WO2018235780A1 - 有機光電変換素子、撮像素子及び撮像装置 - Google Patents

有機光電変換素子、撮像素子及び撮像装置 Download PDF

Info

Publication number
WO2018235780A1
WO2018235780A1 PCT/JP2018/023152 JP2018023152W WO2018235780A1 WO 2018235780 A1 WO2018235780 A1 WO 2018235780A1 JP 2018023152 W JP2018023152 W JP 2018023152W WO 2018235780 A1 WO2018235780 A1 WO 2018235780A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic compound
photoelectric conversion
compound
group
layer
Prior art date
Application number
PCT/JP2018/023152
Other languages
English (en)
French (fr)
Inventor
広和 宮下
山田 直樹
博揮 大類
岩脇 洋伸
洋祐 西出
鎌谷 淳
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2018235780A1 publication Critical patent/WO2018235780A1/ja
Priority to US16/714,290 priority Critical patent/US11557727B2/en
Priority to US18/062,959 priority patent/US20230145492A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/353Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising blocking layers, e.g. exciton blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic photoelectric conversion element, and an image pickup element and an image pickup apparatus using the same.
  • a planar light receiving element is widely used as an imaging element included in a camera or the like.
  • the planar light receiving element is an element in which a plurality of pixels having photodiodes are two-dimensionally arrayed.
  • the flat type light receiving element receives light and a signal generated is read out, and image processing is performed by a CCD circuit or a CMOS circuit.
  • a CCD circuit or a CMOS circuit Conventionally, as the above-described imaging device, one in which a photoelectric conversion portion is formed in a semiconductor substrate such as silicon is used.
  • dark current is known as a cause of image quality deterioration of an image to be captured. And various examinations to reduce the dark current of an organic photoelectric conversion element are performed.
  • Patent Document 1 describes that heat treatment (annealing treatment) at a high temperature is performed after element fabrication to reduce dark current.
  • Patent Document 2 describes that a compound represented by the following structure (hereinafter referred to as Compound 1-A etc.) is used for an organic light emitting element.
  • Patent Document 1 also describes that the dark current does not decrease after the annealing process, but rather the dark current increases and the external quantum efficiency decreases.
  • Patent Document 2 describes compound 1-A, but its glass transition temperature is not sufficient, and there is a concern about deterioration of device characteristics due to crystallization in a high temperature annealing process.
  • the present invention is made to solve the above-mentioned problems, and an object thereof is to provide an organic compound which is excellent in sublimation and has a high glass transition temperature.
  • the present invention provides an organic compound represented by the following general formula [1].
  • Ar 1 and Ar 2 each represent an alkyl group having 1 to 8 carbon atoms, an aromatic hydrocarbon group having 6 to 18 carbon atoms, or a heteroaromatic ring group having 3 to 17 carbon atoms.
  • the Ar 1 and the Ar 2 may be the same or different.
  • Ar 3 and Ar 4 are selected from the substituent group represented by the following general formulas [2a] to [2c].
  • the Ar 3 and the Ar 4 may be the same or different.
  • the Ar 1 to Ar 4 may further have a substituent selected from a halogen atom, a cyano group, an alkyl group having 1 to 8 carbon atoms, and an alkoxy group having 1 to 8 carbon atoms.
  • the alkyl group may have a fluorine atom as a substituent.
  • any one of Ar 1 to Ar 4 has a tert-butyl group.
  • the total number of tert-butyl groups possessed by one molecule of the organic compound is two or more.
  • FIG. 1 is a schematic view showing the molecular structure of Exemplified Compound A2 and the molecular structure of Comparative Compound 1.
  • FIG. 2 shows an absorption spectrum of Exemplified Compound A2 in a solution and an absorption spectrum at the time of thin film formation.
  • FIG. 3 is a schematic view showing an example of the organic photoelectric conversion element of the embodiment.
  • FIG. 4 is a schematic view showing an example of a pixel circuit including the organic photoelectric conversion element of the embodiment.
  • FIG. 5 is a schematic view showing an example of a peripheral circuit diagram including the organic photoelectric conversion element of the embodiment.
  • the present invention is an organic compound represented by the following general formula [1].
  • Ar 1 and Ar 2 each represent an aromatic hydrocarbon group having 6 to 18 carbon atoms, or a heteroaromatic ring group having 3 to 17 carbon atoms.
  • Ar 3 and Ar 4 are selected from the substituent group represented by the following general formulas [2a] to [2c]. However, any one of Ar 1 to Ar 4 has a tert-butyl group.
  • Examples of the aromatic hydrocarbon group represented by Ar 1 and Ar 2 include a phenyl group, a naphthyl group, a phenanthryl group, a fluorenyl group, a chrysenyl group, a triphenylenyl group, a pyrenyl group and the like. From the viewpoint of sublimation, a substituent having a relatively small molecular weight is preferable, and specifically, a phenyl group and a naphthyl group are preferable.
  • heteroaromatic ring group represented by Ar 1 and Ar 2 examples include pyridyl group, pyrazinyl group, pyrimidinyl group, quinolyl group, isoquinolyl group, thienyl group, furanyl group, benzothienyl group, benzofuranyl group, triazinyl group and the like. From the viewpoint of sublimation property and stability, a substituent having a relatively small molecular weight and high stability is preferable, and specifically, a pyridyl group, a benzothienyl group and a benzofuranyl group are preferable.
  • Ar 3 and Ar 4 are substituents selected from the group of substituents shown in the general formulas [2a] to [2c]. In consideration of sublimation, among the substituent groups represented by the formulas [2a] to [2c], the substituent represented by the formula [2a] which is a substituent having a relatively small molecular weight is preferable.
  • halogen atom which Ar 1 to Ar 4 may have include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • a fluorine atom Preferably, it is a fluorine atom.
  • Ar 1 to Ar 4 may have a cyano group as a substituent.
  • alkyl group which may be possessed by Ar 1 to Ar 4 include alkyl groups having 1 to 8 carbon atoms. Specifically, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group And cyclohexyl group, n-heptyl group, n-octyl group and the like. Preferably, they are a methyl group and a tert-butyl group.
  • the alkyl group may have a fluorine atom as a substituent.
  • the alkyl group having a fluorine atom is preferably a trifluoromethyl group.
  • any of Ar 1 to Ar 4, having a tert- butyl group the total number of tert- butyl group contained in the Ar 1 to Ar 4 is 2 or more. More preferably, the total number of tert-butyl groups contained in Ar 1 to Ar 4 is 4 or more.
  • the total number of tert-butyl groups contained in Ar 1 to Ar 4 is two or more. This is because when there is only one tert-butyl group, the electron blocking ability and thermal stability of the organic compound can not be sufficiently improved.
  • the total number of tert-butyl groups contained in Ar 1 to Ar 4 is preferably 4 or more. More preferably, it is 6 or more. In consideration of the hole transportability, the number of tert-butyl groups is preferably 10 or less. That is, the tert-butyl group contained in one molecule of the organic compound according to the present invention may have 2 or more and 10 or less, 4 or more and 10 or less, and 6 or more and 10 or less.
  • the organic compound according to the present invention has a high glass transition temperature and a low LUMO level, and thus can be used as an electron blocking layer of an organic electronic device or the like.
  • the electron blocking layer is a layer that is difficult to receive electrons.
  • LUMO is the lowest unoccupied molecular orbital.
  • the low LUMO level indicates that the LUMO level is closer to the vacuum level.
  • the fact that the LUMO level is low is also expressed as the LUMO level is shallow.
  • the organic compound according to the present invention has a substituent of Ar 1 to Ar 4 on the benzene ring of the general formula [1].
  • Ar 3 and Ar 4 each have a carbazolyl group as represented by the general formulas [2a] to [2c]. Further one has the Ar 1 to Ar 4 have a tert- butyl group, the total number of tert- butyl group contained in the Ar 1 to Ar 4 is 2 or more.
  • the compound of the general formula [1] has the following properties (1) to (6). (1) easy to form amorphous thin film (2) wide band gap, low absorption in visible light region (3) high hole transportability (4) high electron blocking ability (5) high thermal stability (5) 6) Excellent in sublimation
  • the organic compound according to the present invention has a substituent of Ar 1 to Ar 4 on the benzene ring of the general formula [1]. This causes repulsion due to steric hindrance, resulting in a twisted whole molecule.
  • the molecular structure was estimated by molecular orbital calculation. Each dihedral angle was compared to evaluate the planarity of the estimated molecular skeleton.
  • FIG. 1 shows a molecular structure observed in the horizontal direction of Example Compound A2 and Comparative Compound 1 and a molecular structure observed in the vertical direction.
  • the dihedral angle of the comparative compound 1 was 36.8 °
  • the dihedral angle of the exemplary compound A2 according to the present invention was 47.4 °. It was found that Exemplified Compound A2 had a large twisted structure.
  • the organic compound having this twisted structure is a compound capable of suppressing molecular packing.
  • molecule packing means that molecules overlap due to intermolecular interaction. Since aromatic compounds have high planarity of molecular backbone and strong intermolecular interaction, molecular packing is likely to be promoted.
  • a compound having a carbazolyl group is also a compound which is easy to be molecularly packed because the carbazolyl group itself has high planarity. Such molecular packing is not preferable because it causes crystallization.
  • the organic compound according to the present invention is a compound capable of suppressing molecular packing because the basic skeleton itself of the molecule is twisted and the molecular structure is nonplanar.
  • the organic compound according to the present invention is a compound that easily forms an amorphous thin film.
  • the organic compound layer in contact with the electrode is preferably an amorphous thin film.
  • the film In the state of aggregation associated with the crystal phase, the film has lost uniformity, so the electric field may be locally concentrated. Such local concentration of electric field leads to in-plane variations in leakage current and sensitivity, which lowers the stability of the device characteristics.
  • the organic compound concerning this invention is a compound which is easy to form an amorphous thin film, it can be used suitably as a constituent material of an organic photoelectric conversion element.
  • molecular orbital method calculation used the density functional theory (Density Functional Theory, DFT) widely used now.
  • molecular orbital method calculation can be performed according to Gaussian 09 (Gaussian 09, Revision C. 01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. H Ratchian, A. F. Izmaylov, J.
  • the organic compound according to the present invention has substituents Ar 1 to Ar 4 for the benzene ring of the general formula [1]. , The whole molecule becomes a twisted structure. This breaks the conjugation of the molecule, resulting in a compound with a wide band gap. That is, it is a compound having a wide band gap and little absorption in the visible light range.
  • the reason why the band gap is wide is also because molecular packing is suppressed as in (1). It is known that in organic compounds, the apparent conjugation length is extended by molecular packing during thin film formation, and the absorption wavelength becomes longer, that is, the band gap becomes narrower. Since the compound of the general formula [1] according to the present invention has a structure capable of sufficiently suppressing molecular packing, the band gap does not easily narrow even at the time of thin film formation.
  • the organic photoelectric conversion element it is preferable that more light reaches the photoelectric conversion layer.
  • the electron blocking layer when the electron blocking layer has absorption in the visible region, the light reaching the photoelectric conversion layer decreases and the external quantum efficiency It will decrease. Therefore, as the electron blocking layer, a compound having little absorption in the visible region is preferable.
  • the layer thickness is preferably large. If the layer thickness is not large enough, tunnel type electron injection may occur at the time of voltage application, and unevenness of the electrode surface and foreign matter can not be covered sufficiently, and physical short circuit or leak current may occur. is there.
  • the layer thickness is not large enough, it is difficult for the layer to have a uniform thickness. In that case, since the photoelectric conversion layer and the electrode are locally adjacent to each other, an electric field may be concentrated at this proximity to cause charge injection from the electrode.
  • FIG. 2 shows absorption spectra of a diluted toluene solution (dotted line) and a vapor deposited film (solid line) of the exemplified compound A2 according to the present invention.
  • the optical band gap of Exemplified Compound A2 was calculated from the absorption edge of the absorption spectrum, and the band gap estimated from each of the toluene solutions was 3.42 eV, and the band gap estimated from the deposited film was 3.36 eV. It was found that when forming a thin film, it was narrowed by only 0.06 eV.
  • Example Compound A2 is sufficiently small even at the time of thin film formation. It is a compound.
  • the compound represented by the general formula [1] according to the present invention is a compound having a wide band gap and little absorption in the visible light region even when forming a thin film, and therefore, is suitably used as a constituent material of the organic photoelectric conversion element be able to. In particular, it is preferable to use as a layer in contact with the electrode.
  • the absorption spectrum was measured using V-560 manufactured by JASCO Corporation as a measuring apparatus.
  • the solution sample was measured using a quartz cell, and the vapor deposition film sample was used for measurement which was deposited on a quartz substrate at a degree of vacuum of 5 ⁇ 10 ⁇ 4 Pa or less.
  • the holes generated in the photoelectric conversion layer can be rapidly transported to the cathode even if the layer thickness is sufficiently large.
  • the organic compound according to the present invention has Ar 3 and Ar 4 in the benzene ring of the general formula [1].
  • Ar 3 and Ar 4 have a carbazolyl group. That is, since the organic compound according to the present invention has a carbazolyl group excellent in hole transporting ability at both ends of the molecular structure, it is a compound having high hole transporting ability. Therefore, it can be used suitably as an electron blocking layer of an organic photoelectric conversion element.
  • Electron blocking ability is high
  • the injection barrier between the electrode and the charge blocking layer be sufficiently large.
  • the electron blocking layer disposed between the photoelectric conversion layer and the cathode preferably has a low LUMO level in order to sufficiently suppress the injection of electrons from the cathode.
  • the organic compound according to the present invention is a compound having a wide band gap.
  • the molecule structure has two or more tert-butyl groups which are electron donative alkyl groups, the HOMO level is low. Therefore, it is a compound having a wide band and a low HOMO level. As a result, this compound is a compound having a low LUMO level.
  • the LUMO level of the organic compound at the time of thin film formation can be calculated by subtracting the energy of the optical band gap calculated from the absorption spectrum from the HOMO level measured from the ionization potential.
  • the vapor deposition film of the exemplary compound A2 according to the present invention was produced by vapor deposition on an AlNd substrate at a vacuum degree of 5 ⁇ 10 ⁇ 4 Pa or less.
  • the ionization potential of the film manufactured using AC-3 manufactured by Riken Keiki Co., Ltd. was 6.09 eV.
  • Comparative Compound 2 has lower electron blocking ability than Exemplified Compound A2 according to the present invention.
  • the organic compound according to the present invention has a high electron blocking ability, and can be suitably used as an electron blocking layer of an organic photoelectric conversion element.
  • Thermal stability is high
  • the thermal stability under high temperature in the mounting process is required as an optical sensor such as a color filter process or a wire bonding process.
  • the term "thermal stability" as used herein means that thermal decomposition does not occur and the amorphous state is maintained even at high temperatures.
  • the glass transition temperature is high.
  • the glass transition temperature of the organic compound largely depends on its molecular weight. Therefore, when designing an organic compound having a high glass transition temperature to withstand high temperature processes, it is conceivable to increase the molecular weight of the organic compound.
  • the organic compound according to the present invention has at least two tert-butyl groups, it is a compound having a high glass transition temperature and a high sublimation property.
  • the glass transition temperatures of Exemplified Compound A2 and Comparative Compound 2 according to the present invention were evaluated by differential scanning calorimetry (DSC) measurement.
