WO2018235383A1 - サンプル送液装置、フローサイトメータ、およびサンプル送液方法 - Google Patents

サンプル送液装置、フローサイトメータ、およびサンプル送液方法 Download PDF

Info

Publication number
WO2018235383A1
WO2018235383A1 PCT/JP2018/014244 JP2018014244W WO2018235383A1 WO 2018235383 A1 WO2018235383 A1 WO 2018235383A1 JP 2018014244 W JP2018014244 W JP 2018014244W WO 2018235383 A1 WO2018235383 A1 WO 2018235383A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
nozzle
vibrator
delivery device
unit
Prior art date
Application number
PCT/JP2018/014244
Other languages
English (en)
French (fr)
Inventor
克俊 田原
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/621,821 priority Critical patent/US11698333B2/en
Publication of WO2018235383A1 publication Critical patent/WO2018235383A1/ja
Priority to US18/323,522 priority patent/US20230296490A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1404Handling flow, e.g. hydrodynamic focusing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/14Suction devices, e.g. pumps; Ejector devices
    • G01N2001/1445Overpressure, pressurisation at sampling point
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/20Devices for withdrawing samples in the liquid or fluent state for flowing or falling materials
    • G01N1/2035Devices for withdrawing samples in the liquid or fluent state for flowing or falling materials by deviating part of a fluid stream, e.g. by drawing-off or tapping
    • G01N2001/2071Removable sample bottle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1048General features of the devices using the transfer device for another function
    • G01N2035/1058General features of the devices using the transfer device for another function for mixing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1048General features of the devices using the transfer device for another function
    • G01N2035/1062General features of the devices using the transfer device for another function for testing the liquid while it is in the transfer device

