WO2019002656A2 - Aparato para determinar la potencia óptica de lentes y método de medida - Google Patents

Aparato para determinar la potencia óptica de lentes y método de medida Download PDF

Info

Publication number
WO2019002656A2
WO2019002656A2 PCT/ES2018/070464 ES2018070464W WO2019002656A2 WO 2019002656 A2 WO2019002656 A2 WO 2019002656A2 ES 2018070464 W ES2018070464 W ES 2018070464W WO 2019002656 A2 WO2019002656 A2 WO 2019002656A2
Authority
WO
WIPO (PCT)
Prior art keywords
optical
image
test system
lens
digital image
Prior art date
Application number
PCT/ES2018/070464
Other languages
English (en)
French (fr)
Other versions
WO2019002656A3 (es
Inventor
Carlos DORRONSORO DÍAZ
Enrique GAMBRA URRALBURU
Xoana BARCALA GOSENDE
Víctor RODRÍGUEZ LÓPEZ
Susana Marcos Celestino
Original Assignee
Consejo Superior De Investigaciones Científicas
2Eyes Vision S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas, 2Eyes Vision S.L. filed Critical Consejo Superior De Investigaciones Científicas
Priority to EP18823157.5A priority Critical patent/EP3647758B1/en
Priority to US16/627,714 priority patent/US11300479B2/en
Publication of WO2019002656A2 publication Critical patent/WO2019002656A2/es
Publication of WO2019002656A3 publication Critical patent/WO2019002656A3/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0228Testing optical properties by measuring refractive power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0257Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested

Definitions

  • This invention pertains to the technical field of optics and, more particularly, to devices for measuring the optical power of lenses.
  • opto-adjustable lenses have been developed in recent years, which vary their optical power in response to an electrical signal. These lenses can come from different technologies, and are already used in numerous applications, and in some of them with rapid and periodic variations of optical power. In some of these lenses, such as that disclosed in WO 2012/055049, the change in optical power occurs at very high speed in response to an electrical impulse, without this implying a high price. This has allowed new applications in which the lens works with rapid and periodic variations in optical power.
  • opto-adjustable lenses suffer dynamic effects, deviations from static optical power when the lenses are used in a dynamic cycle, with response times ranging from fractions of milliseconds to minutes.
  • the optical power of the lens is not perfectly controlled by the electrical signal.
  • the transient optical power for a given transient electrical value may be lower or higher than the optical power obtained for long-term stationary states.
  • the response of the lens may suffer distortions: delays in rise or fall times, overshoots due to delayed braking or oscillations.
  • These dynamic effects have a great dependence on the work cycle, both the amplitude of the optical power steps that are required of the lens and the frequency of the variations.
  • Sufficiently fast methods are known to observe the dynamic effects that occur in opto-adjustable lenses, such as the measurement of the intensity in the center of a laser beam with a small photodiode (Berge, B., & Peseux, J.
  • low speed will be understood as operating regimes of the opto-adjustable lens or cameras with frequencies below said frequency. It is necessary a robust, simple, direct system, without moving parts and whose cost is low, as far as possible, for the measurement of the optical power of lenses. Ideally, should have a high capture speed and can be used from checking the correct operation of opto-adjustable lenses, to its detailed characterization and calibration, reaching the establishment of its features and the design guidance of devices based on them.
  • the invention provides an apparatus for determining the optical power of an optical test system, the apparatus comprising
  • an optical object generating set for generating an optical object according to an optical axis
  • a support for the optical test system so that when the optical test system is located on the support, said optical test system is aligned with the optical axis, and when the optical object is generated, the optical test system projects an initial optical image of the optical object;
  • a deflector assembly located between the optical object generator assembly and the digital image detector, designed to produce a lateral displacement in the initial optical image, thus generating a displaced optical image and an optical reference image
  • the digital image detector being positioned to capture the displaced optical image and the optical reference image in at least one digital image containing data on lateral displacement;
  • processing means for determining the optical power of the optical test system from the data on the lateral displacement contained in the digital image.
  • the optical assay system may comprise a lens (such as an opto-adjustable lens), a composite lens, an optical system such as a lens or a prismatic-type system, or an optical instrument.
  • a lens such as an opto-adjustable lens
  • a composite lens such as an optical system
  • an optical system such as a lens or a prismatic-type system
  • an optical instrument such as an optical instrument.
  • the fact that the deflector assembly produces a lateral displacement in the initial optical image does not require that it be located in any particular position, but can be in any position between the optical object generator assembly and the digital image detector.
  • the main advantage of this device is that it allows to obtain the optical power of the optical test system by a simple and robust procedure, not very sensitive to positioning errors, since it does not have moving parts that introduce additional steps in the processes of measurement, lengthening them and preventing their use for large quantities of lenses in series, and that also require monitoring the positioning tolerances and constantly calibrate the interdistance between the elements.
  • the apparatus Since the apparatus is capable of capturing both a displaced optical image and an optical reference image, in order to calculate the lateral displacement in a relative manner, the apparatus is also not very sensitive to measurement errors arising from misalignments, vibrations, misalignments and misalignments, including introduced by the optical test system itself.
  • the optical object generating assembly includes a light source that illuminates from behind a perforated mask or a lithograph embodied in a transparent sheet.
  • the optical object can be self-illuminated, such as for example an object generated in a monitor or in a microdisplay, or even an LED. Even in other embodiments, it may be a printed and illuminated image.
  • the optical object has the form of an optical line or slit, and in others, a point. Simple or multiple objects are possible. In general practically any object is valid, as long as it is known. The processing means have been programmed knowing the optical object, so that they can calculate its lateral displacement in a simple way.
  • the optical object generator assembly is configured to generate the optical object in a pulsed fashion over time.
  • the digital image detector may advantageously comprise a conventional low speed camera (which may have a capture frequency of less than 50 Hz, or less than 30 Hz), which is synchronized with the optical object generating set.
  • the optical object generator assembly may comprise a pulsed light source.
  • the capture frequency of the digital image detector is equal to the pulse generation frequency of the optical object generator; in this way no pulses of light are emitted that are not captured by the digital image detector.
  • the frequency of pulse generation and the capture frequency are multiples or fractions, that is, there may be two or more pulses for each capture of the digital image detector.
  • the pulses generated by the optical object generator in time are discernible temporarily by the digital image detector thanks to some property characteristic of the pulse, such as the intensity of each pulse.
  • the support comprises a spool, an assembly line, a revolver or a drum with a plurality of individual supports, the support being adapted to be positioned in a plurality of different positions, so that in each of these positions an individual support is located in such a way that when an optical test system is located in the individual support, it is aligned with the optical axis.
  • the support comprises a plurality of individual supports, and is moved between several positions so that, in each position, one of the individual supports, which will support an optical test system, is in the measuring position of the apparatus, ie , aligned with the optical axis.
  • the only moving part is the support of the apparatus, while the measuring apparatus is fixed, and it takes the corresponding images for each optical test system.
  • the deflector assembly comprises a single baffle element from among the following: a prism, a mirror, a partially reflecting surface, a diffraction grating, a spatial light modulator, a network of microprisms and a network of micromirrors. These elements are especially suitable for causing lateral displacement of the initial optical image of the optical object.
  • the single deflector element is arranged to produce a lateral displacement in only a part of the initial optical image. This embodiment allows to obtain in the same digital image and simultaneously data on the displaced optical image and the optical reference image.
  • the deflector assembly comprises several deflecting elements.
  • This embodiment makes it possible to obtain two or more displaced optical images with displacements that can be in opposite directions, which are at the same time reference image of each other, increasing the accuracy of the measurement and increasing the tolerance to vibrations and positioning errors.
  • one of the deflecting elements is arranged to receive only part of the initial optical image, while another of the deflecting elements is arranged to receive a different part of the initial optical image. This embodiment therefore also makes it possible to obtain in the same digital image data on the displaced optical image and the optical reference image, but in a different way.
  • the digital image detector has a capture rate higher than 120 images per second, and can be greater than 500 images per second, being therefore able to obtain successive optical power measurements discriminated in time that allow to elaborate a curve of the temporary dynamic response of opto-adjustable lenses.
  • the optical test system operates at a frequency of changing the optical power
  • the digital image detector has a capture frequency lower than the frequency of change of the optical power of the optical test system.
  • the digital image detector has a capture frequency more than 5 times lower than the frequency of change of the optical power of the optical test system.
  • This apparatus achieves the main technical effect of obtaining the dynamic optical power of an optical test system, but at a low cost.
  • the apparatus further comprises a calibration system between the optical object generating assembly and the support for the optical test system, said calibration system comprising a collimating calibration lens, a focusing calibration lens and a main calibration located between them in a plane optically conjugated with the plane of the support for the optical test system.
  • the calibration system allows calculating a reference relationship between optical power and lateral displacement captured by the digital image detector.
  • the calibration system can be used when there is no optical test system located in the support, to calibrate the device and to verify that a calibration system, whose optical power is previously known, projects an optical reference image and an optical image displaced concordes with its optical power.
  • this calibration system can be used together with the optical test system, and can thus be used to add or subtract diopters.
  • the optical power of the optical test system can be measured or calibrated as that which compensates for an opposite optical power in the calibration system, it being understood that it completely compensates for the lateral displacement induced by the calibration system. It can also be used to change the range in which the optical power measurements are made (if the power of the optical test system is too high or too low), thus expanding the possibilities of the system.
  • the apparatus additionally comprises optical elements, such as a collimating lens or a focusing lens, located on both sides of the optical test system and which help to configure the parameters of the projection of the optical object in the initial optical image , depending on the characteristics of the optical test system.
  • This device allows the measurement of any optical power of the optical test system, positive or negative, since the collimating lens and the focusing lens contribute to complement the optical power of the test system, so that it can be measured more clearly by the device of measurement.
  • the invention provides a method for measuring the optical power of an optical test system; understanding the method:
  • the method can be performed by an apparatus according to the inventive aspect defined above, or in any of the embodiments of this apparatus.
  • the step of generating an optical object comprises generating an optical object pulsed in time.
  • the step of capturing at least one digital image can be performed with a low speed camera that is synchronized with the optical object generating set.
  • the method allows measurements of the dynamic optical power of an opto-adjustable lens even with a digital image detector having a capture frequency lower than the frequency of change of optical power of the opto-adjustable lens periodically oscillating between various powers and, therefore, at the frequency of the lateral displacement of the displaced optical image.
  • the dynamic optical power is obtained from the processing of the displaced optical image captured in the digital image, from the pixels defined by the extreme values of said variation of the lateral displacement, and from the integrated energy in each optical power intermediate between said extreme values, and these data are captured with the system object of the invention in conventional digital images of low speed.
  • the method further comprises the step of calibrating the apparatus by measuring or by compensating for the optical power induced by an optical calibration test system.
  • the step of calculating the optical power of the optical test system comprises identifying a first group of pixels corresponding to the image displaced optics and a second group of pixels corresponding to the reference optical image, measure the lateral displacement that separates both groups of pixels and correlate the lateral displacement with a measurement table that assigns an optical power value to each lateral displacement value.
  • This method allows the measurement of the optical power in a reliable and robust way, without being affected by displacements or misalignments of the components of the apparatus.
  • the optical assay system comprises an opto-adjustable lens.
  • the steps of capturing the reference signal and the deviated signal are performed several times, the test optical system being subjected to a variable electrical signal, thereby obtaining a relationship between the electrical signal supplied to the optical test system and the optical power that said optical test system provides for said electrical signal.
  • this method is applicable in the apparatus of the invention, both in static regime, when the opto-adjustable lens alternates between several stable positions, and in dynamic regime, when the opto-adjustable lens alternates at high speed between different optical powers, and can do so even with low speed digital image detectors since dynamic optical power can be measured even if the opto-adjustable lens varies its magnitude with a frequency much higher than the capture speed of the digital image detector.
  • the support comprises a spool, an assembly line, a revolver or a drum with a plurality of individual supports, the support being adapted to be positioned in a plurality of different positions, so that in each of these positions an individual support is located in such a way that when an optical test system is located on the individual support, it is aligned with the optical axis, and the method includes the step of arranging a plurality of lenses by the support, capturing data from the displaced optical image and data of the optical reference image for each of the lenses, thus allowing the lenses to be checked, characterized and / or selected.
  • This embodiment is used when trying to evaluate a series of lenses, which can be measured at high speed.
  • the support comprises a plurality of individual supports, and is moved so that in each position, one of the individual supports, which will support A lens is in the measuring position of the device.
  • the only moving part would be the support, while the measuring device is fixed, and the corresponding images are taken for each lens.
  • Figure 1 shows a schematic figure of a first embodiment of an apparatus for measuring the optical power according to the invention.
  • Figure 2 shows a schematic figure of a second embodiment of an apparatus for measuring the optical power according to the invention.
  • Figure 3 illustrates data from computational simulations of the expected performances on a particular embodiment of the invention as shown in Figure 1.
  • Figures 4a and 4b show digital images obtained by a particular embodiment of the invention.
  • Figure 5 shows a digital image obtained by another particular embodiment of the invention.
  • Figure 6 shows a schematic figure of another embodiment of an apparatus for measuring the optical power according to the invention.
  • Figure 7 shows a comparative graph between an ideal response of an optical system of essay and the real answer.
  • Figure 8 shows the operation of the invention for the case in which a pulsed light source and a low speed camera are used, using for that the graph of Figure 7.
  • Figure 9 shows a comparative graph between the actual response of the optical test system and the actual response compensated when the input signal is corrected.
  • Figure 1 shows a schematic figure of a first embodiment of an apparatus 1 according to the invention.
  • the apparatus comprises:
  • an optical object generator assembly 2 comprising a light source 21 and a mask 22 with a slit
  • a prism 6 located between the mask 22 and the digital image detector 5; and processing means.
  • the position of the prism 6 is made for positioning purposes relative to the rest of the elements, but it does not suggest any particular form or orientation.
  • the optical object generating set 2 generates an optical object, which is projected.
