WO2019001842A1 - Vorrichtung zur messung einer thermischen degradation des kühlpfads leistungselektronischer komponenten mittels lumineszenz - Google Patents

Vorrichtung zur messung einer thermischen degradation des kühlpfads leistungselektronischer komponenten mittels lumineszenz Download PDF

Info

Publication number
WO2019001842A1
WO2019001842A1 PCT/EP2018/062954 EP2018062954W WO2019001842A1 WO 2019001842 A1 WO2019001842 A1 WO 2019001842A1 EP 2018062954 W EP2018062954 W EP 2018062954W WO 2019001842 A1 WO2019001842 A1 WO 2019001842A1
Authority
WO
WIPO (PCT)
Prior art keywords
degradation
current
brightness
semiconductor
semiconductor device
Prior art date
Application number
PCT/EP2018/062954
Other languages
English (en)
French (fr)
Inventor
Jan Homoth
Jonathan WINKLER
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2019572668A priority Critical patent/JP2020525797A/ja
Priority to KR1020207002161A priority patent/KR20200022456A/ko
Priority to US16/626,608 priority patent/US11269005B2/en
Priority to CN201880043432.7A priority patent/CN110869779A/zh
Publication of WO2019001842A1 publication Critical patent/WO2019001842A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2644Adaptations of individual semiconductor devices to facilitate the testing thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/01Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using semiconducting elements having PN junctions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/265Contactless testing
    • G01R31/2656Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2856Internal circuit aspects, e.g. built-in test features; Test chips; Measuring material aspects, e.g. electro migration [EM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature
    • G01R31/2877Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature related to cooling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes

Definitions

  • the present invention relates to a device for converting electrical energy and a method for determining a degradation of a cooling path by means of luminescence.
  • Devices include uses as a power control unit, as
  • Inverter or as Gleichstromumspanner (DC / DC converter), for example, in electric vehicles, solar systems or wind turbines.
  • DC / DC converter Inverter or as Gleichstromumspanner (DC / DC converter), for example, in electric vehicles, solar systems or wind turbines.
  • the correct function of the component thereby requires a correctly functioning cooling path.
  • it is conducive or necessary to make a determination of a degradation of the cooling path to avoid malfunction or failure of the device or to be able to prevent.
  • Exemplary semiconductor devices used in such devices include metal oxide semiconductor field effect transistors (MOSFETs), insulated gate bipolar transistors (IGBTs), and diodes, which may be implemented in, for example, silicon (Si), silicon carbide (SiC), or gallium nitride (GaN).
  • MOSFETs metal oxide semiconductor field effect transistors
  • IGBTs insulated gate bipolar transistors
  • diodes which may be implemented in, for example, silicon (Si), silicon carbide (SiC), or gallium nitride (GaN).
  • Semiconductor devices are used for switching and have a respect the switching element arranged in the reverse direction freewheeling path, which generally corresponds to a diode.
  • MOSFET Metal oxide semiconductor field effect transistors
  • IGBT insulated gate bipolar transistors
  • MOSFET metal oxide semiconductor field effect transistor
  • a separate freewheeling diode which is usually designed in this case as a Schottky diode.
  • p-n junctions in semiconductor devices are operated in the flow direction and flowed through by a current, photons can be emitted (luminescence).
  • light of different intensity and wavelength is emitted. The intensity of the emitted light depends on the current flow through the p-n junction and on the temperature of the component.
  • a device according to claim 1 for the conversion of electrical energy which at least one
  • Semiconductor device a cooling path for cooling and a device for determining a degradation of the cooling path based on a current flowing through the device with predetermined current strength comprises.
  • the device is characterized in that the semiconductor device comprises an optically active semiconductor structure, which light with one of a
  • Temperature of the device produces dependent brightness, if that
  • the device for determining the degradation comprises a brightness sensor for detecting the brightness of the generated light.
  • the inventive method according to claim 10 is used for determining a degradation of a cooling path of a semiconductor device, wherein the electronic semiconductor device comprises an optically active semiconductor structure which generates light with a temperature-dependent brightness when the semiconductor device is flowed through by a current of predetermined current.
  • the method according to the invention comprises: detecting the brightness of the generated light by means of a brightness sensor and determining the degradation of the cooling path on the basis of the flowing current
  • the device according to the invention has the advantage that the device for determining the current intensity and the component are inherently galvanically isolated. Even without isolation, signal evaluation at a low voltage level is possible. Furthermore, the device according to the invention has a low construction volume and low production costs. In addition, the invention allows that the device for forming electrical energy
  • fail-safe can be operated, for example, by timely
  • a photodiode is provided as a brightness sensor, so that in a favorable manner the
  • the device for determining a degradation may be designed to determine the degradation after a predetermined period of time during which the current has flowed through the device at the predetermined current intensity.
  • the device for determining a degradation may be designed to determine a charge by summing a photocurrent intensity of the photodiode over the predetermined period of time. Thus, it is easy to reduce a defect in aging degree determination due to initial heat distribution effects in the device.
  • the device for determining a degradation may be configured to perform the degradation using the particular design variable
  • the replacement of the device may, for example, be triggered by a predetermined minimum deviation of the particular design variable (charge) from the reference design variable (reference charge.
  • the switch with freewheeling path includes at least one semiconductor device, which is designed at least partially transparent.
  • the functional metallization e.g., drain or source electrode
  • the functional metallization may be partially opened and / or the packaging made transparent so that the light may exit the semiconductor and / or its package.
  • the inherently transparent edge of the semiconductor device (chip edge) is used for this, whereby further separate measures to achieve the transparency of the semiconductor device can be omitted if necessary.
  • the semiconductor components in question are preferably metal oxide semiconductor field effect transistors (MOSFETs) with body diode and / or separate antiparallel freewheeling diode or insulated gate bipolar transistors (IGBT) with antiparallel freewheeling diode.
  • MOSFETs metal oxide semiconductor field effect transistors
  • IGBT insulated gate bipolar transistors
  • the body diode or the freewheeling diode is used, or in the case of an IGBT, the pn junction of the collector.
  • the semiconductor device may include an optically active region for generating the light. Thus, the light output can be increased and the
  • the device may include a light guide arranged to direct the generated light to the brightness sensor. This also increases the luminous efficacy and improves the brightness determination.
  • the device may be a power control unit or an inverter for an electric vehicle.
  • FIG. 1 schematically shows an exemplary embodiment of the invention
  • Figure 2 shows another exemplary embodiment in a sectional view
  • FIG. 3 shows, on exemplary measurement curves, the relationship between a measuring current, a temperature of the component and a photodiode current for an intact component and for a component with a degraded cooling path.
  • Figure 1 shows schematically an exemplary embodiment of the invention.
  • the figure shows a device 10 for forming electrical energy. This is effected by means of at least one switching semiconductor device 100.
  • the switching semiconductor component is a
  • MOSFET Metal oxide semiconductor field effect transistor
  • Si MOSFET for example, a Si MOSFET, a GaN MOSFET or a SiC-MOSFET, wherein a diode or a
  • Bodydiode 1 10 of the MOSFET is used for light generation.
  • other components may alternatively be used without departing from
  • the device is cooled using a radiator 400 that is connected to the device 100 via a cooling path. Furthermore, the device 10 comprises a device 200 for determining a
  • a current intensity of the current may be predetermined or follow a predetermined profile.
  • the semiconductor device 100 comprises a highly doped substrate path 120, which comprises an optically active semiconductor material and is connected between a source electrode 11 1 and a drain electrode 1 12 parallel to the diode 110 via a separate source Bulkan gleich 121.
