WO2018235342A1 - 鋼板 - Google Patents

鋼板 Download PDF

Info

Publication number
WO2018235342A1
WO2018235342A1 PCT/JP2018/007161 JP2018007161W WO2018235342A1 WO 2018235342 A1 WO2018235342 A1 WO 2018235342A1 JP 2018007161 W JP2018007161 W JP 2018007161W WO 2018235342 A1 WO2018235342 A1 WO 2018235342A1
Authority
WO
WIPO (PCT)
Prior art keywords
hardness
content
less
steel plate
thickness
Prior art date
Application number
PCT/JP2018/007161
Other languages
English (en)
French (fr)
Inventor
充 澤村
斎藤 直樹
康哲 ▲高▼橋
拓海 三宅
紀正 川端
岳史 都築
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to BR112019006254-8A priority Critical patent/BR112019006254B1/pt
Priority to US16/337,261 priority patent/US20190226066A1/en
Priority to KR1020197011186A priority patent/KR102009630B1/ko
Priority to CN201880003986.4A priority patent/CN109937266B/zh
Priority to EP18819890.7A priority patent/EP3502296B1/en
Priority to AU2018287603A priority patent/AU2018287603B2/en
Priority to JP2018529075A priority patent/JP6402843B1/ja
Publication of WO2018235342A1 publication Critical patent/WO2018235342A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Definitions