  • the optical test system projects an initial optical image 41 of the optical object along an optical axis 10.
  • the optical test system is a test lens 4.
  • a collimating lens 1 1 and a focusing lens intervene 12 placed on both sides of the test lens 4.
  • these elements may vary depending on the range of optical powers expected in the test lens 4.
  • the important thing is that said test lens 4 project the initial optical image 41, either alone or in combination with other optical elements, such as the collimator lens 1 1 and the focusing lens 12.
  • the prism 6 is intended to produce a lateral shift in the initial optical image 41, when it is observed from the digital image detector 5, thus generating a displaced optical image 61 and an optical reference image 60.
  • the digital image detector 5 is positioned to capture the displaced optical image 61 and the reference optical image 60 in at least one digital image 50 that contains data on the lateral displacement. This lateral displacement depends on the optical power of the test lens 4 and occurs without any movement of the system elements, in particular without any movement of the prism 6.
  • the initial optical image 41 is formed on the prism 6.
  • the light is deflected before forming the initial optical image and in others, then, an optical image displaced by the prism 6 is also generated, without these alternative embodiments affecting the main technical effect produced by the measuring apparatus 1.
  • the prism 6 is removable, so that when the prism 6 is between the test lens 4 and the digital image detector 5, the digital image detector 5 captures a digital image with data from the displaced optical image 61, and when the prism 6 is removed, the digital image detector captures another digital image with data from the reference optical image 60.
  • the digital image detector 5 comprises in this case a photographic lens 51 and an image sensor 52 in which the digital image is captured.
  • the processing means calculates the optical power of the test lens 4 from data on the lateral displacement contained in the digital image.
  • the test lens 4 is an opto-adjustable lens, which varies its optical power as a function of an electrical input signal (such as the rectangular periodic signal shown by the thin line in FIG. 7), images are successively created optics displaced in other lateral positions, one for each optical power (not shown in the figure).
  • Figure 2 shows an alternative embodiment of an apparatus 1 for measuring the optical power of an optical test system, according to the invention.
  • the deflector assembly comprises a single prism 6, but this is positioned to produce a lateral shift only in a part of the initial optical image 41.
  • the rest of the initial optical image 41 becomes the reference optical image 60, without being affected by any deflecting element.
  • the baffle assembly has two prisms, so that one of them is arranged to produce a lateral shift only in part of the initial optical image, while another one is arranged to produce a lateral shift in a different part of the optical image. the initial optical image.
  • the digital image detector receives a single digital image comprising data from two different images, each generated by one of the prisms.
  • Each of these two images can be considered as optical reference image and displaced optical image, since their combination contains the data of lateral displacement, but at the same time they are referenced one to the other.
  • Figure 3 illustrates how a particular embodiment of the invention works as shown in Figure 1 and the numerical results provided by the precise computational simulation of the same.
  • data on the reference optical image (in solid line) and data on the displaced optical image (in broken line) for different powers of the test lens are shown.
  • the optical power P of the optical test system is shown on the X axis in diopters (D), and the position of the center of the optical image C, measured in pixels (pix), is shown on the Y axis.
  • the error bars represent the widening of the optical image in units of pixels of the detector, assuming that the illuminated object is ideally narrow (a point, a line or a slit).
  • the reference optical image, taken without a prism, shown in solid line always remains in the same position, and the image is enlarged by blurring blur (as indicated by the error bars) as the optical power P of the system increases optical test.
  • the displaced optical image shown in a dashed line, widens in a similar manner, but a downward slope, a lateral shift in its position, occurs as the optical power P of the optical test system increases.
  • Figures 4a and 4b show two examples of digital images for a particular configuration of the measuring apparatus of the invention.
  • the optical object is a line of light in the form of an optical slit, the optical object generator comprising a slot in an opaque plate illuminated from behind by an extended LED.
  • the deflector assembly used in this case comprises a prism that affects only half of the initial optical image, corresponding to the upper half of the images.
  • the rest of the initial optical image is unchanged, thus becoming the optical image of reference, looking at the bottom of the images.
  • the displaced optical image and the reference optical image are captured simultaneously and in the same digital image, although in other embodiments this capture can be made in different digital images.
  • Figure 4a shows the digital image containing the data on the reference optical image 60 and the optical image displaced by the prism 61, in a case in which the optical test system has low optical power and, therefore, produces little lateral displacement.
  • Figure 4b shows an analogous digital image, but captured when the optical test system has a higher optical power, thereby producing a higher lateral displacement.
  • the reference optical image 60 captured in the lower part of the digital image, does not change its position despite the change in optical power of the optical test system, because the light that the shape does not pass through the prism.
  • the displaced optical image 61 suffers a lateral shift that depends on the optical power of the optical test system.
  • the reference is stable and compensates for possible irregularities, misalignments and vibrations to which the measuring device is subjected.
  • the optical test system is an opto-adjustable lens with variable focus on both digital images
  • the camera is a high-speed camera capable of capturing 3500 images per second, and therefore as seen in digital images capable of of capturing the lateral displacement of the optical image of the slit as the opto-adjustable lens changes its optical power.
  • the system object of the invention is capable of recording changes of optical power with the same precision as if it were a fixed lens.
  • the deflector assembly comprises two prisms oriented differently
  • the lower part of the image does not remain unchanged, but is the difference of movement between both slits which gives the means of processing the data needed to calculate the optical power.
  • either of the two could be considered as displaced optical image or as an optical reference image.
  • the processing means base their calculation on a relation between lateral displacement and optical power different from the previous case.
  • optical objects such as a cross, a point, a circle, a square, or a half-space, with any of the orientations, inclinations, positions or possible sizes. In each case it would be necessary to change the means of processing to extract the lateral displacement from the digital image.
  • the optical object is a simple slit, as in the case of figures 4a and 4b.
  • the optical test system is an opto-adjustable lens, which varies its optical power at high speed, alternating every 10 ms between two optical powers with 3 diopters of difference between them.
  • the deflector assembly comprises two prisms with the same diopters, but one of them has the base of the prism in a direction opposite to that of the other. Each of the two prisms occupies half of the section corresponding to the initial optical image.
  • the digital image detector is a low speed camera, which takes an image every 200 ms, whereby each digital image comprises 10 complete cycles of the opto-adjustable lens: from the moment the camera takes one image until it takes the next, the lens has changed 20 times of optical power.
  • the digital image of Figure 5 allows to observe and measure the integrated energy in the time corresponding to each optical power of the opto-adjustable lens and, therefore, to know the path the slit has followed when traveling, and compare it with the travel ideal, which allows observing the dynamic effects of the lens. It allows to check if when the lens works at high speed the lateral displacement is the same as when operating at low speed or if on the contrary the lens responds with a smaller or higher diopter jump. It also allows to check the loss of energy in intermediate positions of optical power, corresponding to the duration of the transition between optical power levels.
  • the digital image provided by a low speed camera which shows an integrated response in time, does not provide as detailed information of the dynamic behavior of the optical test system as that provided by the high speed camera, which shows a time discriminated response.
  • it provides sufficient information for a large number of applications, especially for checking the proper functioning of the opto-adjustable lens or optical systems or instruments containing an opto-adjustable lens as a technological core and critical element. For example, in the case of simulators of simultaneous vision by time multiplexing.
  • the apparatus additionally incorporates a calibration system.
  • the apparatus of the invention measures the lateral displacement of the optical image displaced with respect to the reference optical image. Since there is a unique relationship between the lateral displacement and the optical power of the optical test system, this optical power can be measured simply by measuring the lateral displacement.
  • Figure 3 obtained from simulations, which shows a linear relationship between displacement in pixels and optical power.
  • This linear relationship can be estimated from the nominal values of the components used (optical powers of the lenses, interdistance between elements, etc.).
  • these nominal values do not always coincide with the actual values of the magnitudes of the elements and relationships that make up the device, so that That estimate may not be as accurate as it needs to be.
  • An option to overcome this drawback is to perform a pre-calibration of the apparatus by experimentally establishing said relationship between lateral displacement and optical power, for example, by measuring known optical power lenses, called test lenses, and measuring the lateral displacement they generate. This is how the calibration curve is drawn (which is normally a line, since the simulations predict a linear dependence) that provides the conversion table between lateral displacement versus optical power that will be used in subsequent measurements.
  • test lenses occupy the space of the optical test system and have to be adapted to the pre-existing support.
  • a calibration system is incorporated in the measuring apparatus 1 in order to be able to measure the optical test system in the presence of test lenses.
  • the optical object is projected according to an optical axis 10 by the optical object generating system 2 into an optical calibration object 80 thanks to a calibration system 8 formed by a collimating calibration lens 81, a main calibration lens 82 and a lens of focus calibration 83.
  • the main calibration lens 82 is located between the collimating calibration lens 81 and the focusing calibration lens 83, in a plane optically conjugated with the plane of the support 3 in which the optical test system 4 is placed. This makes both planes equivalent and the optical effect of the main calibration lens 82 is added to that of the optical test system 4.
  • This calibration system has several applications.
  • a first application is to perform calibrations, with the advantage that the calibration lenses are always available, and it is not necessary to modify the structure of the measuring device to introduce them. Furthermore, having its own defined space, it does not affect in any way the environment of the support 3 where the optical test system 4 is located.
  • the calibration lenses 81, 82, 83 can be used to add or subtract diopters and change the range in which the measurements are made (if the power of the optical test system is too high or too low) thus expanding the possibilities of the measuring device.
  • opto-adjustable lenses a particular use is to calibrate the electrical signal that causes a certain desired response in terms of optical power.
  • the opto-adjustable lens as optical test system 4 and a main calibration lens 82 of the same optical power is used as the optical power that is desired to cause in the opto-adjustable lens, but of opposite sign. Placing both lenses 4, 82 in the measuring device, the electric signal that feeds the opto-adjustable lens is varied until the optical power of the opto-adjustable lens compensates for the optical power of the test lens, something that is observed when the lateral displacement observed in the digital image, which combines the induced by the opto-adjustable lens 4 and by the main calibration lens 82, is equal to zero.
  • FIG. 7 and 9 Another application can be seen in figures 7 and 9.
  • Figure 7 shows a comparison between an ideal response (thin line) of an opto-adjustable lens to a rectangular input signal of 20 ms period and the response that is actually obtained (thick line), as a result of the dynamic effects on the variation of the optical power of the lens.
  • the lens would be expected to vary in an instantaneous way the value of its optical power: before a rectangular input signal that varies between two different values, it is expected that the optical power follows the same scheme, varying instantaneously between two values of nominal, upper and lower optical power.
  • optical power presents a peak with respect to the nominal value when the change in the input signal occurs.
  • the peak is higher than the higher nominal value when the signal increases in intensity and lower than the lower nominal value when the signal changes to its lower value.
  • Figure 8 shows the operation of the invention for the case where a pulsed light source and a low speed camera are used.
  • the thick line represents the response signal of a lens (eg, an opto-adjustable lens) that is actually obtained by applying the rectangular input signal of period 20 ms of Figure 7.
  • the characterization of this periodic response signal does not require the use of a high-speed camera (although a camera could also be used Of high speed).
  • the periodic response signal can be characterized using an optical object generator set that generates very short pulses of light (typically less than 1 ms), the pulse duration being much less than the signal period of the signal. periodic response.
  • pulses of light are shown on the coordinate axis by stars.
  • the image generated by a pulse of light is captured by the digital image detector, which can be a low speed camera, and which is synchronized with the generation of light pulses by the optical generator.
  • the captures of the low speed camera are shown in figure 8 by white dots.
  • the capture speed is such that the same capture is prevented from containing information relating to more than one pulse of light. Therefore, the capture of the information relating to a pulse is completed before another pulse strikes.
  • the pulses recorded by the detector must be discernible temporarily by one or more characteristics of the pulse, such as the intensity of each pulse, its duration, its shape, etc.
  • the frequency of the input signal can not be an integral multiple of the frequency of the light pulses, since to reconstruct a cycle of a cyclic signal it is necessary to know several values that said signal takes in a single cycle.
  • the periodic input signal is a rectangular signal of frequency 50 Hz
  • the capture frequency of the digital image detector is equal to the pulse generation frequency of the optical object generator and equal to 30 Hz.
  • each image captured with the low speed camera corresponds to a point in the cycle of the optical power signal (point of time dimension equal to the duration of the light pulse).
  • point of time dimension equal to the duration of the light pulse.
  • Figure 9 shows the comparison between said real response of the opto-adjustable lens (line thick) and a compensated real response (fine line) when the input signal is corrected to compensate for dynamic effects, thanks to the data obtained in a measuring device according to the invention.
  • the measuring apparatus according to the invention offers the necessary precision to characterize the dynamic response, and therefore provides the technician with the information he needs to vary the input signal and obtain much more uniform output optical power values, without spikes or other distortions that were observed when the signal had not been modified.
  • the compensated real response represented by the thin line, there are no peaks mentioned above, so the dynamic behavior of the opto-adjustable lens is much more similar to the ideal.

