ加工装置
JP2020032423A (ja) * 2018-08-27 2020-03-05 日本電産コパル株式会社 レーザマーキング装置

Also Published As

Publication number Publication date
US20230381889A1 (en) 2023-11-30
JPWO2022080447A1 (ja) 2022-04-21
DE112021004701T5 (de) 2023-06-22
CN116323076A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
JP6325646B1 (ja) ロボットを用いてレーザ加工を行うレーザ加工ロボットシステム及びレーザ加工ロボットの制御方法
JP4353219B2 (ja) レーザ加工装置、レーザ加工装置の制御方法
KR101023594B1 (ko) 레이저 가공 로봇 제어 시스템, 제어 방법 및 제어프로그램 매체
JP4800939B2 (ja) レーザ加工装置、プログラム作成装置およびレーザ加工方法
KR100962817B1 (ko) 레이저 용접 장치 및 그 방법
JP6795565B2 (ja) レーザ加工システム
CN109719386B (zh) 激光加工系统
JP2004174709A (ja) 工作物を加工するための方法および装置
JP5608074B2 (ja) レーザ加工システム及びその制御方法
WO2022080446A1 (ja) レーザ加工システム及び制御方法
JP5061640B2 (ja) レーザ溶接装置、レーザ溶接方法
WO2022080447A1 (ja) レーザ加工システム及び制御方法
JP2007021550A (ja) レーザ溶接装置、レーザ溶接システム、およびレーザ溶接方法
JP6434554B2 (ja) ガルバノスキャナ
WO2022080448A1 (ja) レーザ加工システム及び制御方法
JP7092629B2 (ja) レーザ加工装置
JP4277747B2 (ja) レーザ加工装置
JP2007319922A (ja) レーザ加工装置およびその方法
JPWO2020008779A1 (ja) 切削加工機及び切削加工方法
JP2022071372A (ja) レーザ加工システム及び制御方法
JP7405986B2 (ja) レーザ加工システム
WO2022186054A1 (ja) センサの出力に基づいて教示点を生成する教示点生成装置および教示点生成方法
JP2018103193A (ja) レーザ加工用ヘッドおよびそれを備えたレーザ加工システム
JP2009274075A (ja) レーザ溶接方法、この溶接方法によって形成された溶接物、およびレーザ溶接システム
JP2012228711A (ja) レーザー加工ロボットシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880183

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557430

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18247618

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 21880183

Country of ref document: EP

Kind code of ref document: A1