  • DSC differential scanning calorimetry
  • a sample of about 2 mg is enclosed in an aluminum pan and then quenched from a high temperature above the melting point to make the sample into an amorphous state and then raised at a temperature rising rate of 10 ° C./min.
  • the glass transition temperature was measured by warming.
  • Pyris 1 DSC manufactured by Perkin Elmer was used as a measuring device.
  • Example Compound A2 the glass transition temperature was 200 ° C.
  • Comparative Compound 2 the glass transition temperature was 160 ° C.
  • the respective glass transition temperatures are shown in Table 1 together with the decomposition temperature and the sublimation temperature.
  • the organic compound which concerns on this invention has high thermal stability. And it is a compound which can endure the mounting process of an optical sensor enough. By using this, it is possible to produce a stable organic photoelectric conversion element capable of maintaining the element characteristics even after high temperature processing.
  • the organic compound is highly purified by sublimation purification. The reason is that, in the case of having an impurity, traps derived from the impurity and free carriers cause a partial leak current and the like, which leads to an increase in dark current.
  • the organic compound according to the present invention is a compound excellent in sublimation property.
  • a compound in which the tert-butyl group of the exemplified compound A2 according to the present invention is replaced by a phenyl group is referred to as a comparative compound 3. Since the molecular weight of the comparison compound 3 is 1017.26, it is considered to be a compound having a high glass transition temperature and an excellent thermal stability.
  • the temperature was raised slowly while flowing Ar at a degree of vacuum of 1 ⁇ 10 ⁇ 1 Pa, sublimation purification was started, and a temperature at which a sufficient sublimation rate was reached was defined as a sublimation temperature.
  • the exemplified compound A2 could be sublimed at 410 ° C. That is, the sublimation temperature of A2 is 410.degree.
  • Comparative Compound 3 was able to partially obtain a sublimate at 470 ° C., but a decrease in purity due to thermal decomposition was confirmed, and sublimation purification could not be performed. This is considered to be due to the fact that the sublimation temperature of the comparative compound 3 is close to the thermal decomposition temperature.
  • TG / DTA measurement of Exemplified Compound A2 according to the present invention and Comparative Compounds 2 and 3 was performed, and the temperature at which the weight loss reached 5% was taken as the decomposition temperature.
  • the exemplary compound A2 according to the present invention had a decomposition temperature of 480.degree.
  • Comparative Compounds 2 and 3 had a decomposition temperature of 480 ° C.
  • the temperature difference between the comparison compound 3 and the comparison compound 3 is small, while the temperature difference between the comparison compound 3 and the comparison compound 3 is small, while the temperature difference between the sublimation temperature and the decomposition temperature is 70 ° C. That is, the comparison compound 3 whose sublimation temperature and thermal decomposition temperature are close to each other is a material not suitable as a constituent material of the organic photoelectric conversion element.
  • the organic compound according to the present invention is a compound having a large difference between the sublimation temperature and the thermal decomposition temperature since it has two or more tert-butyl groups, and can be highly purified by sublimation purification.
  • the organic compound according to the present invention is a compound having the properties (1) to (6) above, it is an organic compound which is excellent in sublimation and has a high glass transition temperature as compared with Comparative Compounds 1 to 3. is there. And it can use suitably for an organic photoelectric conversion element.
  • the compound of the general formula [1] can be suitably used in the electron blocking layer.
  • vapor deposition vacuum vapor deposition method
  • a thin film with high purity can be formed by using a vacuum evaporation method.
  • a vacuum evaporation method generally, the higher the molecular weight of the organic compound to be the constituent material of the layer, the higher the temperature is required. Then, the required temperature reaches a decomposition temperature that is too high, and thermal decomposition or the like of an organic compound to be a constituent material easily occurs.
  • Ar 1 and Ar 2 in the formula [1] are substituted or unsubstituted aromatic hydrocarbon groups having 6 to 18 carbon atoms.
  • the exemplified compounds of the group A are compounds excellent in thermal stability and sublimation since Ar 1 and Ar 2 are aromatic hydrocarbon groups.
  • the exemplified compounds A1 to A12 are particularly heat stable because Ar 1 and Ar 2 in the formula [1] are phenyl groups and Ar 3 and Ar 4 in the formula [1] are the general formula [2a] And sublimable compounds.
  • the exemplified compounds A13 to A16 are compounds which are excellent in thermal stability because Ar 3 and Ar 4 in the formula [1] are a general formula [2b] or [2c].
  • Exemplified Compounds A25 to A28 have many alkyl groups, and in particular, because they have a linear alkyl group (for example, n-butyl group) or a cyclic alkyl group (for example, cyclohexyl group), the solubility is excellent. In other words, it has a linear or cyclic alkyl group having 4 or more carbon atoms. Therefore, it is a compound which can be used suitably when forming into a film at an application process.
  • a linear alkyl group for example, n-butyl group
  • a cyclic alkyl group for example, cyclohexyl group
  • any one of Ar 1 to Ar 4 in the formula [1] is bonded to the meta position of the benzene skeleton or is bonded to the peri position of the naphthalene skeleton. Therefore, it is a compound in which the twisted structure of the whole molecule is large. That is, the exemplified compound of Group B is a compound which is particularly excellent in that it has a large number of twisted parts of the molecular structure depending on the substitution position and forms an organic compound layer having high amorphousness.
  • the benzene skeleton is a concept including a benzene ring constituting a carbazolyl group.
  • the exemplary compound B12 bonded to the 3-position of the carbazolyl group is a compound having the benzene ring described in General Formula [1] bonded to the meta position of the benzene skeleton.
  • any one of Ar 1 and Ar 2 in the formula [1] is a substituted or unsubstituted heteroaromatic ring group having 3 to 17 carbon atoms.
  • the heteroaromatic ring has a nitrogen atom
  • the oxidation potential of the compound itself becomes high (in other words, the oxidation potential becomes deep) due to the electron-withdrawing property of the nitrogen atom, which is stable against oxidation. It is a compound.
  • the heteroaromatic ring has a sulfur atom or an oxygen atom
  • the sulfur atom or the oxygen atom has a large number of unshared electron pairs, so that the interaction between molecules becomes large, resulting in a compound having excellent carrier transportability.
  • the exemplified compounds of Group C are compounds which are particularly excellent in terms of the stability due to the electronic effect and the carrier transportability. It can also be used in hole blocking layers.
  • A1 to A20, A26 to A31, B1 to B12, and C3 to C18 each have a total number of tert-butyl groups of 4 or more, and the above-mentioned properties (1) to (2), (4) to (6) is high. Therefore, it is preferable as a material for organic photoelectric conversion elements.
  • A2 to A6, A10 to A12, A15 to A17, B1 to B5, and C7 to C9 have a total number of tert-butyl groups of 6 or more, and are further preferable because these properties are further improved.
  • FIG. 3 is a schematic cross-sectional view showing an example of the photoelectric conversion element according to the present embodiment.
  • the first organic compound layer 1 is disposed between the anode 5 and the cathode 4.
  • the first organic compound layer 1 is an organic compound layer that forms a photoelectric conversion part that converts light into charge. From this, the first organic compound layer can also be called a photoelectric conversion layer.
  • the plurality of layers are preferably stacked in the direction from the anode to the cathode.
  • the photoelectric conversion device includes a second organic compound layer 2 disposed between the first organic compound layer 1 and the cathode 4, and a third disposed between the first organic compound layer 1 and the anode 5.
  • a protective layer 7, a wavelength selection unit 8, and a microlens 9 are disposed on the cathode.
  • the readout circuit 6 is connected to the anode.
  • the photoelectric conversion element may be configured on a substrate (not shown).
  • the photoelectric conversion element may apply a voltage between the anode and the cathode when performing photoelectric conversion.
  • the voltage depends on the total film thickness of the organic compound layer, but is preferably about 1 V or more and 15 V or less. More preferably, about 2 V to 10 V is preferable.
  • the organic photoelectric conversion element of the embodiment may have a substrate.
  • substrate a glass substrate, a flexible substrate, a semiconductor substrate etc. are mentioned, for example.
  • the photoelectric conversion element according to the embodiment may have a semiconductor substrate.
  • the constituent elements of the semiconductor substrate are not limited as long as the charge accumulation portion and the floating diffusion (FD) can be formed by impurity implantation.
  • FD floating diffusion
  • Si, GaAs, GaP, etc. may be mentioned. In particular, Si is preferred.
  • the semiconductor substrate may be an N type epitaxial layer.
  • a P-type well, an N-type well, a P-type semiconductor region, and an N-type semiconductor region are disposed on the semiconductor substrate.
  • the charge storage portion is an N-type semiconductor region or a P-type semiconductor region formed on the semiconductor substrate by ion implantation, and is a region for storing the charge generated in the photoelectric conversion portion.
  • an N-type semiconductor region may be formed on the surface of the semiconductor substrate, or a diode for storage of a PN structure may be formed from the surface of the substrate. In any case, electrons can be accumulated in the N-type semiconductor region.
  • a P-type semiconductor region may be formed on the semiconductor substrate, or a diode for storage of the NP structure may be formed from the substrate surface. In either case, electrons can be stored in the P-type semiconductor region.
  • the accumulated charge is transferred from the charge storage unit to the FD. This charge transfer may be controlled by the gate electrode.
  • the charge generated in the organic compound layer is stored in the charge storage portion, and the charge stored in the charge storage portion is transferred to the FD. Thereafter, it is converted into a current by an amplification transistor described later.
  • photoelectric conversion may be performed by light leaked from the photoelectric conversion portion.
  • the anode is an electrode that collects electrons among the charges generated in the photoelectric conversion layer. In the configuration of the imaging device, it may be a pixel electrode. The anode may be disposed closer to the pixel circuit than the cathode. The anode can be called an electron collecting electrode because of its function.
  • the constituent materials of the anode are ITO, indium zinc oxide, SnO2, ATO (antimony-doped tin oxide), ZnO, AZO (Al-doped zinc oxide), GZO (gallium-doped zinc oxide), TiO2, FTO (fluorine-doped tin oxide), etc. Can be mentioned.
  • the cathode is an electrode that collects holes among charges generated in the photoelectric conversion layer. In the configuration of the imaging device, it may be a pixel electrode.
  • metals, metal oxides, metal nitrides, metal borides, organic conductive compounds, mixtures of two or more of these, and the like can be mentioned. More specifically, conductive metal oxides such as tin oxide (ATO, FTO) doped with antimony or fluorine, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), zinc indium oxide, gold, Metallic materials such as silver, magnesium, chromium, nickel, titanium, tungsten, and aluminum, and conductive compounds such as oxides and nitrides of these metallic materials (for example, titanium nitride (TiN) and the like, and conductivity with these metals Mixtures or laminates with metal oxides, inorganic conductive materials such as copper iodide and copper sulfide, organic conductive materials such as polyaniline, polythiophene and polypyrrole, and laminates of these with ITO or titanium nitride .
  • conductive metal oxides such as tin oxide (ATO
  • a material selected from an alloy of magnesium and silver, titanium nitride, molybdenum nitride, tantalum nitride and tungsten nitride is particularly preferable.
  • the pixel electrode may be either an anode or a cathode. It is preferable that the electrode on the light extraction side has high transparency. Specifically, it is 80% or more.
  • the electrode on the light incident side can also be referred to as the upper electrode. In that case, the other is called a lower electrode.
  • the formation method of the two types of electrodes (anode, cathode) mentioned above can be suitably selected in consideration of the appropriateness with the electrode material used, respectively. Specifically, it can be formed by a printing method, a wet method such as a coating method, a physical method such as a vacuum evaporation method, a sputtering method, an ion plating method, or a chemical method such as CVD or plasma CVD.
  • an electrode using ITO When forming an electrode using ITO, form the electrode by a method such as electron beam method, sputtering method, resistance heating evaporation method, chemical reaction method (sol-gel method etc.), dispersion of indium tin oxide, etc. Can.
  • a method such as electron beam method, sputtering method, resistance heating evaporation method, chemical reaction method (sol-gel method etc.), dispersion of indium tin oxide, etc. Can.
  • the surface of the formed electrode may be subjected to UV-ozone treatment, plasma treatment or the like.
  • the formed electrode When forming an electrode using TiN, various film-forming methods including reactive sputtering can be used. In such a case, the formed electrode (TiN electrode) may be subjected to annealing treatment, UV-ozone treatment, plasma treatment or the like.
  • the first organic compound layer can also be called a photoelectric conversion layer as described above.
  • the constituent material of the photoelectric converting layer of the organic photoelectric conversion element which concerns on embodiment is demonstrated.
  • the photoelectric conversion layer it is preferable that the light absorption rate is high, and that the received light be efficiently charge-separated, that is, the photoelectric conversion efficiency be high.
  • the generated charge that is, electrons and holes can be rapidly transported to the electrode.
  • the material with high glass transition temperature is preferable. From the viewpoint of film quality improvement, it may be a mixed layer with a material having a high glass transition temperature.
  • the first organic compound layer may have a plurality of organic compounds.
  • plural kinds of organic compounds may be mixed in one layer, or plural kinds of organic compounds may be contained in plural layers.
  • the first organic compound layer is preferably a layer containing a p-type organic semiconductor or an n-type organic semiconductor, and a bulk hetero layer (mixed layer) in which an organic p-type compound and an organic n-type compound are mixed. It is more preferable to include at least in part.
  • the photoelectric conversion efficiency (sensitivity) can be improved.
  • the electron mobility and hole mobility of the first organic compound layer 1 can be increased, and the photoresponse speed of the photoelectric conversion element can be increased. it can.
  • the first organic compound layer preferably contains a fullerene or a fullerene analog as an n-type organic semiconductor. Since a plurality of fullerene molecules or fullerene analog molecules form an electron path, the electron transportability is improved, and the responsiveness of the photoelectric conversion element is improved.
  • the content of the fullerene or the fullerene analog is preferably 20% by volume or more and 80% by volume or less, where the total amount of the photoelectric conversion layer is 100%.
  • a fullerene analog is a general term for a cluster composed of only a large number of carbon atoms in the form of a closed shell cavity, and includes C60 and higher-order fullerenes such as C70, C74, C76 and C78. One or more of these materials may be used. Not only fullerene analogues but also a plurality of other materials may be used at the same time as materials used as materials for charge separation and electron transport.
  • Materials other than fullerene include naphthalene compounds known as n-type organic semiconductor such as NTCDI, perylene compounds such as PTCDI, phthalocyanine compounds such as SubPc, and thiophene compounds such as DCV3T.
  • fullerene analogs include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C80, fullerene C82, fullerene C84, fullerene C90, fullerene C96, fullerene C240, fullerene 540, mixed fullerene, and fullerene nanotube.
  • organic compounds can be mentioned as a p-type organic semiconductor which a photoelectric conversion element has.
  • the following structural formula may have a substituent such as an alkyl group as long as the function is not impaired.