  • the optically active semiconductor material forms part of a body diode of the
  • Semiconductor device 100 and generates light with one of power and
  • Aging degree of the cooling path includes a brightness sensor 210 for
  • the brightness sensor 210 is a photodiode, but other brightness sensors may alternatively or additionally be used without departing from the invention
  • the semiconductor component 100 comprises an at least partially transparent electrode and / or an at least partially transparent encapsulation, through which the generated light can emerge from the electronic component 100.
  • the device includes a partially transparent drain metallization on the underside. It is also possible to open on the top next to the source also the gate metallization. The third possibility is to use the transparent chip edge. This makes special metallizations and / or openings superfluous.
  • the device 10 includes a light guide element 300 which is arranged to direct the generated light onto the photodiode 210. Due to the optical transmission path between component 100 and brightness sensor 210 these are separated in their potentials. This will in particular
  • the brightness sensor 210 may also be integrated with the device 100.
  • a light-conducting element is dispensed with and scattered light is evaluated directly.
  • the brightness of the generated light at a predetermined measuring current level can be detected by the brightness sensor and the degree of deterioration of the cooling path can be determined using the detected brightness.
  • the temperature dependence of the luminescence is used with known current.
  • a rated size / load can be
  • Summing a current strength of the current flowing through the photodiode current can be determined over a predetermined period.
  • FIG. 3 shows the relationship between a measuring current, a temperature of the component and a photodiode current for an intact component and for a component with a degraded cooling path on exemplary measurement curves.
  • a measuring current Isense with a predetermined current is applied. This shows the upper curve.
  • the temperature T in the component increases in the period of time Et.
  • the temperature drops again. Due to the degraded cooling path, the temperature of the component (dashed curve) with degraded cooling path increases more than that of the intact component (solid curve). This is shown by the middle curves.
  • the different temperature profiles cause correspondingly different photocurrents IF O I O. When adding up the difference the photocurrents IF O I O over the period of time Et results in the area between the curves which corresponds to a design variable / charge.
  • the measuring current Isense is constant with a predetermined current.
  • a measuring current Isense is possible, which varies in its current strength in a predetermined period of time in a predetermined manner.
  • the current flowing through the photodiode can be amplified before the evaluation, converted into a digital signal and processed.
  • the processing may include, for example, smoothing, filtering and / or temporal synchronization.
  • the measurement must be performed regularly under the same conditions, specifically at the same
  • Starting temperature repeated.
  • the repetition can take place, for example, when a predetermined coolant temperature is exceeded.
  • the system includes an internal memory for the adjustment of the design variables.
  • the semiconductor for example, when a predetermined coolant temperature is exceeded, heated with a predetermined current until a predetermined amount of light has been emitted. The time required for this is measured. The shorter this period, the worse the connection of the semiconductor via the cooling path.
  • the device therefore comprises in further exemplary embodiments an amplifier and / or an analog-to-digital converter and / or a
  • FIG. 2 shows a further exemplary embodiment in a sectional view.
  • the switching semiconductor device 100 is arranged here on a cooler 400 in order to dissipate heat arising during switching processes in the device 100.
  • a transparent to the optically active region encapsulation of the device 100 is arranged.
  • the transparent encapsulation forms the opposite side. Through the transparent encapsulation For example, light which arises in the highly doped substrate path can emerge from the component 100 in the direction of the photodiode 210.
  • the photodiode 210 is disposed on a printed circuit board (PCB) 200 in the example.
  • PCB printed circuit board
  • a predetermined, constant measuring current Isense not equal to zero is impressed on a p-n junction of a semiconductor (for example, body diode of a field effect transistor) for a predetermined, fixed period of time et.
  • a semiconductor for example, body diode of a field effect transistor
  • photosensitive sensor in the embodiment with a photodiode as the resulting photocurrent detected.
  • the photocurrent of a photodiode is summed up during the time Et, so that a design variable, for example a charge quantity, results for the evaluation.
  • a design variable for example a charge quantity
  • the specific design variable for example the specific charge quantity
  • a reference design variable for example a predetermined nominal charge amount that would flow when the semiconductor is intact. This results in a relative deviation from the reference design variable, for example, the desired charge, and serves in the embodiment as a degradation measure. If the amount of the relative deviation exceeds a predefined threshold, for example 0, 1 (corresponding to at least 10% drift compared to the normal, then in an exemplary development of the method the semiconductor is exchanged independently of its basic functionality.
  • the degradation of the cooling path is relatively slow over the lifetime, so it is not necessary to detect the condition during operation.
  • the method is therefore in the context of a switch-on of the semiconductor (initialization of a system comprising the semiconductor, for example when opening a vehicle or starting an engine of the vehicle, which includes the semiconductor) and / or in the frame a shutdown of the semiconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Inverter Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Es wird Vorrichtung (10) zur Umformung elektrischer Energie zur Verfügung gestellt, welche mindestens ein schaltendes Halbleiterbauelement (100), einen Kühlpfad zur Kühlung des Halbleiterbauelements (100) und eine Vorrichtung (200) zur Bestimmung einer Degradierung des Kühlpfades anhand eines durch das Bauelement fließenden Stroms mit vorbestimmter Stromstärke umfasst. Die Vorrichtung (10) ist dadurch gekennzeichnet, dass das Halbleiterbauelement (100) ein optisch aktives Halbleitermaterial umfasst, welches Licht mit einer von einer Temperatur des Halbleiterbauelements abhängigen Helligkeit erzeugt, wenn das Halbleiterbauelement (100) von Strom mit der vorbestimmten Stromstärke durchflössen wird, und die Vorrichtung (200) zur Bestimmung der Degradierung einen Helligkeitssensor (210) zur Erfassung der Helligkeit des erzeugten Lichts umfasst. Die Vorrichtung hat den Vorteil, dass Vorrichtung zur Bestimmung der Degradierung und Bauelement inhärent galvanisch getrennt sind und die Bestimmung der Degradierung mit hoher Auflösung möglich ist.