Abstract

La invención incluye un aparato (1) para medir la potencia óptica de un sistema óptico de ensayo (4). El aparato (1) comprende un conjunto generador de objeto óptico (2), un soporte (3) para el sistema óptico de ensayo (4), un detector de imagen digital (5) y un conjunto deflector (6). El conjunto deflector (6) está destinado a producir un desplazamiento lateral en la imagen óptica inicial (41), generando así una imagen óptica desplazada (61) y una imagen óptica de referencia (60). El detector de imagen digital (5) captura la imagen óptica desplazada (61) y la imagen óptica de referencia (60) en al menos una imagen digital (50) que contiene datos sobre el desplazamiento lateral. El aparato (1) tiene medios de procesamiento para calcular la potencia óptica del sistema óptico de ensayo (4) a partir de los datos sobre el desplazamiento lateral. La invención también provee un método de medida.

Description

DESCRIPCIÓN
APARATO PARA DETERMINAR LA POTENCIA ÓPTICA DE LENTES Y MÉTODO DE
MEDIDA
CAMPO DE LA TÉCNICA
Esta invención pertenece al campo técnico de la óptica y, más en particular, a los aparatos para medir la potencia óptica de lentes.
ANTECEDENTES
Existen numerosas maneras de medir la potencia óptica de una lente. Una de ellas es utilizar el cambio de las interdistancias entre elementos ópticos, pero tiene la desventaja de que se utilizan partes móviles, limitando la robustez del aparato y la velocidad de medida.
Además, en los últimos años se han desarrollado lentes optoajustables, que varían su potencia óptica en respuesta a una señal eléctrica. Estas lentes pueden proceder de distintas tecnologías, y ya se utilizan en numerosas aplicaciones, y en algunas de ellas con variaciones rápidas y periódicas de potencia óptica. En algunas de estas lentes, como la divulgada en el documento WO 2012/055049, el cambio de potencia óptica se produce a muy alta velocidad en respuesta a un impulso eléctrico, sin que ello suponga un precio elevado. Esto ha permitido nuevas aplicaciones en las cuales la lente funciona con variaciones rápidas y periódicas de potencia óptica. Sin embargo, las lentes optoajustables sufren efectos dinámicos, desviaciones con respecto a la potencia óptica estática cuando las lentes se usan en un ciclo dinámico, con tiempos de respuesta que pueden ir desde fracciones de milisegundos hasta minutos. Debido a estos efectos dinámicos, la potencia óptica de la lente no es controlada perfectamente por la señal eléctrica. La potencia óptica transitoria para un valor eléctrico transitorio dado puede ser inferior o superior a la potencia óptica obtenida para estados estacionarios a largo plazo. La respuesta de la lente puede sufrir distorsiones: retrasos en los tiempos de subida o bajada, rebasamientos por un frenado tardío u oscilaciones. Estos efectos dinámicos tienen una gran dependencia del ciclo de trabajo, tanto de la amplitud de los escalones de potencia óptica que se le exigen a la lente como de la frecuencia de las variaciones. Se conocen métodos suficientemente rápidos para observar los efectos dinámicos que se producen en lentes optoajustables, como el de la medida de la intensidad en el centro de un rayo láser con un pequeño fotodiodo (Berge, B., & Peseux, J. (2000). Variable focal lens controlled by an external voltage: An application of electrowetting. The European Physical Journal E, 3(2), 159-163) o bien con una fibra (Annibale, P., Dvornikov, A., & Gratton, E. (2015). Electrically tunable lens speeds up 3D orbital tracking. Biomedical optics express, 6(6), 2181 -2190), pero la medida obtenida depende de la calidad de imagen, y en particular del emborronamiento inducido por el desenfoque de la propia lente, y no sólo de la potencia óptica, y además son muy sensibles a descentramiento. Otros métodos descritos consisten en capturar la imagen de un objeto a través de la lente con una cámara de alta velocidad (Oku, H., & Ishikawa, M. (2009). High-speed liquid lens with 2 ms response and 80.3 nm root-mean- square wavefront error. Applied Physics Letters, 94(22), 221 108), pero no proporcionan datos para calcular de manera inmediata la potencia óptica de la lente.
También existen métodos basados en aberrometría que pueden utilizarse para calcular de forma precisa la potencia óptica y la calidad óptica. Si bien estas técnicas no suelen ser suficientemente rápidas para medidas dinámicas de lentes optoajustables, existen implementaciones que podrían llegar a serlo, como las descritas en Jarosz, J., Mece, P., Conan, J. M., Petit, C, Paques, M., & Meimon, S. (2017). High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget. Biomedical Optics Express, 8(4), 2088-2105. En cualquier caso, las técnicas basadas en aberrometría son técnicas sofisticadas que proporcionan medidas indirectas de la potencia óptica, con montajes ópticos de alta complejidad y un alto coste computacional y económico.
Por todo lo anterior, existe la necesidad de un instrumento óptico realizable, para la medida a alta velocidad de lentes, con el cual evaluar, caracterizar y comprobar su potencia óptica. En el caso de las lentes optoajustables, cuya potencia óptica depende de la señal eléctrica de entrada, además existe la necesidad de calibrar su potencia óptica estática y dinámica. A efectos de esta patente, se entenderá como "alta velocidad" los regímenes de funcionamiento de la lente optoajustable o de las cámaras con frecuencias muy superiores a la frecuencia crítica de fusión del parpadeo del sistema visual humano, es decir, con frecuencias iguales o superiores a los 50 Hz. En esos regímenes, el sistema visual percibe a través del sistema una imagen estática pese a que la lente está oscilando entre dos o más focos. Por el contrario, se entenderá como "baja velocidad" a regímenes de funcionamiento de la lente optoajustable o de las cámaras con frecuencias inferiores a dicha frecuencia. Es necesario un sistema robusto, sencillo, directo, sin partes móviles y cuyo coste sea bajo, en la medida de lo posible, para la medida de la potencia óptica de lentes. Idealmente debería tener una alta velocidad de captura y poder utilizarse desde el chequeo del correcto funcionamiento de lentes optoajustables, hasta su caracterización detallada y calibración, llegando hasta el establecimiento de sus prestaciones y el guiado del diseño de dispositivos basados en ellas.
RESUMEN DE LA INVENCIÓN
Estos problemas se solucionan mediante un aparato y un método para determinar la potencia óptica de un sistema óptico de ensayo según las reivindicaciones 1 y 14, respectivamente. Las reivindicaciones dependientes definen realizaciones preferidas de la invención.
En un primer aspecto inventivo, la invención proporciona un aparato para determinar la potencia óptica de un sistema óptico de ensayo, comprendiendo el aparato
un conjunto generador de objeto óptico para generar un objeto óptico según un eje óptico;
un soporte para el sistema óptico de ensayo, de modo que cuando el sistema óptico de ensayo está situado en el soporte, dicho sistema óptico de ensayo está alineado con el eje óptico, y cuando el objeto óptico es generado, el sistema óptico de ensayo proyecta una imagen óptica inicial del objeto óptico;
un detector de imagen digital;
un conjunto deflector situado entre el conjunto generador de objeto óptico y el detector de imagen digital, destinado a producir un desplazamiento lateral en la imagen óptica inicial, generando así una imagen óptica desplazada y una imagen óptica de referencia,
estando el detector de imagen digital situado para capturar la imagen óptica desplazada y la imagen óptica de referencia en al menos una imagen digital que contiene datos sobre el desplazamiento lateral; y
medios de procesamiento para determinar la potencia óptica del sistema óptico de ensayo a partir de los datos sobre el desplazamiento lateral contenidos en la imagen digital.
En distintas realizaciones, el sistema óptico de ensayo puede comprender una lente (como puede ser una lente optoajustable), una lente compuesta, un sistema óptico tal como un objetivo o un sistema de tipo prismático, o un instrumento óptico.
El hecho de que el conjunto deflector produzca un desplazamiento lateral en la imagen óptica inicial no obliga a que éste esté situado en ninguna posición particular, sino que puede estar en cualquier posición entre el conjunto generador de objeto óptico y el detector de imagen digital. La principal ventaja de este aparato es que permite obtener la potencia óptica del sistema óptico de ensayo por un procedimiento sencillo y robusto, poco sensible a errores de posicionamiento, ya que no tiene partes que se muevan entre sí, que introducen pasos adicionales en los procesos de medida, alargándolos e impidiendo su uso para grandes cantidades de lentes en serie, y que además obligan a vigilar las tolerancias de posicionamiento y a calibrar constantemente las interdistancias entre los elementos. Al ser capaz el aparato de captar tanto una imagen óptica desplazada y una imagen óptica de referencia, para calcular el desplazamiento lateral de forma relativa, el aparato resulta asimismo poco sensible a errores de medida procedentes de desajustes, vibraciones, descentramientos y desalineamientos, incluso los introducidos por el propio sistema óptico de ensayo.
En algunas realizaciones particulares, el conjunto generador de objeto óptico incluye una fuente de luz que ilumina desde atrás una máscara perforada o una litografía plasmada en una lámina transparente. No obstante, en otras realizaciones, el objeto óptico puede ser autoiluminado, como por ejemplo un objeto generado en un monitor o en un microdisplay, o incluso un led. Incluso en otras realizaciones, puede ser una imagen impresa e iluminada. En algunas realizaciones particulares el objeto óptico tiene forma de línea o rendija óptica, y en otras, de punto. Son posibles objetos simples o múltiples. En general prácticamente cualquier objeto es válido, siempre que sea conocido. Los medios de procesamiento han sido programados conociendo el objeto óptico, para que puedan calcular su desplazamiento lateral de forma sencilla. En algunas realizaciones, el conjunto generador de objeto óptico está configurado para generar el objeto óptico de forma pulsada en el tiempo. En estas realizaciones, ventajosamente el detector de imagen digital puede comprender una cámara convencional de baja velocidad (que puede tener una frecuencia de captura inferior a 50 Hz, o inferior a 30 Hz), que está sincronizada con el conjunto generador de objeto óptico. El conjunto generador de objeto óptico puede comprender una fuente de luz pulsada.
En ciertas realizaciones, la frecuencia de captura del detector de imagen digital es igual a la frecuencia de generación de pulsos del generador de objeto óptico; de esta forma no se emiten pulsos de luz que no sean capturados por el detector de imagen digital.
En otras realizaciones, la frecuencia de generación de pulsos y la frecuencia de captura son múltiplos o fracciones, es decir, puede haber dos o más pulsos por cada captura del detector de imagen digital. Para ello, los pulsos generados por el generador de objeto óptico en el tiempo son discernibles temporalmente por el detector de imagen digital gracias a alguna propiedad característica del pulso, como puede ser la intensidad de cada pulso.
En algunas realizaciones particulares, el soporte comprende un carrete, una línea de montaje, un revólver o un tambor con una pluralidad de soportes individuales, estando el soporte adaptado para posicionarse en una pluralidad de posiciones distintas, de modo que en cada una de estas posiciones un soporte individual se encuentre situado de tal forma que cuando un sistema óptico de ensayo está situado en el soporte individual, está alineado con el eje óptico.
Estas realizaciones se emplean cuando se pretende evaluar una serie de sistemas ópticos de ensayo a gran velocidad. El soporte comprende una pluralidad de soportes individuales, y se va moviendo entre varias posiciones de modo que, en cada posición, uno de los soportes individuales, que soportará un sistema óptico de ensayo, se encuentra en la posición de medida del aparato, esto es, alineado con el eje óptico. En estas realizaciones, la única parte móvil es el soporte del aparato, mientras que el aparato de medida queda fijo, y va tomando las imágenes correspondientes para cada sistema óptico de ensayo.
En algunas realizaciones particulares, el conjunto deflector comprende un único elemento deflector de entre los siguientes: un prisma, un espejo, una superficie parcialmente reflejante, una red de difracción, un modulador espacial de luz, una red de microprismas y una red de microespejos. Estos elementos son especialmente adecuados para provocar el desplazamiento lateral de la imagen óptica inicial del objeto óptico.
En algunas realizaciones particulares, el único elemento deflector está dispuesto para producir un desplazamiento lateral sólo en parte de la imagen óptica inicial. Esta realización permite obtener en una misma imagen digital y de forma simultánea datos sobre la imagen óptica desplazada y la imagen óptica de referencia.
En algunas realizaciones particulares, el conjunto deflector comprende varios elementos deflectores. Esta realización permite obtener dos o más imágenes ópticas desplazadas con desplazamientos que pueden ser en sentidos opuestos, que son a la vez imagen de referencia unas de otras, aumentando la precisión de la medida y aumentando la tolerancia a vibraciones y a errores de posicionamiento. En algunas realizaciones particulares, uno de los elementos deflectores está dispuesto para recibir sólo parte de la imagen óptica inicial, mientas que otro de los elementos deflectores está dispuesto para recibir una parte distinta de la imagen óptica inicial. Esta realización por tanto también permite obtener en una misma imagen digital datos sobre la imagen óptica desplazada y la imagen óptica de referencia, pero de un modo distinto.
En algunas realizaciones particulares, el detector de imagen digital tiene una tasa de captura superior a 120 imágenes por segundo, y puede ser mayor de 500 imágenes por segundo, siendo por tanto capaz de obtener medidas sucesivas de potencia óptica discriminadas en el tiempo que permiten elaborar una curva de la respuesta dinámica temporal de lentes optoajustables.
En algunas realizaciones particulares, el sistema óptico de ensayo funciona con una frecuencia de cambio de la potencia óptica, y el detector de imagen digital tiene una frecuencia de captura inferior a la frecuencia de cambio de la potencia óptica del sistema óptico de ensayo. En algunas realizaciones, el detector de imagen digital tiene una frecuencia de captura más de 5 veces inferior a la frecuencia de cambio de la potencia óptica del sistema óptico de ensayo.
Este aparato consigue el efecto técnico principal de obtener la potencia óptica dinámica de un sistema óptico de ensayo, pero con un bajo coste.
En algunas realizaciones particulares, el aparato comprende adicionalmente un sistema de calibración entre el conjunto generador de objeto óptico y el soporte para el sistema óptico de ensayo, comprendiendo dicho sistema de calibración una lente de calibración colimadora, una lente de calibración focalizadora y una lente de calibración principal situada entre ellas en un plano conjugado ópticamente con el plano del soporte para el sistema óptico de ensayo. El sistema de calibración permite calcular una relación de referencia entre potencia óptica y desplazamiento lateral capturado por el detector de imagen digital. El sistema de calibración se puede usar cuando no existe un sistema óptico de ensayo situado en el soporte, para calibrar el aparato y poder comprobar que un sistema de calibración, cuya potencia óptica es previamente conocida, proyecta una imagen óptica de referencia y una imagen óptica desplazada concordes con su potencia óptica. Además, este sistema de calibración se puede usar junto con el sistema óptico de ensayo, pudiendo así usarse para añadir o restar dioptrías. Se puede medir o calibrar la potencia óptica del sistema óptico de ensayo como aquella que compensa una potencia óptica de signo contrario en el sistema de calibración, entendiéndose que compensa completamente el desplazamiento lateral inducido por el sistema de calibración. También se puede usar para cambiar el rango en el que se realizan las medidas de potencia óptica (si la potencia del sistema óptico de ensayo es demasiado alta o demasiado baja), ampliando así las posibilidades del sistema. En algunas realizaciones particulares, el aparato comprende adicionalmente elementos ópticos, como por ejemplo una lente colimadora o una lente focalizadora, situados a ambos lados del sistema óptico de ensayo y que contribuyen a configurar los parámetros de la proyección del objeto óptico en la imagen óptica inicial, en función de las características del sistema óptico de ensayo.