  • the second organic compound layer is a layer that suppresses the flow of electrons from the cathode into the first organic compound layer, and has a low electron affinity (close to the vacuum level). preferable. It can be said that LUMO is small that the electron affinity is small.
  • the second organic compound layer can also be called an electron blocking layer because of its function.
  • the second organic compound layer 2 may be a plurality of layers, or a bulk hetero layer (mixed layer) may be used.
  • the electron blocking layer preferably has the organic compound according to the present invention.
  • Another functional layer may be provided between the cathode and the electron blocking layer.
  • the third organic compound layer is a layer that suppresses the flow of holes from the anode to the first organic compound layer, and has a large ionization potential (far from the vacuum level). Is preferred. A large ionization potential can also be said to have a high HOMO.
  • the third organic compound layer can also be called a hole blocking layer because of its function.
  • the third organic compound layer 3 may be a plurality of layers, or a bulk hetero layer (mixed layer) may be used. Another functional layer may be provided between the anode and the hole blocking layer.
  • the protective layer 7 is a layer formed on the top of the electrode, and is preferably an insulating layer.
  • the protective layer may be formed of a single material or may be composed of a plurality of materials. When it comprises a plurality of materials, it may be a lamination of a plurality of layers or a layer in which a plurality of materials are mixed.
  • the constituent material of the protective layer include organic materials such as resins, and inorganic materials such as silicon nitride, silicon oxide, and aluminum oxide. It can be formed by sputtering, ALD (atomic layer deposition), or the like. Silicon nitride is also described as SiNx, and silicon oxide is described as SiOx.
  • X is a numerical value representing the ratio of elements.
  • a planarization layer may be provided on the protective layer 7.
  • the surface state of the protective layer is provided so as not to affect the wavelength selector.
  • the planarization layer can be formed by a known manufacturing method, a coating method, a vacuum evaporation method, or the like. It may be manufactured by performing CMP etc. as needed.
  • the planarization layer may be, for example, an organic material such as a resin, an inorganic material such as SiNx, SiOx, or Al2O3, and may be made of an organic compound or a mixture thereof.
  • the formation method can mention the same method as a protective layer.
  • the wavelength selection unit 8 is provided on the planarization layer. If it does not have a planarization layer, it is provided on the protective layer.
  • the wavelength selection unit can also be said to be disposed on the light incident side of the photoelectric conversion element. Examples of the wavelength selection unit include a color filter, a scintillator, and a prism.
  • the color filter is a filter that transmits light of a predetermined wavelength more than light of other wavelengths.
  • three types of RGB can be used to correspond to the entire range of visible light.
  • the arrangement of color filters may be Bayer arrangement, delta arrangement or the like.
  • the wavelength selection unit may be a prism that separates only light of a predetermined wavelength.
  • the position where the wavelength selection unit 8 is arranged is not limited to the position shown in FIG.
  • the wavelength selection unit may be disposed in any of the light path from the subject or the light source to the photoelectric conversion layer 1.
  • the microlens 9 is an optical member for condensing light from the outside onto the photoelectric conversion layer. Although a hemispherical lens is illustrated in FIG. 1, the shape is not limited thereto.
  • the microlens is made of, for example, quartz, silicon, an organic resin or the like.
  • the shape and the material are not limited as long as they do not interfere with light collection.
  • the photoelectric conversion element may have another photoelectric conversion element on the electrode.
  • another photoelectric conversion element as a photoelectric conversion element that photoelectrically converts light of different wavelengths, light of different wavelengths can be detected at the same or substantially the same in-plane position on the substrate.
  • the organic compound layer may further include another type of organic compound layer that photoelectrically converts light of a wavelength different from that of the organic compound layer, and the organic compound layer and the other type of organic compound layer may be stacked. With this configuration, light of different wavelengths can be detected at the same position on the substrate and at substantially the same position as in the configuration in which the photoelectric conversion elements are stacked.
  • the photoelectric conversion device can be used for an imaging device.
  • the imaging element includes a plurality of photoelectric conversion elements as light receiving pixels, a readout circuit connected to each photoelectric conversion element, and a signal processing circuit connected to the readout circuit. Information based on the read charge is transmitted to a signal processing unit connected to the imaging device.
  • the signal processing unit may be a CMOS sensor or a CCD sensor. An image can be obtained by collecting information acquired by the respective light receiving pixels in the signal processing unit.
  • the imaging device may have a plurality of photoelectric conversion devices, and each of the plurality of photoelectric conversion devices may have another type of color filter.
  • the plurality of types of color filters are color filters that transmit light of different wavelengths. Specifically, RGB color filters may be provided.
  • the plurality of photoelectric conversion elements may have a photoelectric conversion layer as a common layer.
  • the common layer indicates that the photoelectric conversion layer of one photoelectric conversion element is connected to the photoelectric conversion layer of the photoelectric conversion element adjacent thereto.
  • FIG. 4 is a circuit diagram of a pixel including the photoelectric conversion element according to the embodiment.
  • the photoelectric conversion device 10 is connected to the common wiring 19 at the node A 20.
  • the common wiring may be connected to ground.
  • the pixel 18 may include the photoelectric conversion element 10 and a readout circuit for reading out a signal generated by the photoelectric conversion unit.
  • the readout circuit includes, for example, a transfer transistor 11 electrically connected to the photoelectric conversion element, an amplification transistor 13 having a gate electrode electrically connected to the photoelectric conversion element 10, a selection transistor 14 for selecting a pixel from which information is read, A reset transistor 12 may be included to provide a reset voltage to the conversion element.
  • the transfer transistor 11 may be controlled by the gate voltage.
  • the reset transistor may be controlled to supply a reset potential by a voltage applied to its gate.
  • the select transistor is selected or deselected by its gate voltage.
  • the transfer transistor 11, the reset transistor 12, and the amplification transistor 13 are connected by a node B21. Depending on the configuration, the transfer transistor may not be included.
  • the reset transistor 12 is a transistor that supplies a voltage that resets the potential of the nodeB.
  • the voltage supply can be controlled by applying a signal to the gate of the reset transistor. Depending on the configuration, the reset transistor may not be included.
  • the amplification transistor 13 is a transistor that causes a current according to the potential of the node B to flow.
  • the amplification transistor is connected to a selection transistor 14 which selects a pixel for outputting a signal.
  • the selection transistor 14 is connected to the current source 16 and the column output unit 15, and the column output unit 15 is connected to the signal processing unit.
  • the selection transistor 14 is connected to the vertical output signal line 17.
  • the vertical output signal line 17 is connected to the current source 16 and the column output unit 15.
  • FIG. 5 is a schematic view showing an imaging device according to the embodiment.
  • the imaging device 28 includes an imaging region 27 in which a plurality of pixels are two-dimensionally arranged, and a peripheral region 26.
  • the area other than the imaging area is a peripheral area.
  • a vertical scanning circuit 25, a reading circuit 22, a horizontal scanning circuit 23, and an output amplifier 24 are provided, and the output amplifier is connected to the signal processing unit 27.
  • the signal processing unit is a signal processing unit that performs signal processing based on the information read by the reading circuit, and examples thereof include a CCD circuit, a CMOS circuit, and the like.
  • the readout circuit 22 includes, for example, a column amplifier, a CDS circuit, an addition circuit, etc., and amplifies, adds, etc. a signal read out from the pixels of the row selected by the vertical scanning circuit 21 through the vertical signal line.
  • a column amplifier, a correlated double sampling (CDS) circuit, an addition circuit, and the like are arranged for each pixel column or a plurality of pixel columns.
  • the CDS circuit is a circuit that performs CDS signal processing, and performs kTC noise reduction.
  • the horizontal scanning circuit 23 generates a signal for reading out the signals of the reading circuit 22 in order.
  • the output amplifier 24 amplifies and outputs the signal of the column selected by the horizontal scanning circuit 25.
  • the above configuration is only one configuration example of the photoelectric conversion device, and the present embodiment is not limited to this.
  • the readout circuit 22, the horizontal scanning circuit 23, and the output amplifier 24 are disposed one by one above and below the imaging region 25 in order to form an output path of two systems. However, three or more output paths may be provided.
  • the signal output from each output amplifier is synthesized as an image signal by the signal processing unit.
  • the imaging device can be used in an imaging device.
  • the imaging device includes an imaging optical system having a plurality of lenses, and an imaging element that receives light passing through the imaging optical system.
  • the imaging device may include an imaging element and a housing that houses the imaging element, and the housing may include a bonding portion that can be joined to the imaging optical system. More specifically, the imaging device is a digital camera or a digital still camera.
  • the imaging device may include a communication unit that enables the captured image to be viewed from the outside.
  • the communication unit may have a receiving unit that transmits an external signal and a transmitting unit that transmits information to the outside.
  • the signal received by the receiving unit is a signal that controls at least one of the imaging range of the imaging device, the start of imaging, and the end of imaging.
  • the transmission unit may transmit information such as a warning regarding the image, the remaining amount of data capacity, and the remaining amount of power.
  • the receiving unit and the transmitting unit By including the receiving unit and the transmitting unit, it can be used as a network camera.
  • the reaction solution was heated to reflux with stirring for 7 hours. After completion of the reaction, the solution was filtered through a membrane filter to obtain a filtrate. The obtained filtrate was washed with water and dried over sodium sulfate, and the filtrate was concentrated under reduced pressure to obtain a crude product. Next, the crude product was purified by silica gel column chromatography (developing solvent: toluene), and further heated and dispersed / washed with ethanol to obtain 0.6 g of a compound A1 (yield: 27%).
  • Example 2 Synthesis of Exemplified Compound A2 The synthesis was carried out in the same manner as in Example 1 except that the following compound D7 was used instead of compound D2 in Example 1 (1) to obtain Exemplified compound A2. .
  • Example 3 Synthesis of Exemplified Compound A15
  • Compound 7 is used instead of Compound D2
  • Example 1 (2) the following Compound D8 is used instead of Compound D4.
  • the synthesis was carried out in the same manner as in Example 1 to obtain an exemplified compound A15.
  • Example 5 Synthesis of Exemplified Compound A 25
  • the following compound D12 is used in place of compound D9 in Example 4 (1), and the following compound D13 is used in place of compound D11 in Example 4 (2).
  • the compound was synthesized in the same manner as in Example 4 to give an exemplified compound A25.
  • Example 6 Synthesis of Exemplified Compound B3
  • the following compound D7 is used in place of compound D2 in Example 1 (1), and the following compound D14 is used in place of compound D4 in Example 1 (2).
  • the compound was synthesized in the same manner as in Example 1 to give an exemplified compound B3.
  • Example 7 Synthesis of Exemplified Compound C6 The synthesis was carried out in the same manner as in Example 1 except that the following compound D15 was used instead of compound D2 in Example 1 (1) to obtain Exemplified compound C6. .
  • Example 8 Synthesis of Exemplified Compound C17 The synthesis was conducted in the same manner as in Example 1 except that the following compound D16 was used instead of compound D2 in Example 1 (1), to obtain Exemplified compound C17. .
  • Comparative Example 1 Synthesis of Comparative Compound 2 Comparative Example 2 was obtained by the same method as in Example 1 except that the following compound D17 was used instead of compound D6 in Example 1 (3). .
  • Comparative Example 2 Synthesis of Comparative Compound 3
  • the compound D7 was used instead of the compound D2 in Example 1 (1), and the following compound D18 was used instead of the compound D6 in Example 1 (3) Synthesis was carried out in the same manner as in Example 1 to obtain Comparative Compound 3.
  • the comparative compound 3 could not be purified by sublimation, and the device having this comparative compound 3 could not be produced.
  • indium zinc oxide was formed into a film on a Si substrate, and then patterning was performed to obtain a desired shape, whereby a cathode was formed. At this time, the film thickness of the cathode was 100 nm.
  • the substrate on which the cathode was thus formed was used in the next step as a substrate with an electrode.
  • the photoelectric conversion layer is produced by co-evaporation, and the mixing ratio and the film thickness are as shown in the table.
  • the electrode area of the opposing electrode (anode) was 3 mm 2 .
  • a sealing layer was formed of SiN.
  • Example 10 Preparation of Photoelectric Conversion Element
  • Example 1 except that the electron blocking layer, the photoelectric conversion layer, and the hole blocking layer were appropriately changed as shown in Table 2 below.
  • An organic photoelectric conversion element was produced by the same method as in Example 1.
  • Comparative Example 3 deposition of the electron blocking layer was attempted using the non-sublimation purification comparative compound 3, but the deposition rate was unstable.
  • the dark current was measured by measuring the current density when it was allowed to stand in the dark while applying a voltage of 5 V between the cathode and the anode of the photoelectric conversion element.
  • the external quantum efficiency is the photocurrent density that flows when monochromatic light with an intensity of 50 ⁇ W / cm 2 at the maximum absorption wavelength of each device is applied to the device with a voltage of 5 V applied between the cathode and the anode of the photoelectric conversion device. Calculated by measuring
  • the photocurrent density was determined by subtracting the dark current density at the time of light shielding from the current density at the time of light irradiation.
  • White light emitted from a xenon lamp (device name: XB-50101AA-A, manufactured by Ushio Electric Co., Ltd.) as monochromatic light used for measurement is made monochromatic by a monochromator (device name: MC-10N, manufactured by Litoo applied optics) Used.
  • the voltage application to the device and the current measurement were performed using a source meter (device name: R6243, manufactured by Advantest).
  • R6243 manufactured by Advantest
  • the dark current is significantly reduced after the annealing, and the external quantum efficiency can also be maintained.
  • the number of tert-butyl groups is six or more, the decrease in dark current after annealing is large, and good device characteristics are exhibited. It is considered that this is because an amorphous thin film with high thermal stability can be formed.
  • the organic photoelectric conversion element of the comparative example it was confirmed that the dark current increases after annealing.
  • the film quality may be deteriorated due to the crystallization due to the annealing, or the impurity level may be formed when the purity of the deposited film is low. It is considered that the deterioration of the element characteristics was caused due to the
  • the dark current of the organic photoelectric conversion device can be reduced and the thermal stability can be improved by providing the organic compound according to the present invention in the electron blocking layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Light Receiving Elements (AREA)
  • Blocking Light For Cameras (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Indole Compounds (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本開示は、下記一般式[1]で表される有機化合物を提供する。 式[1]において、Ar1及びAr2は、炭素原子数1乃至8のアルキル基、炭素原子数6乃至18の芳香族炭化水素基又は炭素原子数3乃至17の複素芳香環基を表す。前記Ar1及び前記Ar2は同じであっても異なっていてもよい。Ar3及びAr4は、カルバゾリル基を有する置換基である。前記Ar3及び前記Ar4は同じであっても異なっていてもよい。前記Ar1乃至前記Ar4は、置換基を有してよい。ただし、前記Ar1乃至前記Ar4のいずれかは、tert-ブチル基を有する。前記有機化合物の1分子が有するtert-ブチル基の総数は2つ以上である。