Definitions

  • the present technology relates to a flow cytometer, an apparatus and method for sample liquid-sending used therefor.
  • a flow cytometer distributes a sample suspended in a liquid in a tube with a sheath liquid, acquires data of scattered light and fluorescence obtained by a laser irradiation unit in the middle of the distribution, and analyzes the data.
  • a sample delivery device in a flow cytometer described in Patent Document 1 includes a stirring unit for stirring a sample tube, and a nozzle for sucking the sample in the sample tube.
  • the stirring of the sample tube by the stirring unit causes the nozzle inserted into the sample tube to function as a stirring rod that moves relative to the sample tube (e.g., paragraph [0014], [0049], FIG. 1). reference.).
  • the sample accumulated at the bottom is dispersed in the liquid, and the sample is efficiently delivered.
  • An object of the present disclosure is to provide a sample liquid transfer device, a flow cytometer including the same, and a liquid transfer method including the same that can miniaturize a mechanism for stirring and achieve cost reduction.
  • a sample liquid transfer apparatus includes an installation unit, a suction mechanism, and a vibrator.
  • a sample container for storing a suspension of the sample is installed in the installation unit.
  • the suction mechanism has a nozzle configured to be inserted into the sample container installed in the installation unit, and suctions the sample through the nozzle.
  • the vibrator vibrates the nozzle.
  • the size and cost of the sample liquid delivery apparatus can be reduced as compared with the case where a large stirring unit for stirring the sample container is provided.
  • the sample delivery device may further include a nozzle support that supports the nozzle.
  • the vibrator may be attached to the nozzle support.
  • the vibrator may be attached to a nozzle. This allows the suspension of the sample to be stirred efficiently.
  • the sample delivery device may further include a control unit configured to control at least one of the vibration intensity and the time length of the vibrator. Thereby, the vibration state of the vibrator can be optimized.
  • the control unit may be configured to start the suction operation of the sample by the suction mechanism after generating the vibration in the vibrator.
  • the control unit may be configured to start the suction operation of the sample by the suction mechanism after generating the vibration in the vibrator and stopping the vibration. As described above, the vibrator generates vibration before the sample suction operation is started, which enables efficient sample detection.
  • the control unit may cause the vibrator to generate vibration continuously or intermittently.
  • the sample delivery device may further include a detection unit that detects the sample aspirated by the aspiration mechanism.
  • the control unit may be configured to control at least one of the magnitude and the time length of the vibration based on a threshold set for the number of samples detected by the detection unit. Such automatic control enables efficient and appropriate measurement of samples.
  • the sample delivery device may further include a cleaning unit for cleaning the nozzle.
  • the vibrator may be attached to the cleaning unit.
  • at least two of the vibrators may be respectively attached to the nozzle support and the cleaning unit.
  • At least two of the transducers may be attached to the nozzle and the nozzle support, respectively.
  • the flow cytometer which concerns on one form comprises the said sample sending apparatus, a detection part, and an analysis part.
  • the detection unit detects the sample aspirated by the aspiration mechanism.
  • the analysis unit analyzes characteristics of the detected sample.
  • the sample liquid transfer method includes inserting a nozzle provided in the suction mechanism into a sample container that contains a suspension of the sample installed in the installation unit.
  • the nozzle is vibrated.
  • the sample is aspirated through the nozzle by the aspiration mechanism.
  • FIG. 1 is a view mainly showing a sample delivery device according to Embodiment 1, and showing a configuration of a flow cytometer including the sample delivery device. It is a figure which shows the principal part of the sample liquid feeding apparatus shown in FIG.
  • FIG. 3 shows a time chart of the operation of the sample liquid delivery apparatus and the voltage applied to the vibrator.
  • FIG. 4A shows how the sample tube is agitated by the conventional agitation method of moving the entire sample container together.
  • FIG. 4B shows how vibration is applied to the nozzle by the vibrator.
  • FIG. 5 is a graph showing temporal changes in suction pressure of the nozzle and the number of events per second (EPS).
  • FIG. 6A shows the distribution of life and death of cells before applying vibration to cells
  • FIG. 6B shows the distribution of posture of cells after applying vibration to cells for 3 minutes.
  • FIG. 7 shows a time chart of an applied voltage for causing the vibrator to continuously vibrate during detection of a sample after the end of boost.
  • FIG. 8 is a graph showing the time change of the number of events and the suction pressure of the nozzle under the time chart of FIG. 7.
  • FIG. 9 is a view showing the main part of the sample liquid transfer device according to the second embodiment.
  • FIG. 10 is a view mainly showing the configuration of the sample liquid transfer device according to the third embodiment.
  • FIG. 11 is a diagram showing time change of the number of events and timing of vibration start in the third embodiment.
  • FIG. 12 is a perspective view showing the main part of a sample delivery device provided with a cleaning unit.
  • FIG. 13 is a top view showing the cleaning unit to which the vibrator is attached.
  • FIG. 1 is a view mainly showing a sample delivery device according to Embodiment 1, and showing a configuration of a flow cytometer 100 including the sample delivery device 50.
  • the flow cytometer 100 includes a sample delivery device 50 and an analysis unit 41.
  • the analysis unit 41 has a function of analyzing the characteristics of the sample detected by the sample delivery device 50. That is, the flow cytometer 100 typically functions as a cell analyzer.
  • the sample feeding device 50 has an installation unit 30 on which a sample tube (sample container) 38 is installed, a nozzle 15 configured to be insertable into the sample tube 38, and a nozzle as a nozzle support unit for supporting and fixing the nozzle 15 An arm 26 is provided.
  • the sample tube 38 contains a suspension of the sample.
  • the sample is typically a biological cell.
  • the installation unit 30 is configured to be able to install a plurality of sample tubes 38, only one sample tube 38 may be configured to be able to install.
  • the sample delivery device 50 includes a vibrator 25 that vibrates the nozzle 15.
  • the vibrator 25 is attached to, for example, the nozzle arm 26, as also shown in FIG.
  • Examples of the vibrator 25 include an eccentric motor, a piezoelectric element, a solenoid, and a magnetostrictive element.
  • the sample feeding device 50 includes a sheath tank 10, a waste liquid tank 19, pumps 11 and 12 for forming a flow in the liquid, and a detection unit 20 for forming a sheath flow from the sheath liquid from the sheath tank 10 and detecting a sample.
  • the sample liquid transfer apparatus 50 is provided at a stage before the sheath flow pipe 16 connecting the pump 11 and the detection unit 20, the sample flow pipe 17 connecting the nozzle 15 and the detection unit 20, the detection unit 20 and the pump 12 ( And a junction pipe 18 for connecting the buffer 13).
  • Two pumps 11 and 12 are provided upstream and downstream, and the driving pressure and the driving timing thereof are controlled to control the fluid in the sheath flow tube 16, the sample flow tube 17, the detection unit 20, and the junction tube 18. Flow is precisely controlled.
  • a “suction mechanism” is mainly configured by the pipes such as the nozzle 15, the pumps 11 and 12, and the sample flow pipe 17.
  • the detection unit 20 is mainly configured by a cuvette.
  • a sheath flow of the sheath fluid is formed so that the sample from the sample flow tube 17 flows in an aligned manner.
  • the detection of the sample is performed by irradiating the sample flowing from the laser generator (not shown) with the laser flowing in alignment in this cuvette.
  • a living cell is mainly used as a sample.
  • the detection unit 20 and the analysis unit 41 are connected by an optical fiber 43, for example.
  • the analysis unit 41 has a function of analyzing optical characteristics such as scattered light and fluorescence generated by laser irradiation.
  • the analysis unit 41 is configured by a computer.
  • a part or all of the sample flow tube 17 is made of a flexible material such as silicone rubber.
  • a three-dimensional drive mechanism (not shown) for driving the nozzle arm 26 is connected to the nozzle arm 26.
  • the three-dimensional drive mechanism can move and insert the nozzle 15 into a plurality of sample tubes 38 arranged in two dimensions.
  • the sample delivery device 50 includes a control unit 45.
  • the control unit 45 is configured to control the drive of the vibrator 25, the pumps 11 and 12, and other mechanisms.
  • the control unit 45 is configured to control at least one of the vibration intensity and the time length of the vibrator 25.
  • the control unit 45 basically includes a central processing unit (CPU), a random access memory (RAM), and a read only memory (ROM), in addition to these drivers.
  • the control unit 45 may have a PLD (Programmable Logic Device) such as an FPGA (Field Programmable Gate Array) instead of the CPU.
  • the control unit 45 also includes a driver (not shown) that drives the vibrator 25, the pumps 11 and 12, and the like.
  • FIG. 3 shows a time chart of the operation of the sample delivery device 50 and the voltage applied to the vibrator 25.
  • the sample tube 38 is placed on the placement unit 30, and the nozzle 15 is inserted into the sample tube 38. That is, the nozzle 15 moves to the measurement position.
  • the control unit 45 applies a drive voltage to the vibrator 25 to cause the vibrator 25 to generate vibration.
  • application of the drive voltage is continued for a predetermined time (time length Ta), and the vibration of the nozzle is maintained during that time. Thereby, the suspension in one sample tube 38 in which the nozzle 15 is inserted is stirred.
  • the strength of the vibration (for example, the magnitude of the drive voltage) is set to such an extent that the nozzle 15 does not contact the sample tube 38.
  • the control unit 45 can variably control the drive voltage within the range in which the nozzle 15 does not contact the sample tube 38.
  • the control unit 45 After a lapse of a time length Ta longer than the time length Tb from the start point (after the vibration of the vibrator 25 is stopped), the control unit 45 starts boosting the pumps 11 and 12.
  • the boost means driving the pump in a pulsed manner for a short time of, for example, one to several seconds. That is, the suction operation by the nozzle 15 is started by the boost start.
  • the suction pressure of the nozzle 15 at the time of boost is, for example, several kPa.
  • the state where the boost is released is called steady state.
  • the flow of the sample in the nozzle 15 and the sample flow tube 17 is stabilized.
  • the detection unit 20 can accurately detect the samples aligned by the sheath flow from the sheath flow tube 16 one by one.