Este aparato permite la medida de cualquier potencia óptica del sistema óptico de ensayo, positiva o negativa, ya que la lente colimadora y la lente focalizadora contribuyen a complementar la potencia óptica del sistema ensayo, de modo que pueda ser medida con más claridad por el aparato de medida.
En un segundo aspecto inventivo, la invención proporciona un método para medir la potencia óptica de un sistema óptico de ensayo; comprendiendo el método:
generar un objeto óptico mediante un conjunto generador de objeto óptico;
proyectar una imagen óptica inicial del objeto óptico disponiendo el sistema óptico de ensayo en un soporte;
producir un desplazamiento lateral en la imagen óptica inicial mediante un conjunto deflector, generando una imagen óptica desplazada y una imagen óptica de referencia; capturar por medio de un detector de imagen digital al menos una imagen digital que contiene datos sobre el desplazamiento lateral de la imagen óptica desplazada y sobre la imagen óptica de referencia; y
calcular por medio de unos medios de procesamiento la potencia óptica del sistema óptico de ensayo a partir de los datos sobre el desplazamiento lateral de la imagen óptica desplazada y de la imagen óptica de referencia. Este método permite la medida de la potencia óptica de un sistema óptico de ensayo de un modo fácil, rápido y robusto, poco sensible a condiciones externas y a la calidad de sus componentes.
El método puede realizarse mediante un aparato según el aspecto inventivo definido anteriormente, o en cualquiera de las realizaciones de este aparato.
El hecho de generar una imagen óptica de referencia proporciona una insensibilidad adicional frente a desalineamientos y descentramientos del sistema óptico de ensayo y anula el efecto de las vibraciones en el sistema, ya que tanto la imagen óptica de referencia como la imagen óptica desplazada sufrirían los mismos efectos frente a desalineamientos, descentramientos y vibraciones.
En algunas realizaciones, la etapa de generar un objeto óptico comprende generar un objeto óptico de forma pulsada en el tiempo. En estas realizaciones, la etapa de capturar al menos una imagen digital puede realizarse con una cámara de baja velocidad que está sincronizada con el conjunto generador de objeto óptico.
El método permite medidas de la potencia óptica dinámica de una lente optoajustable incluso con un detector de imagen digital que tiene una frecuencia de captura inferior a la frecuencia de cambio de la potencia óptica de la lente optoajustable oscilando periódicamente entre varias potencias y, por tanto, a la frecuencia del desplazamiento lateral de la imagen óptica desplazada. Esto es debido a que la potencia óptica dinámica se obtiene del procesamiento de la imagen óptica desplazada capturada en la imagen digital, a partir de los píxeles definidos por los valores extremos de dicha variación del desplazamiento lateral, y de la energía integrada en cada potencia óptica intermedia entre dichos valores extremos, y estos datos quedan capturados con el sistema objeto de la invención en imágenes digitales convencionales de baja velocidad.
En algunas realizaciones particulares, el método comprende adicionalmente la etapa de calibrar el aparato mediante la medida o mediante la compensación de la potencia óptica inducida por un sistema óptico de ensayo de calibración.
Este método permite la calibración del aparato cuando ha sido sometido a condiciones que hagan dudar de su exactitud, tales como traslados, movimientos, etc. En algunas realizaciones particulares, la etapa de calcular la potencia óptica del sistema óptico de ensayo comprende identificar un primer grupo de píxeles correspondientes a la imagen óptica desplazada y un segundo grupo de píxeles correspondientes a la imagen óptica de referencia, medir el desplazamiento lateral que separa ambos grupos de píxeles y correlacionar el desplazamiento lateral con una tabla de medida que asigna un valor de potencia óptica a cada valor de desplazamiento lateral.
Este método permite la medición de la potencia óptica de manera fiable y robusta, sin verse afectado por desplazamientos o desalineamientos de los componentes del aparato.
En algunas realizaciones particulares, el sistema óptico de ensayo comprende una lente optoajustable. En algunas realizaciones particulares, las etapas de capturar la señal de referencia y la señal desviada se realizan varias veces, estando el sistema óptico de ensayo sometida a una señal eléctrica variable, obteniendo por tanto una relación entre la señal eléctrica suministrada al sistema óptico de ensayo y la potencia óptica que dicho sistema óptico de ensayo proporciona para dicha señal eléctrica.
Ventajosamente, este método es de aplicación en el aparato de la invención, tanto en régimen estático, cuando la lente optoajustable alterna entre varias posiciones estables, como en régimen dinámico, cuando la lente optoajustable alterna a alta velocidad entre potencias ópticas diferentes, y puede hacerlo incluso con detectores de imagen digital de baja velocidad ya que se puede medir la potencia óptica dinámica aunque la lente optoajustable varíe su magnitud con una frecuencia muy superior a la velocidad de captura del detector de imagen digital.
En algunas realizaciones particulares, el soporte comprende un carrete, una línea de montaje, un revólver o un tambor con una pluralidad de soportes individuales, estando el soporte adaptado para posicionarse en una pluralidad de posiciones distintas, de modo que en cada una de estas posiciones un soporte individual se encuentre situado de tal forma que cuando un sistema óptico de ensayo está situado en el soporte individual, está alineado con el eje óptico, y el método incluye la etapa de disponer una pluralidad de lentes por el soporte, capturándose datos de la imagen óptica desplazada y datos de la imagen óptica de referencia para cada una de las lentes, permitiendo así que las lentes sean comprobadas, caracterizadas y/o seleccionadas.
Esta realización se emplea cuando se pretende evaluar una serie de lentes, que se pueden medir a gran velocidad. El soporte comprende una pluralidad de soportes individuales, y se va moviendo de modo que en cada posición, uno de los soportes individuales, que soportará una lente, se encuentra en la posición de medida del aparato. La única parte móvil sería el soporte, mientras que el aparato de medida queda fijo, y va tomando las imágenes correspondientes para cada lente. Los diferentes aspectos y realizaciones particulares de la invención definidos en los párrafos anteriores pueden combinarse entre sí, incluyendo características de aparato y método, siempre y cuando sean compatibles entre sí.
Éstas y otras ventajas de la invención serán aparentes a la luz de la descripción detallada de la misma.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
Para completar la descripción y de cara a una mejor comprensión de la invención, se proporciona el siguiente juego de figuras. Dichas figuras son parte integral de la descripción, e ilustran uno o varios ejemplos particulares, que no deberían interpretarse como si restringieran el ámbito de protección de la invención, sino simplemente como un ejemplo de cómo se puede llevar a cabo la invención. Este juego comprende las siguientes figuras:
La figura 1 muestra una figura esquemática de una primera realización de un aparato para medir la potencia óptica según la invención.
La figura 2 muestra una figura esquemática de una segunda realización de un aparato para medir la potencia óptica según la invención. La figura 3 ilustra datos procedentes de simulaciones computacionales de las prestaciones esperadas sobre una realización particular de la invención como la mostrada en la figura 1 .
Las figuras 4a y 4b muestran imágenes digitales obtenidas por una realización particular de la invención.
La figura 5 muestra una imagen digital obtenida por otra realización particular de la invención.
La figura 6 muestra una figura esquemática de otra realización de un aparato para medir la potencia óptica según la invención.
La figura 7 muestra una gráfica comparativa entre una respuesta ideal de un sistema óptico de ensayo y la respuesta real.
La figura 8 muestra el funcionamiento de la invención para el caso en el que se utiliza una fuente de luz pulsada y una cámara de baja velocidad, usando para ello la gráfica de la figura 7.
La figura 9 muestra una gráfica comparativa entre la respuesta real del sistema óptico de ensayo y la respuesta real compensada cuando la señal de entrada es corregida. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La figura 1 muestra una figura esquemática de una primera realización de un aparato 1 según la invención. En ella, el aparato comprende:
un conjunto generador de objeto óptico 2, que comprende una fuente de luz 21 y una máscara 22 con una rendija;
un soporte 3 para el sistema óptico de ensayo;
un detector de imagen digital 5;
un prisma 6 situado entre la máscara 22 y el detector de imagen digital 5; y unos medios de procesamiento.
En esta figura, al igual que en resto de figuras esquemáticas, la posición del prisma 6 se realiza a efectos de posicionamiento relativo al resto de elementos, pero no sugiere ninguna forma ni orientación particular. El conjunto generador de objeto óptico 2 genera un objeto óptico, el cual es proyectado. Cuando el sistema óptico de ensayo está situado en el soporte 3 y el objeto óptico es generado, el sistema óptico de ensayo proyecta una imagen óptica inicial 41 del objeto óptico según un eje óptico 10. En este caso, el sistema óptico de ensayo es una lente de ensayo 4. En el caso particular que se ilustra en la figura 1 , en la formación de esta imagen óptica inicial 41 intervienen, además de una lente de ensayo 4 colocada en su soporte 3, una lente colimadora 1 1 y una lente focalizadora 12, colocadas a ambos lados de la lente de ensayo 4. En distintas realizaciones, estos elementos pueden variar en función del rango de potencias ópticas esperadas en la lente de ensayo 4. Lo importante es que dicha lente de ensayo 4 proyecte la imagen óptica inicial 41 , bien sola o bien en combinación con otros elementos ópticos, como la lente colimadora 1 1 y la lente focalizadora 12. El prisma 6 está destinado a producir un desplazamiento lateral en la imagen óptica inicial 41 , cuando ésta se observa desde el detector de imagen digital 5, generando así una imagen óptica desplazada 61 y una imagen óptica de referencia 60. El detector de imagen digital 5 está situado para capturar la imagen óptica desplazada 61 y la imagen óptica de referencia 60 en al menos una imagen digital 50 que contiene datos sobre el desplazamiento lateral. Este desplazamiento lateral depende de la potencia óptica de la lente de ensayo 4 y se produce sin ningún movimiento de los elementos del sistema, en particular sin movimiento alguno del prisma 6. En esta realización la imagen óptica inicial 41 se forma sobre el prisma 6. En otras realizaciones, la luz es deflectada antes de formar la imagen óptica inicial y en otras, después, generándose igualmente una imagen óptica desplazada por el prisma 6, sin que estas realizaciones alternativas afecten al efecto técnico principal producido por el aparato de medida 1 .
En la realización mostrada en esta figura, el prisma 6 es extraíble, de modo que cuando el prisma 6 se encuentra entre la lente de ensayo 4 y el detector de imagen digital 5, el detector de imagen digital 5 captura una imagen digital con datos de la imagen óptica desplazada 61 , y cuando el prisma 6 es extraído, el detector de imagen digital captura otra imagen digital con datos de la imagen óptica de referencia 60.
El detector de imagen digital 5 comprende en este caso un objetivo fotográfico 51 y un sensor de imagen 52 en el que se captura la imagen digital. Los medios de procesamiento calculan la potencia óptica de la lente de ensayo 4 a partir de datos sobre el desplazamiento lateral contenidos en la imagen digital. En el caso de que la lente de ensayo 4 sea una lente optoajustable, que varía su potencia óptica en función de una señal eléctrica de entrada (como puede ser la señal periódica rectangular mostrada mediante línea fina en la figura 7), se crean sucesivamente imágenes ópticas desplazadas en otras posiciones laterales, una para cada potencia óptica (no mostradas en la figura).
La figura 2 muestra una realización alternativa de un aparato 1 para medir la potencia óptica de un sistema óptico de ensayo, de acuerdo con la invención. En este caso, al igual que en la realización mostrada en la figura 1 , el conjunto deflector comprende un único prisma 6, pero éste está situado para producir un desplazamiento lateral sólo en una parte de la imagen óptica inicial 41 . El resto de la imagen óptica inicial 41 se convierte en imagen óptica de referencia 60, sin ser afectado por ningún elemento deflector.
Ésta es una manera sencilla de que el detector de imagen digital 5 capture una sola imagen que comprende los datos de la imagen óptica desplazada 61 y de la imagen óptica de referencia 60, obtenidos de forma simultánea.
En otras realizaciones, el conjunto deflector tiene dos prismas, de modo que uno de ellos está dispuesto para producir un desplazamiento lateral sólo en parte de la imagen óptica inicial, mientas que otro de ellos está dispuesto para producir un desplazamiento lateral en una parte distinta de la imagen óptica inicial.
De esta forma, el detector de imagen digital recibe una sola imagen digital que comprende datos de dos imágenes distintas, cada una de ellas generada por uno de los prismas. Cada una de estas dos imágenes puede considerarse como imagen óptica de referencia e imagen óptica desplazada, puesto que su combinación contiene los datos de desplazamiento lateral, pero a la vez están referenciadas la una a la otra.
Las estrategias que capturan imágenes ópticas desplazadas e imágenes ópticas de referencia en una única imagen digital compensan errores debidos a la colocación del sistema óptico de ensayo, a los propios desalineamientos intrínsecos a la lente de ensayo (especialmente si es una lente optoajustable) y a las vibraciones durante la medida. Como los errores de medida mencionados afectan a ambas imágenes ópticas, la captura simultánea de ambas permite descontar la influencia del error sobre la medida.
La figura 3 ilustra cómo funciona una realización particular de la invención como la mostrada en la figura 1 y los resultados numéricos que proporciona la simulación computacional precisa de la misma. En concreto, se muestran datos sobre la imagen óptica de referencia (en línea continua) y datos sobre la imagen óptica desplazada (en línea discontinua) para distintas potencias de la lente de ensayo. En el eje X se muestran la potencia óptica P del sistema óptico de ensayo, en dioptrías (D), y en el eje Y se muestra la posición del centro de la imagen óptica C, medida en píxeles (pix). Las barras de error representan el ensanchamiento de la imagen óptica en unidades de píxeles del detector, suponiendo que el objeto iluminado es idealmente estrecho (un punto, una línea o una rendija). La imagen óptica de referencia, tomada sin prisma, mostrada en línea continua, permanece siempre en la misma posición, y la imagen se va ensanchando por emborronamiento de desenfoque (como indican las barras de error) a medida que aumenta la potencia óptica P del sistema óptico de ensayo.
En presencia del prisma, la imagen óptica desplazada, mostrada en línea discontinua, se va ensanchando de forma parecida, pero se produce una pendiente descendente, un desplazamiento lateral en su posición, a medida que aumenta la potencia óptica P del sistema óptico de ensayo.
A medida que aumenta la potencia óptica del sistema de ensayo se incrementa el ensanchamiento, pero esto sólo afecta a la medida de forma secundaria, ya que la medida se basa en la posición relativa de la imagen óptica desplazada respecto a la imagen óptica de referencia. Sin conjunto deflector no hay desplazamiento lateral, pero con conjunto deflector se produce un desplazamiento que sirve para medir la potencia óptica del sistema óptico de ensayo, también en presencia del emborronamiento por desenfoque que produce ensanchamiento de las imágenes ópticas. En la práctica, cuando se utiliza un algoritmo de medida del desplazamiento absoluto, sin tomar imagen óptica de referencia, el sistema resulta poco robusto, ya que la posición de la imagen óptica desplazada es muy sensible al centrado del sistema óptico de ensayo y también a las vibraciones o pequeños desalineamientos del aparato de medida. Sin embargo, en nuestro caso, al capturar una imagen óptica de referencia junto con la imagen óptica desplazada, se elimina esta afección, y el sistema resulta más robusto.