  • the present invention relates to a steel plate (wear-resistant steel plate) excellent in wear resistance.
  • a steel plate wear-resistant steel plate excellent in wear resistance.
  • the central part is the thickness from the surface of the steel plate in the thickness direction
  • the problem is to secure ⁇ 5 mm (total 10 mm thickness) from a position separated by a half of T (that is, T / 2) (that is, the center of the plate thickness).
  • the wear-resistant steel sheet is locally exposed to temperatures higher than room temperature and may be used in severe environments, so that the reduction in hardness is small even in a temperature range higher than room temperature (eg, a temperature range of about 150 to 300 ° C.) It may be required that (high temperature hardness is excellent).
  • a temperature range higher than room temperature eg, a temperature range of about 150 to 300 ° C.
  • high-temperature hardness steel sheets having an increased content of Si have been proposed (see, for example, Patent Documents 1 to 3) ).
  • Patent Document 1 proposes a steel plate containing Nb, in which the content of Si is 0.40 to 1.50 mass% (hereinafter, “mass%” is simply described as “%”).
  • mass% the content of Si is 0.40 to 1.50 mass%
  • the plate thickness of the steel plate is 40 mm or less, and the hardness at the central portion of the plate thickness is not described, and is not studied from the viewpoint of securing a wear margin by thickening of the steel plate.
  • Patent Document 2 assuming a severe wear environment locally exposed to a temperature higher than room temperature, in order to ensure the high temperature hardness of the steel, it contains 0.5% to 1.2% Si. Steels have been proposed which utilize precipitation strengthening with V carbides. However, steel containing a large amount of V is likely to cause slab cracking, and there is a concern that manufacturability may be reduced.
  • Patent Document 3 proposes a steel plate containing 1.00 to 1.50% of Si in order to secure the high temperature hardness of the steel plate.
  • securing of the plate thickness central portion hardness of the steel plate is also taken into consideration, but the difference between the surface layer hardness and the plate thickness central portion hardness (hereinafter, “the hardness difference between the surface layer portion and the plate thickness central portion”, Or it may only be called a "hardness difference.”), And it is not examined in the viewpoint of securing of the wear allowance by thickening of a steel plate.
  • the present invention can maintain high hardness not only at room temperature but also in high temperature environments, and in particular, in a steel plate having a plate thickness of 40 mm or more, the carbon equivalent is less than 0.800%
  • An object of the present invention is to provide a steel plate excellent in wear resistance in which the difference between the surface layer hardness and the thickness central portion hardness at room temperature is 15.0% or less of the surface layer hardness.
  • a steel containing more than 1.00% to 2.00% of Si is advantageous for wear resistance in that the hardness at room temperature and high temperature can be secured.
  • a difference between the surface layer hardness and the thickness central portion hardness tends to easily occur at room temperature. all right. This is because the central portion in the thickness direction of the steel plate has a lower cooling rate than the surface and the surface portion, and the formation of the martensitic structure is insufficient.
  • the increase of the Si content The impact is not always clear.
  • the indicator Q to derive the The index Q is obtained by the following equation (1) in consideration of the hardenability of the alloy element and the plate thickness.
  • an alloying element other than Si (C) is required to reduce the difference between the surface layer hardness and the thickness central part hardness of a steel plate containing Si of more than 1.00%. , Mn, Ni, Cr, Mo), so the amount of Si is not considered.
  • room temperature hardness the hardness in room temperature
  • the term “hardness” simply refers to the hardness at room temperature, and the room temperature refers to 22 ⁇ 5 ° C. (17 to 27 ° C.).
  • the steel plate according to the present invention has a thickness of 40 mm or more, and there is a concern about delayed cracking due to hydrogen if it is affected by residual stress due to welding, etc. Therefore, the carbon equivalent Ceq (%) determined by the following equation (2) Is less than 0.800%.
  • the index Q determined by the following equation (1) By setting the index Q determined by the following equation (1) to be 0.00 or more, the hardness difference between the surface layer portion and the thickness center portion at room temperature becomes 15.0% or less of the surface layer hardness, and the hardness difference is small. And, the carbon equivalent is low, the plate thickness is 40 mm or more, and it is possible to obtain a steel plate excellent in wear resistance.
  • board thickness T and content [X] of each element X are substituted to following formula (1) as a dimensionless numerical value, and the unit of the calculated
  • required is dimensionless.
  • required by following formula (2) is "%".
  • the steel plate according to an aspect of the present invention is, by mass%, C: 0.20 to 0.35%, Si: more than 1.00% to 2.00%, Mn: 0.60 to 2.00%, Cr: 0.10 to 2.00%, Mo: 0.05 to 1.00%, Al: 0.010 to 0.100%, N: 0.0020 to 0.0100%, B: 0.0003 to 0.0020%, P: 0.0200% or less, S: less than 0.0100%, Cu: 0 to 0.500%, Ni: 0 to 1.00%, Nb: 0 to 0.050%, V: 0 to 0.120%, Ti: 0 to 0.025%, Ca: 0 to 0.050%, Mg: 0 to 0.050%, REM: 0 to 0.100%, and the balance: Fe and impurities,
  • the index Q calculated by the following equation (1) is 0.00 or more, It has a chemical composition in which the carbon equivalent Ceq (%) determined by the following formula (2) is less than 0.800%, The ratio of the difference between the surface layer hardness
  • the carbon equivalent Ceq (%) of the formula (2) is calculated by substituting the numerical value of the content [X] in mass% of each element X, and substitutes 0 when the element X is not contained.
  • the index Q is 0.04 or more, The ratio may be 13.0% or less.
  • Ni may have a chemical composition of 0.05 to 1.00%.
  • Mn may have a chemical composition of 0.63 to 2.00%.
  • the carbon equivalent Ceq (%) is 0.800% It is less than this, and it is possible to provide a steel plate excellent in wear resistance in which the difference between the surface layer hardness and the thickness central portion hardness at room temperature is 15.0% or less of the surface layer hardness.
  • Industrial contribution of the steel sheet according to the present invention is extremely remarkable, for example, it can be used for a long time even under a severe environment where the temperature is about 150 to 300 ° C.
  • FIG. 1 is a view for explaining the temperature change of the difference between the surface hardness of a steel plate and a reference hardness.
  • a steel sheet with a thickness of 40 mm with a constant C content and a varied Si content is subjected to hardening treatment, and the Vickers hardness (surface hardness) HV5 on the surface of the steel sheet from room temperature to 400 ° C. is measured. Shown in 1.
  • the vertical axis in FIG. 1 is the difference between the Vickers hardness (surface hardness) HV5 at each temperature of each steel and the Vickers hardness (reference hardness) HV5 at room temperature of a steel plate having a Si content of 0.25%.
  • Vickers hardness HV5 cut out a sample from the position of depth 5 mm from the surface of a steel plate, made test power 49.03 N (5 kgf) according to JIS Z 2252-1991, and measured it by high temperature Vickers hardness test . The measurement of the standard hardness was conducted under the same conditions as the above-mentioned high temperature Vickers hardness test except for the control of the temperature.
  • the hardness distribution (Vickers hardness) in the thickness direction after quenching of a steel sheet (thickness 40 mm) containing Si of more than 1.00% is shown in FIG.
  • the Vickers hardness HV5 was measured at room temperature with a test force of 49.03 N (5 kgf) in accordance with JIS Z 2244: 2009. As shown in FIG. 2, the plate thickness central portion hardness is lower than the surface layer portion hardness.
  • the surface layer hardness Hvs (average value of Vickers hardness measured in the range of 1 mm to 5 mm from the surface of the steel plate in the plate thickness direction) and plate thickness central portion Hvc (plate thickness direction).
  • the average value of Vickers hardness measured in a range of ⁇ 5 mm (total thickness of 10 mm) from the central portion of the steel plate was determined, and the difference (hardness difference) ⁇ Hv between the central thickness and the surface layer hardness at room temperature was calculated. That is, ⁇ Hv is represented by the following formula (a).
  • the present inventors examined a method of reducing the difference in hardness between the surface layer portion and the central portion of the plate thickness at room temperature of a steel plate having a plate thickness of 40 mm or more containing Si of more than 1.00%. .
  • the present inventors repeated studies in order to reduce the difference in hardness of the steel sheet in consideration of the hardenability and thickness of the alloy elements.
  • the steel plate In order to ensure the hardness of the steel plate, it is possible that, in hot rolling, the steel plate is reheated to a temperature of 3 or more Ac at which transformation to austenite ends at the time of temperature rise, and then water cooling etc. is performed (quenching) It is At this time, the surface layer portion of the steel plate has a high cooling rate, and sufficient hardness can be secured. On the other hand, at the central portion of the steel plate in thickness, the cooling rate is lower than that in the surface portion, so that the formation of martensite becomes insufficient and the hardness decreases.
  • the cooling rate decreases at the central portion of the steel plate thickness. Therefore, in order to secure sufficient hardness in the center of thickness of the steel sheet, it is necessary to increase the content of the alloying element to enhance the hardenability. However, when the content of alloying elements is fixed, depending on the plate thickness, the hardenability may be insufficient, the cost may increase by including unnecessary amount of alloying elements, and the weldability may be impaired, etc. Problems arise. Therefore, in order to control the content of the alloying element in an appropriate range, it is necessary to consider that the cooling rate at the central portion of the plate thickness is affected by the plate thickness.
  • the present inventors have a relation between the content of the alloying element having hardenability and the thickness of the steel on the difference in hardness ratio ⁇ Hv / Hvs of various steel materials having a thickness of 40 mm or more containing Si of more than 1.00%.
  • the index Q shown in the following equation (1) was derived.
  • the hardness difference ratio ⁇ Hv / Hvs (%) refers to a ratio obtained by dividing the difference between the surface layer hardness at room temperature and the thickness central portion hardness by the surface layer hardness as a percentage.
  • the hardness difference ratio ⁇ Hv / Hvs (%) is represented by the following formula (b).
  • Hvs is the surface layer hardness (the average value of Vickers hardness measured in the range of 1 mm to 5 mm from the surface of the steel plate in the thickness direction)
  • Hvc is the thickness central portion hardness (steel plate It is an average value of Vickers hardness measured in the range of ⁇ 5 mm (a total of 10 mm thickness) from the central portion in the thickness direction.
  • the hardenability decreases as the cooling rate decreases.
  • the inventors of the present invention have a cooling rate if the steel containing more than 1.00% of Si contains alloying elements other than Si (C, Mn, Ni, Cr, Mo) to secure hardenability. It has been found that Si contributes to the improvement of the hardenability even when the.