Description

Beschreibung
Titel
Vorrichtung zur Messung einer thermischen Degradation des Kühlpfads leistungselektronischer Komponenten mittels Lumineszenz
Die vorliegende Erfindung betrifft eine Vorrichtung zur Umformung elektrischer Energie und ein Verfahren zur Bestimmung einer Degradierung eines Kühlpfades mittels Lumineszenz. Stand der Technik
In vielen leistungselektronischen Vorrichtungen werden schaltende
Halbleiterbauelemente zur Energieumwandlung verwendet. Die Bauelemente werden dabei mittels eines Kühlpfades gekühlt. Einsatzgebiete solcher
Vorrichtungen umfassen Verwendungen als Leistungssteuerungseinheit, als
Inverter oder als Gleichstromumspanner (DC/DC-Wandler) beispielsweise in Elektrofahrzeugen, Solaranlagen oder Windkraftanlagen. Die korrekte Funktion des Bauelements erfordert dabei einen korrekt funktionierenden Kühlpfad. Für viele Anwendungen ist es dabei förderlich oder notwendig, eine Bestimmung einer Degradierung des Kühlpfads vorzunehmen, um Fehlfunktion oder Ausfall des Bauelements zu vermeiden oder vorbeugen zu können.
Beispielhafte Halbleiterbauelemente, die in solchen Vorrichtungen eingesetzt werden, umfassen Metalloxidhalbleiter-Feldeffekttransistoren (MOSFET), Bipolartransistoren mit isoliertem Gate (IGBT) und Dioden, welche beispielsweise in Silizium (Si), Siliziumkarbid (SiC) oder Galliumnitrid (GaN) ausgeführt sein können.
Die in den zuvor genannten Vorrichtungen eingesetzten elektronischen
Halbleiterbauelemente dienen zum Schalten und verfügen über einen hinsichtlich des schaltenden Elements in Sperrrichtung angeordneten Freilaufpfad, welcher im Allgemeinen einer Diode entspricht.
Metalloxidhalbleiter-Feldeffekttransistoren (MOSFET) beinhalten
funktionsbedingt durch ihren Aufbau bereits einen solchen Freilaufpfad, welcher gemeinhin als Body-Diode bekannt ist.
Schaltende Halbleiterbauelemente welche nicht inhärent über einen derartigen Freilaufpfad verfügen, insbesondere Bipolartransistoren mit isoliertem Gate (IGBT) werden im Allgemeinen um eine separate Freilaufdiode ergänzt.
Aus Gründen der Schaltungsoptimierung kann ein Metalloxidhalbleiter- Feldeffekttransistor (MOSFET) ebenfalls um eine separate Freilaufdiode ergänzt werden, welche in diesem Falle meist als Schottky-Diode ausgeführt ist.
Werden p-n-Übergänge in Halbleiter-Bauelementen in Flussrichtung betrieben und von einem Strom durchflössen, so können Photonen emittiert werden (Lumineszenz). Abhängig vom verwendeten Halbleiter und der Beschaffenheit des p-n-Übergangs (Dotierkonzentration) wird Licht in verschiedener Intensität und Wellenlänge emittiert. Die Intensität des emittierten Lichts ist abhängig vom Stromfluss durch den p-n-Übergang und von der Temperatur des Bauelements.
Offenbarung der Erfindung
Erfindungsgemäß wird eine Vorrichtung gemäß Anspruch 1 zur Umformung elektrischer Energie zur Verfügung gestellt, welche mindestens ein
Halbleiterbauelement, einen Kühlpfad zur Kühlung und eine Vorrichtung zur Bestimmung einer Degradierung des Kühlpfades anhand eines durch das Bauelement fließenden Stroms mit vorbestimmter Stromstärke umfasst. Die Vorrichtung ist dadurch gekennzeichnet, dass das Halbleiterbauelement eine optisch aktive Halbleiterstruktur umfasst, welches Licht mit einer von einer
Temperatur der Vorrichtung abhängigen Helligkeit erzeugt, wenn das
Halbleiterbauelemente von Strom mit der vorbestimmten Stromstärke durchflössen wird, und die Vorrichtung zur Bestimmung der Degradierung einen Helligkeitssensor zur Erfassung der Helligkeit des erzeugten Lichts umfasst. Das erfindungsgemäße Verfahren gemäß Anspruch 10 dient zur Bestimmung einer Degradierung eines Kühlpfades eines Halbleiterbauelements, wobei das elektronische Halbleiterbauelement eine optisch aktive Halbleiterstruktur umfasst, welches Licht mit einer Temperatur abhängigen Helligkeit erzeugt, wenn das Halbleiterbauelement von einem Strom mit vorbestimmter Stromstärke durchflössen wird. Das erfindungsgemäße Verfahren umfasst: Erfassen der Helligkeit des erzeugten Lichts mittels eines Helligkeitssensors und Bestimmen der Degradierung des Kühlpfads anhand des fließenden Stroms unter
Verwendung der erfassten Helligkeit.
Vorteile der Erfindung
Die erfindungsgemäße Vorrichtung hat den Vorteil, dass inhärent die Vorrichtung zur Bestimmung der Stromstärke und das Bauelement galvanisch getrennt sind. Es wird auch ohne Potenzialtrennung eine Signalauswertung auf niedrigem Spannungsniveau möglich. Weiterhin hat die erfindungsgemäße Vorrichtung ein geringes Bauvolumen und geringe Gestehungskosten. Zudem erlaubt die Erfindung, dass die Vorrichtung zur Umformung elektrischer Energie
ausfallsicherer betrieben werden kann, beispielsweise durch rechtzeitige
Ersetzung des Bauelements bei einer über einen Grenzwert erhöhten
Degradierung.
In einer besonderen Ausführungsform der Vorrichtung ist eine Fotodiode als Helligkeitssensor vorgesehen, sodass auf eine günstige Weise die
Helligkeitsmessung ermöglicht wird.
Die Vorrichtung zur Bestimmung einer Degradierung kann dazu ausgebildet sein, die Degradierung nach Ablauf einer vorbestimmten Zeitdauer, während der der Strom mit der vorbestimmten Stromstärke durch das Bauelement geflossen ist, zu bestimmen.
Dies ermöglicht, einen Messstrom mit vorbestimmter Stärke für eine Zeitdauer anzulegen, die lange genug ist, dass im Bauelement entstehende Verlustwärme den Kühlpfad erreicht, sodass es zu einer von der Funktionsfähigkeit des
Kühlpfades abhängigen Erwärmung des Bauelements und damit zur thermischen Beeinflussung des abgestrahlten Lichts kommt. Die Vorrichtung zur Bestimmung einer Degradierung kann dazu ausgebildet sein, eine Ladung durch Aufsummierung einer Fotostromstärke der Fotodiode über den vorbestimmten Zeitraum zu bestimmen. So lässt sich einfach ein durch anfängliche Wärmeverteilungseffekte im Bauelement bedingter Fehler in der Alterungsgradbestimmung verringern.
Die Vorrichtung zur Bestimmung einer Degradierung kann dazu ausgebildet sein, die Degradierung unter Verwendung der bestimmten Bemessungsgröße
(Ladung) und einer Referenzbemessungsgröße (Referenzladung) zu bestimmen.