Description

有機光電変換素子、撮像素子及び撮像装置
 本発明は、有機光電変換素子、並びにこれを用いた撮像素子及び撮像装置に関する。
 カメラ等に含まれる撮像素子として、平面型受光素子が広く用いられている。この平面型受光素子は、フォトダイオードを有する画素を2次元的に複数配列させてなる素子である。この平面型受光素子が光を受けて発生した信号が読み出され、CCD回路やCMOS回路により映像処理が行われる。従来では、上述の撮像素子には、シリコン等の半導体基板中に光電変換部を形成したものが用いられている。
 一方、光電変換部に有機化合物を用いた素子、即ち、有機光電変換素子の開発が進んでいる。有機化合物が有する高い吸光係数や柔軟性から、撮像素子の高感度化、薄型・軽量化、フレキシブル化等が可能であると期待されている。
 このような撮像素子において、撮像する画像の画質劣化の一因として暗電流が知られている。そして有機光電変換素子の暗電流を低減させる様々な検討が行われている。
 特許文献1には、素子作製後に、高温での熱処理(アニール処理)を行い、暗電流を低減させることが記載されている。
 一方、特許文献2には、下記構造で表される化合物(以下化合物1-A等と呼ぶ。)が有機発光素子に用いられることが記載されている。
Figure JPOXMLDOC01-appb-C000003
 暗電流を低減させるためには、有機光電変換素子に用いられる有機化合物を昇華精製すること、有機光電変換素子の作製後アニール工程を設けることが好ましい。しかし、有機化合物層に高温のアニール処理を行うことは、素子特性の低下につながる、有機化合物の結晶化が懸念される。特許文献1においても、アニール処理後に暗電流は低下せず、むしろ暗電流が増加し、外部量子効率が低下することが好ましい例と併せて記載されている。
 また、特許文献2には、化合物1-Aが記載されているが、そのガラス転移温度は十分ではなく、高温のアニール処理工程において、結晶化による素子特性の低下が懸念される。
 本発明は、上述した課題を解決するためになされるものであり、その目的は、昇華性に優れ、ガラス転移温度が高い有機化合物を提供することにある。
特開2011-187937号公報 韓国公開特許第2015-0086994号公報
 そこで、本発明は、下記一般式[1]で表されることを特徴とする有機化合物を提供する。
Figure JPOXMLDOC01-appb-C000004
 式[1]において、Ar及びArは、炭素原子数1乃至8のアルキル基、炭素原子数6乃至18の芳香族炭化水素基又は炭素原子数3乃至17の複素芳香環基を表す。前記Ar及び前記Arは同じであっても異なっていてもよい。Ar及びArは、下記一般式[2a]乃至[2c]に示される置換基群から選ばれる。前記Ar及び前記Arは同じであっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000005
 前記Ar乃至前記Arは、ハロゲン原子、シアノ基、炭素原子数1乃至8のアルキル基、炭素原子数1乃至8のアルコキシ基から選択される置換基をさらに有してもよい。前記アルキル基はフッ素原子を置換基として有してよい。ただし、前記Ar乃至前記Arのいずれかは、tert-ブチル基を有する。前記有機化合物の1分子が有するtert-ブチル基の総数は2つ以上である。
 本発明によれば、昇華性に優れ、ガラス転移温度が高い有機化合物を提供することができる。
図1は例示化合物A2の分子構造及び比較化合物1の分子構造を示す模式図である。 図2は例示化合物A2の溶液中における吸収スペクトル及び薄膜形成時の吸収スペクトルである。 図3は実施形態の有機光電変換素子の一例を示す概略模式図である。 図4は実施形態の有機光電変換素子を含む画素回路の一例を示す概略図である。 図5は実施形態の有機光電変換素子を含んだ周辺回路図の一例を示す概略図である。
 本発明は、下記一般式[1]に表されることを特徴とする有機化合物である。
Figure JPOXMLDOC01-appb-C000006
 式[1]において、Ar及びArは、炭素原子数6乃至18の芳香族炭化水素基、又は炭素原子数3乃至17の複素芳香環基を表す。Ar及びArは、下記一般式[2a]乃至[2c]に示される置換基群から選ばれる。ただし、前記Ar乃至前記Arのいずれかは、tert-ブチル基を有する。
Figure JPOXMLDOC01-appb-C000007
 Ar及びArで表される芳香族炭化水素基として、フェニル基、ナフチル基、フェナントリル基、フルオレニル基、クリセニル基、トリフェニレニル基、ピレニル基等が挙げられる。昇華性の観点から、比較的分子量の小さい置換基が好ましく、具体的には、フェニル基及びナフチル基が好ましい。
 Ar及びArで表される複素芳香環基として、ピリジル基、ピラジニル基、ピリミジニル基、キノリル基、イソキノリル基、チエニル基、フラニル基、ベンゾチエニル基、ベンゾフラニル基、トリアジニル基等が挙げられる。昇華性及び安定性の観点から、比較的分子量の小さく安定性の高い置換基が好ましく、具体的には、ピリジル基、ベンゾチエニル基及びベンゾフラニル基が好ましい。
 Ar及びArは、一般式[2a]乃至[2c]に示される置換基群から選ばれる置換基である。昇華性を考慮すると、式[2a]乃至[2c]に示される置換基群のうち、比較的分子量の小さい置換基である式[2a]に示される置換基が好ましい。
 Ar乃至Arが有してもよいハロゲン原子として、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。好ましくは、フッ素原子である。
 Ar乃至Arは、シアノ基を置換基として有してよい。
 Ar乃至Arが有してもよいアルキル基としては、炭素原子数1乃至8のアルキル基が挙げられる。具体的には、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基等が挙げられる。好ましくは、メチル基及びtert-ブチル基である。また、アルキル基はフッ素原子を置換基として有してもよい。フッ素原子を有するアルキル基は、トリフルオロメチル基が好ましい。
 Ar乃至Arが有してよいアルコキシ基としては、炭素原子数1乃至8のアルコキシ基が挙げられる。具体的には、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ基、ヘキソキシ基等が挙げられる。好ましくは、メトキシ基である。
 ただし、Ar乃至Arのいずれかは、tert-ブチル基を有し、Ar乃至Arに含まれるtert-ブチル基の総数は2つ以上である。さらに好ましくは、Ar乃至Arに含まれるtert-ブチル基の総数は4つ以上である。
 Ar乃至Arに含まれるtert-ブチル基は、その総数は2つ以上である。これは、tert-ブチル基が1つである場合には、有機化合物の電子ブロック能、および熱安定性を十分に向上できないからである。
 また、Ar乃至Arに含まれるtert-ブチル基は、その総数は4つ以上が好ましい。さらに好ましくは6つ以上である。正孔輸送能を考慮するとtert-ブチル基の個数は10以下であること好ましい。すなわち、本発明に係る有機化合物の1分子に含まれるtert-ブチル基は、2以上10以下であること、4以上10以下であること、6以上10以下であってよい。
 本発明に係る有機化合物は、ガラス転移温度が高く、LUMO準位が低いので、有機電子素子の電子ブロッキング層等に用いることができる。電子ブロッキング層は、電子を受け取りにくい層である。ここで、LUMOとは、最低非占有分子軌道である。LUMO準位が低いとは、LUMO準位が真空準位により近いことを示す。LUMO準位が低いとは、LUMO準位が浅いとも表現される。HOMO(最高被占有分子軌道)準位においても同様である。
 [本発明に係る有機化合物の性質]
 本発明に係る有機化合物は、一般式[1]のベンゼン環にAr乃至Arの置換基を有している。また、Ar及びArは、一般式[2a]乃至[2c]の通り、カルバゾリル基を有している。さらにAr乃至Arのいずれかはtert-ブチル基を有し、Ar乃至Arに含まれるtert-ブチル基の総数は2つ以上である。これにより、一般式[1]の化合物は、下記(1)乃至(6)の性質を有する。
(1)アモルファスな薄膜を形成しやすい
(2)バンドギャップが広く可視光域の吸収が少ない
(3)正孔輸送能が高い
(4)電子ブロッキング能が高い
(5)熱安定性が高い
(6)昇華性に優れる
 以下これらの性質について説明する。
 (1)アモルファスな薄膜を形成しやすい
 本発明に係る有機化合物は、一般式[1]のベンゼン環にAr乃至Arの置換基を有している。これにより、立体障害による反発が生じ、分子全体がねじれた構造となる。ここで、本発明に係る例示化合物A2と、一般式[1]におけるArおよびArが水素原子であり、ArおよびArが式[2a]である図1の比較化合物1と、を分子軌道計算にて分子構造を見積もった。見積もられた分子骨格の平面性を評価するため、それぞれの二面角を比較した。当該二面角は、一般式[1]のベンゼン環とそれと隣り合うベンゼン環の二面角を比較した。図1は、例示化合物A2と、比較化合物1との水平方向から観察した分子構造及び垂直方向から観察した分子構造である。その結果、比較化合物1の二面角は36.8°であるのに対して、本発明に係る例示化合物A2の二面角は47.4°であった。例示化合物A2は、大きくねじれた構造を有していることが分かった。
 このねじれた構造を有する有機化合物は、分子パッキングを抑制することができる化合物である。ここで分子パッキングとは、分子間相互作用により分子同士が重なり合うことをいう。芳香族化合物は分子骨格の平面性が高く、分子間相互作用が強いので、分子パッキングが促進されやすい。一方、カルバゾリル基を有する化合物も、カルバゾリル基自体の平面性が高いため、分子パッキングしやすい化合物である。このような分子パッキングは結晶化を招くため好ましくない。
 分子パッキングを抑制する方法として、置換基を多数設ける方法があるが、分子量の増加を伴うため、昇華性の観点から好ましくない。本発明に係る有機化合物は、分子の基本骨格自体がねじれており、分子構造が非平面性であるため、分子パッキングを抑制できる化合物である。よって、本発明に係る有機化合物は、アモルファスな薄膜を形成しやすい化合物である。
 有機光電変換素子において、高い外部量子効率と低い暗電流を実現するには、アモルファスな膜を形成する化合物を用いることが好ましい。なぜならば、膜中に結晶粒界がある場合、キャリアトラップとなるため、光電変換効率の低下や暗電流の増加を招くからである。このことは、光電変換層と電極との間に配置される電子ブロッキング層や正孔ブロッキング層においても同様である。
 電極に接する有機化合物層は、特にアモルファスな薄膜であることが好ましい。結晶相に伴う凝集状態では、膜が均一性を失っているので、電界が局所的に集中する場合があるためである。このような局所的な電界集中は、リーク電流や感度の面内ばらつきを招くため素子特性の安定性を低下させてしまう。
 以上より、本発明に係る有機化合物は、アモルファスな薄膜を形成しやすい化合物であるため、有機光電変換素子の構成材料として好適に用いることができる。
 尚、分子軌道法計算の計算手法は、現在広く用いられている密度汎関数法(Density Functional Theory,DFT)を用いた。汎関数はB3LYP、既定関数は6-31G*を用いた。尚、分子軌道法計算は、現在広く用いられているGaussian09(Gaussian09,RevisionC.01,M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman,G.Scalmani,V.Barone,B.Mennucci,G.A.Petersson,H.Nakatsuji,M.Caricato,X.Li,H.P.Hratchian,A.F.Izmaylov,J.Bloino,G.Zheng,J.L.Sonnenberg,M.Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa,M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai,T.Vreven,J.A.Montgomery,Jr.,J.E.Peralta,F.Ogliaro,M.Bearpark,J.J.Heyd,E.Brothers,K.N.Kudin,V.N.Staroverov,T.Keith,R.Kobayashi,J.Normand,K.Raghavachari,A.Rendell,J.C.Burant,S.S.Iyengar,J.Tomasi,M.Cossi,N.Rega,J.M.Millam,M.Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo,J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski,R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A.Voth,P.Salvador,J.J.Dannenberg,S.Dapprich,A.D.Daniels,O.Farkas,J.B.Foresman,J.V.Ortiz,J.Cioslowski,and D.J.Fox,Gaussian,Inc.,Wallingford CT,2010.)により実施した。
 (2)バンドギャップが広く可視光域の吸収が少ない
 上述のように、本発明に係る有機化合物は、一般式[1]のベンゼン環に対して、Ar乃至Arの置換基があるので、分子全体がねじれた構造となる。これにより、分子の共役が切れるため、バンドギャップが広い化合物となる。すなわち、バンドギャップが広く、可視光域の吸収が少ない化合物である。ここで、バンドギャップが広いのは、(1)の通り、分子パッキングが抑制されているためでもある。有機化合物は薄膜形成時において、分子パッキングにより見かけ上の共役長が拡大し、吸収波長が長波長化する、すなわちバンドギャップが狭くなる現象が知られている。本発明に係る一般式[1]の化合物は十分に分子パッキングを抑制できる構造であるため、薄膜形成時においてもバンドギャップが狭くなりにくい。
 有機光電変換素子においては、光電変換層により多くの光が到達することが好ましい。例えば、光電変換層よりも光入射側に電子ブロッキング層などが配置されている構成において、電子ブロッキング層が可視域に吸収を持つ場合、光電変換層に到達する光は減少し、外部量子効率は低下してしまう。よって、電子ブロッキング層としては、可視域の吸収が少ない化合物が好ましい。
 一方、電子ブロッキング層が、電極からの電子注入を十分に抑制するためには、層厚はより大きいことが好ましい。層厚が十分に大きくない場合、電圧印加時にトンネル型の電子注入が起こる可能性、また、電極表面の凹凸や異物を十分に被覆できず、物理的なショートやリーク電流が発生する可能性がある。
 また、層厚が十分に大きくない場合、層が均一な厚さになりづらい。その場合、光電変換層と電極とが局所的に近接してしまうため、この近接部に電界が集中して電極からの電荷注入が起こる場合がある。