  • the following formula (1) is that the inventors of the present invention need to secure hardenability by containing alloy elements (C, Mn, Ni, Cr, Mo) other than Si in order to increase the plate thickness central portion hardness.
  • the indicator Q does not include the term of Si content.
  • FIG. 3 shows the relationship between the hardness difference ratio ⁇ Hv / Hvs (%) and the index Q. From FIG. 3, when setting the hardness difference ratio ⁇ Hv / Hvs (%) to 15.0% or less of the surface layer hardness Hvs as a standard for prolonging the life of a thick steel plate, it is necessary to set Q ⁇ 0.00. I found it to be. In addition, it was found that when setting the hardness difference ratio ⁇ Hv / Hvs (%) to 13.0% or less of the surface layer hardness Hvs, it is necessary to set Q ⁇ 0.04.
  • the steel plate according to the present embodiment has a plate thickness of 40 mm or more, there is concern about hydrogen embrittlement cracking under the influence of residual stress due to welding, so the carbon equivalent Ceq represented by the following formula (2) (%) Is less than 0.800%.
  • following formula (2) includes the term of Si content.
  • Ceq (%) [C] + [Mn] / 6 + [Si] / 24 + [Ni] / 40 + [Cr] / 5 + [Mo] / 4 + [V] / 4 (2)
  • the carbon equivalent Ceq (%) of the above-mentioned formula (2) is calculated by substituting the numerical value of the content [X] in mass% of each element X, and substitutes 0 when the element X is not contained.
  • required by the said Formula (2) is "%".
  • the index Q of the above equation (1) By setting the index Q of the above equation (1) to be 0.00 or more, the hardness difference ⁇ Hv between the surface layer portion and the thickness central portion of the steel plate at room temperature becomes 15.0% or less of the surface layer portion hardness Hvs.
  • a small steel plate having a carbon equivalent of less than 0.800%, a plate thickness of 40 mm or more, and excellent wear resistance can be obtained.
  • C is an element effective for improving the hardness, and in order to secure the hardness of the steel plate, the C content is made 0.20% or more.
  • the C content is 0.22% or more, more preferably 0.24% or more.
  • the C content is made 0.35% or less .
  • the C content is 0.32% or less, more preferably 0.30% or less.
  • Si is a deoxidizer and is also an element effective for improving the hardness of the steel sheet.
  • Si is a very important element to maintain the hardness of the steel sheet in a high temperature environment.
  • the Si content is made more than 1.00%.
  • the Si content is 1.10% or more, more preferably 1.20% or more or 1.30% or more.
  • the Si content is made 2.00% or less.
  • the Si content is 1.90% or less, more preferably 1.80% or less.
  • Mn is an element that enhances the hardenability and improves the hardness, and in order to ensure the hardness of the steel sheet, it is necessary to contain 0.60% or more.
  • the Mn content is 0.70% or more, more preferably 0.80% or more.
  • the Mn content is 2.00% or less.
  • the Mn content is 1.50% or less or 1.35% or less, more preferably 1.20% or less or 1.00% or less.
  • Cr is an element that improves the hardenability and improves the toughness and hardness of the steel sheet.
  • the Cr content is made 0.10% or more.
  • the Cr content is 0.50% or more, more preferably 0.80% or more.
  • the Cr content is made 2.00% or less.
  • the Cr content is 1.70% or less, more preferably 1.50% or less.
  • Mo is also an element that improves the hardenability and improves the hardness of the steel sheet. Mo is also an element effective to maintain the hardness of the steel sheet even in a high temperature environment. Therefore, the Mo content is made 0.05% or more. Preferably, the Mo content is 0.10% or more, more preferably 0.20% or more. On the other hand, when the Mo content exceeds 1.00%, the toughness of the steel sheet decreases, so the Mo content is 1.00% or less. Preferably, the Mo content is 0.60% or less, more preferably 0.40% or less.
  • Al is an element effective as a deoxidizer. Further, Al forms N and AlN, and the crystal grains are refined to improve the toughness of the steel plate. Therefore, the Al content is made 0.010% or more. Preferably, the Al content is 0.020% or more, more preferably 0.030% or more. On the other hand, when Al is contained excessively, the toughness of the steel sheet is lowered, so the Al content is made 0.100% or less. Preferably, the Al content is 0.080% or less, more preferably 0.070% or less.
  • N is an element which forms nitride with Al or Ti, refines crystal grains, and improves the toughness of the steel plate. Therefore, the N content is made 0.0020% or more. Preferably, the N content is 0.0030% or more, more preferably 0.0040% or more. On the other hand, when N is contained excessively, coarse nitrides are formed and the toughness of the steel sheet is reduced, so the N content is made 0.0100% or less. Preferably, the N content is 0.0080% or less, more preferably 0.0060% or less.
  • B is an element effective to significantly improve the hardenability of the steel and to particularly improve the hardness of the central portion of the steel plate. Therefore, the B content is made 0.0003% or more. Preferably, the B content is 0.0005% or more, more preferably 0.0007% or more, and still more preferably 0.0010% or more. On the other hand, when B is contained excessively, a boride is formed, the hardenability is reduced, and the hardness of the steel sheet can not be secured, so the B content is made 0.0020% or less. Preferably, the B content is 0.00118% or less, more preferably 0.0016% or less.
  • P is an impurity
  • the P content is limited to 0.0200% or less in order to reduce the toughness and workability of the steel sheet.
  • the P content is 0.0150% or less, more preferably 0.0100% or less.
  • the lower limit of the P content is preferably 0%, but the P content may be 0.0001% or more from the viewpoint of manufacturing cost.
  • S is an impurity and reduces the toughness of the steel sheet, so the S content is limited to less than 0.0100%.
  • the S content is 0.0070% or less, more preferably 0.0050% or less, and still more preferably 0.0030% or less.
  • the lower limit of the S content is preferably 0%, the S content may be 0.0001% or more from the viewpoint of manufacturing cost.
  • the steel plate according to the present embodiment can selectively contain one or more of Cu, Ni, Nb, V, and Ti for the purpose of improving mechanical properties such as hardness and toughness of the steel plate. .
  • the lower limit of the content of these components is 0%.
  • Cu is an element that forms fine precipitates and contributes to the improvement of the strength of the steel plate, and may contain 0.001% or more. More preferably, the Cu content is 0.050% or more, more preferably 0.100% or more. On the other hand, when Cu is excessively contained, the wear resistance of the steel sheet is deteriorated, so the upper limit of the Cu content is made 0.500% or less. More preferably, the Cu content is 0.450% or less, still more preferably 0.400% or less.
  • Ni is an element that enhances the hardenability of the steel and contributes to the improvement of the hardness of the steel plate, and may contain 0.05% or more. More preferably, the Ni content is 0.10% or more, still more preferably 0.20% or more. On the other hand, since Ni is an expensive alloy element, the Ni content is 1.00% or less from the viewpoint of cost. More preferably, the Ni content is 0.70% or less, more preferably 0.50% or less.
  • Nb is an element that contributes to the grain refinement of the crystal grains by suppressing the formation of nitride and recrystallization, and in order to improve the toughness of the steel sheet, it may contain 0.005% or more. More preferably, the Nb content is made 0.007% or more, still more preferably 0.010% or more. On the other hand, if Nb is excessively contained, the toughness of the steel sheet may be reduced, so the Nb content is made 0.050% or less. More preferably, the Nb content is 0.030% or less, still more preferably 0.020% or less.
  • V is an element that contributes to the improvement of the hardness of the steel sheet, and may contain 0.010% or more. More preferably, the V content is 0.020% or more, still more preferably 0.040% or more. On the other hand, when V is contained excessively, cracking of the slab may occur to impair the productivity, so the V content is made 0.120% or less. More preferably, the V content is 0.100% or less, still more preferably 0.070% or less.
  • Ti is an element that forms TiN and refines crystal grains to improve the toughness of the steel plate, and may contain 0.005% or more. More preferably, the Ti content is made 0.007% or more, still more preferably 0.010% or more. On the other hand, if Ti is excessively contained, the toughness of the steel sheet may be reduced, so the Ti content is made 0.025% or less. More preferably, the Ti content is 0.020% or less, still more preferably 0.015% or less.
  • one or more of Ca, Mg and REM can be selectively contained.
  • the lower limit of the content of these components is 0%.
  • Ca, Mg, and REM are all elements that form sulfides by being combined with S to form inclusions that are difficult to stretch by hot rolling, and mainly contribute to the improvement of the toughness of the steel sheet.
  • Ca, Mg, and REM are excessively contained, these elements may form coarse oxides with O, and the toughness of the steel sheet may be reduced. Therefore, the Ca content and the Mg content are respectively 0.050% or less, and the REM content is 0.100% or less.
  • the Ca content, the Mg content, and the REM content are each 0.020% or less, more preferably 0.010% or less or 0.005% or less.
  • the Ca content and the Mg content are each preferably 0.0005% or more, and the REM content is preferably 0.001% or more. More preferably, the Ca content and the Mg content are each 0.0007% or more, and the REM content is 0.002% or more.
  • REM rare earth metal element
  • the content of REM means the total content of these 17 elements.
  • the balance of the chemical composition of the steel plate according to the present embodiment is Fe and impurities.
  • the impurities are components that are mixed due to various factors of the manufacturing process, including raw materials such as ore and scrap when industrially manufacturing steel plates, and the impurities of the steel plates according to the present embodiment It means what is acceptable as long as it does not adversely affect the characteristics.
  • P and S need to specify the upper limit as described above.
  • impurities in steel O, Sb, Sn and As may be mixed alone or in combination of two or more. Even if these impurities are mixed, there is no particular problem as long as the level of mixing (the range of the content) of the wear resistant steel is normal. Therefore, these contents are limited to the usual mixing levels of the following wear resistant steels.
  • the lower limit of the content of these impurities is 0%.
  • O may be mixed in the steel as an impurity in some cases, since it is an element that forms a coarse oxide, it is preferable that the O content be as small as possible. In particular, when the O content exceeds 0.006%, coarse oxides are formed in the steel and the wear resistance of the steel sheet is deteriorated, so the O content is made 0.006% or less. Preferably, the O content is 0.005% or less, more preferably 0.004% or less.
  • Sb is an element mixed from scrap as a steel material.
  • the wear resistance of the steel plate is degraded, so the Sb content is made 0.01% or less.
  • the Sb content is 0.007% or less and 0.005% or less.
  • Sn like Sb, is an element mixed from scrap as a steel material.
  • Sn content is set to 0.007% or less and 0.005% or less.
  • ⁇ As 0.01% or less> As Sb and Sn, As is an element mixed from scraps as a steel material.
  • As is an element mixed from scraps as a steel material.
  • the As content is made 0.01% or less.
  • the As content is set to 0.007% or less and 0.005% or less.