Für viele Anwendungen ist es lediglich notwendig, eine relative Veränderung gegenüber einem Ausgangswert zu kennen. Insbesondere kann der Austausch des Bauelements zum Beispiel durch eine vorbestimmte Mindestabweichung der bestimmten Bemessungsgröße (Ladung) von der Referenzbemessungsgröße (Referenzladung ausgelöst werden.
Mit dem Vorteil einer gesteigerten Lichtausbeute ist in einer weiteren
Ausführungsform vorgesehen, dass der Schalter mit Freilaufpfad zumindest ein Halbleiterbauteil enthält, welches zumindest teilweise transparent ausgeführt ist. Dabei kann die funktionsbedinge Metallisierung (z.B. Drain- oder Source- Elektrode) teilweise geöffnet und/oder die Verkapselung transparent ausgeführt werden, sodass das Licht aus dem Halbleiter und/oder seiner Verkapselung austreten kann.
Vorzugsweise wird die inhärent transparente Kante des Halbleiterbauteils (Chip- Kante) dafür genutzt, wodurch weitere separate Maßnahmen zur Erreichung der Transparenz des Halbleiterbauteils ggf. entfallen können.
Bei den betreffenden Halbleiterbauteilen handelt es sich vorzugsweise um Metalloxidhalbleiter-Feldeffekttransistoren (MOSFET) mit Body-Diode und/oder separater antiparalleler Freilaufdiode oder um Bipolartransistoren mit isoliertem Gate (IGBT) mit antiparalleler Freilaufdiode.
Zur Lichterzeugung wird die Body-Diode oder die Freilaufdiode genutzt, oder im Falle eines IGBT der p-n-Übergang des Kollektors. Das Halbleiterbauelement kann eine optisch aktive Zone zur Erzeugung des Lichts umfassen. So lässt sich die Lichtausbeute steigern und die
Helligkeitsbestimmung verbessern.
Dies kann alternativ oder zusätzlich auch dadurch bewirkt werden, dass das Halbleiterbauelement eine die Lichterzeugung steigernde Dotierung umfasst.
Die Vorrichtung kann ein Lichtleitelement umfassen, welches so angeordnet ist, dass es das erzeugte Licht auf den Helligkeitssensor leitet. So lässt sich ebenfalls die Lichtausbeute steigern und die Helligkeitsbestimmung verbessern.
Die Vorrichtung kann eine Leistungssteuerungseinheit oder ein Inverter für ein Elektrofahrzeug.
Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben und in der Beschreibung beschrieben.
Zeichnungen
Ausführungsbeispiele der Erfindung werden anhand der Zeichnungen und der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Figur 1 schematisch eine beispielhafte Ausführungsform der Erfindung,
Figur 2 eine weitere beispielhafte Ausführungsform in einer Schnittansicht und
Figur 3 an beispielhaften Messkurven den Zusammenhang zwischen einem Messstrom, einer Temperatur des Bauelements und einem Fotodiodenstrom für ein intaktes Bauelement und für ein Bauelement mit degradiertem Kühlpfad.
Ausführungsformen der Erfindung
Figur 1 zeigt schematisch eine beispielhafte Ausführungsform der Erfindung. Die Figur zeigt eine Vorrichtung 10 zur Umformung elektrischer Energie. Dies wird mittels mindestens eines schaltenden Halbleiterbauteils 100 bewirkt. Im dargestellten Beispiel ist das schaltende Halbleiterbauelement ein
Metalloxidhalbleiter-Feldeffekttransistor (MOSFET), beispielsweise ein Si- MOSFET, ein GaN-MOSFET oder ein SiC-MOSFET, wobei eine Diode oder eine
Bodydiode 1 10 des MOSFET zur Lichterzeugung verwendet wird. Andere Bauelemente können jedoch alternativ verwendet werden, ohne von der
Erfindung abzuweichen. Das Bauelement wird unter Verwendung eines Kühlers 400, der über einen Kühlpfad an das Bauelement 100 angebunden ist, gekühlt. Weiterhin umfasst die Vorrichtung 10 eine Vorrichtung 200 zur Bestimmung einer
Degradierung des Kühlpfads des Halbleiterbauelements 100 anhand eines durch das Bauelement fließenden Stroms. Dabei kann eine Stromstärke des Stroms vorbestimmt sein oder einem vorbestimmten Profil folgen.
Das Halbleiterbauelement 100 umfasst eine hochdotierte Substratstrecke 120, die ein optisch aktives Halbleitermaterial umfasst und zwischen einer Source- Elektrode 11 1 und einer Drain-Elektrode 1 12 parallel zu der Diode 110 über einen separaten Source-Bulkanschluss 121 angeschlossen ist. Das optisch aktive Halbleitermaterial bildet einen Teil einer Bodydiode des
Halbleiterbauelements 100 und erzeugt Licht mit einer von Strom und
Temperatur abhängigen Helligkeit, wenn das Halbleiterbauelement 100 von Strom durchflössen wird. Die Vorrichtung 200 zur Bestimmung des
Alterungsgrades des Kühlpfads umfasst einen Helligkeitssensor 210 zur
Erfassung der Helligkeit des erzeugten Lichts. Im dargestellten Beispiel ist der Helligkeitssensor 210 eine Fotodiode, andere Helligkeitssensoren können jedoch alternativ oder zusätzlich verwendet werden, ohne von der Erfindung
abzuweichen. In einigen beispielhaften Ausführungsformen ist der
Zusammenhang zwischen Helligkeit und Temperatur reziprok, bei steigender Temperatur sinkt die Helligkeit.
Das Halbleiterbauelement 100 umfasst eine zumindest teilweise transparente Elektrode und/oder eine zumindest teilweise transparente Verkapselung, durch die das erzeugte Licht aus dem elektronischen Bauelement 100 austreten kann. In einer anderen beispielhaften Ausführungsform umfasst das Bauelement auf der Unterseite eine teilweise transparente Drain-Metallisierung. Es ist auch möglich, auf der Oberseite neben der Source- auch die Gate-Metallisierung zu öffnen. Die dritte Möglichkeit bestehen darin, die transparente Chip-Kante zu nutzen. Dies macht spezielle Metallisierungen und/oder Öffnungen überflüssig.
Die Vorrichtung 10 umfasst ein Lichtleitelement 300, welches so angeordnet ist, dass es das erzeugte Licht auf die Fotodiode 210 leitet. Durch die optische Übertragungsstrecke zwischen Bauelement 100 und Helligkeitssensor 210 sind diese in ihren Potenzialen getrennt. Dadurch werden insbesondere
Hochspannungsanwendungen begünstigt. Der Helligkeitssensor 210 kann auch mit dem Bauelement 100 integriert sein.
In einer anderen beispielhaften Ausführungsform wird auf ein Lichtleitelement verzichtet und Streulicht direkt ausgewertet.
Dann lässt sich die Helligkeit des erzeugten Lichts bei einer vorgegebenen Messstromstärke mittels des Helligkeitssensors erfassen und der Alterungsgrad des Kühlpfads unter Verwendung der erfassten Helligkeit bestimmen. Hierbei wird die Temperaturabhängigkeit der Lumineszenz bei bekanntem Strom genutzt.