  • the analysis unit 41 analyzes data of optical characteristics of the sample obtained by the detection unit 20.
  • FIG. 4A shows how the entire sample tube 38 is moved by the conventional agitation method of moving the entire sample container together.
  • FIG. 4B shows how vibration is given to the nozzle 15 by the vibrator 25.
  • the amplitude is small and the nozzle vibration is efficiently transmitted to the suspension in the sample tube.
  • the cell analyzer used for this verification is equipped with a stirring unit that moves the whole of the plurality of sample containers integrally below the stage on which the plurality of sample containers (the sample tubes 38 or the well plate not shown) are placed.
  • Verification 1 is verification of the effect of nozzle vibration by the vibrator 25 on EPS (number of events per second). Needless to say, in verification 1, the stirring unit of the cell analyzer is not used, and the vibrator 25 is used.
  • FIG. 5 is a graph showing time variation of suction pressure (unit: kPa) of the nozzle 15 and EPS.
  • the event means that one sample is detected by the detection unit 20, and the number of events is the number of samples detected by the detection unit 20.
  • the suction pressure of nozzle 15 falls below -5 kPa due to boost (Bst1), and at the end of measurement, +20 kPa for backwashing in sample flow tube 17 and nozzle 15. Get close.
  • Negative values mean suction. From the value of the change in suction pressure, it is possible to determine the start and end times of the measurement.
  • Verification 2 is verification of the influence of the nozzle vibration of the vibrator 25 on the cells.
  • the inventor examined the influence of the nozzle vibration on the cells using Jurkat cells.
  • FIG. 6A shows the distribution of cell survival before giving vibration to the cell suspension
  • FIG. 6B shows distribution of cell posture after giving 3 minutes of vibration to the cell suspension.
  • cells plotted in a boxed area indicate live cells.
  • the distribution of cell life and death does not change before and after the vibration. Therefore, it is considered that there is no influence of vibration for 3 minutes on cells.
  • Verification 3 is verification of the influence of vibrating the nozzle 15 by the vibrator 25 constantly (continuously) during detection of a sample.
  • the inventor uses beads of 40 ⁇ m as a sample, and as shown in FIG. 7, the nozzle 15 continuously vibrates (VB) during detection of the sample even after finishing the second boost (Bst 2), We confirmed a lot of events (EPS1).
  • FIG. 8 is a graph showing the time change of the number of events and the suction pressure of the nozzle 15.
  • the 40 ⁇ m beads tend to sink in the liquid, making it difficult to detect events.
  • Bst2 the start of the second boost
  • Verification 4 is verification of the capacity for containing the suspension by the sample container.
  • the inventor verified the capacity of containing the suspension by moving the entire sample container and when only the suspension in the sample container was agitated by the nozzle vibration.
  • a well plate (96 well) was used as a sample container. Stirring was performed with the solution containing the sample to 100% of one well volume of the well plate.
  • the vibration source can be miniaturized in the first embodiment, and consequently, the miniaturization and lowness of the sample liquid delivery apparatus 50 are realized. Cost can be achieved.
  • a solution containing a sample can be contained in a sample container (for example, a well plate) up to near the upper limit thereof.
  • FIG. 9 is a view showing the main part of the sample delivery device.
  • the nozzle 65 has an attachment portion 63 to which the vibrator 25 is attached.
  • the attachment portion 63 is configured to embed the vibrator 25, for example.
  • the same effect as that of the first embodiment can be obtained. Further, since the nozzle 65 is directly vibrated, the electrical and mechanical efficiency for vibration transmission is also improved.
  • FIG. 10 is a view showing a flow cytometer including the sample delivery device according to the third embodiment.
  • the sample delivery device 150 is different from the first embodiment in that the control unit 45 acquires information from the analysis unit 41 and performs feedback control.
  • the analysis unit 41 is configured to output information on the count value (the number of samples) of the detected sample, that is, the number of events, to the control unit 45.
  • the control unit 45 is configured to control at least one of the strength and the time length of the vibrator 25 based on the threshold value set for the input number of events.
  • FIG. 11 is a diagram showing time change of the number of events.
  • the control unit 45 vibrates the vibrator 25, stops it, and then starts boosting. Then, the number of events immediately after the boost is maximized. The number of events starts to decrease, and the number of events in the subsequent steady state is set to 100%.
  • the threshold value TH can be set in the range of 30% to 80% of the number of events in the steady state.
  • control unit 45 may increase the drive voltage when the number of events becomes equal to or less than the threshold when the vibrator 25 is driven continuously or intermittently with a predetermined drive voltage even after boosting. It is good.
  • control unit 45 may switch to continuous driving when the number of events becomes equal to or less than the threshold when the driving is performed intermittently. Alternatively, switching to continuous drive may be combined with increase in drive voltage.
  • the threshold value is not limited to one, and a plurality of threshold values may be set in stages, and the control unit 45 may perform optimal control based on the number of detected events.
  • control unit 45 The automatic control by the control unit 45 as described above enables efficient and appropriate measurement of a sample.
  • the analysis unit 41 feeds back information on the detected number of samples to the control unit 45.
  • the other device may feed back the information on the number of samples to the control unit 45.
  • the present technology is not limited to the embodiments described above.
  • the intensity and timing of the vibration are controlled by the control unit 45 in the above embodiment, they may be controlled by manual operation by a person.
  • sample liquid transfer apparatus includes one vibrator 25, a plurality of vibrators 25 may be disposed at a plurality of different places.
  • the control unit 45 generates a vibration by the vibrator 25 before boosting, and then stops it.
  • the control unit 45 may generate vibration by the vibrator 25 continuously or intermittently even after boosting, or continuously or intermittently regardless of the timing of boosting. May occur.
  • the drive voltage shown in FIG. 3 or 6 is a rectangular wave, but may be a trapezoidal wave, a triangular wave or the like, or only one of rising and falling may have a ramp-like waveform.
  • the sample delivery device according to the present technology can also be applied as a sorter.
  • the sample delivery apparatus may include a cleaning unit 70 that cleans the nozzle 15.
  • the cleaning unit 70 is connected to the elevating mechanism 76, and is configured to move along the longitudinal direction of the nozzle 15 by the elevating mechanism 76, for example.
  • the cleaning unit 70 cleans the outer peripheral surface, for example, by moving in contact with the outer peripheral surface of the nozzle 15.
  • the cleaning unit 70 includes a contact member in contact with the outer peripheral surface of the nozzle 15. Washing is performed by the contact member moving up and down by the lifting mechanism 76.
  • the contact member is made of, for example, a resin or the like.
  • the cleaning unit 70 may have a mechanism for supplying a cleaning liquid to the outer peripheral surface of the nozzle 15 instead of the contact member, or may have a configuration in which the cleaning liquid is supplied to the contact member.
  • FIG. 13 is a top view of the cleaning unit 70 showing a configuration in which a vibrator is attached to the cleaning unit 70 as described above.
  • the vibrator 75 may be provided instead of or in addition to the vibrator 25 shown in FIGS.
  • the vibrator 75 has the same function and role as the vibrator 25.
  • the attachment position of the vibrator can be changed as appropriate.
  • a plurality of transducers may be attached to a plurality of locations of the sample delivery device, respectively.
  • the vibrator may be attached to, for example, the nozzle 15 and the nozzle arm 26, or may be attached to the nozzle arm 26 and the cleaning unit 70, respectively.
  • the present technology can also be configured as follows.
  • An installation unit in which a sample container for containing a suspension of the sample is installed;
  • a suction mechanism that has a nozzle configured to be inserted into the sample container installed in the installation unit, and aspirates the sample via the nozzle;
  • a vibrator for vibrating the nozzle.
  • the apparatus further comprises a nozzle support for supporting the nozzle, The said vibrator
  • oscillator is attached to the said nozzle support part.
  • the sample delivery device according to (1) above, The vibrator is attached to a nozzle.
  • the sample delivery device according to any one of (1) to (3), wherein The sample delivery device, further comprising: a control unit configured to control at least one of the vibration intensity and the time length of the vibrator.
  • the sample delivery device further comprising: a control unit configured to control at least one of the vibration intensity and the time length of the vibrator.
  • the sample delivery device further comprising: a control unit configured to control at least one of the vibration intensity and the time length of the vibrator.
  • the sample delivery device further comprising: a control unit configured to control at least one of the vibration intensity and the time length of the vibrator.
  • the sample delivery device further comprising: a control unit configured to control at least one of the vibration intensity and the time length of the vibrator.
  • the sample delivery device further comprising: a control unit configured to control at least one of the vibration intensity and the time length of the vibrator.
  • the sample liquid transfer device wherein the control unit is configured to start suction operation of the sample by the suction mechanism after generating vibration in the vibrator.
  • the sample delivery device
  • the sample delivery device according to any one of (4) to (7), wherein The apparatus further comprises a detection unit that detects the sample aspirated by the aspiration mechanism, The control unit is configured to control at least one of the magnitude and the time length of the vibration based on a threshold set for the number of samples detected by the detection unit.
  • the sample delivery device according to (1) above, The sample delivery device further comprising a cleaning unit that cleans the nozzle.
  • the vibrator is attached to the cleaning unit.
  • the sample delivery device according to (9) above, The apparatus further comprises a nozzle support for supporting the nozzle, A plurality of the transducers are provided, and at least two of the transducers are respectively attached to the nozzle support and the cleaning unit.
  • the sample delivery device according to (2) above, A plurality of the transducers are provided, and at least two of the transducers are attached to the nozzle and the nozzle support, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