  • the steel plate according to the present embodiment has a small difference in hardness between the surface layer portion of the steel plate and the central portion of plate thickness at room temperature, and the ratio of the hardness difference to the surface layer portion hardness is 15.0% or less.
  • the index Q calculated by the above shall be 0.00 or more.
  • the index Q is calculated by substituting the numerical value of the plate thickness T (mm) and the numerical value of the content [X] at mass% of each element X as a dimensionless numerical value, and when the element X is not contained, [X] Is 0.
  • the index Q is preferably 0.01 or more, more preferably 0.04 or more, still more preferably 0.05 or more, still more preferably, in order to reduce the difference in hardness between the surface layer portion of the steel plate and the central portion of the plate thickness.
  • the upper limit of the index Q is not particularly defined, but when the index Q is increased, the carbon equivalent Ceq (%) is also increased, so the limit is naturally limited.
  • the index Q is preferably 1.10 or less. More preferably, the index Q is 0.80 or less or 0.50 or less, and still more preferably 0.30 or less or 0.20 or less.
  • the steel plate according to the present embodiment has a carbon equivalent Ceq (%) of less than 0.800% in order to suppress weld cracking and secure weldability of the steel plate.
  • the carbon equivalent Ceq (%) is also calculated by substituting the numerical value of the content [X] of each element in mass%, and when the element X is not contained, [X] is 0.
  • the lower limit of the carbon equivalent Ceq (%) is not particularly defined, when the carbon equivalent Ceq (%) is decreased, the index Q is also reduced, so the limit is naturally limited. In order to make index Q into 0.00 or more and make a hardness difference small, carbon equivalent Ceq (%) has preferred 0.507% or more.
  • the carbon equivalent Ceq (%) is more preferably 0.600% or more, and even more preferably 0.650% or more. Still more preferably, the carbon equivalent Ceq (%) is 0.700% or more. In order to improve the weldability of the steel plate, the carbon equivalent Ceq (%) may be 0.785% or less, 0.770% or less, or 0.760% or less.
  • Ceq (%) [C] + [Mn] / 6 + [Si] / 24 + [Ni] / 40 + [Cr] / 5 + [Mo] / 4 + [V] / 4 (2)
  • the steel plate according to the present embodiment has a small difference (hardness difference) between the surface layer hardness and the thickness central portion hardness at room temperature, and the ratio of the difference between the surface layer hardness and the thickness central portion hardness to the surface layer hardness is 15. It becomes 0% or less, and can exhibit excellent abrasion resistance over a long period of time.
  • the hardness difference ratio ⁇ Hv / Hvs (%) is preferably as small as possible, but it is difficult to make it less than 0% or less than 1.0%. Therefore, the lower limit may be 0% or 1.0%.
  • the hardness difference ratio ⁇ Hv / Hvs (%) may be 3.0% or more, considering the increase in cost associated with the increase in the content of the alloy elements.
  • the surface layer hardness and the thickness central part hardness are Vickers hardness HV5 at room temperature, and are measured in accordance with JIS Z 2244: 2009.
  • the surface layer hardness is an average value of Vickers hardness HV5 measured in the range of 1 mm to 5 mm from the surface in the thickness direction of the steel sheet, with a cross section parallel to the rolling direction and thickness direction of the steel sheet as a measurement surface.
  • the Vickers hardness at a total of 25 points at five points at least every 1 mm is measured in the relevant range.
  • the plate thickness central portion hardness is an average value of Vickers hardness HV5 measured in the range of ⁇ 5 mm (total 10 mm thickness) from the central portion in the plate thickness direction of the steel plate on the measurement surface.
  • the Vickers hardness at a total of 55 points at five points at least every 1 mm is measured in the above-mentioned range.
  • the surface layer hardness Hvs at room temperature is 400 or more in Vickers hardness (HV5). If the surface layer hardness Hvs is less than 400 in Vickers hardness (HV5), the strength of the surface layer portion of the steel plate is insufficient, and therefore, it can not be used for applications such as construction machinery and industrial machinery.
  • the surface layer hardness Hvs at room temperature may be 440 or more, 460 or more, 480 or more, or 500 or more in Vickers hardness (Hv5).
  • the steel plate which concerns on this embodiment has shown very high hardness from surface layer part to plate thickness center part, and tensile strength is also very high.
  • the tensile strength (TS) at room temperature may be 1000 MPa or more, 1200 MPa or more, 1350 MPa or more, or 1500 MPa or more.
  • the upper limit of the tensile strength is not particularly required, but may be 2300 MPa or less.
  • a round bar test specimen is collected from a full thickness test specimen (that is, a plate-like test specimen) or a position (T / 4) which is 1 ⁇ 4 of the thickness T from the steel plate surface. : Measure according to 2011.
  • the steel plate according to the present embodiment is a steel plate manufactured by hot rolling, and is a steel plate having a plate thickness of 40 mm or more, preferably 42 mm or more or 50 mm or more, more preferably 60 mm or more or 80 mm or more.
  • the upper limit of the plate thickness is not particularly limited, and may be 150 mm depending on the application.
  • the plate thickness may be 100 mm or less in consideration of homogenization of the characteristics in the plate thickness direction of the steel plate.
  • a steel piece having the above-described chemical composition is produced by a known method such as a continuous casting method or an ingot-slab method. There is no particular limitation.
  • a steel piece obtained by casting is hot-rolled, and after being water-cooled as it is or air-cooled, it is reheated and quenched to manufacture a steel plate.
  • the steel plate is to be hardened as it is and not to be subjected to heat treatment such as tempering.
  • hot rolling may be performed as it is, but the steel piece is temporarily cooled to room temperature, reheated to a temperature of Ac 3 points or more, and hot rolling is performed. It is also good.
  • the Ac 3 point is the temperature at which the structure of the steel becomes austenite (the austenite transformation is completed) by raising the temperature.
  • the heating temperature for hot rolling is preferably 900 ° C. or more, more preferably 1000 ° C. or more, in order to reduce deformation resistance.
  • the heating temperature of the hot rolling is too high, the structure becomes coarse and the low temperature toughness of the steel sheet may decrease, so 1250 ° C. or less is preferable. More preferably, the heating temperature is set to 1200 ° C. or less, still more preferably 1150 ° C. or less.
  • the hot rolling is preferably finished at an Ar 3 point or higher, which is a temperature at which ferrite transformation starts due to temperature decrease.
  • the Ac 3 point and the Ar 3 point can be obtained from the thermal expansion behavior at the time of heating and cooling by collecting a test piece from a steel piece.
  • quenching is performed to a temperature of 250 ° C. or less, or after hot rolling, the air-cooled steel plate is reheated to a temperature of Ac 3 points or more and quenched to a temperature of 250 ° C. or less.
  • a steel having the chemical composition shown in Table 2 was melted and hot-rolled after casting to obtain a steel plate having a thickness shown in Table 3 and air-cooled to room temperature. Thereafter, the temperature was raised to a quenching temperature shown in Table 3, and then quenching was performed to produce a steel plate having a plate thickness of 40 mm or more. Test pieces are collected from the obtained steel plate, and the cross section parallel to the rolling direction and thickness direction of the steel plate is used as the test surface, and the Vickers hardness of the surface layer portion and the central portion of thickness is in accordance with JIS Z 2244: 2009, room temperature The test force was measured as 49.03 N (5 kgf).
  • the Vickers hardness (surface layer hardness) Hvs of the surface layer is the Vickers hardness at a total of 25 points measured at 5 points every 1 mm within the range of 1 mm to 5 mm from the surface (surface layer) in the thickness direction of the steel plate These were obtained from the average value (arithmetic average).
  • Vickers hardness (plate thickness center part hardness) Hvc of the plate thickness center part is Vickers hardness at a total of 55 points at 5 points per 1 mm within a range of ⁇ 5 mm (10 mm in total thickness) from the center part in the plate thickness direction Were measured and obtained from their mean value (arithmetic mean).
  • the hardness difference ratio ⁇ Hv / Hvs (%) indicating the difference in hardness between the surface layer portion and the central portion of the steel plate at room temperature is obtained using the values of the surface layer portion hardness Hvs and the plate thickness central portion hardness Hvc thus obtained.
  • the hardness difference ratio ⁇ Hv / Hvs (%) is represented by the following formula (b).
  • H Hv / Hvs (%) 100 ⁇ (Hvs-Hvc) / Hvs ⁇ ⁇ ⁇ (b)
  • the judgment criteria for each evaluation item are as follows.
  • the surface layer portion hardness Hvs (HV5) and the plate thickness central portion hardness Hvc (HV5) were all determined to be 400 or more from the viewpoint of wear resistance and 600 or less from the viewpoint of cutting processability.
  • the high temperature hardness (HV5) of the surface layer portion was judged to be good as 300 or more from the viewpoint of the wear resistance at high temperature.
  • the Charpy absorbed energy at 0 ° C. was determined to be 15 J or more.
  • No. 1 in Table 3 101 to 115 are comparative examples, and the chemical composition including the Q value is outside the scope of the present invention.
  • No. 101 to 103 are examples in which the Q value becomes low in relation to the plate thickness, and the hardness difference ratio ⁇ Hv / Hvs (%) exceeds 15.0%.
  • No. 106 is an example in which the Si content is insufficient and the high temperature hardness of the surface layer portion is lowered.
  • no. 107 is an example in which the Si content is large and the toughness is lowered.
  • No. 104, 108 and 114 are examples in which the C content, the Mn content, and the B content are insufficient, respectively, and the surface layer hardness Hvs, the thickness central portion hardness Hvc, and the high temperature hardness of the surface layer decrease. No. 1 with insufficient Cr content.
  • the surface layer hardness Hvs, the thickness central portion hardness Hvc, and the high temperature hardness of the surface layer, 110 is an example in which the toughness is also reduced.
  • 112 is an example in which the plate thickness central portion hardness Hvc, the high temperature hardness of the surface layer portion, and the toughness decrease.
  • No. 105 is an example in which the C content is high and the surface layer hardness Hvs is excessively high.
  • No. 111 with high Mo content 113 is an example in which the toughness is reduced.
  • An example 115 is an example in which the surface layer hardness Hvs, the plate thickness central portion hardness Hvc, and the high temperature hardness of the surface layer portion decrease.
  • the O content was 0.006% or less
  • the Sb content, the Sn content, and the As content were all 0.01% or less.
  • Comparative Example No. 1 in which any one or more of the chemical composition and the Q value is outside the scope of the present invention.
  • at least one of the hardness difference ratio ⁇ Hv / Hvs, the surface layer hardness Hvs, the plate thickness central portion Hvc, and the high temperature hardness and toughness of the surface layer portion did not reach the evaluation criteria judged to be good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