 よって、電荷ブロック層を構成する化合物としては、層厚を十分に大きくしても可視光域の吸収が小さく、光電変換層へと到達する光を減少させない化合物が好ましい。
 図2は、本発明に係る例示化合物A2の希釈トルエン溶液(点線)及び蒸着膜(実線)の吸収スペクトルである。例示化合物A2の光学バンドギャップを、吸収スペクトルの吸収端から算出したところ、それぞれトルエン溶液から見積もったバンドギャップは3.42eVであり、蒸着膜から見積もったバンドギャップは3.36eVであった。薄膜形成時にはわずかに0.06eVだけ狭くなることが分かった。
 また、薄膜形成時のバンドギャップが3.36eV(波長換算369nm)であることから、例示化合物A2は薄膜形成時においても、可視光域(青:450nm~赤:620nm)における吸収が十分に小さい化合物である。
 以上より、本発明に係る一般式[1]で表される化合物は、薄膜形成時もバンドギャップが広く可視光域の吸収が少ない化合物であるため、有機光電変換素子の構成材料として好適に用いることができる。特に電極に接する層として用いることが好ましい。
 尚、吸収スペクトルの測定方法は、測定装置として、日本分光社製のV-560を用いた。溶液サンプルは石英セルを用いて測定し、蒸着膜サンプルは、5×10-4Pa以下の真空度で石英基板上に蒸着したものを測定に用いた。
 (3)正孔輸送能が高い
 有機光電変換素子において、高い外部量子効率を実現するには、光電変換層で生成された電荷が速やかに電極へと輸送されることが好ましい。例えば、光電変換層で生成された正孔は、電子ブロッキング層等を介して、カソードへと到達する。一方、上述したように、電子ブロッキング層としては、電極からの電子注入を十分に抑制するために層厚が十分に大きいことが好ましい。
 すなわち、電子ブロッキング層としては、十分に大きい層厚であっても、光電変換層で生成した正孔を速やかにカソードへと輸送できることが好ましい。
 本発明に係る有機化合物は、一般式[1]のベンゼン環にAr及びArを有している。Ar及びArはカルバゾリル基を有している。つまり、本発明に係る有機化合物は、分子構造の両端に正孔輸送能に優れるカルバゾリル基を有するため、正孔輸送能が高い化合物である。そのため、有機光電変換素子の電子ブロッキング層として好適に用いることができる。
 (4)電子ブロッキング能が高い
 有機光電変換素子において、電極からの電荷注入を抑制し暗電流を低減するには、電極と電荷ブロッキング層との注入障壁が十分に大きいことが好ましい。例えば、光電変換層とカソードとの間に配置される電子ブロッキング層は、カソードからの電子の注入を十分に抑制するために、LUMO準位が低いことが好ましい。
 (2)において説明したように、本発明に係る有機化合物は、バンドギャップが広い化合物である。また分子構造中に電子供与性のアルキル基であるtert-ブチル基を2つ以上有するためHOMO準位が低い。したがって、バンドが広く、かつHOMO準位が低い化合物である。その結果、この化合物は、LUMO準位が低い化合物である。
 薄膜形成時における有機化合物のLUMO準位は、イオン化ポテンシャルから測定されたHOMO準位から、吸収スペクトルから算出した光学バンドギャップ分のエネルギーを減算することで、算出することができる。
 本発明に係る例示化合物A2の蒸着膜を、5×10-4Pa以下の真空度でAlNd基板上に蒸着することで作製した。理研計器社製のAC-3を用いて作製した膜のイオン化ポテンシャルを測定したところ、6.09eVであった。
 上述したように、光学バンドギャップは3.36eVであることから、LUMO準位は2.73eVと見積もることができ、十分に電子ブロッキング層として機能することが分かる。一方、比較化合物2(特許文献2に記載の化合物1-A)を同様に測定し算出したところ、LUMO準位は2.93eVであった。これらの値から、本発明に係る例示化合物A2に比べて、比較化合物2は電子ブロッキング能が低い。
 以上より、本発明に係る有機化合物は、電子ブロッキング能が高く、有機光電変換素子の電子ブロッキング層として好適に用いることができる。
 (5)熱安定性が高い
 有機光電変換素子において、カラーフィルタ工程やワイヤーボンディング工程などの光センサとして実装工程における高温下での熱安定性が求められる。ここでの熱安定性とは、高温下であっても、熱分解しない、かつアモルファス状態を維持することである。アモルファス状態を維持するためにはガラス転移温度が高いことが好ましい。有機化合物のガラス転移温度は、その分子量に依存するところが大きい。したがって、高温プロセスに耐え得るべく、ガラス転移温度が高い有機化合物を設計する場合には、有機化合物の分子量を増大させることが考えられる。
 一方、後述するように、分子量を増大させることは昇華性を低下させる。そのため、どのような置換基を設けてもよいものではなく、適切な置換基を選択することが好ましい。本発明に係る有機化合物は、少なくとも2つのtert-ブチル基を有するので、ガラス転移温度が高く、かつ昇華性が高い化合物である。
 ここで、本発明に係る例示化合物A2と比較化合物2のガラス転移温度を、示差走査熱量(DSC)測定により評価した。尚、DSC測定の際には、アルミパンに約2mgのサンプルを封入後、融点を超える高温下から急冷することで、サンプルをアモルファス状態にさせた後、10℃/minの昇温速度で昇温させることで、ガラス転移温度を測定した。また測定装置としては、パーキンエルマー社製のPyris1 DSCを用いた。
 測定の結果、例示化合物A2においては、ガラス転移温度が200℃であった。また比較化合物2においては、ガラス転移温度が160℃であった。それぞれのガラス転移温度を表1に分解温度、昇華温度とともに示す。
 以上より、本発明に係る有機化合物は、高い熱安定性を有する。そして、光センサの実装工程に十分に耐えることができる化合物である。これを用いることで高温プロセス後も素子特性を維持できる安定な有機光電変換素子を作製することができる。
 (6)昇華性に優れる
 有機光電変換素子において、有機化合物は昇華精製により高純度化されていることが好ましい。なぜならば、不純物を有する場合、不純物由来のトラップやフリーキャリアが部分的なリーク電流などの原因となり、暗電流の増加につながるためである。
 本発明に係る有機化合物が、昇華性に優れる化合物であることについて説明する。本発明に係る例示化合物A2のtert-ブチル基をフェニル基に置き換えた化合物を比較化合物3とした。比較化合物3の分子量は1017.26であることから、ガラス転移温度は高く、熱安定性に優れる化合物と考えられる。
 本発明に係る例示化合物A2、比較化合物2、比較化合物3、それぞれの昇華精製を試みた。
 昇華精製操作は、1×10-1Paの真空度において、Arフローさせながら、ゆっくり昇温し、昇華精製を開始させ、十分な昇華速度に達したときの温度を昇華温度とした。
 例示化合物A2は410℃において、昇華することができた。すなわち、A2の昇華温度は410℃である。一方、比較化合物3は470℃において一部昇華物を得ることができたが、熱分解による純度低下が確認され、昇華精製することができなかった。これは、比較化合物3の昇華温度と熱分解温度が近いことが原因であると考えられる。
 そこで、本発明に係る例示化合物A2と比較化合物2及び3のTG/DTA測定を行い、重量減少が5%に達した時の温度を分解温度とした。本発明に係る例示化合物A2は分解温度が480℃であった。一方、比較化合物2及び3は、分解温度が480℃であった。
 例示化合物A2は、昇華温度と分解温度との温度差が70℃であるのに対して、比較化合物3の当該温度差は10℃であり、比較化合物3の当該温度差は小さい。すなわち、昇華温度と熱分解温度が近い比較化合物3は、有機光電変換素子の構成材料として適さない材料である。
 よって、本発明に係る有機化合物は、tert-ブチル基を2つ以上有するために昇華温度と熱分解温度の差が広く、昇華精製による高純度化が可能な化合物である。
Figure JPOXMLDOC01-appb-T000008
 よって、本発明に係る有機化合物は、上記(1)乃至(6)の性質を有する化合物であるため、比較化合物1乃至3と比較して、昇華性に優れ、ガラス転移温度が高い有機化合物である。そして、有機光電変換素子に好適に用いることができる。特に、一般式[1]の化合物は電子ブロッキング層に好適に用いることができる。
 また一般式[1]の化合物を、有機光電変換素子の有機層として用いる場合、一般式[1]の化合物を含む層を形成する方法としては、スピンコート法を採用してもよいが、真空下における蒸着(真空蒸着法)を利用するのが好ましい。真空蒸着法を利用すると、高純度な薄膜が形成できるからである。真空蒸着法を利用する場合、一般に、層の構成材料となる有機化合物の分子量が大きいほど高温が必要とされる。そして、必要とされる温度があまりにも高い分解温度に達し、構成材料となる有機化合物の熱分解等が起こりやすい。
 [本発明に係る有機化合物の例示]
 以下、一般式[1]の化合物の具体例を示す。ただし本発明において、一般式[1]の化合物は、これら具体例に限定されるものではない。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 例示した化合物のうち、A群の例示化合物は、式[1]中のAr及びArが、置換あるいは無置換の炭素原子数6乃至18の芳香族炭化水素基である。A群の例示化合物は、Ar及びArが芳香族炭化水素基なので、熱安定性や昇華性に優れる化合物である。
 例示化合物A1乃至A12は、式[1]中のAr及びArが、フェニル基であり、式[1]中のAr及びArが一般式[2a]であるため、特に熱安定性及び昇華性に優れる化合物である。
 また、例示化合物A13乃至A16は、式[1]中のAr及びArが、一般式[2b]または[2c]であるため、熱安定性に優れる化合物である。
 さらに、例示化合物A25乃至A28はアルキル基を多く有し、特に直鎖アルキル基(例えば、n-ブチル基)や環状アルキル基(例えば、シクロヘキシル基)を有しているため溶解性に優れる。言い換えれば、炭素原子数4以上の直鎖または環状のアルキル基を有する。そのため、塗布工程にて製膜する際に好適に用いることができる化合物である。
 B群の例示化合物は、式[1]中のAr乃至Arのいずれかが、ベンゼン骨格のメタ位と結合している、またはナフタレン骨格のペリ位と結合している。そのため、分子全体のねじれ構造が大きい化合物である。即ち、B群の例示化合物は、置換位置による分子構造のねじれ部分が多く、アモルファス性の高い有機化合物層を形成するという点において、特に優れる化合物である。なおベンゼン骨格とは、カルバゾリル基を構成するベンゼン環を含む概念である。カルバゾリル基の3位と結合している例示化合物B12は、ベンゼン骨格のメタ位で、一般式[1]に記載のベンゼン環が結合している化合物である。
 C群の例示化合物は、式[1]中のAr及びArのいずれかが、置換あるいは無置換の炭素原子数3乃至17の複素芳香環基である。ここで、当該複素芳香環が窒素原子を有する場合、この窒素原子が有する電子吸引性により、化合物自体の酸化電位が高くなる(換言すると、酸化電位が深くなる)ため、酸化に対して安定な化合物である。
 また当該複素芳香環が硫黄原子や酸素原子を有する場合、硫黄原子や酸素原子が多くの非共有電子対を有するため、分子間の相互作用が大きくなり、キャリア輸送能に優れる化合物となる。
 即ち、C群の例示化合物は、電子的な効果による安定性やキャリア輸送性という点において、特に優れる化合物である。また、正孔ブロッキング層にも用いることができる。
 例示した化合物のうち、A1乃至A20、A26乃至A31、B1乃至B12、C3乃至C18はtert-ブチル基の総数が4つ以上であり、上述した性質(1)乃至(2)、(4)乃至(6)が高い。そのため、有機光電変換素子用材料として好ましい。
 また、例示した化合物のうち、A2乃至A6、A10乃至A12、A15乃至A17、B1乃至B5、C7乃至C9はtert-ブチル基の総数が6つ以上であり、さらに上記性質を向上させるため、好適に用いることができる化合物である。
 [実施形態に係る光電変換素子]
 (1)光電変換素子
 図3は、本実施形態に係る光電変換素子の一例を示す断面模式図である。光電変換素子には、アノード5とカソード4との間に第一の有機化合物層1が配置されている。第一の有機化合物層1は、光を電荷に変換する光電変換部を形成する有機化合物層である。このことから、第一の有機化合物層は光電変換層と呼ぶこともできる。
 光電変換素子が複数の層を有する場合、複数の層は、アノードからカソードの方向に積層されていることが好ましい。
 光電変換素子は、第一の有機化合物層1とカソード4の間に配置されている第二の有機化合物層2、第一の有機化合物層1とアノード5との間に配置されている第三の有機化合物層3、を有してよい。
 カソードの上には保護層7、波長選択部8、マイクロレンズ9が配置されている。アノードには、読み出し回路6が接続されている。光電変換素子は不図示の基板の上に構成されてよい。
 光電変換素子は、光電変換を行う場合に、アノードとカソードとの間に電圧を加えてもよい。電圧は、有機化合物層の総膜厚にもよるが、1V以上から15V以下程度が好ましい。より好ましくは2V以上から10V以下程度が好ましい。
 (2)基板
 実施形態の有機光電変換素子は、基板を有していてもよい。基板として、例えば、ガラス基板、フレキシブル基板、半導体基板等が挙げられる。
 また、実施形態に係る光電変換素子は、半導体基板を有していてよい。半導体基板は、不純物の注入により電荷蓄積部、フローティングディフュージョン(FD)が形成できるものであれば、構成元素は限定されない。例えば、例えば、Si、GaAs、GaP等があげられる。特にSiが好ましい。
 半導体基板はN型のエピタキシャル層であってよい。その場合、半導体基板にP型ウェル、N型ウェル、P型半導体領域、N型半導体領域が配される。
 電荷蓄積部は、イオン注入によって半導体基板に形成されたN型半導体領域あるいはP型半導体領域であり、光電変換部で発生した電荷を蓄積する領域である。
 電子を蓄積する場合には、半導体基板表面にN型半導体領域が形成してもよいし、あるいは基板表面からPN構造の蓄積用のダイオードを形成してもよい。いずれの場合もN型半導体領域に電子を蓄積することができる。
 一方、正孔を蓄積する場合には、半導体基板にP型半導体領域が形成してもよいし、あるいは基板表面からNP構造の蓄積用のダイオードを形成してもよい。いずれの場合もP型半導体領域に電子を蓄積することができる。
 蓄積された電荷は、電荷蓄積部からFDへと転送される。この電荷の転送は、ゲート電極によって、制御してよい。有機化合物層で生成された電荷は、電荷蓄積部に蓄積され、電荷蓄積部に蓄積された電荷はFDに転送される。その後、後述の増幅トランジスタにより電流に変換される。
 また、電荷蓄積部がPN接合を形成している場合は、上記光電変換部からの漏れ光により光電変換してもよい。
 電荷蓄積部を有さずに、電荷の出力部を有してよい、出力部を有する場合は、電極からFDを介さずに増幅トランジスタ等に伝わる。
 (3)アノード