En las figuras 4a y 4b se muestran dos ejemplos de imágenes digitales para una configuración particular del aparato de medida de la invención. En este caso, el objeto óptico es una línea de luz con forma de rendija óptica, comprendiendo el generador de objeto óptico una ranura en una placa opaca iluminada desde atrás por un led extenso.
El conjunto deflector utilizado en este caso comprende un prisma que afecta solamente la mitad de la imagen óptica inicial, correspondiente a la mitad superior de las imágenes. El resto de la imagen óptica inicial se ve inalterada, convirtiéndose por tanto en la imagen óptica de referencia, viéndose en la parte inferior de las imágenes. En este caso, por lo tanto, la imagen óptica desplazada y la imagen óptica de referencia se capturan simultáneamente y en la misma imagen digital, aunque en otras realizaciones esta captura puede realizarse en distintas imágenes digitales.
La figura 4a muestra la imagen digital que contiene los datos sobre la imagen óptica de referencia 60 y la imagen óptica desplazada por el prisma 61 , en un caso en el que el sistema óptico de ensayo tiene poca potencia óptica y, por lo tanto, produce poco desplazamiento lateral. La figura 4b muestra una imagen digital análoga, pero capturada cuando el sistema óptico de ensayo tiene una potencia óptica más alta, por lo que produce un desplazamiento lateral más elevado. La imagen óptica de referencia 60, capturada en la parte inferior de la imagen digital, no varía su posición a pesar del cambio en la potencia óptica del sistema óptico de ensayo, debido a que la luz que la forma no atraviesa el prisma. Sin embargo, la imagen óptica desplazada 61 , sufre un desplazamiento lateral que depende de la potencia óptica del sistema óptico de ensayo. La referencia es estable y compensa las posibles irregularidades, desalineamientos y vibraciones a las que esté sometidos el aparato de medida.
En este caso particular, el sistema óptico de ensayo es una lente optoajustable de focal variable en ambas imágenes digitales, y la cámara es una cámara de alta velocidad capaz de capturar 3500 imágenes por segundo, y por tanto como se ve en las imágenes digitales capaz de capturar el desplazamiento lateral de la imagen óptica de la rendija a medida que la lente optoajustable cambia su potencia óptica. Entre las imágenes de las figuras 4a y 4b han pasado tan solo 5 milisegundos, pero el sistema objeto de la invención es capaz de registrar cambios de potencia óptica con la misma precisión que si se tratara de una lente fija.
En otros casos, como por ejemplo el caso en el que el conjunto deflector comprende dos prismas orientados de manera distinta, la parte inferior de la imagen no permanece inalterada, sino que es la diferencia de movimiento entre ambas rendijas lo que da a los medios de procesamiento los datos necesarios para calcular la potencia óptica. En ese caso cualquiera de las dos podría considerarse como imagen óptica desplazada o como imagen óptica de referencia. Como es obvio, los medios de procesamiento basan su cálculo en una relación entre desplazamiento lateral y potencia óptica distinta del caso anterior.
En realizaciones distintas se utilizan objetos ópticos diferentes, tales como una cruz, un punto, un círculo, un cuadrado, o un semiespacio, con cualquiera de las orientaciones, inclinaciones posiciones o tamaños posibles. En cada caso habría que cambiar los medios de procesamiento para extraer el desplazamiento lateral a partir de la imagen digital.
Se ha visto las ventajas en el uso de un detector de imagen digital de alta velocidad. Sin embargo, una de las ventajas de la presente invención es que permite evaluar la respuesta dinámica de la lente optoajustable incluso con cámaras convencionales de baja velocidad, de bajo coste. Esto se muestra en la figura 5.
En esta figura, aunque no lo parezca a simple vista, el objeto óptico es una rendija simple, igual que en el caso de las figuras 4a y 4b.
El sistema óptico de ensayo es una lente optoajustable, que varía su potencia óptica a alta velocidad, alternando cada 10 ms entre dos potencias ópticas con 3 dioptrías de diferencia entre ellas. El conjunto deflector comprende dos prismas con las mismas dioptrías, pero uno de ellos tiene la base del prisma en una dirección opuesta a la del otro. Cada uno de los dos prismas ocupa la mitad de la sección correspondiente a la imagen óptica inicial.
El detector de imagen digital es una cámara de baja velocidad, que toma una imagen cada 200 ms, con lo cual cada imagen digital comprende 10 ciclos completos de la lente optoajustable: desde que la cámara toma una imagen hasta que toma la siguiente, la lente ha cambiado 20 veces de potencia óptica.
Lo que se observa en la imagen digital de la figura 5 es el registro de los desplazamientos laterales entre los cuales han oscilado las imágenes ópticas durante los 10 ciclos completos de la lente optoajustable. Se observa que la rendija de la parte inferior de la imagen se desdobla en dos rendijas de luz 60, 60', correspondientes a lo que podemos llamar imagen óptica de referencia y la rendija de la parte superior se desdoble en dos rendijas de luz 61 , 61 ', correspondientes a lo que podemos llamar imagen óptica desplazada. Como tanto la rendija de la parte superior como la rendija de la parte inferior han sido desplazadas, pero en sentido contrario, cualquiera de las dos puede considerarse imagen óptica de referencia, y la otra, imagen óptica desplazada con respecto a la imagen óptica de referencia. Dentro de cada una de ellas, cada una de las rendijas de luz observadas corresponde a los extremos entre los cuales oscilan estas imágenes.
Si esta cámara de baja velocidad estuviera integrada en los aparatos de medida de potencia óptica conocidos por el experto en la materia, sería totalmente inadecuada para medir la variación de la potencia óptica de dicha lente optoajustable.
Sin embargo, la imagen digital de la figura 5 permite observar y medir la energía integrada en el tiempo correspondiente a cada potencia óptica de la lente optoajustable y, por tanto, conocer el recorrido que ha seguido la rendija al desplazarse, y compararlo con el recorrido ideal, lo que permite observar los efectos dinámicos de la lente. Permite comprobar si cuando la lente funciona a alta velocidad el desplazamiento lateral es el mismo que cuando funciona a baja velocidad o si por el contrario la lente responde con un salto en dioptrías menor o mayor. También permite comprobar la pérdida de energía en posiciones intermedias de potencia óptica, correspondientes al tiempo que dura la transición entre niveles de potencia óptica.
La imagen digital proporcionada por una cámara de baja velocidad, que muestra una respuesta integrada en tiempo, no proporciona información tan detallada del comportamiento dinámico del sistema óptico de ensayo como la proporcionada por la cámara de alta velocidad, que muestra una respuesta discriminada en tiempo. Sin embargo, proporciona información suficiente para un gran número de aplicaciones, especialmente para la comprobación del correcto funcionamiento de la lente optoajustable o de sistemas ópticos o instrumentos que contienen una lente optoajustable como núcleo tecnológico y elemento crítico. Por ejemplo, en el caso de simuladores de visión simultánea por multiplexación temporal.
En realizaciones particulares, con la ilustrada en la figura 6, el aparato incorpora adicionalmente un sistema de calibración.
Como se ha comentado anteriormente, el aparato de la invención mide el desplazamiento lateral de la imagen óptica desplazada con respecto a la imagen óptica de referencia. Como existe una relación univoca entre el desplazamiento lateral y la potencia óptica del sistema óptico de ensayo, se puede medir dicha potencia óptica con sólo medir el desplazamiento lateral. Un ejemplo de ello es la figura 3 obtenida a partir de simulaciones, que muestra una relación lineal entre desplazamiento en pixeles y potencia óptica.
Esta relación lineal se puede estimar a partir de los valores nominales de los componentes utilizados (potencias ópticas de las lentes, interdistancias entre elementos, etc.). Sin embargo, existe el inconveniente de que estos valores nominales no siempre coinciden con los valores reales de las magnitudes de los elementos y relaciones que componen el aparato, por lo que puede que esa estimación no sea todo lo exacta que se necesita. Una opción para salvar este inconveniente es realizar una calibración previa del aparato estableciendo experimentalmente dicha relación entre desplazamiento lateral y potencia óptica, por ejemplo, midiendo lentes de potencias ópticas conocidas, llamadas lentes de prueba, y midiendo el desplazamiento lateral que generan. Así se traza la curva de calibración (que normalmente es una recta, ya que las simulaciones predicen una dependencia lineal) que proporciona la tabla de conversión entre desplazamiento lateral frente a potencia óptica que se utilizará en medidas posteriores.
Dichas lentes de prueba ocupan el espacio del sistema óptico de ensayo y han de ser adaptadas al soporte preexistente. Por ello, en algunas realizaciones particulares, como la mostrada en la figura 6, se incorpora en el aparato de medida 1 un sistema de calibración para poder medir el sistema óptico de ensayo en presencia de lentes de prueba.
El objeto óptico es proyectado según un eje óptico 10 por el sistema generador de objeto óptico 2 en un objeto óptico de calibración 80 gracias a un sistema de calibración 8 formado por una lente de calibración colimadora 81 , una lente principal de calibración 82 y una lente de calibración focalizadora 83. La lente principal de calibración 82 está situada entre la lente de calibración colimadora 81 y la lente de calibración focalizadora 83, en un plano conjugado ópticamente con el plano del soporte 3 en el que se coloca el sistema óptico de ensayo 4. Esto hace que ambos planos sean equivalentes y que el efecto óptico de la lente principal de calibración 82 se sume al del sistema óptico de ensayo 4.
Este sistema de calibración tiene varias aplicaciones. Una primera aplicación es realizar calibraciones, con la ventaja de que las lentes de calibración están siempre disponibles, y no es necesario modificar la estructura del aparato de medida para introducirlas. Además, al tener su propio espacio definido, no afecta de ningún modo al entorno del soporte 3 donde está situado el sistema óptico de ensayo 4. Además, las lentes de calibración 81 , 82, 83 se pueden utilizar para añadir o restar dioptrías y cambiar el rango en el que se realizan las medidas (si la potencia del sistema óptico de ensayo es demasiado alta o demasiado baja) ampliando así las posibilidades del aparato de medida. En el caso de lentes optoajustables, un uso particular es calibrar la señal eléctrica que provoca una determinada respuesta deseada en términos de potencia óptica. Para ello, se utiliza la lente optoajustable como sistema óptico de ensayo 4 y se utiliza una lente principal de calibración 82 de la misma potencia óptica que la potencia óptica que se desea provocar en la lente optoajustable, pero de signo contrario. Situadas ambas lentes 4, 82 en el aparato de medida, se va variando la señal eléctrica que alimenta la lente optoajustable hasta que la potencia óptica de la lente optoajustable compensa la potencia óptica de la lente de prueba, algo que se observa cuando el desplazamiento lateral observado en la imagen digital, que combina el inducido por la lente optoajustable 4 y por la lente principal de calibración 82, es igual a cero. Otra de las aplicaciones se puede observar en las figuras 7 y 9.
La figura 7 muestra una comparación entre una respuesta ideal (línea fina) de una lente optoajustable a una señal de entrada rectangular de periodo 20 ms y la respuesta que se obtiene en realidad (línea gruesa), como resultado de los efectos dinámicos en la variación de la potencia óptica de la lente.
Idealmente, se esperaría que la lente variara de forma totalmente instantánea el valor de su potencia óptica: ante una señal de entrada rectangular que varía entre dos valores distintos, se espera que la potencia óptica siga el mismo esquema, variando de manera instantánea entre dos valores de potencia óptica nominal, superior e inferior.
Sin embargo, lo que se observa en la medida de la potencia óptica real, representada por la línea gruesa, es que existen efectos dinámicos que hacen que la potencia óptica real de salida no corresponda exactamente con lo idealmente esperado. La potencia óptica presenta un pico con respecto al valor nominal cuando se produce el cambio en la señal de entrada. El pico es superior al valor nominal superior cuando la señal aumenta de intensidad e inferior al valor nominal inferior cuando la señal cambia hacia su valor inferior.
Como se ha indicado, la figura 8 muestra el funcionamiento de la invención para el caso en el que se utiliza una fuente de luz pulsada y una cámara de baja velocidad. Como en el caso mostrado en la gráfica de la figura 7, la línea gruesa representa la señal de respuesta de una lente (por ej., una lente optoajustable) que se obtiene en realidad al aplicar la señal de entrada rectangular de periodo 20 ms de la figura 7. En el caso mostrado en la figura 8, la caracterización de esta señal de respuesta periódica no requiere el uso de una cámara de alta velocidad (aunque también podría utilizarse una cámara de alta velocidad). En este caso, la señal de respuesta periódica se puede caracterizar empleando un conjunto generador de objeto óptico que genera pulsos de luz muy cortos (típicamente de menos de 1 ms), siendo la duración del pulso de luz muy inferior al periodo de la señal de respuesta periódica. Estos pulsos de luz se muestran en el eje de coordenadas mediante estrellas. La imagen generada por un pulso de luz es capturada por el detector de imagen digital, que puede ser una cámara de baja velocidad, y que está sincronizada con la generación de pulsos de luz por parte del generador óptico. Las capturas de la cámara de baja velocidad se muestran en la figura 8 mediante puntos blancos. En esta realización, la velocidad de captura es tal que se impide que una misma captura contenga información relativa a más de un pulso de luz. Por tanto, la captura de la información relativa a un pulso se completa antes de que incida otro pulso.
No obstante, también es posible que haya dos o más pulsos por cada captura del detector de imagen digital. En tal caso, los pulsos registrados por el detector tienen que ser discernibles temporalmente mediante una o más características del pulso, tales como la intensidad de cada pulso, su duración, su forma, etc.
Posteriormente, estas capturas se pueden procesar para reconstruir un ciclo de la señal periódica de respuesta, es decir, de potencia óptica. Para que esta reconstrucción sea posible, la frecuencia de la señal de entrada no puede ser múltiplo entero de la frecuencia de los pulsos de luz, ya que para reconstruir un ciclo de una señal cíclica se necesita conocer varios valores que toma dicha señal en un mismo ciclo. En una realización concreta, la señal de entrada periódica es una señal rectangular de frecuencia 50 Hz, y la frecuencia de captura del detector de imagen digital es igual a la frecuencia de generación de pulsos del generador de objeto óptico e igual a 30 Hz.
En esta realización se muestra el resultado para una señal de entrada rectangular, pero igualmente sería aplicable siempre que la señal de potencia óptica a caracterizar sea cíclica (todos los ciclos son iguales). De esta forma, cada imagen capturada con la cámara de baja velocidad corresponde con un punto del ciclo de la seña de potencia óptica (punto de dimensión temporal igual a la duración del pulso de luz). El conjunto de todas las imágenes tomadas permite muestrear el ciclo completo.
La figura 9 muestra la comparación entre dicha respuesta real de la lente optoajustable (línea gruesa) y una respuesta real compensada (línea fina) cuando se corrige la señal de entrada para compensar efectos dinámicos, gracias a los datos obtenidos en un aparato de medida según la invención. El aparato de medida según la invención ofrece la precisión necesaria para caracterizar la respuesta dinámica, y por tanto proporciona al técnico la información que necesita para variar la señal de entrada y obtener unos valores de potencia óptica de salida mucho más uniformes, sin los picos u otras distorsiones que se observaban cuando la señal no había sido modificada. Como se ve en la respuesta real compensada, representada por la línea fina, no existen los picos anteriormente mencionados, por lo que el comportamiento dinámico de la lente optoajustable es mucho más parecido al ideal.