【解決手段】サンプル送液装置は、設置部と、吸引機構と、振動子とを具備する。前記設置部には、サンプルの懸濁液を収容するサンプル容器が設置される。前記吸引機構は、前記設置部に設置された前記サンプル容器に挿入されるように構成されたノズルを有し、前記ノズルを介して前記サンプルを吸引する。前記振動子は、前記ノズルに振動を与える。

Description

サンプル送液装置、フローサイトメータ、およびサンプル送液方法
 本技術は、フローサイトメータ、これに用いられる、サンプル送液(sample liquid-sending)のため装置および方法に関する。
 フローサイトメータは、液体に懸濁したサンプルをシース液で管内に流通させ、その流通途中にあるレーザー照射部で得られた散乱光や蛍光のデータを取得し、解析する。例えば特許文献1に記載のフローサイトメータにおけるサンプル送液装置は、サンプルチューブを撹拌するための撹拌ユニットと、サンプルチューブ内のサンプルを吸引するノズルとを備える。撹拌ユニットによりサンプルチューブが撹拌されることにより、サンプルチューブに挿入されたノズルはサンプルチューブに対して相対的に動く撹拌棒として機能する(例えば、明細書段落[0014]、[0049]、図1参照。)。サンプルチューブを撹拌することで底に溜まったサンプルが液体中に分散され、効率良くサンプルが送り出される。
特開2016-153805号公報
 特許文献1の装置では、撹拌ユニットはサンプルチューブ全体を撹拌する必要があり、その撹拌のための駆動機構が大がかりとなり、高コストとなる。
 本開示の目的は、撹拌のための機構を小型化して低コスト化を図ることができるサンプル送液装置、これを備えるフローサイトメータ、またその送液方法を提供することにある。
 上記目的を達成するため、一形態に係るサンプル送液装置は、設置部と、吸引機構と、振動子とを具備する。
 前記設置部には、サンプルの懸濁液を収容するサンプル容器が設置される。
 前記吸引機構は、前記設置部に設置された前記サンプル容器に挿入されるように構成されたノズルを有し、前記ノズルを介して前記サンプルを吸引する。
 前記振動子は、前記ノズルに振動を与える。
 ノズルに振動を与える振動子が設けられるので、サンプル容器を撹拌するための大がかりな撹拌ユニットが設けられる場合に比べ、サンプル送液装置の小型化および低コスト化を図ることができる。
 前記サンプル送液装置は、前記ノズルを支持するノズル支持部をさらに具備してもよい。前記振動子は、前記ノズル支持部に取り付けられていてもよい。
 前記振動子はノズルに取り付けられていてもよい。これにより、効率的にサンプルの懸濁液を撹拌することができる。
 前記サンプル送液装置は、前記振動子の振動の強さおよび時間長のうち少なくとも一方を制御するように構成された制御部をさらに具備してもよい。これにより、振動子の振動状態を最適化することができる。
 前記制御部は、前記振動子に振動を発生させた後、前記吸引機構による前記サンプルの吸引動作を開始するように構成されていてもよい。
 前記制御部は、前記振動子に振動を発生させてその振動を停止した後、前記吸引機構による前記サンプルの吸引動作を開始するように構成されていてもよい。このようにサンプル吸引動作が開始される前に、振動子が振動を発生することで、効率的なサンプル検出が可能となる。
 前記制御部は、前記振動子に継続的または断続的に振動を発生させてもよい。
 前記サンプル送液装置は、前記吸引機構により吸引される前記サンプルを検出する検出部をさらに具備してもよい。前記制御部は、前記検出部による検出される前記サンプルの数について設定された閾値に基づき、前記振動の強さおよび時間長のうち少なくとも一方を制御するように構成されていてもよい。このような自動制御により、効率的かつ適切なサンプルの測定が可能となる。
 前記サンプル送液装置は、前記ノズルを洗浄する洗浄ユニットをさらに具備してもよい。その洗浄ユニットに、前記振動子が取り付けられていてもよい。あるいは、振動子が複数設けられる場合、それら振動子のうち少なくとも2つは、前記ノズル支持部および前記洗浄ユニットにそれぞれ取り付けられていてもよい。
 あるいは、それら振動子のうち少なくとも2つは、前記ノズルおよび前記ノズル支持部にそれぞれ取り付けられていてもよい。
 一形態に係るフローサイトメータは、上記サンプル送液装置と、検出部と、解析部とを具備する。
 前記検出部は、前記吸引機構により吸引される前記サンプルを検出する。
 前記解析部は、前記検出されたサンプルの特性を解析する。
 一形態に係るサンプル送液方法は、設置部に設置されたサンプルの懸濁液を収容するサンプル容器に、吸引機構に設けられたノズルを挿入することを含む。
 前記ノズルに振動が与えられる。
 前記吸引機構により前記ノズルを介して前記サンプルが吸引される。
 以上、本技術によれば、撹拌のための機構を小型化して低コスト化を図ることができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
図1は、実施形態1に係るサンプル送液装置を主に示し、このサンプル送液装置を含むフローサイトメータの構成を示す図である。 図1に示すサンプル送液装置の要部を示す図である。 図3は、サンプル送液装置の動作および振動子への印加電圧のタイムチャートを示す。 図4Aは、サンプル容器全体を一体的に動かす従来の撹拌方法によってサンプルチューブが撹拌される時の様子を示す。図4Bは、振動子によって振動がノズルに与えられる様子を示す。 図5は、ノズルの吸引圧力および1秒あたりのイベント数(EPS)の時間変化を示すグラフである。 図6Aは、細胞に振動を与える前の細胞の生死の分布を示し、図6Bは、細胞に3分間振動を与えた後の細胞の姿勢の分布を示す。 図7は、ブースト終了後に、サンプルの検出中に継続的に振動子に振動を発生させるための印加電圧のタイムチャートを示す。 図8は、図7のタイムチャート下におけるイベント数およびノズルの吸引圧力の時間変化を示すグラフである。 図9は、実施形態2に係るサンプル送液装置の要部を示す図である。 図10は、実施形態3に係るサンプル送液装置の構成を主に示す図である。 図11は、実施形態3におけるイベント数の時間変化と振動開始のタイミングを示す図である。 図12は、洗浄ユニットを備えるサンプル送液装置の主要部を示す斜視図である。 図13は、振動子が取り付けられた洗浄ユニットを示す上面図である。
 以下、本技術に係る実施形態を、図面を参照しながら説明する。
 1.実施形態1
 1.1)サンプル送液装置の構成
 図1は、実施形態1に係るサンプル送液装置を主に示し、このサンプル送液装置50を含むフローサイトメータ100の構成を示す図である。フローサイトメータ100は、サンプル送液装置50と、解析部41とを備える。
 解析部41は、サンプル送液装置50で検出されたサンプルの特性を解析する機能を有する。すなわち、このフローサイトメータ100は、典型的にはセルアナライザーとして機能する。
 サンプル送液装置50は、サンプルチューブ(サンプル容器)38が設置される設置部30、サンプルチューブ38内に挿入可能に構成されたノズル15、ノズル15を支持して固定するノズル支持部としてのノズルアーム26を備える。サンプルチューブ38には、サンプルの懸濁液が収容される。サンプルは、典型的には生体細胞である。設置部30は、複数のサンプルチューブ38が設置可能に構成されるが、1つのサンプルチューブ38のみが設置可能に構成されていてもよい。
 サンプル送液装置50は、ノズル15に振動を与える振動子25を備える。振動子25は、図2にも示すように、例えばノズルアーム26に取り付けられる。振動子25としては、例えば偏心モータ、圧電素子、ソレノイド、磁歪素子が挙げられる。
 サンプル送液装置50は、シースタンク10、廃液タンク19、液に流れを形成するためのポンプ11、12、シースタンク10からのシース液によりシース流を形成してサンプルを検出する検出部20を備える。また、サンプル送液装置50は、ポンプ11と検出部20とを接続するシース流管16、ノズル15と検出部20とを接続するサンプル流管17、検出部20とポンプ12(の前段に設けられたバッファ13)とを接続する合流管18とを備える。
 上流と下流に2つのポンプ11、12が設けられ、それらの駆動圧力やその駆動タイミング等が制御されることにより、シース流管16、サンプル流管17、検出部20、および合流管18における液の流れが精密に制御される。
 主に、ノズル15、ポンプ11、12、サンプル流管17などの各配管により、「吸引機構」が構成される。
 検出部20は、主にキュヴェットで構成される。このキュヴェット内で、シース液によるシース流が形成されることにより、サンプル流管17からのサンプルが整列して流れるようになる。図示しないレーザー発生部からのレーザーが、このキュヴェット内で整列して流れるサンプルに照射されることにより、サンプルの検出が行われる。サンプルとしては主に生体細胞が用いられる。
 検出部20と解析部41とは例えば光ファイバー43により接続される。解析部41は、レーザー照射により生成された散乱光、蛍光等の光学特性を解析する機能を有する。解析部41はコンピュータにより構成される。
 サンプル流管17の一部または全部は、例えばシリコンゴムのようなフレキシブルな材料で構成される。ノズルアーム26には、例えばこのノズルアーム26を駆動する図示しない3次元駆動機構が接続される。3次元駆動機構は、2次元内で配列された複数のサンプルチューブ38内にノズル15を移動して挿入することができる。