 アノードは、光電変換層で発生した電荷のうち電子を捕集する電極である。撮像素子の構成においては画素電極であってよい。アノードは、カソードよりも画素回路側に配置されてよい。アノードはその機能から電子捕集電極と呼ぶことができる。
 アノードの構成材料は、ITO、酸化亜鉛インジウム、SnO2、ATO(アンチモンドープ酸化スズ)、ZnO、AZO(Alドープ酸化亜鉛)、GZO(ガリウムドープ酸化亜鉛)、TiO2、FTO(フッ素ドープ酸化スズ)等が挙げられる。
 (4)カソード
 カソードは、光電変換層で発生した電荷のうちの正孔を捕集する電極である。撮像素子の構成においては画素電極であってもよい。
 具体的には、金属、金属酸化物、金属窒化物、金属硼化物、有機導電性化合物、これらを複数種組み合わせた混合物等が挙げられる。さらに具体的には、アンチモンやフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム等の導電性金属酸化物、金、銀、マグネシウム、クロム、ニッケル、チタン、タングステン、アルミ等の金属材料及びこれら金属材料の酸化物や窒化物等の導電性化合物(例えば、窒化チタン(TiN)等)、さらにこれらの金属と導電性金属酸化物との混合物又は積層物、ヨウ化銅、硫化銅等の無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロール等の有機導電性材料、及びこれらとITO又は窒化チタンとの積層物等が挙げられる。カソードの構成材料として、特に好ましくは、マグネシウムと銀との合金、窒化チタン、窒化モリブデン、窒化タンタル及び窒化タングステンから選択される材料である。
 画素電極はアノード、カソードのいずれであってもよい。光取出し側の電極は透明性が高いことが好ましい。具体的には、80%以上である。
 また、電極は光入射側の電極を上部電極と呼ぶこともできる。その場合、他方は下部電極と呼ばれる。
 上述した二種類の電極(アノード、カソード)の形成方法は、それぞれ使用される電極材料との適正を考慮して適宜選択することができる。具体的には、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式等により形成することができる。
 ITOを用いて電極を形成する場合、電子ビーム法、スパッタリング法、抵抗加熱蒸着法、化学反応法(ゾル-ゲル法等)、酸化インジウムスズの分散物の塗布等の方法で電極を形成することができる。
 また係る場合、形成された電極(ITO電極)の表面について、UV-オゾン処理、プラズマ処理等を施してもよい。
 TiNを用いて電極を形成する場合、反応性スパッタリング法をはじめとする各種の成膜方法を用いることができる。また係る場合、形成された電極(TiN電極)にアニール処理、UV-オゾン処理、プラズマ処理等を施してもよい。
 (5)第一の有機化合物層
 第一の有機化合物層は、上述の通り、光電変換層と呼ぶこともできる。実施形態に係る有機光電変換素子の光電変換層の構成材料について説明する。光電変換層としては、光吸収率が高いこと、受光した光を効率よく電荷分離すること、すなわち光電変換効率が高いことが好ましい。
 また生成した電荷、すなわち電子および正孔を速やかに電極へ輸送できることが好ましい。また結晶化などの膜質の低下を抑制するために、ガラス転移温度が高い材料が好ましい。膜質向上の観点から、ガラス転移温度の高い材料との混合層としてもよい。
 第一の有機化合物層は、複数種類の有機化合物を有してもよい。第一の有機化合物層が複数種類の有機化合物を有する場合、複数種類の有機化合物が1つの層に混合されてもよいし、複数種類の有機化合物が、複数の層に含まれてもよい。
 第一の有機化合物層は、p型有機半導体又はn型有機半導体を含有した層であることが好ましく、有機p型化合物と、有機n型化合物とを混合したバルクへテロ層(混合層)を少なくとも一部に含むことがより好ましい。
 第一の有機化合物層がバルクへテロ層を有することにより、光電変換効率(感度)を向上させることができる。最適な混合比率でバルクへテロ層を有することにより、第一の有機化合物層1の電子移動度、正孔移動度を高くすることができ、光電変換素子の光応答速度を高速にすることができる。
 第一の有機化合物層は、フラーレンまたはフラーレン類縁体をn型有機半導体として含むことが好ましい。複数のフラーレン分子またはフラーレン類縁体分子により、電子の経路が形成されるため、電子輸送性が向上し、光電変換素子の応答性が向上する。
 フラーレンまたはフラーレン類縁体の含有量は、光電変換層の全量を100%とした場合、20体積%以上80体積%以下であることが好ましい。
 フラーレン類縁体は閉殻空洞状の多数の炭素原子のみで構成される、クラスターの総称であり、C60や高次のフラーレンであるC70、C74、C76、C78等がある。これらの材料は1種類でも複数で用いてもよい。電荷分離と電子を運搬する材料として用いられる材料はフラーレン類縁体だけでなく、その他複数の材料を同時に用いてもよい。フラーレン以外の材料としては、n型有機半導体である知られているNTCDIなどのナフタレン化合物、PTCDIなどのペリレン化合物、SubPcなどのフタロシアニン化合物、DCV3Tなどのチオフェン化合物が挙げられる。
 フラーレン類縁体は、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC80、フラーレンC82、フラーレンC84、フラーレンC90、フラーレンC96、フラーレンC240、フラーレン540、ミックスドフラーレン、フラーレンナノチューブが挙げられる。
Figure JPOXMLDOC01-appb-C000012
 光電変換素子が有するp型有機半導体は、以下の有機化合物を挙げることができる。以下の構造式にその機能を損なわない範囲で、アルキル基等の置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000013
 (6)第二の有機化合物層
 第二の有機化合物層は、カソードから第一の有機化合物層へ電子が流れ込むことを抑制する層であり、電子親和力が小さい(真空準位から近い)ことが好ましい。電子親和力が小さいことはLUMOが小さいということもできる。第二の有機化合物層は、その機能から電子ブロッキング層ということもできる。第二の有機化合物層2は、複数層であってもよいし、バルクへテロ層(混合層)を用いてもよい。
 電子ブロッキング層には、本発明に係る有機化合物を有していることが好ましい。カソードと電子ブロッキング層との間に、他の機能層を有していてよい。
 (7)第三の有機化合物層
 第三の有機化合物層は、アノードから第一の有機化合物層へ正孔が流れ込むことを抑制する層であり、イオン化ポテンシャルが大きい(真空準位から遠い)ことが好ましい。イオン化ポテンシャルが大きいことは、HOMOが高いということもできる。第三の有機化合物層は、その機能から正孔ブロッキング層ということもできる。第三の有機化合物層3は複数層であってもよいし、バルクへテロ層(混合層)を用いてもよい。アノードと正孔ブロッキング層との間に、他の機能層を有していてよい。
 (8)保護層
 保護層7は、電極の上部に形成する層であり、絶縁層であることが好ましい。保護層は単一の材料で形成されていても、複数の材料で構成されていてもよい。複数の材料で構成される場合は、複数の層を積層しても、複数の材料が混合された層であってもよい。保護層の構成材料としては、例えば、樹脂等の有機材料、窒化シリコン、酸化シリコン、酸化アルミニウム等の無機材料が挙げられる。スパッタリング、ALD法(原子層堆積法)などで形成することができる。窒化シリコンはSiNx、酸化シリコンはSiOxとも記載される。Xは、元素の比を表わす数値である。
 保護層7の上に平坦化層を設けてもよい。保護層の表面状態により、波長選択部に影響を与えないために設けられるものである。平坦化層は、公知の製造方法、塗布法、真空蒸着法などで形成することができる。必要に応じてCMP等を行って製造してもよい。
 平坦化層は例えば、樹脂等の有機材料、SiNxやSiOx、Al2O3等の無機材料が挙げられ、有機化合物、またはそれらの混合物で構成されてよい。形成方法は、保護層と同じ方法をあげることができる。
 (9)波長選択部
 波長選択部8は、平坦化層の上に設けられる。平坦化層を有さない場合は、保護層の上に設けられる。波長選択部は、光電変換素子の光入射側に配置されるということもできる。波長選択部は、例えば、カラーフィルタ、シンチレーター、プリズム等があげられる。
 カラーフィルタは、所定の波長の光を、他の波長の光よりも多く透過させるフィルタである。例えば、RGBの3種類を用いて、可視光の全域に対応することができる。RGBの3種類を用いる場合、カラーフィルタの配置は、ベイヤー配列、デルタ配列などを用いてよい。また、波長選択部は、所定の波長の光のみを分離するプリズムであってもよい。
 なお、波長選択部8が配される位置は図1に示された位置に限られない。波長選択部は被写体あるいは光源から光電変換層1までの光路のいずれかに配置されればよい。
 (10)レンズ
 マイクロレンズ9は、外部からの光を光電変換層へ集光するための光学部材である。図1においては、半球形状のレンズを例示しているが、形状はこれに限られない。
 マイクロレンズは、例えば、石英、シリコン、有機樹脂等で構成される。集光の障害にならない限りにおいて、形状、材質は限定されない。
 (11)その他の構成
 光電変換素子は、電極の上に他の光電変換素子を有してもよい。他の光電変換素子を異なる波長の光を光電変換する光電変換素子とすることで、基板上の同じまたはほぼ同じ面内位置で、異なる波長の光を検出することができる。
 また、有機化合物層とは別の波長の光を光電変換する別種の有機化合物層をさらに有し、前記有機化合物層と、前記別種の有機化合物層とが積層されていてもよい。この構成とすることで、光電変換素子を積層する構成と同様に基板上の同じ位置、ほぼ同じ位置で、異なる波長の光を検出することができる。
 [実施形態に係る撮像素子、それを有する撮像装置]
 (1)撮像素子
 実施形態に係る光電変換素子は、撮像素子に用いることができる。撮像素子は、受光画素である複数の光電変換素子と、それぞれの光電変換素子に接続されている読み出し回路と、当該読み出し回路に接続されている信号処理回路とを有する。読み出された電荷に基づく情報が撮像素子に接続されている信号処理部に伝えられる。信号処理部は、CMOSセンサやCCDセンサがあげられる。それぞれの受光画素で取得した情報が、信号処理部に集められることで画像を得ることができる。
 撮像素子は、複数の光電変換素子を有し、複数の光電変換素子は、それぞれが別種のカラーフィルタを有してよい。複数種類のカラーフィルタは、それぞれ異なる波長の光を透過させるカラーフィルタである。具体的には、RGBのカラーフィルタをそれぞれ有してよい。
 複数の光電変換素子は、光電変換層を共通層として有してよい。共通層とは、一の光電変換素子が有する光電変換層と、それに隣接する光電変換素子の光電変換層がつながっていることを表す。
 図4は、実施形態に係る光電変換素子を含む画素の回路図である。光電変換装置10は、nodeA20で共通配線19に接続される。共通配線はグランドに接続されてよい。
 画素18は、光電変換素子10と、光電変換部で生じた信号を読み出すための読み出し回路を含んでよい。読み出し回路は、例えば光電変換素子と電気的に接続した転送トランジスタ11、光電変換素子10と電気的に接続されたゲート電極を有する増幅トランジスタ13、情報が読み出される画素を選択する選択トランジスタ14、光電変換素子にリセット電圧を供給するリセットトランジスタ12を含んでよい。
 転送トランジスタ11は、ゲート電圧により転送を制御されてよい。リセットトランジスタは、そのゲートに印加される電圧によりリセット電位の供給を制御されてよい。選択トランジスタはそのゲート電圧により選択または非選択の状態をとなる。
 転送トランジスタ11、リセットトランジスタ12、増幅トランジスタ13は、nodeB21で接続されている。構成によっては転送トランジスタを有さなくてもよい。
 リセットトランジスタ12はnodeBの電位をリセットする電圧を供給するトランジスタである。リセットトランジスタのゲートに信号を印加することで電圧の供給を制御できる。構成によってはリセットトランジスタを有さなくてもよい。
 増幅トランジスタ13は、nodeBの電位に応じた電流を流すトランジスタである。増幅トランジスタは信号を出力する画素を選択する選択トランジスタ14に接続されている。選択トランジスタ14は、電流源16、列出力部15に接続されており、列出力部15は信号処理部に接続されている。
 選択トランジスタ14は、垂直出力信号線17に接続されている。垂直出力信号線17は、電流源16、列出力部15に接続されている。
 図5は、実施形態に係る撮像素子を表す概略図である。撮像素子28は、複数の画素が2次元に配置されている撮像領域27と、周辺領域26とを有する。撮像領域以外領域は周辺領域である。周辺領域には、垂直走査回路25、読み出し回路22、水平走査回路23、出力アンプ24を有し、出力アンプは信号処理部27に接続されている。信号処理部は、読み出し回路に読みだされた情報により信号処理を行う信号処理部であり、CCD回路、CMOS回路等があげられる。
 読み出し回路22は、例えば、列アンプ、CDS回路、加算回路等を含み、垂直走査回路21によって選択された行の画素から垂直信号線を介して読み出された信号に対して増幅、加算等を行う。列アンプ、相関二重サンプリング(CDS)回路、加算回路等は、例えば、画素列又は複数の画素列毎に配置される。CDS回路は、CDS信号処理を行う回路であり、kTCノイズ低減を行う。水平走査回路23は、読み出し回路22の信号を順番に読み出すための信号を生成する。出力アンプ24は、水平走査回路25によって選択された列の信号を増幅して出力する。
 以上の構成は、光電変換装置の一つの構成例に過ぎず、本実施形態は、これに限定されるものではない。読み出し回路22と水平走査回路23と出力アンプ24とは、2系統の出力経路を構成するため、撮像領域25を挟んで上下に1つずつ配置されている。しかし、出力経路は3つ以上設けられていてもよい。各出力アンプから出力された信号は信号処理部で画像信号として合成される。
 (2)撮像装置
 実施形態に係る撮像素子は、撮像装置に用いることができる。撮像装置は、複数のレンズを有する撮像光学系と、撮像光学系を通過した光を受光する撮像素子と、を有する。また、撮像装置は、撮像素子と、撮像素子を収容する筐体と、を有し、筐体は撮像光学系と接合可能な接合部を有してよい。撮像装置はより具体的には、デジタルカメラまたはデジタルスチルカメラである。
 また、撮像装置は、撮像した画像を外部から閲覧可能とする通信部を有してよい。通信部は、外部からの信号をする受信部、外部へ情報を送信する送信部を有してよい。受信部が受信する信号は、撮像装置の撮像範囲、撮像の開始、撮像の終了の少なくともいずれかを制御する信号である。また、送信部は、撮像した画像の他に、画像に関する警告、データ容量の残量、電源の残量等の情報を送信してよい。
 受信部や送信部を有することで、ネットワークカメラとして用いることができる。