Im dargestellten Beispiel kann eine Bemessungsgröße/Ladung durch
Aufsummierung einer Stromstärke des durch die Fotodiode fließenden Stroms über einen vorgegeben Zeitraum bestimmt werden.
Figur 3 zeigt an beispielhaften Messkurven den Zusammenhang zwischen einem Messstrom, einer Temperatur des Bauelements und einem Fotodiodenstrom für ein intaktes Bauelement und für ein Bauelement mit degradiertem Kühlpfad.
Über eine Zeitdauer Ät wird ein Messstrom Isense mit vorbestimmter Stromstärke angelegt. Dies zeigt die obere Kurve. Dadurch steigt die Temperatur T im Bauelement in der Zeitdauer Ät. Nach Abschalten des Messstroms sinkt dann die Temperatur wieder ab. Aufgrund des degradierten Kühlpfades steigt dabei die Temperatur des Bauelements (gestrichelte Kurve) mit degradiertem Kühlpfad stärker an als die des intakten Bauelements (durchgezogene Kurve). Dies zeigen die mittleren Kurven. Die unterschiedlichen Temperaturverläufe bewirken entsprechend unterschiedliche Fotoströme IFOIO. Bei Aufsummierung der Differenz der Fotoströme IFOIO über die Zeitdauer Ät ergibt sich die Fläche zwischen den Kurven, die einer Bemessungsgröße/Ladung entspricht.
Im Beispiel ist der Messstrom Isense mit vorbestimmter Stromstärke konstant. Es ist jedoch ein Messstrom Isense möglich, der in seiner Stromstärke in einem vorbestimmten Zeitraum in vorbestimmter Weise variiert.
Der durch die Fotodiode fließende Strom kann vor der Auswertung verstärkt, in ein digitales Signal verwandelt und aufbereitet werden. Die Aufbereitung kann beispielsweise Glätten, Filtern und/oder zeitliche Synchronisierung umfassen.
In einem beispielhaften Ausführungsform des Verfahrens wird die Messung muss regelmäßig unter gleichen Bedingungen, konkret bei gleicher
Ausgangstemperatur, wiederholt. Die Wiederholung kann beispielsweise bei Überschreiten einer vorbestimmten Kühlmitteltemperatur erfolgen. Dann umfasst das System einen internen Speicher zum Abgleich der Bemessungsgrößen.
In einer beispielhaften Ausführungsform des Verfahrens wird der Halbleiter, beispielsweise bei Überschreiten einer vorbestimmten Kühlmitteltemperatur, mit einem vorbestimmten Strom aufgeheizt, bis eine vorbestimmte Lichtmenge emittiert worden ist. Die hierfür benötigte Zeitdauer wird gemessen. Je kürzer diese Zeitdauer umso schlechter ist die Anbindung des Halbleiters über den Kühlpfad.
Die Vorrichtung umfasst daher in weiteren beispielhaften Ausführungsformen einen Verstärker und/oder einen Analog-Digital-Wandler und/oder ein
Signalvorverarbeitungselement.
Figur 2 zeigt eine weitere beispielhafte Ausführungsform in einer Schnittansicht.
Das schaltende Halbleiterbauelement 100 ist hier auf einem Kühler 400 angeordnet, um bei Schaltvorgängen im Bauelement 100 entstehende Wärme abzuführen. Gegenüberliegend zu einer Seite des Bauelements 100, auf der der Kühler 400 angeordnet ist, ist eine an die optisch aktive Region transparente Verkapselung des Bauelements 100 angeordnet. Die transparente Verkapselung bildet dabei die gegenüberliegende Seite. Durch die transparente Verkapselung kann Licht, welches in der hochdotierten Substratstrecke entsteht, aus dem Bauelement 100 in Richtung der Fotodiode 210 austreten. Die Fotodiode 210 ist im Beispiel auf einem gedruckten Schaltkreis 200 (engl.: printed circuit board (PCB)) angeordnet.
In einer beispielhaften Ausführungsform eines Verfahrens im Sinne der Erfindung wird einem p-n-Übergang eines Halbleiters (zum Beispiel Body-Diode eines Feldeffekttransistors) für eine vorgegebene, feste Zeitdauer Ät ein vorgegebener, konstanter Messstrom Isense ungleich Null eingeprägt. Durch Messstrom Isense wird der Halbleiter aufgeheizt und zur Lumineszenz angeregt. Nach Ablauf der
Zeitdauer Ät hat dabei der resultierende Wärmestrom einen Kühlpfad des Halbleiters (thermische Anbindung) erreicht.
Über die Zeitdauer wird die Intensität der Lumineszenz, mit einem
lichtempfindlichen Sensor, im Ausführungsbeispiel mit einer Fotodiode als resultierender Fotostrom, erfasst.
Im Ausführungsbeispiel wird der Fotostrom einer Fotodiode während der Zeit Ät aufsummiert, sodass sich für die Auswertung eine Bemessungsgröße, beispielsweise eine Ladungsmenge, ergibt. Bei einer Alterung der thermischen
Anbindung, in deren Folge die thermische Impedanz steigt, kann während des Heizens die Wärme nicht so gut abgeführt werden, sodass die Temperatur T des Halbleiters in einer Sperrschicht stärker zunimmt. Infolge der höheren
Temperatur ist die Lumineszenz reduziert, sodass sich eine deutliche
Abhängigkeit zwischen bestimmter Bemessungsgröße, beispielsweise der bestimmten Ladungsmenge, und Temperatur und damit der Degradierung des Kühlpfades ergibt.
Im Ausführungsbeispiel wird die bestimmte Bemessungsgröße, beispielsweise die bestimmten Ladungsmenge, von einer Referenzbemessungsgröße, beispielsweise eine vorbestimmte Solladungsmenge, die bei intaktem Halbleiter fließen würde, abgezogen und/oder hierzu ins Verhältnis gesetzt. Dies ergibt eine relative Abweichung von der Referenzbemessungsgröße, beispielsweise der Solladung, und dient im Ausführungsbeispiel als Degradierungsmaß. Überschreitet der Betrag der relativen Abweichung eine vordefinierte Schwelle, beispielsweise 0, 1 (entsprechend mindestens 10% Drift gegenüber dem Normal, so wird in einer beispielhaften Weiterbildung des Verfahrens der Halbleiter unabhängig von seiner grundsätzlichen Funktionsfähigkeit ausgetauscht.
Die Degradation des Kühlpfades verläuft über die Lebensdauer relativ langsam, sodass es nicht notwendig ist, den Zustand während des Betriebs zu erfassen.
In dieser oder in anderen Weiterbildungen des Verfahrens wird das Verfahren daher im Rahmen eines Einschaltvorgangs des Halbleiters (Initialisierung eines Systems, welches den Halbleiter umfasst, beispielsweise beim Öffnen eines Fahrzeugs oder Starten eines Motors des Fahrzeugs, welches den Halbleiter umfasst) und/oder im Rahmen eines Abschaltvorgangs des Halbleiters
(Herunterfahren des Systems beispielsweise beim Abschalten des Motors oder Fahrzeugs) als Hintergrundprozess durchgeführt.