本発明の一態様に係る鋼板は、所定の化学組成を有し、下記式(1)で求められる指標Qが0.00以上であり、下記式(2)で求められる炭素当量Ceq(%)が0.800%未満であり、室温における表層部硬度に対する表層部硬度と板厚中央部硬度との差の割合が15.0%以下であるとともに室温における表層部硬度がビッカース硬さで400以上であり、板厚が40mm以上である。 Q=0.18-1.3(logT)+0.75(2.7×[C]+[Mn]+0.45×[Ni]+0.8×[Cr]+2×[Mo]) ・・・ (1) Ceq(%)=[C]+[Mn]/6+[Si]/24+[Ni]/40+[Cr]/5+[Mo]/4+[V]/4 ・・・ (2)

Description

鋼板
 本発明は、耐摩耗性に優れた鋼板(耐摩耗鋼板)に関する。
 本願は、2017年6月21日に、日本に出願された特願2017-121641号に基づき優先権を主張し、その内容をここに援用する。
 建設機械、産業機械などの用途には、過酷な摩耗環境下でも、長期間に亘って使用できる耐摩耗鋼板が求められており、板厚の増加による摩耗代確保の観点からも、耐摩耗性の向上が要求されている。一般に、鋼板の耐摩耗性を向上させるためには、鋼板の硬度を高めることが必要である。特に板厚が40mm以上の厚手の耐摩耗鋼板では、鋼板の表面近傍における硬度(以下、「表層部硬度」という場合がある。表層部とは、板厚方向で鋼板の表面から1mm~5mmの領域である。)のみならず、硬度が得難い板厚方向の中央部における硬度(以下、「板厚中央部硬度」という場合がある。中央部とは、板厚方向で鋼板の表面から板厚Tの1/2(つまり、T/2)離れた位置(つまり、板厚の中央)から±5mm(合計10mm厚み)の領域である。)の確保が課題である。
 耐摩耗鋼板は、局所的に室温より高い温度に曝され、厳しい環境で使用される場合もあることから、室温より高い温度域(例えば150~300℃程度の温度域)でも硬度の低下が少ない(高温硬度に優れる)ことが要求される場合がある。室温より高い温度域における硬度(以下、「高温硬度」という場合がある。)を確保するために、Siの含有量を増加させた鋼板が提案されている(例えば、特許文献1~3、参照)。
日本国特開平8-41535号公報 日本国特開2001-49387号公報 日本国特開2002-235144号公報
 たとえば、特許文献1では、Siの含有量を0.40~1.50質量%(以下、「質量%」を単に「%」と記す。)とし、Nbを含有する鋼板が提案されている。しかし、特許文献1では、鋼板の板厚が40mm以下であり、板厚中央部硬度については記載されておらず、鋼板の厚肉化による摩耗代の確保という観点では検討されていない。
 特許文献2では、局所的に室温より高い温度に曝される過酷な摩耗環境を想定し、鋼の高温硬度を確保するために、0.5%超~1.2%のSiを含有し、V炭化物による析出強化を利用する鋼が提案されている。しかし、多量のVを含有する鋼は鋳片割れを生じやすく、製造性の低下が懸念される。
 特許文献3では、鋼板の高温硬度を確保するために、1.00~1.50%のSiを含有する鋼板が提案されている。特許文献3では、鋼板の板厚中央部硬度の確保も考慮されているが、表層部硬度と板厚中央部硬度との差(以下、「表層部と板厚中央部との硬度差」、又は単に「硬度差」という場合がある。)については記載されておらず、鋼板の厚肉化による摩耗代の確保という観点では検討されていない。
 耐摩耗鋼板の使用環境や使用形態を考慮すると、室温のみならず150~300℃程度の高温環境下でも、高い硬度の維持や、板厚方向の中央部(板厚中央部)での十分な硬度が要求される場合がある。合金成分の含有量の増加により、板厚中央部の硬度を容易に確保できるが、溶接性が低下するため、炭素当量の上限を設ける必要がある。高温環境下で鋼板の硬度を確保するためには、1.00%超のSi添加が有効とされている。しかし、本発明者らは、1.00%超のSiを含有する鋼板において、表層部硬度と板厚中央部硬度との差が顕著に大きくなるという、鋼板の耐摩耗性にとって好ましくない傾向があることを見出した。
 これまで、1.00%超のSiを含有する鋼板と硬度差との関係についての報告はなく、室温での硬度差を小さくするための検討は十分になされていなかった。本発明は、このような実情に鑑み、室温のみならず、高温環境下でも高い硬度を維持することが可能であり、特に板厚が40mm以上の鋼板において、炭素当量を0.800%未満とし、室温における表層部硬度と板厚中央部硬度との差が表層部硬度の15.0%以下となる、耐摩耗性に優れた鋼板を提供することを目的とする。
 1.00%超~2.00%のSiを含有する鋼は、室温及び高温での硬度を確保できる点で、耐摩耗性には有利である。一方、本発明者らの検討により、1.00%超のSiを含有し、板厚が40mm以上の鋼板では、室温で、表層部硬度と板厚中央部硬度との差が生じやすいことがわかった。これは、鋼板の板厚方向の中央部では、表面及び表層部に比べて冷却速度が低下し、マルテンサイト組織の形成が不十分になることが原因であるが、Siの含有量の増加の影響は、必ずしも明確ではない。
 本発明者らは、さらに検討を重ねた結果、板厚が40mm以上で、1.00%超のSiを含有する鋼板において、室温での表層部硬度と板厚中央部硬度との差を小さくするための指標Qを導出した。指標Qは、合金元素の焼入れ性と、板厚とを考慮した下記式(1)によって求められる。ただし、下記式(1)では、1.00%超のSiを含有する鋼板の表層部硬度と板厚中央部硬度との差を小さくするために必要とされる、Si以外の合金元素(C、Mn、Ni、Cr、Mo)に着目しているので、Si量を考慮してない。なお、以下では、室温における硬度を「室温硬度」という場合がある。また、以下では、単に「硬度」という場合は、室温における硬度を示し、室温とは22±5℃(17~27℃)を示す。
 本発明に係る鋼板は、板厚が40mm以上であり、溶接による残留応力などの影響を受けると水素による遅れ割れが懸念されることから、下記式(2)によって求められる炭素当量Ceq(%)を0.800%未満としている。下記式(1)で求められる指標Qを0.00以上とすることで、室温における表層部と板厚中央部との硬度差が、表層部硬度の15.0%以下となり、硬度差が小さく、且つ炭素当量が低く、板厚が40mm以上であり、且つ耐摩耗性に優れた鋼板を得ることができる。なお、板厚T、各元素Xの含有量[X]を無次元の数値として下記式(1)に代入し、求められた指標Qの単位は無次元である。また、下記式(2)により求められる炭素当量Ceqの単位は「%」である。
 Q=0.18-1.3(logT)+0.75(2.7×[C]+[Mn]+0.45×[Ni]+0.8×[Cr]+2×[Mo]) ・・・ (1)
 Ceq(%)=[C]+[Mn]/6+[Si]/24+[Ni]/40+[Cr]/5+[Mo]/4+[V]/4 ・・・ (2)
 ここで、上記式(1)の指標Qは、板厚T(mm)の数値及び各元素Xの質量%での含有量[X]の数値を代入して計算し、元素Xを含有しない場合は0を代入する。上記式(2)の炭素当量Ceq(%)は、各元素Xの質量%での含有量[X]の数値を代入して計算し、元素Xを含有しない場合は0を代入する。
 本発明はこのような知見に基づいてなされたものであり、その要旨は以下のとおりである。
[1] 本発明の一態様に係る鋼板は、質量%で、
C:0.20~0.35%、
Si:1.00%超~2.00%、
Mn:0.60~2.00%、
Cr:0.10~2.00%、
Mo:0.05~1.00%、
Al:0.010~0.100%、
N:0.0020~0.0100%、
B:0.0003~0.0020%、
P:0.0200%以下、
S:0.0100%未満、
Cu:0~0.500%、
Ni:0~1.00%、
Nb:0~0.050%、
V:0~0.120%、
Ti:0~0.025%、
Ca:0~0.050%、
Mg:0~0.050%、
REM:0~0.100%、及び
残部:Fe及び不純物であり、
 下記式(1)で求められる指標Qが0.00以上であり、
 下記式(2)で求められる炭素当量Ceq(%)が0.800%未満である化学組成を有し、
 室温における表層部硬度に対する表層部硬度と板厚中央部硬度との差の割合が15.0%以下であるとともに室温における表層部硬度がビッカース硬さで400以上であり、
 板厚Tが40mm以上である。
 Q=0.18-1.3(logT)+0.75(2.7×[C]+[Mn]+0.45×[Ni]+0.8×[Cr]+2×[Mo]) ・・・ (1)
 Ceq(%)=[C]+[Mn]/6+[Si]/24+[Ni]/40+[Cr]/5+[Mo]/4+[V]/4 ・・・ (2)
 前記式(1)の指標Qは、板厚T(mm)の数値及び各元素Xの質量%での含有量[X]の数値を代入して計算し、元素Xを含有しない場合は0を代入する。前記式(2)の炭素当量Ceq(%)は、各元素Xの質量%での含有量[X]の数値を代入して計算し、元素Xを含有しない場合は0を代入する。
[2] 上記[1]に記載の鋼板では、前記指標Qが0.04以上であり、
 前記割合が13.0%以下であってもよい。
[3] 上記[1]又は[2]に記載の鋼板では、質量%で、
Ni:0.05~1.00%である化学組成を有してもよい。
[4] 上記[1]~[3]のいずれか一態様に記載の鋼板では、質量%で、
Mn:0.63~2.00%である化学組成を有してもよい。
 本発明の上記態様によれば、室温のみならず、高温環境下でも高い硬度を維持することが可能であり、特に板厚が40mm以上の鋼板において、炭素当量Ceq(%)が0.800%未満であり、室温における表層部硬度と板厚中央部硬度との差が表層部硬度の15.0%以下となる、耐摩耗性に優れた鋼板を提供することができる。本発明に係る鋼板は、温度が150~300℃程度となる過酷な環境下であっても、長期間に亘って使用することができるなど、産業上の貢献が極めて顕著である。
鋼板の表面硬度と基準硬度との差の温度変化を説明する図である。 鋼板の板厚方向の硬度分布を説明する図である。 鋼板の硬度差割合ΔHv/Hvsと指標Qとの関係を説明する図である。
 鋼板のSi含有量と硬度の温度変化との関係について、図1を参照しつつ説明する。図1は、鋼板の表面硬度と基準硬度との差の温度変化を説明する図である。C含有量を一定とし、Si含有量を変化させた板厚40mmの鋼板に焼入れ処理を施し、室温から400℃までの、鋼板の表面におけるビッカース硬さ(表面硬度)HV5を測定した結果を図1に示す。図1の縦軸は、各鋼の各温度におけるビッカース硬さ(表面硬度)HV5と、Si含有量が0.25%である鋼板の室温でのビッカース硬さ(基準硬度)HV5との差である。なお、ビッカース硬さHV5は、鋼板の表面から深さ5mmの位置から試料を切り出し、JIS Z 2252‐1991に準拠し、試験力を49.03N(5kgf)とし、高温ビッカース硬さ試験によって測定した。基準硬度の測定は、温度の制御以外の条件を上記の高温ビッカース硬さ試験と同一にして行った。
 図1から、Si含有量の増加によって室温硬度及び高温硬度が増加し、かつ、高温環境下での硬度低下(表面硬度と基準硬度との差)も小さくなることが分かる。このように、1.00%超~2.00%のSiを含有する鋼板は、室温及び高温での硬度を確保できる点で、耐摩耗性に優れていることがわかる。
 次に、1.00%超のSiを含有する鋼板(板厚40mm)の焼入れ後の板厚方向における硬度分布(ビッカース硬さ)を図2に示す。ビッカース硬さHV5はJIS Z 2244:2009に準拠し、試験力を49.03N(5kgf)として室温で測定した。図2に示すように、板厚中央部硬度は表層部硬度に比べて低下している。さらに、ビッカース硬さ試験の結果から、表層部硬度Hvs(板厚方向で鋼板の表面から1mm~5mmの範囲で測定したビッカース硬さの平均値)及び板厚中央部硬度Hvc(板厚方向で鋼板の中央部から±5mm(合計10mm厚み)の範囲で測定したビッカース硬さの平均値)を求め、室温における板厚中央部硬度と表層部硬度との差(硬度差)ΔHvを算出した。すなわち、ΔHvは下記式(a)で表される。
 ΔHv=Hvs-Hvc ・・・ (a)
 上記ビッカース硬さ試験の結果を表1に示す。表1から、Si含有量の増加とともにΔHvが増大することがわかる。このように、本発明者らは、Si含有量が多い厚手の鋼板では、室温における表層部硬度と板厚中央部硬度との差が生じやすくなるという知見を得た。
Figure JPOXMLDOC01-appb-T000001
 そこで、本発明者らは、1.00%超のSiを含有する、板厚が40mm以上の鋼板の、室温における表層部と板厚中央部との硬度差を小さくする方法について検討を行った。本発明者らは、合金元素の焼入れ性と板厚とを考慮して、鋼板の硬度差を小さくするために検討を重ねた。
 鋼板の硬度を確保するためには、熱間圧延において、昇温時にオーステナイトへの変態が終了するAc点以上の温度に鋼板を再加熱した後、水冷などを行う(焼入れ)ことが通常行われている。このとき、鋼板の表層部は冷却速度が速く、十分な硬度が確保できる。一方、鋼板の板厚中央部では、冷却速度が表層部に比べて低下するため、マルテンサイトの生成が不十分になり、硬度が低下する。