 サンプル送液装置50は、制御部45を備える。制御部45は、振動子25、ポンプ11、12、その他の各機構の駆動を制御するように構成される。特に、制御部45は、振動子25の振動の強さおよび時間長のうち少なくとも一方を制御するように構成される。制御部45は、これらドライバーの他、基本的には、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)を含む。制御部45は、CPUの代わりに、FPGA(Field Programmable Gate Array)等のPLD(Programmable Logic Device)を有していてもよい。また、制御部45は、振動子25、ポンプ11、12等を駆動する図示しないドライバーを含む。
 1.2)サンプル送液装置の動作
 図3は、サンプル送液装置50の動作および振動子25への印加電圧のタイムチャートを示す。設置部30にサンプルチューブ38が設置され、ノズル15がサンプルチューブ38に挿入される。つまり、ノズル15が測定位置に移動する。そうすると、制御部45は、振動子25に駆動電圧を印加することにより振動子25に振動を発生させる。駆動電圧印加の開始を起点として、所定の時間(時間長Ta)だけその駆動電圧の印加が継続され、その間ノズルの振動が維持される。これにより、ノズル15が挿入された1つのサンプルチューブ38内の懸濁液が攪拌される。
 振動の強さ(例えば駆動電圧の大きさ)は、ノズル15がサンプルチューブ38に接触しない程度に設定される。また、制御部45は、ノズル15がサンプルチューブ38に接触しない範囲内で、駆動電圧を可変に制御することも可能である。
 起点から時間長Tbより長い時間長Taが経過後(振動子25の振動が停止した後)、制御部45は、ポンプ11および12のブーストを開始する。ブーストとは、例えば1~数秒程度の短い時間だけパルス状にポンプを駆動することを意味する。つまり、ブースト開始によりノズル15による吸引動作が開始される。
 ブースト時におけるノズル15の吸引圧力は、例えば数kPaとなる。これにより、サンプルチューブ38内の懸濁液がノズル15から迅速に吸引され、多数のサンプルが検出部20まで導かれるようになる。
 ブースト後、そのブーストが解除された状態を定常状態と言う。定常状態では、ノズル15およびサンプル流管17内のサンプルの流れが安定する。これにより検出部20は、シース流管16からのシース流によって整列されたサンプルを1つずつ正確に検出することができる。解析部41は、検出部20により得られるサンプルの光学特性のデータを解析する。
 以下では、ブースト開始から、少なくとも検出部20によるサンプルの検出までの一連の工程を便宜的に「測定」と言う。
 図4Aは、サンプル容器全体を一体的に動かす従来の撹拌方法によってサンプルチューブ38の全体が動かされる時の様子を示す。図4Bは、振動子25によって振動がノズル15に与えられる様子を示す。このように、振動子25のノズル振動によれば、その振幅は小さく、ノズル振動がサンプルチューブ内の懸濁液に効率良く伝達される。
 1.3)検証
 発明者は、本実施形態1による効果を実証するために、以下の検証1~4の4つの検証を行った。本検証において、本発明者はソニー社製のセルアナライザー(製品名:SA3800)を比較例として用いた。すなわち、検証のためにこのセルアナライザーのノズルアームに振動子25が取り付けられた。この検証に用いられたセルアナライザーは、複数のサンプル容器(サンプルチューブ38または図示しないウェルプレート)が設置されるステージの下部に、それら複数のサンプル容器全体を一体的に動かす撹拌ユニットを備える。
 1.3.1)検証1
 検証1は、振動子25によるノズル振動のEPS(1秒あたりのイベント数)への影響についての検証である。言うまでもないが、検証1では、上記セルアナライザーの撹拌ユニットは使用されず、振動子25が使用される。
 図5は、ノズル15の吸引圧力(単位はkPa)およびEPSの時間変化を示すグラフである。イベントとは、検出部20により1個のサンプルが検出されることを意味し、イベント数は検出部20で検出されるサンプルの数である。図5のグラフを参照して、測定開始直後、ブースト(Bst1)によりノズル15の吸引圧力は-5kPaを下回り、その測定終了時はサンプル流管17やノズル15内の逆流洗浄のため、+20kPa近くになる。マイナス値は吸引を意味する。この吸引圧力の変化の値により、測定の開始時と終了時を判断することができる。
 検証用のサンプルおよび液がウェルプレート(96well)内に投入された。サンプルとして乾燥した無機材料のビーズ(Flow Check Beads)が用いられ、液としては、脱イオン水(DIW:DeIonized Water)が用いられた。ここで、ウェルプレート内の液が撹拌されない(振動子25が振動していない)状態で、本発明者はウェルプレート内の液を確認したところ、サンプルは液の底部にたまったままであった。つまり、液中にサンプルが分散していない状態であった。この状態で、サンプルを検出しても、EPSが小さいことが確認された(図5におけるEPS1)。
 そして、振動子25によりノズル振動が1秒間行われると(VB1)、その次の2回目のブースト(Bst2)による測定の工程で、大きなEPSが検出された(EPS2)。
 続いて、同じくサンプルが液の底部にたまっている状態の次のウェルにノズル15が移動し、ブースト(Bst3)によるサンプルを測定したところ、EPSが小さいことが確認された(EPS3)。そして、再度ブースト(Bst4)によるサンプルを測定したところ、同じくEPSが小さいことが確認された(EPS4)。これにより、ノズル15がサンプル容器(ウェル)内に挿入されて測定が行われても、振動子25が振動しない状態では、EPSの改善はないことが判明した。
 その後、さらに振動子25により振動が1秒間行われると(VB2)、その後の測定の工程で大きなEPSが確認された(EPS5およびEPS5')。
 以上の検証により、振動子25によるノズル振動の前後でEPSの結果が明確に分かれ、その振動の効果が実証された。
 1.3.2)検証2
 検証2は、振動子25のノズル振動による細胞への影響についての検証である。発明者は、ノズル振動による細胞への影響をJurkat細胞を用いて検証した。図6Aは、細胞の懸濁液に振動を与える前の細胞の生死の分布を示し、図6Bは、細胞の懸濁液に3分間振動を与えた後の細胞の姿勢の分布を示す。グラフ中、四角で囲まれた範囲にプロットされた細胞が生きている細胞を示す。図に示すように、振動の前後で細胞の生死の分布が変わらない。したがって、細胞への3分間の振動の影響はないと考えられる。
 1.3.3)検証3
 検証3は、サンプルの検出中において、常時(継続的に)、振動子25によりノズル15を振動させた場合の影響についての検証である。発明者は、サンプルとして40μmのビーズを用い、図7に示すように、2回目のブースト(Bst2)を終了後においても、サンプルの検出中に継続的にノズル15に振動を与え(VB)、多数のイベントを確認した(EPS1)。
 図8は、そのイベント数およびノズル15の吸引圧力の時間変化を示すグラフである。40μmのビーズは液中で沈みやすく、イベントが検出されづらい。しかし、本検証によれば、2回目のブースト(Bst2)の開始以降、振動子25による振動が発生している間はイベントが常時検出された。
 1.3.4)検証4
 検証4は、サンプル容器による懸濁液の収容の許容量についての検証である。発明者は、サンプル容器全体を動かす場合と、ノズル振動によりサンプル容器内の懸濁液のみを撹拌する場合とで、懸濁液の収容許容量について検証した。サンプル容器としては、ウェルプレート(96well)が用いられた。ウェルプレートの1つのウェル容量の100%まで、サンプルを含む液を入れた状態で撹拌が行われた。
 ウェルプレート全体を動かす撹拌方法を用いる場合、撹拌によって1つのウェル内の100%の懸濁液のうち40%程度が溢れ出てしまう。そのため、収容許容量は60%程度しかない。これに対し、本技術によれば、振動子25による振動時に、懸濁液の収容量がウェル内で100%であっても漏れ出ない。これは、ウェル内の懸濁液の収容許容量を増やすことができるということである。これにより、1つのウェルに多くのサンプルを収容することができる。
 1.4)効果
 本実施形態1によれば、振動子25によりノズル15に振動が与えられるので、サンプルチューブ38内の懸濁液が効率良く撹拌される。特許文献1に示したようにサンプルチューブ全体を駆動するための大がかりな撹拌ユニットに比べ、本実施形態1では振動発生源を小型化することができ、ひいてはサンプル送液装置50の小型化および低コスト化を図ることができる。
 また、サンプルチューブ全体を動かす撹拌方法を用いる場合、その撹拌のための予備動作が必要であり、それには10s程度を要していた。これに対し、本実施形態1では、振動子25は迅速に振動を発生させることができるので、そのような予備動作は不要であるという利点がある。
 複数のサンプルチューブ全体を動かす撹拌方法を用いる場合、ノズル15のサンプルチューブ38への挿入順番(測定順番)が後になるほど、その後の番のサンプルチューブ38を対象とした測定までの撹拌回数が多くなる。したがって、順番が後になるサンプルチューブ38内のサンプルほど、撹拌による機械的ダメージが大きくなる(積算される)と考えられる。これに対し、本実施形態1では、サンプルチューブ38内に挿入されたノズル15のみが振動するので、そのような機械的ダメージを最小に抑えることができる。
 例えば検証3における図8に示したように、ブースト後にノズル振動を常時(継続的に)行うことにより、定常的なイベントの検出が可能になる。