Claims

REIVINDICACIONES
1 . - Aparato (1 ) para determinar una potencia óptica de un sistema óptico de ensayo (4), caracterizado el aparato (1 ) por que comprende
un conjunto generador de objeto óptico (2) para generar un objeto óptico según un eje óptico (10);
un soporte (3) para el sistema óptico de ensayo (4), de modo que cuando el sistema óptico de ensayo (4) está situado en el soporte (3), dicho sistema óptico de ensayo (4) está alineado con el eje óptico (10), y cuando el objeto óptico es generado, el sistema óptico de ensayo (4) proyecta una imagen óptica inicial (41 ) del objeto óptico;
un detector de imagen digital (5);
un conjunto deflector (6) situado entre el conjunto generador de objeto óptico (2) y el detector de imagen digital (5), destinado a producir un desplazamiento lateral en la imagen óptica inicial (41 ), generando así una imagen óptica desplazada (61 ) y una imagen óptica de referencia (60),
estando el detector de imagen digital (5) situado para capturar la imagen óptica desplazada (61 ) y la imagen óptica de referencia (60) en al menos una imagen digital (50) que contiene datos sobre el desplazamiento lateral; y
medios de procesamiento para determinar la potencia óptica del sistema óptico de ensayo (4) a partir de los datos sobre el desplazamiento lateral contenidos en la imagen digital (50).
2. - Aparato (1 ) según la reivindicación 1 , en el que el objeto óptico es una línea de luz con forma de rendija óptica.
3. - Aparato (1 ) según cualquiera de las reivindicaciones anteriores, en el que el soporte (3) comprende un carrete, una línea de montaje, un revólver o un tambor con una pluralidad de soportes individuales.
4.- Aparato (1 ) según cualquiera de las reivindicaciones 1 -3, en el que el soporte está adaptado para posicionarse en una pluralidad de posiciones distintas, de modo que en cada una de estas posiciones un soporte individual se encuentre situado de tal forma que cuando un sistema óptico de ensayo está situado en el soporte individual, está alineado con el eje óptico (10).
5.- Aparato (1 ) según cualquiera de las reivindicaciones anteriores, en el que el conjunto deflector (6) comprende un único elemento deflector de entre los siguientes: un prisma, un espejo, una superficie parcialmente reflejante, una red de difracción, un modulador espacial de luz, una red de microprismas y una red de microespejos.
6.- Aparato (1 ) según la reivindicación 5, en el que el único elemento deflector está dispuesto para producir un desplazamiento lateral sólo en parte de la imagen óptica inicial.
7. - Aparato (1 ) según cualquiera de las reivindicaciones 1 a 4, en el que el conjunto deflector (6) comprende varios elementos deflectores.
8. - Aparato (1 ) según la reivindicación 7, en el que uno de los elementos deflectores está dispuesto para producir un desplazamiento lateral sólo en parte de la imagen óptica inicial, mientras que otro de los elementos deflectores está dispuesto para producir un desplazamiento lateral en una parte distinta de la imagen óptica inicial.
9. - Aparato (1 ) según cualquiera de las reivindicaciones anteriores, en el que el sistema óptico de ensayo (4) funciona con una frecuencia de cambio de potencia óptica, y el detector de imagen digital (5) tiene una frecuencia de captura inferior a la frecuencia de cambio de la potencia óptica del sistema óptico de ensayo.
10. - Aparato (1 ) según cualquiera de las reivindicaciones anteriores, que comprende adicionalmente un sistema de calibración entre el conjunto generador de objeto óptico (2) y el soporte (3) para el sistema óptico de ensayo (4), comprendiendo dicho sistema de calibración una lente de calibración colimadora (81 ), una lente de calibración focalizadora (83) y una lente de calibración principal (82) situada entre ellas en un plano conjugado ópticamente con el plano del soporte (3) para el sistema óptico de ensayo (4).
1 1 .- Aparato (1 ) según cualquiera de las reivindicaciones anteriores, que comprende adicionalmente elementos ópticos, tales como una lente colimadora (1 1 ) o una lente focalizadora (12), situados a ambos lados del sistema óptico de ensayo (4).
12. - Aparato (1 ) según cualquiera de las reivindicaciones anteriores, en el que el conjunto generador de objeto óptico (2) está configurado para generar el objeto óptico de forma pulsada en el tiempo.
13. - Aparato (1 ) según la reivindicación 12, en el que el detector de imagen digital (5) comprende una cámara que está sincronizada con el conjunto generador de objeto óptico.
14. - Método para determinar una potencia óptica de un sistema óptico de ensayo que comprende:
generar un objeto óptico mediante un conjunto generador de objeto óptico (2);
proveer el sistema óptico de ensayo (4) en un soporte (3) de modo que proyecte una imagen óptica inicial (41 ) del objeto óptico;
proveer un conjunto deflector (6) que produce un desplazamiento lateral en la imagen óptica inicial (41 ), generando una imagen óptica desplazada (61 ) y una imagen óptica de referencia (60);
capturar por medio de un detector de imagen digital (5) al menos una imagen digital (50) que contiene datos sobre el desplazamiento lateral de la imagen óptica desplazada (61 ) y sobre la imagen óptica de referencia (60); y
calcular por medio de unos medios de procesamiento la potencia óptica del sistema óptico de ensayo (4) a partir de los datos sobre el desplazamiento lateral de la imagen óptica desplazada (61 ) y de la imagen óptica de referencia (60).
15. - Método según la reivindicación 14, en el que la etapa de generar un objeto óptico comprende generar un objeto óptico de forma pulsada en el tiempo.
16. - Método según la reivindicación 15, en el que la etapa de capturar al menos una imagen digital se realiza con una cámara de baja velocidad sincronizada con la generación del objeto óptico de forma pulsada.
17.- Método según cualquiera de las reivindicaciones 14 o 15, en el que la etapa de calcular la potencia óptica del sistema óptico de ensayo comprende identificar un primer grupo de píxeles correspondientes a la imagen óptica desplazada (61 ) y un segundo grupo de píxeles correspondientes a la imagen óptica de referencia (60), medir el desplazamiento lateral que separa ambos grupos de píxeles y correlacionar el desplazamiento lateral con una tabla de medida que asigna un valor de potencia óptica a cada valor de desplazamiento lateral.
18.- Método según cualquiera de las reivindicaciones 14 a 17, en el que el sistema óptico de ensayo (4) comprende una lente optoajustable.
19.- Método según la reivindicación 18, en el que la etapa de capturar una imagen digital (50) que contiene datos sobre el desplazamiento lateral de la imagen óptica desplazada (61 ) se realiza varias veces, estando el sistema óptico de ensayo (4) sometido a una señal eléctrica variable, obteniendo por tanto una relación entre la señal eléctrica suministrada al sistema óptico de ensayo (4) y la potencia óptica que dicho sistema óptico de ensayo proporciona para dicha señal eléctrica.
20. - Método según cualquiera de las reivindicaciones 14 a 19, en el que el soporte (3) comprende un carrete, una línea de montaje, un revólver o un tambor con una pluralidad de soportes individuales, estando el soporte adaptado para posicionarse en una pluralidad de posiciones distintas, de modo que en cada una de estas posiciones un soporte individual se encuentre situado de modo que cuando un sistema óptico de ensayo está situado en el soporte individual, está alineado con el eje óptico (10) y el método incluye la etapa de disponer una pluralidad de lentes en el soporte (3), de modo que se capturan datos de la imagen óptica desplazada y datos de la imagen óptica de referencia para cada lente de la pluralidad de lentes, permitiendo así que las lentes sean comprobadas, caracterizadas y/o seleccionadas.
21 . - Método según cualquiera de las reivindicaciones 14 a 20, llevado a cabo por un aparato de acuerdo con cualquiera de las reivindicaciones 1 a 13.
22.- Método según la reivindicación 21 , que comprende adicionalmente la etapa de calibrar el aparato midiendo o compensando la potencia óptica inducida por un sistema óptico de ensayo (4) de calibración
PCT/ES2018/070464 2017-06-28 2018-06-28 Aparato para determinar la potencia óptica de lentes y método de medida WO2019002656A2 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18823157.5A EP3647758B1 (en) 2017-06-28 2018-06-28 Device for determining the optical power of lenses and measurement method
US16/627,714 US11300479B2 (en) 2017-06-28 2018-06-28 Device for determining the optical power of lenses and measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201730854 2017-06-28
ESP201730854 2017-06-28

Publications (2)

Publication Number Publication Date
WO2019002656A2 true WO2019002656A2 (es) 2019-01-03
WO2019002656A3 WO2019002656A3 (es) 2019-03-14

Family

ID=64742848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070464 WO2019002656A2 (es) 2017-06-28 2018-06-28 Aparato para determinar la potencia óptica de lentes y método de medida

Country Status (3)

Country Link
US (1) US11300479B2 (es)
EP (1) EP3647758B1 (es)
WO (1) WO2019002656A2 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2781794A1 (es) * 2019-03-04 2020-09-07 Consejo Superior Investig Cientificas Aparato y sistema para realizar medidas optometricas y metodo para ajustar la potencia optica de una lente ajustable
US11726563B2 (en) 2018-10-22 2023-08-15 Evolution Optiks Limited Light field device, pixel rendering method therefor, and adjusted vision perception system and method using same
US11823598B2 (en) 2019-11-01 2023-11-21 Evolution Optiks Limited Light field device, variable perception pixel rendering method therefor, and variable perception system and method using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11307367B2 (en) * 2020-08-17 2022-04-19 X Development Llc Method of precision beam collimation using fiber-optic circulator and wavelength tunable source

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012055049A1 (en) 2010-10-26 2012-05-03 Optotune Ag Variable focus lens having two liquid chambers

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3136839A (en) * 1958-09-16 1964-06-09 Safir Aran Apparatus for objectively testing an optical system
US3870415A (en) * 1972-10-27 1975-03-11 Acuity Syst Method and means for measuring the refractive properties of an optical system
GB1490215A (en) 1974-07-15 1977-10-26 Inst Nat Du Verre Method and apparatus for testing lenses
US4090790A (en) * 1976-07-08 1978-05-23 American Optical Corporation Apparatus for testing the refractive power(s) of lenses
US4410268A (en) * 1980-04-28 1983-10-18 Tokyo Kogaku Kikai Kabushiki Kaisha Apparatus for automatically measuring the characteristics of an optical system
US4601575A (en) * 1981-03-03 1986-07-22 Tokyo Kogaku Kikai Kabushiki Kaisha Apparatus for measuring the characteristics of an optical system
JPS593238A (ja) 1982-06-30 1984-01-09 Nippon Kogaku Kk <Nikon> 自動レンズメ−タ−
JPS5987336A (ja) * 1982-11-11 1984-05-19 Asahi Optical Co Ltd 分割像合致式合焦指示光学系を有するレンズメ−タ−
JPS59146009A (ja) 1983-02-10 1984-08-21 Olympus Optical Co Ltd 合焦検出方法
JPS59146008A (ja) 1983-02-10 1984-08-21 Olympus Optical Co Ltd 合焦検出装置
US4826315A (en) * 1985-06-14 1989-05-02 Canon Kabushiki Kaisha Lens meter
IE883227L (en) 1988-10-25 1990-04-25 Trinity College Dublin Measuring the power of a lens
JPH0812127B2 (ja) * 1988-11-11 1996-02-07 オリンパス光学工業株式会社 曲率半径測定装置及び方法
US5198867A (en) * 1991-05-07 1993-03-30 Allergan Humphrey Adaption of lensmeter optics for minimizing contact lens spherical aberration
JP2005214701A (ja) * 2004-01-28 2005-08-11 Topcon Corp レンズメータ
ES2279665B2 (es) 2004-12-23 2008-04-16 Universidade De Santiago De Compostela Interferometro de difraccion por orificio, ido, para inspeccion y medida de componentes opticos oftalmicos.
DE102008044509A1 (de) 2008-09-09 2010-03-11 Vistec Semiconductor Systems Gmbh Vorrichtung und Verfahren zur Bestimmung der Fokusposition
US9121789B2 (en) * 2013-10-08 2015-09-01 The United States Of America As Represented By The Secretary Of The Navy Laser based lens analysis device and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012055049A1 (en) 2010-10-26 2012-05-03 Optotune Ag Variable focus lens having two liquid chambers

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANNIBALE, P.DVORNIKOV, A.GRATTON, E.: "Electrically tunable lens speeds up 3D orbital tracking", BIOMEDICAL OPTICS EXPRESS, vol. 6, no. 6, 2015, pages 2181 - 2190
BERGE, B.PESEUX, J.: "Variable focal lens controlled by an external voltage: An application of electrowetting", THE EUROPEAN PHYSICAL JOURNAL E, vol. 3, no. 2, 2000, pages 159 - 163, XP002285977, DOI: 10.1007/s101890070029
JAROSZ, J.MECE, P.CONAN, J. M.PETIT, C.PAQUES, M.MEIMON, S.: "High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget", BIOMEDICAL OPTICS EXPRESS, vol. 8, no. 4, 2017, pages 2088 - 2105
OKU, H.ISHIKAWA, M.: "High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error", APPLIED PHYSICS LETTERS, vol. 94, no. 22, 2009, pages 221108, XP012121456, DOI: 10.1063/1.3143624
See also references of EP3647758A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11726563B2 (en) 2018-10-22 2023-08-15 Evolution Optiks Limited Light field device, pixel rendering method therefor, and adjusted vision perception system and method using same
US11966507B2 (en) 2018-10-22 2024-04-23 Evolution Optiks Limited Light field vision testing device, adjusted pixel rendering method therefor, and vision testing system and method using same
ES2781794A1 (es) * 2019-03-04 2020-09-07 Consejo Superior Investig Cientificas Aparato y sistema para realizar medidas optometricas y metodo para ajustar la potencia optica de una lente ajustable
US11823598B2 (en) 2019-11-01 2023-11-21 Evolution Optiks Limited Light field device, variable perception pixel rendering method therefor, and variable perception system and method using same

Also Published As

Publication number Publication date
WO2019002656A3 (es) 2019-03-14
EP3647758B1 (en) 2024-05-08
US11300479B2 (en) 2022-04-12
US20210148785A1 (en) 2021-05-20
EP3647758A4 (en) 2021-03-24
EP3647758A2 (en) 2020-05-06

Similar Documents

Publication Publication Date Title
WO2019002656A2 (es) Aparato para determinar la potencia óptica de lentes y método de medida
US10254111B2 (en) Device for optical 3D measuring of an object
US9448120B2 (en) Method for adjusting compensating optical system and compensating optical system
ES2238555T3 (es) Dispositivo y procedimiento de determinacion de los valores de medicion geometricos de un ojo.
JP6259825B2 (ja) 補償光学システムの調整方法、補償光学システム、及び補償光学システム用プログラムを記憶する記録媒体
US20110298896A1 (en) Speckle noise reduction for a coherent illumination imaging system
DK2399098T3 (en) DEVICE FOR HIGH SPEED PHASE SHIFT FOR INTERFEROMETRICAL MEASUREMENT SYSTEMS
KR101985995B1 (ko) 위상 변조 방법 및 위상 변조 장치
US9477082B2 (en) Angular displacement detecting method for adaptive optics system, imaging magnification detecting method for adaptive optics system, and adaptive optics system
ES2291973T3 (es) Sistema de medicion oprtica.
KR20040044916A (ko) 안용 파면 측정 장치
US7619191B1 (en) Increase spatial sampling for wave front mid-spatial frequency error recovery
CN103491858A (zh) 眼底摄像设备、眼底摄像设备的控制方法和存储介质
US6486943B1 (en) Methods and apparatus for measurement and correction of optical aberration
JPH0311443B2 (es)
US20220082835A1 (en) Image display apparatus and head-mounted display
JPH0554333B2 (es)
US8593622B1 (en) Serially addressed sub-pupil screen for in situ electro-optical sensor wavefront measurement
RU2626969C2 (ru) Оптическое устройство, стенд для оптического тестирования и способ оптического тестирования
ES2966498T3 (es) Dispositivo y método para determinar al menos una aberración ocular
Gavel Development of an enhanced adaptive optics system for the Lick Observatory Shane 3-meter Telescope
JP3833713B2 (ja) フリンジ・ディフレクトメトリ装置及びその方法
RU2478185C1 (ru) Устройство определения пространственной ориентации объектов
JPS6135412A (ja) 結像光学系の光学情報検出装置
US10228241B2 (en) Device and method for detecting an image of a preferably structured surface of an object

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018823157

Country of ref document: EP

Effective date: 20200128

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823157

Country of ref document: EP

Kind code of ref document: A2