 [実施例1]例示化合物A1の合成
 下記に示される合成スキームに従って例示化合物A1を合成した。
Figure JPOXMLDOC01-appb-C000014
 (1)化合物D3の合成
 300mLナスフラスコに、以下に示す試薬、溶媒を投入した。
化合物D1:2.00g(4.10mmol)
化合物D2:1.83g(10.3mmol)
テトラキス(トリフェニルホスフィン)パラジウム(0):95mg(0.08mmol)
トルエン:40ml
エタノール:20ml
2M 炭酸セシウム水溶液:40ml
 次に、窒素下において、反応溶液を撹拌しながら7時間加熱還流させた。反応終了後、クロロホルムにて抽出操作を行った。この抽出操作によって得られた有機層を硫酸ナトリウムで乾燥させた後、この有機層を減圧濃縮することで粗生成物を得た。次に、この粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム/ヘプタン=1/10)で精製することにより、化合物D3を1.55g得た(収率75%)。
 (2)化合物D5の合成
 300mL三口フラスコに、以下に示す試薬、溶媒を投入した。
化合物D3:1.50g(3.00mmol)
化合物D4:2.49g(15.9mmol)
テトラキス(トリフェニルホスフィン)パラジウム(0):92mg(0.08mmol)
トルエン:40ml
エタノール:20ml
2M 炭酸セシウム水溶液:40ml
 次に、窒素下において、反応溶液を撹拌しながら7時間加熱還流させた。反応終了後、ロロホルムにて抽出操作を行った。この抽出操作によって得られた有機層を硫酸ナトリウムで乾燥させた後、この有機層を減圧濃縮することで粗生成物を得た。次に、この粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム/ヘプタン=1/10)で精製することにより、化合物D4を1.25g得た(収率74%)。
 (3)化合物A1の合成
 300mL三口フラスコに、以下に示す試薬、溶媒を投入した。
化合物D4:1.20g(2.13mmol)
化合物D5:2.75g(9.85mmol)
トリス(ジベンジリデンアセトン)ジパラジウム(0):150mg(0.16mmol)
Xphos:234mg(0.49mmol)
脱水キシレン:90ml
ナトリウム t‐ブトキシド:945mg(9.85mmol)
 次に、窒素下において、反応溶液を撹拌しながら7時間加熱還流させた。反応終了後、メンブランフィルターでろ過してろ液を得た。得られたろ液を水で洗浄し、硫酸ナトリウムで乾燥させた後、このろ液を減圧濃縮することで粗生成物を得た。次に、この粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン)で精製し、さらにエタノールで加熱分散洗浄することにより、化合物A1を0.6g得た(収率27%)。
 以下の方法により、得られた例示化合物A1の同定を行った。
 [MALDI-TOF-MS(マトリックス支援イオン化-飛行時間型質量分析)(Bruker社製Autoflex LRF)]
 実測値:m/z=937.47、計算値:C70H68N2=937.30
 [熱物性 測定]
 得られた例示化合物A2について、DSC測定によりガラス転移温度を測定したところ、ガラス転移温度180℃であった。
 [実施例2]例示化合物A2の合成
 実施例1(1)において、化合物D2の代わりに下記化合物D7を使用する以外は、実施例1と同様の方法により合成を行い、例示化合物A2を得た。
Figure JPOXMLDOC01-appb-C000015
 得られた化合物の同定および熱物性測定を行った。結果を以下に示す。
 [MALDI-TOF-MS]
 実測値:m/z=1049.84、計算値:C70H68N2=1049.51
 [ガラス転移温度 測定]
 ガラス転移温度:200℃
 [実施例3]例示化合物A15の合成
 実施例1(1)において、化合物D2の代わりに化合物7を使用し、実施例1(2)において、化合物D4の代わりに下記化合物D8を使用する以外は、実施例1と同様の方法により合成を行い、例示化合物A15を得た。
Figure JPOXMLDOC01-appb-C000016
 得られた化合物の同定および熱物性測定を行った。結果を以下に示す。
 [MALDI-TOF-MS]
 実測値:m/z=1149.56、計算値:C86H68NO2=1149.63
 [ガラス転移温度 測定]
 ガラス転移温度:230℃
 [実施例4]例示化合物A9の合成
 下記に示される合成スキームに従って例示化合物A9を合成した。
Figure JPOXMLDOC01-appb-C000017
 (1)化合物D10の合成
 300mLナスフラスコに、以下に示す試薬、溶媒を投入した。
化合物D1:2.00g(4.10mmol)
化合物D9:1.83g(10.3mmol)
テトラキス(トリフェニルホスフィン)パラジウム(0):95mg(0.08mmol)
トルエン:40ml
エタノール:20ml
2M 炭酸セシウム水溶液:40ml
 次に、窒素下において、反応溶液を撹拌しながら7時間加熱還流させた。反応終了後、ロロホルムにて抽出操作を行った。この抽出操作によって得られた有機層を硫酸ナトリウムで乾燥させた後、この有機層を減圧濃縮することで粗生成物を得た。次に、この粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム/ヘプタン=1/10)で精製することにより、化合物D3を1.55g得た(収率75%)。
 (2)化合物A9の合成
 300mL三口フラスコに、以下に示す試薬、溶媒を投入した。
化合物D10:1.50g(3.00mmol)
化合物D11:2.49g(15.9mmol)
テトラキス(トリフェニルホスフィン)パラジウム(0):92mg(0.08mmol)
トルエン:40ml
エタノール:20ml
2M 炭酸セシウム水溶液:40ml
 次に、窒素下において、反応溶液を撹拌しながら7時間加熱還流させた。反応終了後、ロロホルムにて抽出操作を行った。この抽出操作によって得られた有機層を硫酸ナトリウムで乾燥させた後、この有機層を減圧濃縮することで粗生成物を得た。次に、この粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム/ヘプタン=1/10)で精製することにより、化合物A9を1.25g得た(収率74%)。
 得られた化合物の同定および熱物性測定を行った。結果を以下に示す。
 [MALDI-TOF-MS]
 実測値:m/z=937.26、計算値:C70H68N2=937.30
 [ガラス転移温度 測定]
 ガラス転移温度:190℃
 [実施例5]例示化合物A25の合成
 実施例4(1)において、化合物D9の代わりに下記化合物D12を使用し、実施例4(2)において、化合物D11の代わりに下記化合物D13を使用する以外は、実施例4と同様の方法により合成を行い、例示化合物A25を得た。
Figure JPOXMLDOC01-appb-C000018
 得られた化合物の同定および熱物性測定を行った。結果を以下に示す。
 [MALDI-TOF-MS]
 実測値:m/z=937.28、計算値:C78H84N2=1049.51
 [ガラス転移温度 測定]
 ガラス転移温度:190℃
 [実施例6]例示化合物B3の合成
 実施例1(1)において、化合物D2の代わりに下記化合物D7を使用し、実施例1(2)において、化合物D4の代わりに下記化合物D14を使用する以外は、実施例1と同様の方法により合成を行い、例示化合物B3を得た。
Figure JPOXMLDOC01-appb-C000019
 得られた化合物の同定および熱物性測定を行った。結果を以下に示す。
 [MALDI-TOF-MS]
 実測値:m/z=1049.73、計算値:C78H84N2=1049.51
 [ガラス転移温度 測定]
 ガラス転移温度:190℃
 [実施例7]例示化合物C6の合成
 実施例1(1)において、化合物D2の代わりに下記化合物D15を使用する以外は、実施例1と同様の方法により合成を行い、例示化合物C6を得た。
Figure JPOXMLDOC01-appb-C000020
 得られた化合物の同定および熱物性測定を行った。結果を以下に示す。
 [MALDI-TOF-MS]
 実測値:m/z=1049.51、計算値:C74H68N2S2=1049.48
 [ガラス転移温度 測定]
 ガラス転移温度:190℃
 [実施例8]例示化合物C17の合成
 実施例1(1)において、化合物D2の代わりに下記化合物D16を使用する以外は、実施例1と同様の方法により合成を行い、例示化合物C17を得た。
Figure JPOXMLDOC01-appb-C000021
 得られた化合物の同定および熱物性測定を行った。結果を以下に示す。
 [MALDI-TOF-MS]
 実測値:m/z=939.21、計算値:C68H66N4=939.28
 [ガラス転移温度 測定]
 ガラス転移温度:190℃
 [比較例1]比較化合物2の合成
 実施例1(3)において、化合物D6の代わりに下記化合物D17を使用する以外は、実施例1と同様の方法により合成を行い、比較化合物2を得た。
Figure JPOXMLDOC01-appb-C000022
 得られた化合物の同定および熱物性測定を行った。結果を以下に示す。
 [MALDI-TOF-MS]
 実測値:m/z=712.41、計算値:C54H66N2=712.88
 [ガラス転移温度 測定]
 ガラス転移温度:160℃
 [比較例2]比較化合物3の合成
 実施例1(1)において、化合物D2の代わりに化合物D7を使用し、実施例1(3)において、化合物D6の代わりに下記化合物D18を使用する以外は、実施例1と同様の方法により合成を行い、比較化合物3を得た。
Figure JPOXMLDOC01-appb-C000023
 得られた化合物の同定を行った。結果を以下に示す。
 [MALDI-TOF-MS]
 実測値:m/z=1017.56、計算値:C78H52N2=1017.26
 しかし、比較化合物3を昇華精製することができず、この比較化合物3を有する素子を作製するには至らなかった。
 [実施例9]光電変換素子の作製
 基板上に、カソード、電子ブロッキング層(第一の有機化合物層)、光電変換層(第二の有機化合物層)、正孔ブロッキング層(第三の有機化合物層)、及びアノードが順次形成されている有機光電変換素子を、以下に説明する方法により作製した。
 まずSi基板の上に、インジウム亜鉛酸化物を成膜した後、所望の形状となるようにパターニング加工を施すことにより、カソードを形成した。このときカソードの膜厚を100nmとした。このようにカソードが形成された基板を電極付基板として、次の工程で使用した。
 次に、この電極付基板上に、下記表2に示される有機化合物層及び電極を連続成膜した。また、光電変換層は共蒸着により作製し、混合比および膜厚は表の通りである。尚、このとき対向する電極(アノード)の電極面積が3mmとなるようにした。その後、SiNにより封止層を形成した。
Figure JPOXMLDOC01-appb-T000024
 [実施例10乃至19、比較例3乃至5]光電変換素子の作製
 実施例1において、電子ブロッキング層、光電変換層、正孔ブロッキング層を、下記表2に示すように適宜変更したこと以外は、実施例1と同様の方法により有機光電変換素子を作製した。尚、比較例3においては、未昇華精製の比較化合物3を用いて、電子ブロッキング層の蒸着を試みたが、蒸着レートは不安定であった。
Figure JPOXMLDOC01-appb-T000025
 [光電変換素子の特性の評価]
 実施例及び比較例にて得られた素子について、光電変換素子の特性を測定・評価した。
 (1)電流特性
 具体的には、素子に電圧5Vを印加した際に素子に流れる電流を確認した。その結果、実施例にて作製した有機光電変換素子においては、明所での電流と暗所での電流との比((明所での電流)/(暗所での電流))がいずれも100倍以上であった。このため、各実施例にてそれぞれ作製した有機光電変換素子はうまく機能していることが確認された。
 (2)量子収率(外部量子収率)と暗電流の評価
 得られた有機光電変換素子について、アニール処理前後における暗電流と外部量子効率の変化について評価を行った。アニール前の暗電流を1としたときに、アニール後の暗電流が0.5未満の時は、「◎」、0.5以上1未満の時は「○」、1.0以上のときを「×」と判定し、アニールによる暗電流低減効果について評価した。
 また、アニール前の外部量子効率を1としたときに、アニール後の外部量子効率が1.0以上のときを「◎」、0.8以上1.0未満の時は「○」、0.8未満の時は「×」とし、アニール後における素子特性の安定性を評価した。アニール処理は、大気下において170℃のホットプレート上に30分静置することで行った。
 暗電流は、光電変換素子のカソードとアノードとの間に5Vの電圧を印加した状態で暗所に静置したときに流れる電流密度を測定した。
 外部量子効率は、光電変換素子のカソードとアノードとの間に5Vの電圧を印加した状態で、各素子の極大吸収波長における、強度50μW/cm2の単色光を素子へ照射した時に流れる光電流密度を測定することで算出した。
 光電流密度は、光照射時の電流密度から遮光時での暗電流密度を差し引いて求めた。測定に用いた単色光として、キセノンランプ(装置名:XB-50101AA-A、ウシオ電機製)から出射される白色光を、モノクロメータ(装置名:MC-10N、リツー応用光学製)で単色化したものを用いた。素子への電圧印加及び電流計測は、ソースメータ(装置名:R6243、アドバンテスト製)を用いて行った。また、外部量子効率の測定の際には、素子に対して垂直に光を入射し、上部電極側から測定を行った。結果を下記表4に示す。
Figure JPOXMLDOC01-appb-T000026
 表4より、本発明に係る有機光電変換素子は、アニール後に暗電流が大幅に低下し、さらに外部量子効率も維持することができる。特に、tert-ブチル基の数が6本以上であるときに、アニール後の暗電流の低下が大きく、良好な素子特性を示すことがわかった。これは、熱安定性の高いアモルファスな薄膜を形成することができるためと考えられる。一方、比較例の有機光電変換素子では、アニール後に、暗電流が増加することが確認された。これは、電子ブロッキング層を形成する材料が、ガラス転移温度が低い場合にアニール処理による結晶化に伴う膜質悪化が生じてしまうことや、蒸着膜の純度が低い場合に不純物準位を形成してしまうことが原因となり、素子特性の低下を招いたと考えられる。
 以上、実施例にて説明したように、本発明に係る有機化合物を電子ブロッキング層に有することにより、有機光電変換素子の暗電流の低減と熱安定性を向上させることが可能であることがわかった。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
 本願は、2017年6月23日提出の日本国特許出願特願2017-123089を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。