 上記のように鋼板の板厚中央部では、冷却速度が低下する。そのため、鋼板の板厚中央部において十分な硬度を確保するためには、合金元素の含有量を増加して、焼入れ性を高めることが必要である。しかし、合金元素の含有量を一定量とした場合、板厚によっては焼入れ性が不足したり、不必要な量の合金元素を含有させることでコストが増加したり、また、溶接性を損なうなどの問題が生じる。したがって、合金元素の含有量を適正な範囲に制御するためには、板厚中央部の冷却速度が板厚の影響を受けることを考慮する必要がある。
 本発明者らは、1.00%超のSiを含有する、板厚40mm以上の種々の鋼材の硬度差割合ΔHv/Hvsに及ぼす、焼入れ性を有する合金元素の含有量と板厚との関係を整理し、下記式(1)に示す指標Qを導出した。ここで、硬度差割合ΔHv/Hvs(%)とは、室温における表層部硬度と板厚中央部硬度との差を表層部硬度で除して求めた割合を百分率で表している。なお、硬度差割合ΔHv/Hvs(%)は、下記式(b)で表される。下記式(b)において、Hvsは表層部硬度(板厚方向で鋼板の表面から1mm~5mmの範囲で測定したビッカース硬さの平均値)であり、Hvcは板厚中央部硬度(鋼板の板厚方向の中央部から±5mm(合計10mm厚み)の範囲で測定したビッカース硬さの平均値)である。
 ΔHv/Hvs(%)=100×(Hvs-Hvc)/Hvs ・・・ (b)
 従来、1.00%超のSiを含有する鋼では、冷却速度が遅くなると焼入れ性が低下すると考えられていた。しかし、本発明者らは、1.00%超のSiを含有する鋼に、Si以外の合金元素(C、Mn、Ni、Cr、Mo)を含有させて焼入れ性を確保すれば、冷却速度が低下してもSiが焼入れ性の向上に寄与することを見出した。下記式(1)は、板厚中央部硬度を上昇させるために、Si以外の合金元素(C、Mn、Ni、Cr、Mo)を含有させて焼入れ性を確保する必要があるという本発明者らの知見に基づいており、指標QにはSi含有量の項が含まれない。
 Q=0.18-1.3(logT)+0.75(2.7×[C]+[Mn]+0.45×[Ni]+0.8×[Cr]+2×[Mo]) ・・・ (1)
 ここで、上記式(1)の指標Qは、板厚T(mm)の数値及び各元素Xの質量%での含有量[X]の数値を代入して計算し、元素Xを含有しない場合は0を代入する。すなわち、上記式(1)では、板厚T、各元素の含有量[X]を無次元の数値として、指標Qを計算する。なお、上記式(1)のlogは、底が10である対数、すなわち常用対数である。
 図3に、硬度差割合ΔHv/Hvs(%)と指標Qとの関係を示す。図3から、厚手の鋼板を長寿命化できる基準として、硬度差割合ΔHv/Hvs(%)を、表層部硬度Hvsの15.0%以下に設定する場合、Q≧0.00とする必要があることがわかった。また、硬度差割合ΔHv/Hvs(%)を表層部硬度Hvsの13.0%以下に設定する場合、Q≧0.04とする必要があることが分かった。
 さらに、本実施形態に係る鋼板は、板厚が40mm以上であるため、溶接による残留応力影響下での水素脆化割れが懸念されることから、下記式(2)により表される炭素当量Ceq(%)を0.800%未満としている。なお、下記式(2)は、鋼板の溶接性を考慮する必要があるため、Si含有量の項が含まれる。
 Ceq(%)=[C]+[Mn]/6+[Si]/24+[Ni]/40+[Cr]/5+[Mo]/4+[V]/4 ・・・ (2)
 上記式(2)の炭素当量Ceq(%)は、各元素Xの質量%での含有量[X]の数値を代入して計算し、元素Xを含有しない場合は0を代入する。上記式(2)により求められる炭素当量Ceqの単位は「%」である。
 上記式(1)の指標Qを0.00以上とすることで、室温における鋼板の表層部と板厚中央部との硬度差ΔHvが表層部硬度Hvsの15.0%以下となり、硬度差が小さく、炭素当量が0.800%未満であり、板厚が40mm以上であり、かつ耐摩耗性に優れた鋼板を得ることができる。
 以下、本実施形態に係る鋼板について詳細に説明する。まず、本実施形態に係る鋼板の化学組成について説明する。なお、特に断りのない限り、化学組成に関する%は質量%を意味する。
 <C:0.20~0.35%>
 Cは、硬度の向上に有効な元素であり、鋼板の硬度を確保するためにC含有量を0.20%以上とする。好ましくはC含有量を0.22%以上、より好ましくは0.24%以上とする。一方、C含有量が0.35%を超えると、硬度の上昇によって耐水素脆化感受性が高まり、水素脆化による割れの発生が懸念されるため、C含有量を0.35%以下とする。好ましくはC含有量を0.32%以下、より好ましくは0.30%以下とする。
 <Si:1.00%超~2.00%>
 Siは脱酸剤であり、また、鋼板の硬度の向上にも有効な元素である。本実施形態では、Siは高温環境下で鋼板の硬度を維持するために極めて重要な元素である。Si含有の効果を得るために、Si含有量を1.00%超とする。好ましくはSi含有量を1.10%以上、より好ましくは1.20%以上または1.30%以上とする。一方、Si含有量が2.00%を超えると、鋼板の靱性を阻害する場合があるため、Si含有量を2.00%以下とする。好ましくはSi含有量を1.90%以下、より好ましくは1.80%以下とする。
 <Mn:0.60~2.00%>
 Mnは、焼入れ性を高め、硬度を向上させる元素であり、鋼板の硬度を確保するために、0.60%以上を含有させることが必要である。好ましくはMn含有量を0.70%以上、より好ましくは0.80%以上とする。一方、Mnを過剰に含有させると、靭性が低下し、また、セメンタイトの形成を促進し、結果的に鋼板の高温硬度の低下を生じることがある。そのため、Mn含有量を2.00%以下とする。好ましくはMn含有量を1.50%以下または1.35%以下、より好ましくは1.20%以下または1.00%以下とする。
 <Cr:0.10~2.00%>
 Crは、焼入れ性を高め、鋼板の靭性及び硬度を向上させる元素である。鋼板の靱性及び硬度を確保するため、Cr含有量を0.10%以上とする。好ましくはCr含有量を0.50%以上、より好ましくは0.80%以上とする。一方、Cr含有量が2.00%を超えると鋼板の靱性が低下するため、Cr含有量を2.00%以下とする。好ましくはCr含有量を1.70%以下、より好ましくは1.50%以下とする。
 <Mo:0.05~1.00%>
 Moも、焼入れ性を高め、鋼板の硬度を向上させる元素である。また、Moは、高温環境下でも鋼板の硬度を維持するために有効な元素である。そのため、Mo含有量を0.05%以上とする。好ましくはMo含有量を0.10%以上、より好ましくは0.20%以上とする。一方、Mo含有量が1.00%を超えると鋼板の靱性が低下するため、Mo含有量を1.00%以下とする。好ましくはMo含有量を0.60%以下、より好ましくは0.40%以下とする。
 <Al:0.010~0.100%>
 Alは、脱酸剤として有効な元素である。また、AlはNとAlNを形成し、結晶粒を微細化させて、鋼板の靱性を向上させる。そのため、Al含有量を0.010%以上とする。好ましくはAl含有量を0.020%以上、より好ましくは0.030%以上とする。一方、Alを過剰に含有させると、鋼板の靭性の低下を生じるため、Al含有量を0.100%以下とする。好ましくはAl含有量を0.080%以下、より好ましくは0.070%以下とする。
 <N:0.0020~0.0100%>
 Nは、AlやTiと窒化物を形成し、結晶粒を微細化させて、鋼板の靱性を向上させる元素である。そのため、N含有量を0.0020%以上とする。好ましくはN含有量を0.0030%以上、より好ましくは0.0040%以上とする。一方、Nを過剰に含有する場合は、粗大な窒化物が生成し、鋼板の靭性を低下させるため、N含有量を0.0100%以下とする。好ましくはN含有量を0.0080%以下、より好ましくは0.0060%以下とする。
 <B:0.0003~0.0020%>
 Bは、鋼の焼入れ性を顕著に高め、特に鋼板の板厚中央部の硬度の向上に有効な元素である。そのため、B含有量を0.0003%以上とする。好ましくはB含有量を0.0005%以上、より好ましくは0.0007%以上、より一層好ましくは0.0010%以上とする。一方、Bを過剰に含有する場合は、硼化物を形成し、焼入れ性が低下し、鋼板の硬度を確保できなくなるため、B含有量を0.0020%以下とする。好ましくはB含有量を0.0018%以下、より好ましくは0.0016%以下とする。
 <P:0.0200%以下>
 Pは不純物であり、鋼板の靱性や加工性を低下させるため、P含有量を0.0200%以下に制限する。好ましくはP含有量を0.0150%以下、より好ましくは0.0100%以下とする。P含有量の下限は0%とすることが好ましいが、製造コストの観点から、P含有量は0.0001%以上であってもよい。
 <S:0.0100%未満>
 SもPと同様、不純物であり、鋼板の靱性を低下させることから、S含有量を0.0100%未満に制限する。好ましくはS含有量を0.0070%以下、より好ましくは0.0050%以下、より一層好ましくは0.0030%以下とする。S含有量の下限は0%が好ましいが、製造コストの観点から、S含有量は0.0001%以上であってもよい。
 本実施形態に係る鋼板では、鋼板の硬度や靱性などの機械的性質を向上させる目的で、Cu、Ni、Nb、V、及びTiの1種又は2種以上を選択的に含有させることができる。これらの成分の含有量の下限は、0%である。
 <Cu:0~0.500%>
 Cuは、微細な析出物を形成し、鋼板の強度の向上に寄与する元素であり、0.001%以上を含有させてもよい。より好ましくはCu含有量を0.050%以上、より一層好ましくは0.100%以上とする。一方、Cuを過剰に含有させると、鋼板の耐摩耗性を劣化させるため、Cu含有量の上限は0.500%以下とする。より好ましくはCu含有量を0.450%以下、より一層好ましくは0.400%以下とする。
 <Ni:0~1.00%>
 Niは、鋼の焼入れ性を高めて、鋼板の硬度の向上に寄与する元素であり、0.05%以上を含有させてもよい。より好ましくはNi含有量を0.10%以上、より一層好ましくは0.20%以上とする。一方、Niは高価な合金元素であるため、コストの観点から、Ni含有量は1.00%以下とする。より好ましくはNi含有量を0.70%以下、より一層好ましくは0.50%以下とする。
 <Nb:0~0.050%>
 Nbは、窒化物の形成や再結晶の抑制によって、結晶粒の細粒化に寄与する元素であり、鋼板の靱性を向上させるために、0.005%以上を含有させてもよい。より好ましくはNb含有量を0.007%以上、より一層好ましくは0.010%以上とする。一方、Nbを過剰に含有させると、鋼板の靭性を低下させることがあるため、Nb含有量は0.050%以下とする。より好ましくはNb含有量を0.030%以下、より一層好ましくは0.020%以下とする。
 <V:0~0.120%>
 Vは、鋼板の硬度の向上に寄与する元素であり、0.010%以上を含有させてもよい。より好ましくはV含有量を0.020%以上、より一層好ましくは0.040%以上とする。一方、Vを過剰に含有させると、鋳片の割れが生じて製造性を損なう場合があるため、V含有量は0.120%以下とする。より好ましくはV含有量を0.100%以下、より一層好ましくは0.070%以下とする。
 <Ti:0~0.025%>
 Tiは、TiNを形成し、結晶粒を微細化させて、鋼板の靱性を向上させる元素であり、0.005%以上を含有させてもよい。より好ましくはTi含有量を0.007%以上、より一層好ましくは0.010%以上とする。一方、Tiを過剰に含有させると、鋼板の靭性を低下させることがあるため、Ti含有量は0.025%以下とする。より好ましくはTi含有量を0.020%以下、より一層好ましくは0.015%以下とする。
 鋼中の介在物の形態等を制御するために、Ca、Mg、REMの1種又は2種以上を選択的に含有させることができる。これらの成分の含有量の下限は、0%である。
 <Ca:0~0.050%>
 <Mg:0~0.050%>
 <REM:0~0.100%>
 Ca、Mg、REMは、何れもSと結合して硫化物を形成し、熱間圧延によって延伸しにくい介在物を形成する元素であり、主に鋼板の靱性の改善に寄与する。一方、Ca、Mg、REMを過剰に含有させると、これらの元素がOとともに粗大な酸化物を形成し、鋼板の靭性が低下する場合がある。このため、Ca含有量、Mg含有量はそれぞれ、0.050%以下、REM含有量は0.100%以下とする。より好ましくはCa含有量、Mg含有量、REM含有量をそれぞれ、0.020%以下、より一層好ましくは0.010%以下または0.005%以下とする。一方、鋼板の靱性向上効果を得るためには、Ca含有量、Mg含有量はそれぞれ、0.0005%以上、REM含有量は0.001%以上とすることが好ましい。より好ましくはCa含有量、Mg含有量をそれぞれ、0.0007%以上、REM含有量を0.002%以上とする。
 なお、REM(希土類金属元素)は、Sc、Y及びランタノイドからなる合計17元素を意味する。REMの含有量とは、これらの17元素の合計含有量を意味する。