 例えば検証4で説明したように、サンプル容器(例えばウェルプレート)内にその上限近くまでサンプルを含む液を収容させることができる。
 2.実施形態2
 次に、実施形態2に係るサンプル送液装置について説明する。これ以降の説明では、上記実施形態1に係るサンプル送液装置50が含む部材や機能等について実質的に同様の要素については同一の符号を付し、その説明を簡略化または省略し、異なる点を中心に説明する。
 図9は、そのサンプル送液装置の要部を示す図である。ノズル65は、振動子25を取り付ける取付部63を有する。取付部63は、例えば振動子25を埋設するように構成されている。
 本実施形態2によっても、上記実施形態1と同様の効果が得られる上、ノズル65が直接振動させられるので、振動伝達のための電気的、機械的な効率も向上する。
 3.実施形態3
 図10は、実施形態3に係るサンプル送液装置を含むフローサイトメータを示す図である。このサンプル送液装置150では、制御部45が解析部41からの情報を取得してフィードバック制御を行う点で、上記実施形態1と異なる。例えば、解析部41は、検出されたサンプルのカウント値(サンプル数)、すなわちイベント数の情報を制御部45に出力するように構成されている。
 制御部45は、入力されたイベント数について設定された閾値に基づき、振動子25の強さおよび時間長のうち少なくとも一方を制御するように構成される。
 図11は、イベント数の時間変化を示す図である。上でも説明したように、例えば制御部45は、振動子25を振動させ、それを停止し、その後ブーストを開始する。そうすると、ブースト直後のイベント数が最大となる。イベント数が下がり始め、その後の定常状態でのイベント数を100%とする。例えば閾値THが、その定常状態でのイベント数の30%~80%の範囲で設定できる。
 より具体的には、例えば図5に示したように、5回目のブースト(Bst5)後の定常状態におけるイベント(EPS5')において、100%のイベント数を25とした場合、例えばイベント数15を閾値として設定することができる。制御部45は、イベント数がその閾値以下となった場合に、振動子25による振動(VB)を再開する。
 あるいは、制御部45は、ブースト後においても所定の駆動電圧で振動子25を継続的または断続的に駆動していた場合において、イベント数が閾値以下となった場合、その駆動電圧を上げるようにしても良い。あるいは、制御部45は、その断続的に駆動していた場合において、イベント数が閾値以下となった場合、それを継続的な駆動に切り替えるようにしてよい。あるいは、継続的な駆動への切り替えと、駆動電圧の上昇とを組み合わせるようにしてもい。
 上記閾値は1つだけでなく、段階的に複数の閾値が設定され、制御部45は、検出されたイベント数に基づき、最適な制御を行うようにしてもよい。
 以上のような制御部45による自動制御により、効率的かつ適切なサンプルの測定が可能となる。
 なお、上記では解析部41が、検出されたサンプル数の情報を制御部45にフィードバックした。しかし、例えば検出部20で検出された情報を受ける機器が、解析部41とは別の機器である場合、その別の機器がサンプル数の情報を制御部45にフィードバックしてもよい。
 4.変形例
 本技術は、以上説明した実施形態に限定されない。例えば、上記実施形態では制御部45によりその振動の強さやタイミングが制御されたが、人によるマニュアル操作でそれらが制御されるようにしてもよい。
 上記各実施形態に係るサンプル送液装置は1つの振動子25を備えていたが、異なる複数の箇所に複数の振動子25がそれぞれ配置されるようにしてもよい。
 上記実施形態1では、制御部45は、ブースト前に振動子25により振動を発生し、その後、それを停止した。しかし、上記したように、制御部45はブースト後にも継続的または断続的に振動子25により振動を発生してもよいし、あるいは、ブーストのタイミングに関わらず、継続的または断続的に振動を発生してもよい。
 図3または6に示した駆動電圧は矩形波であったが、台形波、または三角波等でもよいし、立ち上がりおよび立ち下がりのうち一方のみがランプ状の波形であってもよい。
 本技術に係るサンプル送液装置をソーターとしても適用可能である。
 例えば図12に示すように、サンプル送液装置は、ノズル15を洗浄する洗浄ユニット70を備えていてもよい。洗浄ユニット70は、昇降機構76に接続され、この昇降機構76により例えばノズル15の長さ方向に沿って移動するように構成されている。洗浄ユニット70は、例えば、そのノズル15の外周面に接しながら移動することにより、当該外周面を洗浄する。
 洗浄方法としては、例えば洗浄ユニット70がノズル15の外周面に接触する接触部材を含む。接触部材が昇降機構76により昇降移動することにより、洗浄が行われる。接触部材は、例えば樹脂等で構成される。あるいは、洗浄ユニット70は、接触部材の代わりにノズル15の外周面に洗浄液を供給する機構を備えていてもよいし、その接触部材にその洗浄液が供給される構成を有していてもよい。
 図13は、上記のような洗浄ユニット70に振動子が取り付けられた構成を示す洗浄ユニット70の上面図である。このように、図1、2で示した振動子25に代えて、または、その振動子25に加えて振動子75が設けられていてもよい。この振動子75は、上記振動子25と同様の機能および役割を持つ。このように、振動子の取り付け位置は適宜変更可能である。
 サンプル送液装置の複数の箇所に複数の振動子がそれぞれ取り付けられていてもよい。この場合、振動子は、例えばノズル15およびノズルアーム26にそれぞれ取り付けられていてもよいし、ノズルアーム26および洗浄ユニット70にそれぞれ取り付けられていてもよい。
 以上説明した各形態の特徴部分のうち、少なくとも2つの特徴部分を組み合わせることも可能である。
 なお、本技術は以下のような構成もとることができる。
(1)
 サンプルの懸濁液を収容するサンプル容器が設置される設置部と、
 前記設置部に設置された前記サンプル容器に挿入されるように構成されたノズルを有し、前記ノズルを介して前記サンプルを吸引する吸引機構と、
 前記ノズルに振動を与える振動子と
 を具備するサンプル送液装置。
(2)
 前記(1)に記載のサンプル送液装置であって、
 前記ノズルを支持するノズル支持部をさらに具備し、
 前記振動子は、前記ノズル支持部に取り付けられる
 サンプル送液装置。
(3)
 前記(1)に記載のサンプル送液装置であって、
 前記振動子はノズルに取り付けられる
 サンプル送液装置。
(4)
 前記(1)から(3)のうちいずれか1つに記載のサンプル送液装置であって、
 前記振動子の振動の強さおよび時間長のうち少なくとも一方を制御するように構成された制御部をさらに具備するサンプル送液装置。
(5)
 前記(4)に記載のサンプル送液装置であって、
 前記制御部は、前記振動子に振動を発生させた後、前記吸引機構による前記サンプルの吸引動作を開始するように構成される
 サンプル送液装置。
(6)
 前記(5)に記載のサンプル送液装置であって、
 前記制御部は、前記振動子に振動を発生させてその振動を停止した後、前記吸引機構による前記サンプルの吸引動作を開始するように構成される
 サンプル送液装置。
(7)
 前記(4)に記載のサンプル送液装置であって、
 前記制御部は、前記振動子に継続的または断続的に振動を発生させる
 サンプル送液装置。
(8)
 前記(4)から(7)のうちいずれか1つに記載のサンプル送液装置であって、
 前記吸引機構により吸引される前記サンプルを検出する検出部をさらに具備し、
 前記制御部は、前記検出部による検出される前記サンプルの数について設定された閾値に基づき、前記振動の強さおよび時間長のうち少なくとも一方を制御するように構成される
 サンプル送液装置。
(9)
 前記(1)に記載のサンプル送液装置であって、
 前記ノズルを洗浄する洗浄ユニットをさらに具備する
 サンプル送液装置。
(10)
 前記(9)に記載のサンプル送液装置であって、
 前記振動子は、前記洗浄ユニットに取り付けられる
 サンプル送液装置。
(11)
 前記(9)に記載のサンプル送液装置であって、
 前記ノズルを支持するノズル支持部をさらに具備し、
 前記振動子は複数設けられ、それら振動子のうち少なくとも2つは、前記ノズル支持部および前記洗浄ユニットにそれぞれ取り付けられる
 サンプル送液装置。
(12)
 前記(2)に記載のサンプル送液装置であって、
 前記振動子は複数設けられ、それら振動子のうち少なくとも2つは、前記ノズルおよび前記ノズル支持部にそれぞれ取り付けられる
 サンプル送液装置。
(13)
 サンプルの懸濁液を収容するサンプル容器が設置される設置部と、
 前記設置部に設置された前記サンプル容器に挿入されるように構成されたノズルを有し、前記ノズルを介して前記サンプルを吸引する吸引機構と、
 前記ノズルに振動を与える振動子と、
 前記吸引機構により吸引される前記サンプルを検出する検出部と、
 前記検出されたサンプルの特性を解析する解析部と
 を具備するフローサイトメータ。
(14)
 設置部に設置されたサンプルの懸濁液を収容するサンプル容器に、吸引機構に設けられたノズルを挿入し、
 前記ノズルに振動を与え、
 前記吸引機構により前記ノズルを介して前記サンプルを吸引する
 サンプル送液方法。
 15、65…ノズル
 20…検出部
 25、75…振動子
 26…ノズルアーム
 30…設置部
 38…サンプルチューブ
 41…解析部
 45…制御部
 50、150…サンプル送液装置
 63…取付部
 70…洗浄ユニット
 100…フローサイトメータ