Claims (15)

  1.  下記一般式[1]で表されることを特徴とする有機化合物。
    Figure JPOXMLDOC01-appb-C000001

     式[1]において、Ar及びArは、炭素原子数1乃至8のアルキル基、炭素原子数6乃至18の芳香族炭化水素基又は炭素原子数3乃至17の複素芳香環基を表す。前記Ar及び前記Arは同じであっても異なっていてもよい。
     Ar及びArは、下記一般式[2a]乃至[2c]に示される置換基群から選ばれる。前記Ar及び前記Arは同じであっても異なっていてもよい。
    Figure JPOXMLDOC01-appb-C000002

     前記Ar乃至前記Arは、ハロゲン原子、シアノ基、炭素原子数1乃至8のアルキル基、炭素原子数1乃至8のアルコキシ基から選択される置換基をさらに有してもよい。前記アルキル基はフッ素原子を置換基として有してよい。ただし、前記Ar乃至前記Arのいずれかは、tert-ブチル基を有する。
     前記有機化合物の1分子が有するtert-ブチル基の総数は2つ以上である。
  2.  前記Ar及び前記Arが、いずれもフェニル基、ナフチル基、ピリジル基、ベンゾチエニル基又はベンゾフラニル基であることを特徴とする、請求項1に記載の有機化合物。
  3.  前記Ar及び前記Arが、前記式[2a]で表される置換基であることを特徴とする、請求項1または2に記載の有機化合物。
  4.  前記有機化合物が1分子に有するtert-ブチル基の総数が4つ以上であることを特徴とする、請求項1乃至3のいずれか一項に記載の有機化合物。
  5.  前記有機化合物が1分子に有するtert-ブチル基の総数が6つ以上であることを特徴とする、請求項1乃至4のいずれか一項に記載の有機化合物。
  6.  アノードと、カソードと、前記アノードと前記カソードとの間に配置されている有機化合物層と、を有する光電変換素子であって、
     前記有機化合物層は、請求項1乃至5のいずれか一項に記載の有機化合物を有することを特徴とする光電変換素子。
  7.  前記有機化合物層は、第一の有機化合物層と、第二の有機化合物層とを有し、前記第二の有機化合物層は、前記第一の有機化合物層と前記カソードとの間に配置されており、
     前記有機化合物層は、前記第二の有機化合物層であることを特徴とする請求項6に記載の光電変換素子。
  8.  前記第二の有機化合物層が、前記カソードに接していることを特徴とする、請求項7に記載の光電変換素子。
  9.  前記第一の有機化合物層が光電変換層であり、前記光電変換層はフラーレン類縁体を有することを特徴とする、請求項7または8に記載の光電変換素子。
  10.  前記有機化合物層が第三の有機化合物層を有し、前記第三の有機化合物層は前記第一の有機化合物層と、前記アノードとの間に配置されており、
     前記第三の有機化合物層は、フラーレン類縁体を有し、かつ前記アノードに接していることを特徴とする、請求項7乃至9のいずれか一項に記載の光電変換素子。
  11.  複数の光電変換素子と、前記光電変換素子に接続されている読み出し回路と、前記読み出し回路に接続されている信号処理回路と、を有し、前記光電変換素子が請求項6乃至10のいずれか一項に記載の光電変換素子であることを特徴とする撮像素子。
  12.  レンズを有する光学系と、前記光学系を通過した光を受光する撮像素子とを有する撮像装置であって、前記撮像素子が、請求項11に記載の撮像素子であることを特徴とする撮像装置。
  13.  複数のレンズを有する光学系を接合可能な接合部が設けられた筐体と、前記筐体に収容されている撮像素子とを有する撮像装置であって、前記撮像素子が請求項11に記載の撮像素子であることを特徴とする撮像装置。
  14.  前記撮像装置が、デジタルカメラ又はデジタルスチルカメラであることを特徴とする請求項12または13に記載の撮像装置。
  15.  外部と情報を送信または受信する通信部をさらに有することを特徴とする請求項12乃至14のいずれか一項に記載の撮像装置。
PCT/JP2018/023152 2017-06-23 2018-06-18 有機光電変換素子、撮像素子及び撮像装置 WO2018235780A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/714,290 US11557727B2 (en) 2017-06-23 2019-12-13 Organic photoelectric conversion element, image pickup element, and image pickup apparatus
US18/062,959 US20230145492A1 (en) 2017-06-23 2022-12-07 Organic photoelectric conversion element, image pickup element, and image pickup apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017123089A JP6932564B2 (ja) 2017-06-23 2017-06-23 有機光電変換素子、撮像素子及び撮像装置
JP2017-123089 2017-06-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/714,290 Continuation US11557727B2 (en) 2017-06-23 2019-12-13 Organic photoelectric conversion element, image pickup element, and image pickup apparatus

Publications (1)

Publication Number Publication Date
WO2018235780A1 true WO2018235780A1 (ja) 2018-12-27

Family

ID=64735654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023152 WO2018235780A1 (ja) 2017-06-23 2018-06-18 有機光電変換素子、撮像素子及び撮像装置

Country Status (3)

Country Link
US (2) US11557727B2 (ja)
JP (1) JP6932564B2 (ja)
WO (1) WO2018235780A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110105244A (zh) * 2019-05-14 2019-08-09 华南理工大学 一种含四苯基苯的有机发光材料及制备与应用
CN110642842A (zh) * 2019-09-30 2020-01-03 上海天马有机发光显示技术有限公司 化合物、显示面板以及显示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3582275B1 (en) * 2017-02-07 2023-09-06 Canon Kabushiki Kaisha Photoelectric conversion element, optical area sensor using same, imaging element, and imaging device
CN118104416A (zh) * 2021-10-20 2024-05-28 日铁化学材料株式会社 摄像用的光电转换元件用材料以及光电转换元件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155153A (ja) * 2012-01-31 2013-08-15 Osaka Prefecture Univ カルバゾール誘導体、有機電界発光素子用ホスト材料および有機電界発光素子
WO2014167860A1 (ja) * 2013-04-10 2014-10-16 富士フイルム株式会社 固体撮像素子および撮像装置
KR20150086994A (ko) * 2014-01-21 2015-07-29 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2016021266A1 (ja) * 2014-08-05 2016-02-11 ソニー株式会社 撮像装置及び画素信号読み出し方法
CN106146317A (zh) * 2016-08-11 2016-11-23 长春海谱润斯科技有限公司 一种对三联苯衍生物及其制备方法和应用
JP2017005249A (ja) * 2015-06-05 2017-01-05 キヤノン株式会社 有機光電変換素子、光エリアセンサ、撮像素子および撮像装置
WO2017005699A1 (de) * 2015-07-03 2017-01-12 Cynora Gmbh Organische moleküle zur verwendung in optoelektronischen vorrichtungen

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4852663B2 (ja) 2010-02-09 2012-01-11 富士フイルム株式会社 光電変換素子及び撮像素子並びにそれらの駆動方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155153A (ja) * 2012-01-31 2013-08-15 Osaka Prefecture Univ カルバゾール誘導体、有機電界発光素子用ホスト材料および有機電界発光素子
WO2014167860A1 (ja) * 2013-04-10 2014-10-16 富士フイルム株式会社 固体撮像素子および撮像装置
KR20150086994A (ko) * 2014-01-21 2015-07-29 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2016021266A1 (ja) * 2014-08-05 2016-02-11 ソニー株式会社 撮像装置及び画素信号読み出し方法
JP2017005249A (ja) * 2015-06-05 2017-01-05 キヤノン株式会社 有機光電変換素子、光エリアセンサ、撮像素子および撮像装置
WO2017005699A1 (de) * 2015-07-03 2017-01-12 Cynora Gmbh Organische moleküle zur verwendung in optoelektronischen vorrichtungen
CN106146317A (zh) * 2016-08-11 2016-11-23 长春海谱润斯科技有限公司 一种对三联苯衍生物及其制备方法和应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110105244A (zh) * 2019-05-14 2019-08-09 华南理工大学 一种含四苯基苯的有机发光材料及制备与应用
WO2020228359A1 (zh) * 2019-05-14 2020-11-19 华南理工大学 一种含四苯基苯的有机发光材料及制备与应用
CN110642842A (zh) * 2019-09-30 2020-01-03 上海天马有机发光显示技术有限公司 化合物、显示面板以及显示装置

Also Published As

Publication number Publication date
US20230145492A1 (en) 2023-05-11
JP6932564B2 (ja) 2021-09-08
JP2019006702A (ja) 2019-01-17
US20200119281A1 (en) 2020-04-16
US11557727B2 (en) 2023-01-17

Similar Documents

Publication Publication Date Title
TWI488847B (zh) 光電變換元件、光電變換元件材料、光感測器以及攝影元件
JP6645700B2 (ja) 有機光電変換素子、二次元センサ、画像センサ及び撮像装置
US11557727B2 (en) Organic photoelectric conversion element, image pickup element, and image pickup apparatus
KR20160052448A (ko) 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자, 이미지 센서 및 전자장치
JP7013163B2 (ja) 有機化合物及び光電変換素子
WO2018110072A1 (ja) 撮像素子、積層型撮像素子及び撮像装置、並びに、撮像素子の製造方法
JP6833351B2 (ja) 有機光電変換素子、光エリアセンサ、撮像素子および撮像装置
JP2016119471A (ja) 有機光電素子用化合物及びこれを含む有機光電素子、並びにイメージセンサー及びこれを備える電子装置
JP2022021347A (ja) 有機化合物及び有機光電変換素子
JP2023109796A (ja) 有機化合物及び光電変換素子
WO2016111140A1 (ja) 光電変換素子およびこれを用いたイメージセンサ
KR20210091064A (ko) 화합물 및 이를 포함하는 광전 소자, 이미지 센서 및 전자 장치
JP2018085499A (ja) 光電変換素子、撮像素子および撮像装置
US11555028B2 (en) Organic compound and photoelectric conversion element
JP2019099570A (ja) フラーレン誘導体及びそれを含む薄膜、光電素子並びにイメージセンサ及び電子装置
JP2018020976A (ja) 有機化合物及びこれを用いた光電変換素子、光エリアセンサ、光電変換装置、撮像素子、撮像装置
JP2018002690A (ja) 有機化合物、有機光電変換素子、撮像素子および撮像装置
KR20220091870A (ko) 화합물 및 이를 포함하는 광전 소자, 이미지 센서 및 전자 장치
JP7016662B2 (ja) 有機化合物、それを用いた光電変換素子および撮像装置
KR102558974B1 (ko) 유기 광전 소자, 이미지 센서 및 전자장치
JP2019006718A (ja) 有機化合物、それを有する有機電子デバイス、それを有する光電変換素子、撮像素子および撮像装置
EP4024484A1 (en) Composition for photoelectric device, and photoelectric device, image sensor, and electronic device including the same
WO2018088325A1 (ja) 光電変換素子、撮像素子および撮像装置
KR20220096214A (ko) 청색 흡수용 필름, 광전 소자 및 이를 포함하는 이미지 센서와 전자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18820365

Country of ref document: EP

Kind code of ref document: A1