 本実施形態に係る鋼板の化学組成の残部は、Fe及び不純物である。ここで、不純物とは、鋼板を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分であって、本実施形態に係る鋼板の特性に悪影響を与えない範囲で許容されるものを意味する。ただし、本実施形態に係る鋼板においては、不純物のうち、P及びSについては、上述のように、上限を規定する必要がある。
 さらに、鋼中の不純物として、O、Sb、Sn、及びAsが1種又は2種以上が混入する場合がある。これら不純物が混入しても、耐摩耗鋼の通常の混入レベル(含有量の範囲)であれば、特に問題はない。そのため、下記の耐摩耗鋼の通常の混入レベルに、これらの含有量を制限する。これら不純物の含有量の下限は、0%である。
<O:0.006%以下>
 Oは、鋼中に不純物として混入する場合があるが、粗大な酸化物を形成する元素であるため、O含有量は少ない方が好ましい。特に、O含有量が0.006%を超えると、鋼中に粗大な酸化物を形成し、鋼板の耐摩耗性が劣化するため、O含有量は0.006%以下とする。好ましくはO含有量を0.005%以下、より一層好ましくは0.004%以下とする。
 <Sb:0.01%以下>
 Sbは、鋼原料としてスクラップから混入する元素である。特に、Sbを過剰に含有させると、鋼板の耐摩耗性が劣化するため、Sb含有量を0.01%以下とする。好ましくはSb含有量を0.007%以下、0.005%以下とする。
 <Sn:0.01%以下>
 Snは、Sbと同様に、鋼原料としてスクラップから混入する元素である。特に、Snを過剰に含有させると、鋼板の耐摩耗性が劣化するため、Sn含有量を0.01%以下とする。好ましくはSn含有量を0.007%以下、0.005%以下とする。
 <As:0.01%以下>
 Asは、Sb、Snと同様に、鋼原料としてスクラップから混入する元素である。特に、Asを過剰に含有させると、鋼板の耐摩耗性が劣化するため、As含有量を0.01%以下とする。好ましくはAs含有量を0.007%以下、0.005%以下とする。
 本実施形態に係る鋼板は、室温における鋼板の表層部と板厚中央部との硬度差が小さく、表層部硬度に対する硬度差の割合が15.0%以下となるように、下記式(1)で求められる指標Qを0.00以上とする。指標Qは、板厚T(mm)の数値、各元素Xの質量%での含有量[X]の数値を無次元の数値として代入して計算し、元素Xを含有しない場合、[X]は0とする。鋼板の表層部と板厚中央部との硬度差を小さくするために、指標Qは、好ましくは0.01以上、より好ましくは0.04以上、更に好ましくは0.05以上、より一層好ましくは0.10以上とする。指標Qの上限は特に規定しないが、指標Qを大きくすると、炭素等量Ceq(%)も大きくなるので、自ずと制限される。炭素等量Ceq(%)を0.800%未満にして溶接性を確保するために、指標Qは1.10以下が好ましい。より好ましくは指標Qを0.80以下または0.50以下、より一層好ましくは0.30以下または0.20以下とする。
 Q=0.18-1.3(logT)+0.75(2.7×[C]+[Mn]+0.45×[Ni]+0.8×[Cr]+2×[Mo]) ・・・ (1)
 本実施形態に係る鋼板は、溶接割れを抑制し、鋼板の溶接性を確保するために、炭素当量Ceq(%)を0.800%未満とする。炭素等量Ceq(%)も、各元素の質量%での含有量[X]の数値を代入して計算し、元素Xを含有しない場合、[X]は0とする。炭素等量Ceq(%)の下限は特に規定しないが、炭素等量Ceq(%)を小さくすると指標Qも小さくなるので、自ずと制限される。指標Qを0.00以上にして硬度差を小さくするために、炭素等量Ceq(%)は0.507%以上が好ましい。鋼板の耐摩耗性を高めるために、より好ましくは炭素等量Ceq(%)を0.600%以上、より一層好ましくは0.650%以上とする。さらにより一層好ましくは炭素等量Ceq(%)を0.700%以上とする。鋼板の溶接性の向上のため、炭素等量Ceq(%)を0.785%以下、0.770%以下または0.760%以下としてもよい。
 Ceq(%)=[C]+[Mn]/6+[Si]/24+[Ni]/40+[Cr]/5+[Mo]/4+[V]/4 ・・・ (2)
 本実施形態に係る鋼板は、室温における表層部硬度と板厚中央部硬度との差(硬度差)が小さく、表層部硬度に対する表層部硬度と板厚中央部硬度との差の割合が15.0%以下となり、長期間に亘って優れた耐摩耗性を発揮することができる。硬度差割合ΔHv/Hvs(%)は小さいほど好ましいが、0%未満または1.0%未満にすることは困難である。このため、その下限を0%または1.0%としてもよい。合金元素の含有量の増加に伴うコストの上昇を考慮すると、硬度差割合ΔHv/Hvs(%)は3.0%以上であってもよい。表層部硬度及び板厚中央部硬度は、室温におけるビッカース硬さHV5であり、JIS Z 2244:2009に準拠して測定する。表層部硬度は、鋼板の圧延方向及び板厚方向に平行な断面を測定面とし、鋼板の板厚方向で表面から1mm~5mmの範囲で測定したビッカース硬さHV5の平均値である。鋼板の表層部硬度の測定では、当該範囲において、少なくとも1mm毎に5点、合計25点におけるビッカース硬さを測定する。板厚中央部硬度は、前記測定面において、鋼板の板厚方向の中央部から±5mm(合計10mm厚み)の範囲で測定したビッカース硬さHV5の平均値である。鋼板の中央部硬度の測定では、前記範囲において、少なくとも1mm毎に5点、合計55点におけるビッカース硬さを測定する。
 本実施形態に係る鋼板は、室温での前記表層部硬度Hvsがビッカース硬さ(HV5)で400以上である。前記表層部硬度Hvsがビッカース硬さ(HV5)で400未満であると、鋼板の表層部の強度が不十分であるため、建設機械、産業機械などの用途に用いることができない。耐摩耗性の向上のため、室温での前記表層部硬度Hvsをビッカース硬さ(Hv5)で、440以上、460以上、480以上または500以上としてもよい。
 なお、本実施形態に係る鋼板は、表層部から板厚中央部まで非常に高い硬さを示しており、引張強さも非常に高い。必要に応じて、室温での引張強さ(TS)を1000MPa以上、1200MPa以上、1350MPa以上または1500MPa以上としてもよい。前記引張強さの上限を特に定める必要はないが、2300MPa以下としてもよい。なお、引張強さは、全厚試験片(つまり、板状試験片)または鋼板表面から板厚Tの1/4離れた位置(T/4)から丸棒試験片を採取し、JIS Z 2241:2011に準拠して測定する。
 本実施形態に係る鋼板は、熱間圧延によって製造される鋼板であり、板厚が40mm以上、好ましくは42mm以上または50mm以上、より好ましくは60mm以上または80mm以上の鋼板である。板厚の上限は特に規定せず、用途によっては150mmであってもよい。鋼板の板厚方向の特性の均質化を考慮して、板厚を100mm以下としてもよい。
 本実施形態に係る鋼板の製造方法について説明する。本実施形態において、上記の化学組成を有する鋼片は、転炉・電気炉等の通常の精錬プロセスで溶製した後、連続鋳造法あるいは造塊-分塊法等の公知の方法で製造することができ、特に制限はない。
 本実施形態では、鋳造して得られた鋼片を熱間圧延し、そのまま水冷するか、又は空冷した後、再加熱して焼入れて、鋼板を製造する。ただし、鋼板は焼入れままとし、焼戻しなどの熱処理を施さないものとする。
 鋼を溶製し、鋳造した後、そのまま熱間圧延を行ってもよいが、鋼片を、一旦、室温まで冷却し、Ac点以上の温度に再加熱して、熱間圧延を行ってもよい。Ac点は、昇温によって鋼の組織がオーステナイトになる(オーステナイト変態が完了する)温度である。熱間圧延の加熱温度は、変形抵抗を低下させるために、好ましくは900℃以上、より好ましくは1000℃以上とする。一方、熱間圧延の加熱温度が高過ぎると、組織が粗大になり、鋼板の低温靭性が低下する場合があるため、1250℃以下が好ましい。より好ましくは加熱温度を1200℃以下、より一層好ましくは1150℃以下とする。
 熱間圧延は、降温によってフェライト変態が開始する温度であるAr点以上で終了することが好ましい。Ac点及びAr点は、鋼片から試験片を採取し、加熱時及び冷却時の熱膨張挙動から求めることができる。熱間圧延後直ちに250℃以下の温度まで焼入れるか、または、熱間圧延後空冷された鋼板をAc点以上の温度に再加熱し、250℃以下の温度まで焼入れる。
 以下、本発明に係る鋼板の実施例を挙げ、本発明をより具体的に説明する。しかし本発明は、もとより下記実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれるものである。
 表2に示す化学組成を有する鋼を溶製し、鋳造後に熱間圧延を行って表3に示す板厚の鋼板とし、室温まで空冷した。その後、表3に示す焼入れ温度まで昇温後、焼入れを行って、板厚が40mm以上の鋼板を製造した。得られた鋼板から試験片を採取し、鋼板の圧延方向及び板厚方向に平行な断面を試験面として、表層部及び板厚中央部のビッカース硬さをJIS Z 2244:2009に準拠し、室温で、試験力を49.03N(5kgf)として測定した。表層部のビッカース硬さ(表層部硬度)Hvsは、鋼板の板厚方向で表面から1mm~5mmの範囲(表層部)で、1mm毎に5点、合計25点におけるビッカース硬さを測定し、これらの平均値(算術平均)から得た。板厚中央部のビッカース硬さ(板厚中央部硬度)Hvcは、鋼板の板厚方向の中央部から±5mm(合計10mm厚み)の範囲で、1mm毎に5点、合計55点におけるビッカース硬さを測定し、これらの平均値(算術平均)から得た。このようにして得られた表層部硬度Hvs及び板厚中央部硬度Hvcの値を用いて、室温における鋼板の表層部と中央部の硬度差を示す硬度差割合△Hv/Hvs(%)を得た。なお、硬度差割合ΔHv/Hvs(%)は、下記式(b)で表される。
 △Hv/Hvs(%)=100×(Hvs-Hvc)/Hvs ・・・ (b)
 また、鋼板から試料を切り出し、JIS Z 2252-1991に準拠し、400℃にて、試験力を9.807N(1kgf)として高温ビッカース硬さ試験を行った。これにより、鋼板の前記表層部の高温硬度(HV1)を得た。なお、表層部の高温硬度の測定は、温度の制御及び試験力以外の条件を上記の表層部ビッカース硬さ試験(室温)と同一にして行った。さらに、鋼板の表面から板厚Tの1/4離れた位置(T/4)から、圧延方向に平行な方向のフルサイズのVノッチシャルピー試験片を切り出し、JIS Z 2242:2005に準拠して、0℃のシャルピー吸収エネルギー(vE)を測定した。
 各評価項目の判断基準は次の通りである。表層部硬度Hvs(HV5)、板厚中央部硬度Hvc(HV5)はいずれも、耐摩耗性の観点から400以上、切断加工性の観点から600以下を良好と判断した。表層部の高温硬度(HV5)は、高温での耐摩耗性の観点から300以上を良好と判断した。0℃のシャルピー吸収エネルギーは15J以上を良好と判断した。
 結果を表3に示す。No.1~18は、指標Qおよび炭素当量Ceq(%)を含む化学組成、板厚Tの各パラメータが本発明の範囲内であり、表層部と中央部の硬度差割合△Hv/Hvsも15.0%以下である。これらの鋼は、何れも、表層部硬度Hvs、板厚中央部硬度Hvc、表層部の高温硬度、及び0℃のシャルピー吸収エネルギーに優れた鋼板である。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 一方、表3のNo.101~115は比較例であり、Q値を含む化学組成が本発明の範囲外である。No.101~103は、板厚との関係でQ値が低くなり、硬度差割合△Hv/Hvs(%)が15.0%を超えた例である。
 No.106はSi含有量が不足し、表層部の高温硬度が低下した例である。一方、No.107はSi含有量が多く、靱性が低下した例である。
 No.104、108及び114、は、それぞれC含有量、Mn含有量及びB含有量が不足し、表層部硬度Hvs、板厚中央部硬度Hvc、及び表層部の高温硬度が低下した例である。
 Cr含有量が不足しているNo.110は、表層部硬度Hvs、板厚中央部硬度Hvc、及び表層部の高温硬度に加えて靭性も低下した例である。
 Mo含有量が不足しているNo.112は、板厚中央部硬度Hvc、表層部の高温硬度、及び靭性が低下した例である。
 No.105はC含有量が多く、表層部硬度Hvsが過剰に高くなった例である。
 Mn含有量が多いNo.109、Cr含有量が多いNo.111、Mo含有量が多いNo.113は、靭性が低下した例である。
 B含有量が過剰であるNo.115は表層部硬度Hvs、板厚中央部硬度Hvc、及び表層部の高温硬度が低下した例である。
 なお、すべての実施例において、O含有量は0.006%以下であり、且つ、Sb含有量、Sn含有量、及びAs含有量はすべて0.01%以下であった。
 このように、化学組成及びQ値の何れか1つ以上が本発明の範囲外である比較例No.101~115は、硬度差割合△Hv/Hvs、表層部硬度Hvs、板厚中央部硬度Hvc、表層部の高温硬度、靱性の少なくとも一つが、良好と判断される評価基準に達しなかった。