Claims

Ansprüche
Vorrichtung (10) zur Umformung elektrischer Energie umfassend:
mindestens ein schaltendes Halbleiterbauelement (100), einen Kühlpfad zur Kühlung des Halbleiterbauelements (100) und eine Vorrichtung (200) zur Bestimmung einer Degradierung des Kühlpfades anhand eines durch das Bauelement fließenden Stroms mit vorbestimmter Stromstärke, dadurch gekennzeichnet, dass das Halbleiterbauelement (100) ein optisch aktives Halbleitermaterial (120) umfasst, welches Licht mit einer Temperatur abhängigen Helligkeit erzeugt, wenn das Halbleiterbauelement (100) von Strom mit der vorbestimmten Stromstärke durchflössen wird, und die Vorrichtung (200) zur Bestimmung der Degradierung einen Helligkeitssensor (210) zur Erfassung der Helligkeit des erzeugten Lichts umfasst.
Vorrichtung nach Anspruch 1 , wobei der Helligkeitssensor (210) eine Fotodiode umfasst.
Vorrichtung nach Anspruch 1 oder 2, wobei die Vorrichtung (200) zur Bestimmung einer Degradierung ausgebildet ist, die Degradierung nach Ablauf einer vorbestimmten Zeitdauer, während der der Strom mit der vorbestimmten Stromstärke durch das Bauelement geflossen ist, zu bestimmen.
Vorrichtung nach Anspruch 2 und nach Anspruch 3, wobei die Vorrichtung (200) zur Bestimmung einer Degradierung ausgebildet ist, eine
Ladungsmenge durch Aufsummierung einer Fotostromstärke der Fotodiode über den vorbestimmten Zeitraum zu bestimmen.
Vorrichtung nach Anspruch 4, wobei die Vorrichtung (200) zur Bestimmung einer Degradierung ausgebildet ist, die Degradierung unter Verwendung der bestimmten Ladungsmenge und einer Solllandungsmenge zu bestimmen. Vorrichtung nach einem der Ansprüche 1 bis 5, wobei das Halbleiterbauelement (100) zumindest einen Metalloxidhalbleiter- Feldeffekttransistor (MOSFET) mit einer zumindest teilweise transparenten Source-Elektrode (1 11) und/oder einer zumindest teilweise transparenten Verkapselung umfasst, durch die das erzeugte Licht aus dem MOSFET austreten kann, wobei der MOSFET ein GaN-basierter MOSFET oder ein SiC-basierter MOSFET ist, wobei eine Diode (1 10) oder eine Bodydiode des MOSFET zur Lichterzeugung verwendet wird und wobei die Vorrichtung eine Substratstrecke (120) umfasst, die zwischen der Source-Elektrode (11 1) und einer Drain-Elektrode (1 12) parallel zu der Diode (1 10) angeschlossen ist.
Vorrichtung nach einem der Ansprüche 1 bis 6, wobei das
Halbleiterbauelement (100) eine optisch aktive Zone (120) zur Erzeugung des Lichts und/oder eine die Lichterzeugung steigernde Dotierung umfasst.
Vorrichtung nach einem der Ansprüche 1 bis 7, wobei die Vorrichtung ein Lichtleitelement (300) umfasst, welches so angeordnet ist, dass es das erzeugte Licht auf den Helligkeitssensor (210) leitet.
Vorrichtung nach einem der Ansprüche 1 bis 8, wobei die Vorrichtung ei Leistungssteuerungseinheit oder ein Inverter für ein Elektrofahrzeug ist.
10. Verfahren zur Bestimmung einer Degradierung eines Kühlpfades eines Halbleiterbauelements (100) unter Verwendung eines durch das
Halbleiterbauelement (100) fließenden Stromes mit vorbestimmter
Stromstärke, wobei das Halbleiterbauelement (100) ein optisch aktives Halbleitermaterial umfasst, welches Licht mit einer Temperatur abhängigen Helligkeit erzeugt, wenn das Halbleiterbauelement (100) von Strom mit der vorbestimmten Stromstärke durchflössen wird, umfassend: Erfassen der Helligkeit des erzeugten Lichts mittels eines Helligkeitssensors (210) und
Bestimmen der Degradierung unter Verwendung der erfassten Helligkeit.
PCT/EP2018/062954 2017-06-28 2018-05-17 Vorrichtung zur messung einer thermischen degradation des kühlpfads leistungselektronischer komponenten mittels lumineszenz WO2019001842A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019572668A JP2020525797A (ja) 2017-06-28 2018-05-17 発光によりパワーエレクトロニクス部品の冷却路の熱劣化を測定するためのデバイス
KR1020207002161A KR20200022456A (ko) 2017-06-28 2018-05-17 발광을 이용해서 전력 전자 컴포넌트의 냉각 경로의 열적 열화를 측정하기 위한 장치
US16/626,608 US11269005B2 (en) 2017-06-28 2018-05-17 Device for measuring a thermal degradation of the cooling path of power electronic components using luminescence
CN201880043432.7A CN110869779A (zh) 2017-06-28 2018-05-17 借助发光测量功率电子部件的冷却路径的热退化的设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017210870.3A DE102017210870B3 (de) 2017-06-28 2017-06-28 Vorrichtung zur Messung einer thermischen Degradation des Kühlpfads leistungselektronischer Komponenten mittels Lumineszenz
DE102017210870.3 2017-06-28

Publications (1)

Publication Number Publication Date
WO2019001842A1 true WO2019001842A1 (de) 2019-01-03

Family

ID=62222658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/062954 WO2019001842A1 (de) 2017-06-28 2018-05-17 Vorrichtung zur messung einer thermischen degradation des kühlpfads leistungselektronischer komponenten mittels lumineszenz

Country Status (7)

Country Link
US (1) US11269005B2 (de)
JP (1) JP2020525797A (de)
KR (1) KR20200022456A (de)
CN (1) CN110869779A (de)
DE (1) DE102017210870B3 (de)
FR (1) FR3068475B1 (de)
WO (1) WO2019001842A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022122829B3 (de) 2022-09-08 2024-02-08 Infineon Technologies Ag Verfahren und Vorrichtung zum Überwachen der thermischen Impedanz