Claims (14)

  1.  サンプルの懸濁液を収容するサンプル容器が設置される設置部と、
     前記設置部に設置された前記サンプル容器に挿入されるように構成されたノズルを有し、前記ノズルを介して前記サンプルを吸引する吸引機構と、
     前記ノズルに振動を与える振動子と
     を具備するサンプル送液装置。
  2.  請求項1に記載のサンプル送液装置であって、
     前記ノズルを支持するノズル支持部をさらに具備し、
     前記振動子は、前記ノズル支持部に取り付けられる
     サンプル送液装置。
  3.  請求項1に記載のサンプル送液装置であって、
     前記振動子はノズルに取り付けられる
     サンプル送液装置。
  4.  請求項1に記載のサンプル送液装置であって、
     前記振動子の振動の強さおよび時間長のうち少なくとも一方を制御するように構成された制御部をさらに具備するサンプル送液装置。
  5.  請求項4に記載のサンプル送液装置であって、
     前記制御部は、前記振動子に振動を発生させた後、前記吸引機構による前記サンプルの吸引動作を開始するように構成される
     サンプル送液装置。
  6.  請求項5に記載のサンプル送液装置であって、
     前記制御部は、前記振動子に振動を発生させてその振動を停止した後、前記吸引機構による前記サンプルの吸引動作を開始するように構成される
     サンプル送液装置。
  7.  請求項4に記載のサンプル送液装置であって、
     前記制御部は、前記振動子に継続的または断続的に振動を発生させる
     サンプル送液装置。
  8.  請求項4に記載のサンプル送液装置であって、
     前記吸引機構により吸引される前記サンプルを検出する検出部をさらに具備し、
     前記制御部は、前記検出部による検出される前記サンプルの数について設定された閾値に基づき、前記振動の強さおよび時間長のうち少なくとも一方を制御するように構成される
     サンプル送液装置。
  9.  請求項1に記載のサンプル送液装置であって、
     前記ノズルを洗浄する洗浄ユニットをさらに具備する
     サンプル送液装置。
  10.  請求項9に記載のサンプル送液装置であって、
     前記振動子は、前記洗浄ユニットに取り付けられる
     サンプル送液装置。
  11.  請求項9に記載のサンプル送液装置であって、
     前記ノズルを支持するノズル支持部をさらに具備し、
     前記振動子は複数設けられ、それら振動子のうち少なくとも2つは、前記ノズル支持部および前記洗浄ユニットにそれぞれ取り付けられる
     サンプル送液装置。
  12.  請求項2に記載のサンプル送液装置であって、
     前記振動子は複数設けられ、それら振動子のうち少なくとも2つは、前記ノズルおよび前記ノズル支持部にそれぞれ取り付けられる
     サンプル送液装置。
  13.  サンプルの懸濁液を収容するサンプル容器が設置される設置部と、
     前記設置部に設置された前記サンプル容器に挿入されるように構成されたノズルを有し、前記ノズルを介して前記サンプルを吸引する吸引機構と、
     前記ノズルに振動を与える振動子と、
     前記吸引機構により吸引される前記サンプルを検出する検出部と、
     前記検出されたサンプルの特性を解析する解析部と
     を具備するフローサイトメータ。
  14.  設置部に設置されたサンプルの懸濁液を収容するサンプル容器に、吸引機構に設けられたノズルを挿入し、
     前記ノズルに振動を与え、
     前記吸引機構により前記ノズルを介して前記サンプルを吸引する
     サンプル送液方法。
PCT/JP2018/014244 2017-06-21 2018-04-03 サンプル送液装置、フローサイトメータ、およびサンプル送液方法 WO2018235383A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/621,821 US11698333B2 (en) 2017-06-21 2018-04-03 Sample liquid-sending apparatus, flow cytometer, and sample liquid-sending method
US18/323,522 US20230296490A1 (en) 2017-06-21 2023-05-25 Sample liquid-sending apparatus, flow cytometer, and sample liquid-sending method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017121121 2017-06-21
JP2017-121121 2017-06-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/621,821 A-371-Of-International US11698333B2 (en) 2017-06-21 2018-04-03 Sample liquid-sending apparatus, flow cytometer, and sample liquid-sending method
US18/323,522 Continuation US20230296490A1 (en) 2017-06-21 2023-05-25 Sample liquid-sending apparatus, flow cytometer, and sample liquid-sending method

Publications (1)

Publication Number Publication Date
WO2018235383A1 true WO2018235383A1 (ja) 2018-12-27

Family

ID=64737012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014244 WO2018235383A1 (ja) 2017-06-21 2018-04-03 サンプル送液装置、フローサイトメータ、およびサンプル送液方法

Country Status (2)

Country Link
US (2) US11698333B2 (ja)
WO (1) WO2018235383A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100619A1 (ja) * 2019-11-22 2021-05-27 ソニーグループ株式会社 サンプル分散装置、サンプル分散方法、サンプル分取キット及び微小粒子分取装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11698333B2 (en) * 2017-06-21 2023-07-11 Sony Corporation Sample liquid-sending apparatus, flow cytometer, and sample liquid-sending method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757326Y2 (ja) * 1978-05-26 1982-12-09
JPH051983A (ja) * 1991-02-13 1993-01-08 Olympus Optical Co Ltd 分注ノズル洗浄装置
JPH07239336A (ja) * 1994-02-25 1995-09-12 Olympus Optical Co Ltd 医療用分析機
JP2016153805A (ja) * 2016-04-21 2016-08-25 ソニー株式会社 サンプル送液装置、フローサイトメータ及びサンプル送液方法