Claims (4)

  1.  質量%で、
    C:0.20~0.35%、
    Si:1.00%超~2.00%、
    Mn:0.60~2.00%、
    Cr:0.10~2.00%、
    Mo:0.05~1.00%、
    Al:0.010~0.100%、
    N:0.0020~0.0100%、
    B:0.0003~0.0020%、
    P:0.0200%以下、
    S:0.0100%未満、
    Cu:0~0.500%、
    Ni:0~1.00%、
    Nb:0~0.050%、
    V:0~0.120%、
    Ti:0~0.025%、
    Ca:0~0.050%、
    Mg:0~0.050%、
    REM:0~0.100%、及び
    残部:Fe及び不純物であり、
     下記式(1)で求められる指標Qが0.00以上であり、
     下記式(2)で求められる炭素当量Ceq(%)が0.800%未満である化学組成を有し、
     室温における表層部硬度に対する表層部硬度と板厚中央部硬度との差の割合が15.0%以下であるとともに室温における表層部硬度がビッカース硬さで400以上であり、
     板厚Tが40mm以上である鋼板。
     Q=0.18-1.3(logT)+0.75(2.7×[C]+[Mn]+0.45×[Ni]+0.8×[Cr]+2×[Mo]) ・・・ (1)
     Ceq(%)=[C]+[Mn]/6+[Si]/24+[Ni]/40+[Cr]/5+[Mo]/4+[V]/4 ・・・ (2)
     前記式(1)の指標Qは、板厚T(mm)の数値及び各元素Xの質量%での含有量[X]の数値を代入して計算し、元素Xを含有しない場合は0を代入する。前記式(2)の炭素当量Ceq(%)は、各元素Xの質量%での含有量[X]の数値を代入して計算し、元素Xを含有しない場合は0を代入する。
  2.  前記指標Qが0.04以上であり、
     前記割合が13.0%以下である請求項1に記載の鋼板。
  3.  質量%で、
    Ni:0.05~1.00%
    である化学組成を有する請求項1又は請求項2に記載の鋼板。
  4.  質量%で、
    Mn:0.63~2.00%
    である化学組成を有する請求項1~3のいずれか一項に記載の鋼板。
PCT/JP2018/007161 2017-06-21 2018-02-27 鋼板 WO2018235342A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112019006254-8A BR112019006254B1 (pt) 2017-06-21 2018-02-27 Placa de aço
US16/337,261 US20190226066A1 (en) 2017-06-21 2018-02-27 Steel plate
KR1020197011186A KR102009630B1 (ko) 2017-06-21 2018-02-27 강판
CN201880003986.4A CN109937266B (zh) 2017-06-21 2018-02-27 钢板
EP18819890.7A EP3502296B1 (en) 2017-06-21 2018-02-27 Steel plate
AU2018287603A AU2018287603B2 (en) 2017-06-21 2018-02-27 Steel plate
JP2018529075A JP6402843B1 (ja) 2017-06-21 2018-02-27 鋼板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-121641 2017-06-21
JP2017121641 2017-06-21

Publications (1)

Publication Number Publication Date
WO2018235342A1 true WO2018235342A1 (ja) 2018-12-27

Family

ID=64735536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007161 WO2018235342A1 (ja) 2017-06-21 2018-02-27 鋼板

Country Status (7)

Country Link
US (1) US20190226066A1 (ja)
EP (1) EP3502296B1 (ja)
KR (1) KR102009630B1 (ja)
CN (1) CN109937266B (ja)
AU (1) AU2018287603B2 (ja)
BR (1) BR112019006254B1 (ja)
WO (1) WO2018235342A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023506822A (ja) * 2019-12-16 2023-02-20 ポスコホールディングス インコーポレーティッド 低温衝撃靭性に優れた高硬度耐摩耗鋼及びその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111321337B (zh) * 2020-02-27 2021-02-26 江阴兴澄特种钢铁有限公司 一种预硬化镜面模具钢板及其制造方法
BE1029509A9 (fr) * 2021-06-18 2023-01-30 Metal Quartz Sa Système de protection ajouré

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841535A (ja) * 1994-07-29 1996-02-13 Nippon Steel Corp 低温靱性に優れた高硬度耐摩耗鋼の製造方法
JPH10251800A (ja) * 1997-03-12 1998-09-22 Kawasaki Steel Corp 高炭素薄物熱延鋼板及びその製造方法
JP2001049387A (ja) * 1999-08-03 2001-02-20 Nippon Steel Corp 高靭性厚手高温耐摩耗鋼
JP2002235144A (ja) * 2001-02-08 2002-08-23 Komatsu Ltd 耐摩耗強靭鋼、カッティングエッジ、バケットツースおよびバケットリップ
JP2015113504A (ja) * 2013-12-12 2015-06-22 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3585034B2 (ja) * 2000-12-14 2004-11-04 日産自動車株式会社 高強度レース及びその製造方法
JP5385554B2 (ja) * 2008-06-19 2014-01-08 株式会社神戸製鋼所 熱処理用鋼
JP5029748B2 (ja) * 2010-09-17 2012-09-19 Jfeスチール株式会社 靭性に優れた高強度熱延鋼板およびその製造方法
CN102691017A (zh) * 2012-03-27 2012-09-26 北京科技大学 一种具有nm550硬度的低成本耐磨钢板及制造方法
JP5966730B2 (ja) * 2012-07-30 2016-08-10 Jfeスチール株式会社 耐衝撃摩耗特性に優れた耐摩耗鋼板およびその製造方法
JP5510620B1 (ja) * 2013-08-13 2014-06-04 新日鐵住金株式会社 鋼板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841535A (ja) * 1994-07-29 1996-02-13 Nippon Steel Corp 低温靱性に優れた高硬度耐摩耗鋼の製造方法
JPH10251800A (ja) * 1997-03-12 1998-09-22 Kawasaki Steel Corp 高炭素薄物熱延鋼板及びその製造方法
JP2001049387A (ja) * 1999-08-03 2001-02-20 Nippon Steel Corp 高靭性厚手高温耐摩耗鋼
JP2002235144A (ja) * 2001-02-08 2002-08-23 Komatsu Ltd 耐摩耗強靭鋼、カッティングエッジ、バケットツースおよびバケットリップ
JP2015113504A (ja) * 2013-12-12 2015-06-22 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3502296A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023506822A (ja) * 2019-12-16 2023-02-20 ポスコホールディングス インコーポレーティッド 低温衝撃靭性に優れた高硬度耐摩耗鋼及びその製造方法
JP7471417B2 (ja) 2019-12-16 2024-04-19 ポスコホールディングス インコーポレーティッド 低温衝撃靭性に優れた高硬度耐摩耗鋼及びその製造方法

Also Published As

Publication number Publication date
BR112019006254B1 (pt) 2022-08-09
AU2018287603B2 (en) 2019-07-11
EP3502296B1 (en) 2020-06-03
EP3502296A1 (en) 2019-06-26
US20190226066A1 (en) 2019-07-25
CN109937266A (zh) 2019-06-25
KR102009630B1 (ko) 2019-08-09
CN109937266B (zh) 2020-07-03
AU2018287603A1 (en) 2019-05-16
BR112019006254A2 (pt) 2019-06-25
KR20190044689A (ko) 2019-04-30
EP3502296A4 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
US8097099B2 (en) High toughness abrasion resistant steel with little change in hardness during use and method of production of same
JP5145805B2 (ja) ガス切断面性状および耐低温焼戻し脆化割れ特性に優れた耐磨耗鋼板
JP4650013B2 (ja) 低温靱性に優れた耐摩耗鋼板およびその製造方法
AU2013302197B2 (en) Method for producing molten steel having high wear resistance and steel having said characteristics
KR101033711B1 (ko) 고온 내마모성 및 굽힘 가공성이 우수한 내마모 강판 및 그 제조 방법
JP5145803B2 (ja) 低温靭性および耐低温焼戻し脆化割れ特性に優れた耐磨耗鋼板
JP2009030093A (ja) 耐低温焼戻し脆化割れ特性に優れた耐磨耗鋼板
JP2020117811A (ja) 耐摩耗鋼
JP7368461B2 (ja) 優れた硬度及び衝撃靭性を有する耐摩耗鋼及びその製造方法
JP7226598B2 (ja) 耐摩耗鋼板およびその製造方法
JPWO2016170761A1 (ja) マルテンサイト系ステンレス鋼
KR102009630B1 (ko) 강판
US20210164067A1 (en) High-mn steel and method for manufacturing same
JP6798557B2 (ja)
JP4645307B2 (ja) 低温靭性に優れた耐摩耗鋼およびその製造方法
KR20150074697A (ko) 저 니켈 함유 스테인리스강
JP6402843B1 (ja) 鋼板
JP6631702B2 (ja) 低温靭性に優れた高張力鋼板
JP2006328511A (ja) 低温靭性に優れた耐摩耗鋼およびその製造方法
JP5329634B2 (ja) 二相ステンレス鋼、二相ステンレス鋼鋳片、および、二相ステンレス鋼鋼材
KR101209483B1 (ko) 철강절단용 나이프용공구강
JP7180147B2 (ja) 耐食性耐摩耗鋼板
JP2006213976A (ja) 溶接性と継手靱性に優れた高張力鋼材
JP2017179426A (ja) 耐摩耗鋼板及びその製造方法
JP6597449B2 (ja) 耐摩耗鋼板及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018529075

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18819890

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018819890

Country of ref document: EP

Effective date: 20190322

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019006254

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197011186

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018287603

Country of ref document: AU

Date of ref document: 20180227

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019006254

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190328

NENP Non-entry into the national phase

Ref country code: DE