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015132835A1 (ja) * 2014-03-03 2015-09-11 株式会社日立製作所 電力変換装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2737345C2 (de) 1976-08-20 1991-07-25 Canon K.K., Tokio/Tokyo Halbleiterlaser-Vorrichtung mit einem Peltier-Element
US4684812A (en) * 1983-08-31 1987-08-04 Texas Instruments Incorporated Switching circuit for a detector array
GB2367945B (en) * 2000-08-16 2004-10-20 Secr Defence Photodetector circuit
JP3668708B2 (ja) * 2001-10-22 2005-07-06 株式会社日立製作所 故障検知システム
US7422988B2 (en) * 2004-11-12 2008-09-09 Applied Materials, Inc. Rapid detection of imminent failure in laser thermal processing of a substrate
JP2007107926A (ja) * 2005-10-11 2007-04-26 Rohm Co Ltd 電流検出回路およびそれを用いた受光装置ならびに電子機器
JP5617211B2 (ja) 2008-11-04 2014-11-05 富士電機株式会社 インバータ装置の冷却能力測定方法
US8471575B2 (en) * 2010-04-30 2013-06-25 International Business Machines Corporation Methodologies and test configurations for testing thermal interface materials
DE102012210760A1 (de) 2012-06-25 2014-01-02 Kaco New Energy Gmbh Verfahren zur Funktionskontrolle eines Kühlsystems eines Wechselrichters und Wechselrichter
DE102012222481A1 (de) * 2012-12-06 2014-06-12 Robert Bosch Gmbh Verfahren zum Ermitteln einer Sperrschichttemperatur eines Leistungshalbleiters unter Berücksichtigung der Degradation und Mittel zu dessen Implementierung
JP6252585B2 (ja) * 2013-06-04 2017-12-27 富士電機株式会社 半導体装置
JP6234090B2 (ja) 2013-07-09 2017-11-22 三菱電機株式会社 半導体装置
FR3013919B1 (fr) * 2013-11-22 2016-01-08 Continental Automotive France Detection de court-circuit dans une structure de commutation
JP6104407B2 (ja) * 2013-12-04 2017-03-29 三菱電機株式会社 半導体装置
CN104269823B (zh) 2014-10-16 2017-06-06 重庆长安汽车股份有限公司 一种过温保护方法和装置
DE102015213169A1 (de) 2015-07-14 2017-01-19 Robert Bosch Gmbh Verfahren zum Erkennen einer Änderung eines Kühlverhaltens einer elektrischen Maschine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015132835A1 (ja) * 2014-03-03 2015-09-11 株式会社日立製作所 電力変換装置

Also Published As

Publication number Publication date
FR3068475A1 (fr) 2019-01-04
US20200158777A1 (en) 2020-05-21
DE102017210870B3 (de) 2018-10-04
CN110869779A (zh) 2020-03-06
FR3068475B1 (fr) 2021-01-22
JP2020525797A (ja) 2020-08-27
KR20200022456A (ko) 2020-03-03
US11269005B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
EP3224631B1 (de) Verfahren zur bestimmung einer alterung von leistungshalbleitermodulen sowie vorrichtung und schaltungsanordnung
DE102012216318A1 (de) Halbleitervorrichtung
DE112010003655T5 (de) Halbleitervorrichtung
DE112016007127T5 (de) Integrierter schaltkreis für schnelle temperatur-wahrnehmung einer halbleiterschaltvorrichtung
WO2015189332A1 (de) Vorrichtung und verfahren zum erzeugen eines dynamischen referenzsignals für eine treiberschaltung für einen halbleiter-leistungsschalter
DE112020005975T5 (de) Halbleiterelemtansteuereinrichtung und leistungsumsetzungsvorrichtung
DE102014008894B4 (de) Erfassungselement für Halbleiter
DE102020116424A1 (de) Verfahren und elektronische Einrichtung zur Temperaturüberwachung einer Leistungselektronik und Kraftfahrzeug
DE102017210870B3 (de) Vorrichtung zur Messung einer thermischen Degradation des Kühlpfads leistungselektronischer Komponenten mittels Lumineszenz
DE102017212856A1 (de) Vorrichtung zur Umformung elektrischer Energie und Verfahren zur Bestimmung der Temperatur eines Halbleiterbauelements durch Lumineszenz
DE102018110291A1 (de) Verfahren zur Bestimmung der Alterung und zum Abschalten oder Funktionseinschränken eines Bipolartransistors sowie Vorrichtung mit einem Bipolartransistor
DE102018104621A1 (de) Verfahren zum Betreiben eines Transistorbauelements und elektronische Schaltung mit einem Transistorbauelement
WO2015128360A1 (de) Schaltungsanordnung und verfahren zum ansteuern eines sperrschicht-feldeffekttransistors
DE102014201781A1 (de) Anordnung und verfahren zum messen der chiptemperatur in einem leistungshalbleitermodul
DE102014202641A1 (de) Halbleitermodul und Verstärkungsgleichrichterschaltung
DE102019217098A1 (de) Steuergerät zur Bestimmung einer Totzeit für leistungselektronische Schalter
WO2018041971A1 (de) Steuern eines halbleiterschalters in einem schaltbetrieb
DE102015121722A1 (de) Strommessung in einem Leistungshalbleiterbauelement
DE102015121577B4 (de) Verfahren zur erkennung eines sich abzeichnenden ausfalls eines halbleiterchips eines halbleitermoduls und halbeitermodulanordnung
DE102014226165A1 (de) Adaptiver Treiber für einen Transistor
DE112021007901T5 (de) Halbleitervorrichtung und Leistungsumwandlungsvorrichtung
DE102016118293A1 (de) Vorrichtung und Verfahren zur Kühlung einer Halbleiteranordnung
DE102017209833A1 (de) Vorrichtung zur Umformung elektrischer Energie und Verfahren zur Bestimmung eines durch ein elektronisches Bauelement fließenden Stroms
DE102023000666A1 (de) Vorrichtung und Verfahren zum Betätigen eines elektronischen Schalters in einem Fehlerfall
EP3695498A1 (de) Totzeitregelung mit aktiver rückkopplung durch lumineszenz

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18726428

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019572668

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207002161

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18726428

Country of ref document: EP

Kind code of ref document: A1