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4379336A (en) 1980-05-30 1983-04-05 Canon Business Machines, Inc. Modular calculator with separable keyboard and display modules
US4864856A (en) * 1986-07-14 1989-09-12 Fuji Photo Film Co., Ltd. Liquid level detecting device
US5215714A (en) * 1988-04-08 1993-06-01 Toa Medical Electronics Co., Ltd. Immunoagglutination measurement apparatus
US6203759B1 (en) * 1996-05-31 2001-03-20 Packard Instrument Company Microvolume liquid handling system
US6521187B1 (en) * 1996-05-31 2003-02-18 Packard Instrument Company Dispensing liquid drops onto porous brittle substrates
US6537817B1 (en) * 1993-05-31 2003-03-25 Packard Instrument Company Piezoelectric-drop-on-demand technology
US6861265B1 (en) * 1994-10-14 2005-03-01 University Of Washington Flow cytometer droplet formation system
US6558916B2 (en) * 1996-08-02 2003-05-06 Axiom Biotechnologies, Inc. Cell flow apparatus and method for real-time measurements of patient cellular responses
US6746873B1 (en) * 1998-02-20 2004-06-08 Xy, Inc. Vibratory system for a sorting flow cytometer
US6232129B1 (en) * 1999-02-03 2001-05-15 Peter Wiktor Piezoelectric pipetting device
US20020106308A1 (en) * 2001-02-02 2002-08-08 Zweifel Ronald A. Microdrop dispensing apparatus
US6579724B2 (en) * 2001-09-13 2003-06-17 First Ten Angstroms Dispensing method and apparatus for dispensing very small quantities of fluid
US7201875B2 (en) * 2002-09-27 2007-04-10 Becton Dickinson And Company Fixed mounted sorting cuvette with user replaceable nozzle
US6874699B2 (en) * 2002-10-15 2005-04-05 Wisconsin Alumni Research Foundation Methods and apparata for precisely dispensing microvolumes of fluids
US20070269348A1 (en) * 2006-05-19 2007-11-22 Cytopeia Incorporated Enhanced droplet flow cytometer system and method
US9897530B2 (en) * 2011-08-25 2018-02-20 Sony Corporation Compensation of motion-related error in a stream of moving micro-entities
US9927342B2 (en) * 2012-06-22 2018-03-27 Bio-Rad Laboratories, Inc. Two station sample and washing system
US11668640B2 (en) * 2015-03-06 2023-06-06 Inguran, Llc Nozzle assembly for a flow cytometry system and methods of manufacture
US20230384201A1 (en) * 2012-09-19 2023-11-30 Inguran, Llc Nozzle assembly for a flow cytometry system and methods of manufacture
AU2013318621B2 (en) * 2012-09-19 2017-02-23 Inguran, Llc Nozzle assembly for a flow cytometer system and methods of manufacture
US10288545B2 (en) * 2013-11-27 2019-05-14 Beckman Coulter, Inc. Fluidics system for flow cytometer
JP2015175837A (ja) * 2014-03-18 2015-10-05 ソニー株式会社 ピペットチップ用板状部材、ピペットチップ、液体撹拌用キット及び液体撹拌装置
EP3171985B1 (en) * 2014-07-25 2024-04-10 Biodot, Inc. Piezoelectric dispenser with a longitudinal transducer and replaceable capillary tube
WO2016049378A1 (en) * 2014-09-24 2016-03-31 Duke University Disposable pipette tip and methods of use
US10690690B2 (en) * 2015-04-24 2020-06-23 Hitachi High-Tech Corporation Automatic analyser and method
JP6134402B1 (ja) * 2016-01-29 2017-05-24 シスメックス株式会社 生体試料撮像装置及び生体試料撮像方法
JP6878593B2 (ja) * 2016-12-23 2021-05-26 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 体外診断システムの吸引プローブの洗浄方法、体外診断方法及び体外診断システム
US11819890B2 (en) * 2016-12-27 2023-11-21 Hitachi High-Tech Corporation Nozzle cleaner and automatic analyzer using the same
JP6758227B2 (ja) * 2017-03-06 2020-09-23 テラメックス株式会社 温調システム
JP6948158B2 (ja) * 2017-05-29 2021-10-13 シスメックス株式会社 試料処理装置及び試料処理方法
JP6979797B2 (ja) * 2017-05-31 2021-12-15 シスメックス株式会社 固液分離方法、固液分離装置およびそれに用いるピペットチップ、粒子およびキット
JP7005176B2 (ja) * 2017-05-31 2022-01-21 シスメックス株式会社 試料調製装置、試料調製システム、試料調製方法及び粒子分析装置
US11698333B2 (en) * 2017-06-21 2023-07-11 Sony Corporation Sample liquid-sending apparatus, flow cytometer, and sample liquid-sending method
JP2020532317A (ja) * 2017-07-21 2020-11-12 ジェルミテク バイオアッセイ担体およびその調整
US10895582B2 (en) * 2017-09-07 2021-01-19 Sysmex Corporation Sample preparing apparatus, sample preparing system, sample preparing method, and particle analyzer
WO2019144894A1 (zh) * 2018-01-24 2019-08-01 北京光阱管理咨询合伙企业(有限合伙) 运动控制机构、吐液枪头、微液滴生成装置及生成方法、流体驱动机构及流体驱动方法、微液滴生成方法以及吐液枪头表面处理方法
DE102018103049A1 (de) * 2018-02-12 2019-08-14 Karlsruher Institut für Technologie Druckkopf und Druckverfahren
JP6891140B2 (ja) * 2018-03-14 2021-06-18 株式会社日立ハイテク 自動分析装置
US11420197B2 (en) * 2018-11-05 2022-08-23 Hycor Biomedical, Llc Apparatus and method for mixing fluid or media by vibrating a pipette using nonconcentric masses
JP7292195B2 (ja) * 2019-12-06 2023-06-16 株式会社日立ハイテク 自動分析装置
WO2021236466A1 (en) * 2020-05-19 2021-11-25 Life Technologies Corporation Nozzle sealing and unclog station for a flow cytometer
EP4327070A1 (en) * 2021-04-23 2024-02-28 Becton, Dickinson and Company Fluid management system for an analyzer and/or sorter type flow type particle analyzer
EP4157537A1 (en) * 2021-06-24 2023-04-05 Beijing Zhiyu Biotechnology Ltd. Droplet generation method, system and application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757326Y2 (ja) * 1978-05-26 1982-12-09
JPH051983A (ja) * 1991-02-13 1993-01-08 Olympus Optical Co Ltd 分注ノズル洗浄装置
JPH07239336A (ja) * 1994-02-25 1995-09-12 Olympus Optical Co Ltd 医療用分析機
JP2016153805A (ja) * 2016-04-21 2016-08-25 ソニー株式会社 サンプル送液装置、フローサイトメータ及びサンプル送液方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100619A1 (ja) * 2019-11-22 2021-05-27 ソニーグループ株式会社 サンプル分散装置、サンプル分散方法、サンプル分取キット及び微小粒子分取装置

Also Published As

Publication number Publication date
US20200124518A1 (en) 2020-04-23
US11698333B2 (en) 2023-07-11
US20230296490A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
US20230296490A1 (en) Sample liquid-sending apparatus, flow cytometer, and sample liquid-sending method
US8528406B2 (en) Method for non-contact particle manipulation and control of particle spacing along an axis
JP5886908B2 (ja) 音響収束ハードウェアおよび実装のためのシステムおよび方法
RU2224992C2 (ru) Вибрационная система для проточного цитометра, предназначенного для сортинга
US8263407B2 (en) Method for non-contact particle manipulation and control of particle spacing along an axis
CN110121650B (zh) 喷嘴清洗器以及使用该喷嘴清洗器的自动分析装置
JP2016109636A (ja) 電界撹拌装置、抗原抗体反応装置、抗原抗体反応方法
US20080142037A1 (en) Apparatus and method for cleaning liquid dispensing equipment
JP2017207392A (ja) 試料注入装置及びそれを備えるクロマトグラフ装置
WO2012125708A2 (en) Device for shearing nucleic acids and particulates
KR20220025730A (ko) 외부 초음파 처리
EP3560611A1 (en) Ultrasonic washer and automatic analysis apparatus using same
WO2021100619A1 (ja) サンプル分散装置、サンプル分散方法、サンプル分取キット及び微小粒子分取装置
JP5091562B2 (ja) 超音波霧化装置
JP2001183360A (ja) 水質分析計
JPH051983A (ja) 分注ノズル洗浄装置
JP4677555B2 (ja) 検体動作制御装置及び方法
JP6150372B2 (ja) 非接触液滴分注装置及び非接触液滴分注方法
EP4224169A1 (en) Ultrasonic washer and automatic analysis device
JP2006242806A (ja) 分注装置
WO2004054704A1 (ja) 微粒子のハンドリング方法及び装置
JP2004340679A (ja) 液体分注装置
JPH08254538A (ja) 医療用分析機の洗浄装置
JP2008275412A (ja) 試料分析システム及び試料搬送方法
US20090126470A1 (en) Specimen inspecting apparatus and stirring apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18821010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18821010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP